1
|
Baba B, Ceylani T, Gurbanov R, Acikgoz E, Keskin S, Allahverdi H, Samgane G, Tombuloglu H, Teker HT. Promoting longevity in aged liver through NLRP3 inflammasome inhibition using tauroursodeoxycholic acid (TUDCA) and SCD probiotics. Arch Gerontol Geriatr 2024; 125:105517. [PMID: 38851091 DOI: 10.1016/j.archger.2024.105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
This investigation explores the combined influence of SCD Probiotics and tauroursodeoxycholic acid (TUDCA) on liver health in elderly male Sprague-Dawley rats. Through the administration of intravenous TUDCA (300 mg/kg) and oral SCD Probiotics (3 mL at 1 × 10^8 CFU) daily for one week, this study evaluates the biomolecular composition, histopathological alterations, and inflammasome activity in the liver. Analytical methods encompassed ATR-FTIR spectroscopy integrated with machine learning for the assessment of biomolecular structures, RT-qPCR for quantifying inflammasome markers (NLRP3, ASC, Caspase-1, IL18, IL1β), and histological examinations to assess liver pathology. The findings reveal that TUDCA prominently enhanced lipid metabolism by reducing cholesterol esters, while SCD Probiotics modulated both lipid and protein profiles, notably affecting fatty acid chain lengths and protein configurations. Histological analysis showed significant reductions in cellular degeneration, lymphatic infiltration, and hepatic fibrosis. Furthermore, the study noted a decrease in the immunoreactivity for NLRP3 and ASC, suggesting suppressed inflammasome activity. While SCD Probiotics reduced the expression of certain inflammasome-related genes, they also paradoxically increased AST and LDH levels. Conversely, an exclusive elevation in albumin levels was observed in the group treated with SCD Probiotics, implying a protective role against liver damage. These results underscore the therapeutic potential of TUDCA and SCD Probiotics for managing age-associated liver disorders, illustrating their individual and synergistic effects on liver health and pathology. This study provides insights into the complex interactions of these agents, advocating for customized therapeutic approaches to combat liver fibrosis, enhance liver functionality, and decrease inflammation in aging populations.
Collapse
Affiliation(s)
- Burcu Baba
- Department of Medical Biochemistry, Yüksek İhtisas University, Ankara, Turkey
| | - Taha Ceylani
- Department of Molecular Biology and Genetics, Muş Alparslan University Muş, Turkey; Department of Food Quality Control and Analysis, Muş Alparslan University Muş, Turkey.
| | - Rafig Gurbanov
- Department of Bioengineering, Bilecik Şeyh Edebali University Bilecik, Turkey; Central Research Laboratory, Bilecik Şeyh Edebali University Bilecik, Turkey
| | - Eda Acikgoz
- Department of Neuroscience, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey.
| | - Seda Keskin
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Hüseyin Allahverdi
- Department of Molecular Biology and Genetics, Muş Alparslan University Muş, Turkey
| | - Gizem Samgane
- Department of Bioengineering, Bilecik Şeyh Edebali University Bilecik, Turkey
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hikmet Taner Teker
- Department of Medical Biology and Genetics, Ankara Medipol University Ankara, Turkey.
| |
Collapse
|
2
|
Li W, Chen H, Tang J. Interplay between Bile Acids and Intestinal Microbiota: Regulatory Mechanisms and Therapeutic Potential for Infections. Pathogens 2024; 13:702. [PMID: 39204302 PMCID: PMC11356816 DOI: 10.3390/pathogens13080702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Bile acids (BAs) play a crucial role in the human body's defense against infections caused by bacteria, fungi, and viruses. BAs counteract infections not only through interactions with intestinal bacteria exhibiting bile salt hydrolase (BSH) activity but they also directly combat infections. Building upon our research group's previous discoveries highlighting the role of BAs in combating infections, we have initiated an in-depth investigation into the interactions between BAs and intestinal microbiota. Leveraging the existing literature, we offer a comprehensive analysis of the relationships between BAs and 16 key microbiota. This investigation encompasses bacteria (e.g., Clostridioides difficile (C. difficile), Staphylococcus aureus (S. aureus), Escherichia coli, Enterococcus, Pseudomonas aeruginosa, Mycobacterium tuberculosis (M. tuberculosis), Bacteroides, Clostridium scindens (C. scindens), Streptococcus thermophilus, Clostridium butyricum (C. butyricum), and lactic acid bacteria), fungi (e.g., Candida albicans (C. albicans) and Saccharomyces boulardii), and viruses (e.g., coronavirus SARS-CoV-2, influenza virus, and norovirus). Our research found that Bacteroides, C. scindens, Streptococcus thermophilus, Saccharomyces boulardii, C. butyricum, and lactic acid bacteria can regulate the metabolism and function of BSHs and 7α-dehydroxylase. BSHs and 7α-dehydroxylase play crucial roles in the conversion of primary bile acid (PBA) to secondary bile acid (SBA). It is important to note that PBAs generally promote infections, while SBAs often exhibit distinct anti-infection roles. In the antimicrobial action of BAs, SBAs demonstrate antagonistic properties against a wide range of microbiota, with the exception of norovirus. Given the intricate interplay between BAs and intestinal microbiota, and their regulatory effects on infections, we assert that BAs hold significant potential as a novel approach for preventing and treating microbial infections.
Collapse
Affiliation(s)
| | - Hui Chen
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China;
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China;
| |
Collapse
|
3
|
Yang J, Sun Y, Wang Q, Yu S, Li Y, Yao B, Yang X. Astragalus polysaccharides-induced gut microbiota play a predominant role in enhancing of intestinal barrier function of broiler chickens. J Anim Sci Biotechnol 2024; 15:106. [PMID: 39103958 DOI: 10.1186/s40104-024-01060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/06/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND The intestinal barrier is the first line of defense against intestinal invasion by pathogens and foreign antigens and is closely associated with the gut microbiota. Astragalus polysaccharides (APS) have a long history of use in traditional Chinese medicine owing to its protective properties against intestinal barrier function. The mechanism of APS-induced gut microbiota enhancing intestinal barrier function is urgently needed. RESULTS Dietary polysaccharide deprivation induced intestinal barrier dysfunction, decreased growth performance, altered microbial composition (Faecalibacterium, Dorea, and Coprobacillus), and reduced isobutyrate concentration. The results showed that APS facilitates intestinal barrier function in broiler chickens, including a thicker mucus layer, reduced crypt depth, and the growth of tight junction proteins. We studied the landscape of APS-induced gut microbiota and found that APS selectively promoted the growth of Parabacteroides, a commensal bacterium that plays a predominant role in enhancing intestinal barrier function. An in vitro growth assay further verified that APS selectively increased the abundance of Parabacteroides distasonis and Bacteroides uniformis. Dietary APS supplementation increased the concentrations of isobutyrate and bile acid (mainly chenodeoxycholic acid and deoxycholate acid) and activated signaling pathways related to intestinal barrier function (such as protein processing in the endoplasmic reticulum, tight junctions, and adherens junction signaling pathways). CONCLUSIONS APS intervention restored the dietary polysaccharide-induced dysfunction of the intestinal barrier by selectively promoting the abundance of Parabacteroides distasonis, and increasing the concentrations of isobutyrate and bile acids (mainly CDCA and DCA). These findings suggest that APS-induced gut microbiota and metabolic niches are promising strategies for enhancing intestinal barrier function.
Collapse
Affiliation(s)
- Jiantao Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanpeng Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agriculture Science, Beijing, China
| | - Qianggang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shanglin Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanhe Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bin Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agriculture Science, Beijing, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
4
|
Shinoda A, Lkhagvajav T, Mishima R, Therdtatha P, Jamiyan D, Purevdorj C, Sonomtseren S, Chimeddorj B, Namdag B, Lee YK, Demberel S, Nakayama J. Gut microbiome signatures associated with type 2 diabetes in obesity in Mongolia. Front Microbiol 2024; 15:1355396. [PMID: 38983625 PMCID: PMC11231203 DOI: 10.3389/fmicb.2024.1355396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Mongolian people possess a unique dietary habit characterized by high consumption of meat and dairy products and fewer vegetables, resulting in the highest obesity rate in East Asia. Although obesity is a known cause of type 2 diabetes (T2D), the T2D rate is moderate in this population; this is known as the "Mongolian paradox." Since the gut microbiota plays a key role in energy and metabolic homeostasis as an interface between food and body, we investigated gut microbial factors involved in the prevention of the co-occurrence of T2D with obesity in Mongolians. We compared the gut microbiome and metabolome of Mongolian adults with obesity with T2D (DO: n = 31) or without T2D (NDO: n = 35). Dysbiotic signatures were found in the gut microbiome of the DO group; lower levels of Faecalibacterium and Anaerostipes which are known as short-chain fatty acid (SCFA) producers and higher levels of Methanobrevibacter, Desulfovibrio, and Solobacterium which are known to be associated with certain diseases. On the other hand, the NDO group exhibited a higher level of fecal SCFA concentration, particularly acetate. This is consistent with the results of the whole shotgun metagenomic analysis, which revealed a higher relative abundance of SCFA biosynthesis-related genes encoded largely by Anaerostipes hadrus in the NDO group. Multiple logistic regression analysis including host demographic parameters indicated that acetate had the highest negative contribution to the onset of T2D. These findings suggest that SCFAs produced by the gut microbial community participate in preventing the development of T2D in obesity in Mongolians.
Collapse
Affiliation(s)
- Akari Shinoda
- Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Tsogtbaatar Lkhagvajav
- Laboratory of Physiology and Pathology of Young Animals, Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Riko Mishima
- Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Phatthanaphong Therdtatha
- Division of Biotechnology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Dugersuren Jamiyan
- Laboratory of Physiology and Pathology of Young Animals, Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | | | - Sainbileg Sonomtseren
- Department of Endocrinology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Battogtokh Chimeddorj
- Department of Microbiology and Infection Prevention Control, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Bira Namdag
- Department of the Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Yuan Kun Lee
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Shirchin Demberel
- Laboratory of Physiology and Pathology of Young Animals, Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Jiro Nakayama
- Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Luo L, Zhao Y, Zhang G, Dong S, Xu Y, Shi H, Zhang M, Liu X, Wang S, Luo H, Jing W. Tauroursodeoxycholic Acid Reverses Dextran Sulfate Sodium-Induced Colitis in Mice via Modulation of Intestinal Barrier Dysfunction and Microbiome Dysregulation. J Pharmacol Exp Ther 2024; 390:116-124. [PMID: 38816229 DOI: 10.1124/jpet.123.002020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
Ulcerative colitis (UC) is an immune-mediated inflammatory disease that can lead to persistent damage and even cancer without any intervention. Conventional treatments can alleviate UC symptoms but are costly and cause various side effects. Tauroursodeoxycholic acid (TUDCA), a secondary bile acid derivative, possesses anti-inflammatory and cytoprotective properties for various diseases, but its potential therapeutic benefits in UC have not been fully explored. Mice were subjected to colitis induction using 3% dextran sulfate sodium (DSS). The therapeutic effect of TUDCA was evaluated by body weight loss, disease activity index (DAI), colon length, and spleen weight ratio. Tissue pathology was assessed using H&E staining, while the levels of pro-inflammatory and anti-inflammatory cytokines in colonic tissue were quantified via ELISA. Tight junction proteins were detected by immunoblotting and intestinal permeability was assessed using fluorescein isothiocyanate (FITC)-dextran. Moreover, the gut microbiota was profiled using high-throughput sequencing of the 16S rDNA gene. TUDCA alleviated the colitis in mice, involving reduced DAI, attenuated colon and spleen enlargement, ameliorated histopathological lesions, and normalized levels of pro-inflammatory and anti-inflammatory cytokines. Furthermore, TUDCA treatment inhibited the downregulation of intestinal barrier proteins, including zonula occludens-1 and occludin, thus reducing intestinal permeability. The analysis of gut microbiota suggested that TUDCA modulated the dysbiosis in mice with colitis, especially for the remarkable rise in Akkermansia TUDCA exerted a therapeutic efficacy in DSS-induced colitis by reducing intestinal inflammation, protecting intestinal barrier integrity, and restoring gut microbiota balance. SIGNIFICANCE STATEMENT: This study demonstrates the potential therapeutic benefits of Tauroursodeoxycholic acid (TUDCA) in ulcerative colitis. TUDCA effectively alleviated colitis symptoms in mice, including reducing inflammation, restoring intestinal barrier integrity and the dysbiosis of gut microbiota. This work highlights the promising role of TUDCA as a potentially alternative treatment, offering new insights into managing this debilitating condition.
Collapse
Affiliation(s)
- Longbiao Luo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China (L.L., S.D., Y.X., H.S., M.Z., X.L., S.W., W.J.); Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China (L.L., H.L.); Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (Y.Z.); School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China (G.Z.); and Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, China (S.D., Y.X., H.S., M.Z., X.L., S.W., W.J.)
| | - Yi Zhao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China (L.L., S.D., Y.X., H.S., M.Z., X.L., S.W., W.J.); Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China (L.L., H.L.); Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (Y.Z.); School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China (G.Z.); and Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, China (S.D., Y.X., H.S., M.Z., X.L., S.W., W.J.)
| | - Guangji Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China (L.L., S.D., Y.X., H.S., M.Z., X.L., S.W., W.J.); Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China (L.L., H.L.); Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (Y.Z.); School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China (G.Z.); and Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, China (S.D., Y.X., H.S., M.Z., X.L., S.W., W.J.)
| | - Sijing Dong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China (L.L., S.D., Y.X., H.S., M.Z., X.L., S.W., W.J.); Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China (L.L., H.L.); Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (Y.Z.); School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China (G.Z.); and Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, China (S.D., Y.X., H.S., M.Z., X.L., S.W., W.J.)
| | - YinYue Xu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China (L.L., S.D., Y.X., H.S., M.Z., X.L., S.W., W.J.); Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China (L.L., H.L.); Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (Y.Z.); School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China (G.Z.); and Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, China (S.D., Y.X., H.S., M.Z., X.L., S.W., W.J.)
| | - Hehe Shi
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China (L.L., S.D., Y.X., H.S., M.Z., X.L., S.W., W.J.); Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China (L.L., H.L.); Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (Y.Z.); School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China (G.Z.); and Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, China (S.D., Y.X., H.S., M.Z., X.L., S.W., W.J.)
| | - Menggai Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China (L.L., S.D., Y.X., H.S., M.Z., X.L., S.W., W.J.); Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China (L.L., H.L.); Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (Y.Z.); School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China (G.Z.); and Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, China (S.D., Y.X., H.S., M.Z., X.L., S.W., W.J.)
| | - Xue Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China (L.L., S.D., Y.X., H.S., M.Z., X.L., S.W., W.J.); Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China (L.L., H.L.); Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (Y.Z.); School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China (G.Z.); and Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, China (S.D., Y.X., H.S., M.Z., X.L., S.W., W.J.)
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China (L.L., S.D., Y.X., H.S., M.Z., X.L., S.W., W.J.); Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China (L.L., H.L.); Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (Y.Z.); School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China (G.Z.); and Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, China (S.D., Y.X., H.S., M.Z., X.L., S.W., W.J.)
| | - Hua Luo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China (L.L., S.D., Y.X., H.S., M.Z., X.L., S.W., W.J.); Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China (L.L., H.L.); Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (Y.Z.); School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China (G.Z.); and Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, China (S.D., Y.X., H.S., M.Z., X.L., S.W., W.J.)
| | - Wanghui Jing
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China (L.L., S.D., Y.X., H.S., M.Z., X.L., S.W., W.J.); Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China (L.L., H.L.); Department of Pharmacy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China (Y.Z.); School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China (G.Z.); and Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, China (S.D., Y.X., H.S., M.Z., X.L., S.W., W.J.)
| |
Collapse
|
6
|
Jia H, Dong N. Effects of bile acid metabolism on intestinal health of livestock and poultry. J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 38649786 DOI: 10.1111/jpn.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/27/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Bile acids are synthesised in the liver and are essential amphiphilic steroids for maintaining the balance of cholesterol and energy metabolism in livestock and poultry. They can be used as novel feed additives to promote fat utilisation in the diet and the absorption of fat-soluble substances in the feed to improve livestock performance and enhance carcass quality. With the development of understanding of intestinal health, the balance of bile acid metabolism is closely related to the composition and growth of livestock intestinal microbiota, inflammatory response, and metabolic diseases. This paper systematically reviews the effects of bile acid metabolism on gut health and gut microbiology in livestock. In addition, our paper summarised the role of bile acid metabolism in performance and disease control.
Collapse
Affiliation(s)
- Hongpeng Jia
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
7
|
Jin L, Shi L, Huang W. The role of bile acids in human aging. MEDICAL REVIEW (2021) 2024; 4:154-157. [PMID: 38680685 PMCID: PMC11046569 DOI: 10.1515/mr-2024-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/20/2024] [Indexed: 05/01/2024]
Abstract
Bile acids are recognized as important signaling molecules that enable fine-tuned inter-communication from the liver, through the intestine, to virtually any organ, thus encouraging their pleiotropic physiological effects. Aging is a complex natural process defined as a progressive decline in cellular and organismal functions. A causal link between bile acids and the aging process is emerging. However, there are gaps in our understanding of the molecular mechanisms and precise targets responsible for the alteration of bile acid profiles and their role in the aging process. Intestinal barrier dysfunction leads to endotoxemia, systemic inflammation, insulin resistance, diabetes, lipid accumulation, obesity and fatty liver diseases, and health decline and death. In fact, intestinal barrier dysfunction is suggested to be an evolutionarily conserved hallmark of aging. Bile acids may modulate the aging process by regulating intestinal barrier integrity.
Collapse
Affiliation(s)
- Lihua Jin
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, institution-id-type="Ringgold" />City of Hope National Medical Center, Duarte, CA, USA
| | - Linsen Shi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, institution-id-type="Ringgold" />City of Hope National Medical Center, Duarte, CA, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, institution-id-type="Ringgold" />City of Hope National Medical Center, Duarte, CA, USA
- Irell & Manella Graduate School of Biomedical Science, institution-id-type="Ringgold" />City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
8
|
Hao Z, Ding X, Wang J. Effects of gut bacteria and their metabolites on gut health of animals. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:223-252. [PMID: 38763528 DOI: 10.1016/bs.aambs.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The intestine tract is a vital site for the body to acquire nutrients, serving as the largest immune organ. Intestinal health is crucial for maintaining a normal physiological state. Abundant microorganisms reside in the intestine, colonized in a symbiotic manner. These microorganisms can generate various metabolites that influence host physiological activities. Microbial metabolites serve as signaling molecules or metabolic substrates in the intestine, and some intestinal microorganisms act as probiotics and promote intestinal health. Researches on host, probiotics, microbial metabolites and their interactions are ongoing. This study reviews the effects of gut bacteria and their metabolites on intestinal health to provide useful references for animal husbandry.
Collapse
Affiliation(s)
- Zhuang Hao
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China
| | - Xuedong Ding
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China
| | - Jing Wang
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China.
| |
Collapse
|
9
|
Yang J, Qin K, Sun Y, Yang X. Microbiota-accessible fiber activates short-chain fatty acid and bile acid metabolism to improve intestinal mucus barrier in broiler chickens. Microbiol Spectr 2024; 12:e0206523. [PMID: 38095466 PMCID: PMC10782983 DOI: 10.1128/spectrum.02065-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE The intestinal mucus barrier, located at the interface of the intestinal epithelium and the microbiota, is the first line of defense against pathogenic microorganisms and environmental antigens. Dietary polysaccharides, which act as microbiota-accessible fiber, play a key role in the regulation of intestinal microbial communities. However, the mechanism via which dietary fiber affects the intestinal mucus barrier through targeted regulation of the gut microbiota is not clear. This study provides fundamental evidence for the benefits of dietary fiber supplementation in broiler chickens through improvement in the intestinal mucus barrier by targeted regulation of the gut ecosystem. Our findings suggest that the microbiota-accessible fiber-gut microbiota-short-chain fatty acid/bile acid axis plays a key role in regulating intestinal function.
Collapse
Affiliation(s)
- Jiantao Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Kailong Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanpeng Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Shi L, Jin L, Huang W. Bile Acids, Intestinal Barrier Dysfunction, and Related Diseases. Cells 2023; 12:1888. [PMID: 37508557 PMCID: PMC10377837 DOI: 10.3390/cells12141888] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The intestinal barrier is a precisely regulated semi-permeable physiological structure that absorbs nutrients and protects the internal environment from infiltration of pathological molecules and microorganisms. Bile acids are small molecules synthesized from cholesterol in the liver, secreted into the duodenum, and transformed to secondary or tertiary bile acids by the gut microbiota. Bile acids interact with bile acid receptors (BARs) or gut microbiota, which plays a key role in maintaining the homeostasis of the intestinal barrier. In this review, we summarize and discuss the recent studies on bile acid disorder associated with intestinal barrier dysfunction and related diseases. We focus on the roles of bile acids, BARs, and gut microbiota in triggering intestinal barrier dysfunction. Insights for the future prevention and treatment of intestinal barrier dysfunction and related diseases are provided.
Collapse
Affiliation(s)
- Linsen Shi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Lihua Jin
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biomedical Science, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
11
|
Zhu Y, Zheng P, Lin Y, Wang J, You W, Wang Y, Zheng H, Wen L, Yang X. The alteration of serum bile acid profile among traumatic brain injury patients: a small-scale prospective study. J Clin Biochem Nutr 2023; 73:97-102. [PMID: 37534094 PMCID: PMC10390815 DOI: 10.3164/jcbn.23-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/03/2023] [Indexed: 08/04/2023] Open
Abstract
Traumatic brain injury is one of the major causes of morbidity and mortality worldwide. With the development of bile acids as a potential treatment, to identify the influence of traumatic brain injury on bile acid metabolism shows growing importance. This present study did a preliminary exploration of the bile acid profile alteration among traumatic brain injury patients. In total, 14 patients and 7 healthy volunteers were enrolled. The bile acid profile of the blood samples were detected by an Ultra-performance Liquid Chromatography Mass Spectrometer/Mass Spectrometer system. It was found that 6 bile acids were statistically decreased in traumatic brain injury patients comparing with healthy volunteers: glycocholic acid (median level 44.4 ng/ml vs 98.7 ng/ml, p = 0.003), taurocholic acid (median level 10.9 ng/ml vs 19.5 ng/ml, p = 0.006), glycoursodeoxycholic acid (median level 17.4 ng/ml vs 71.4 ng/ml, p = 0.001), ursodeoxycholic acid (median level <1 ng/ml vs 32.4 ng/ml, p = 0.002), taurochenodeoxycholic acid (median level <1 ng/ml vs 53.6 ng/ml, p = 0.003) and glycochenodeoxycholic acid (GCDCA, median level 160 ng/ml vs 364 ng/ml, p<0.001). In conclusion, traumatic brain injury events are able to induce bile acid metabolism alteration in plasma and might cause reduction in glycocholic, taurocholic, glycoursodeoxycholic, ursodeoxycholic, taurochenodeoxycholic and glycochenodeoxycholic acid levels.
Collapse
Affiliation(s)
- Yuanrun Zhu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, 1367 West Wenyi Rd., Hangzhou, Zhejiang Province 310003, China
| | - Peidong Zheng
- Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou, Zhejiang Province 310003, China
| | - Yajun Lin
- Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou, Zhejiang Province 310003, China
| | - Juehan Wang
- Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou, Zhejiang Province 310003, China
| | - Wendong You
- Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou, Zhejiang Province 310003, China
- The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Rd., Fuzhou, Fujian Province 350000, China
| | - Yadong Wang
- The First Affiliated Hospital, School of Medicine, Zhejiang University, 1367 West Wenyi Rd., Hangzhou, Zhejiang Province 310003, China
| | - Huiqing Zheng
- Zhejiang University School of Medicine, 866 Yuhangtang Rd., Hangzhou, Zhejiang Province 310003, China
| | - Liang Wen
- The First Affiliated Hospital, School of Medicine, Zhejiang University, 1367 West Wenyi Rd., Hangzhou, Zhejiang Province 310003, China
| | - Xiaofeng Yang
- The First Affiliated Hospital, School of Medicine, Zhejiang University, 1367 West Wenyi Rd., Hangzhou, Zhejiang Province 310003, China
| |
Collapse
|
12
|
Calzadilla N, Comiskey SM, Dudeja PK, Saksena S, Gill RK, Alrefai WA. Bile acids as inflammatory mediators and modulators of intestinal permeability. Front Immunol 2022; 13:1021924. [PMID: 36569849 PMCID: PMC9768584 DOI: 10.3389/fimmu.2022.1021924] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/26/2022] [Indexed: 12/12/2022] Open
Abstract
Bile acids are critical for the digestion and absorption of lipids and fat-soluble vitamins; however, evidence continues to emerge supporting additional roles for bile acids as signaling molecules. After they are synthesized from cholesterol in the liver, primary bile acids are modified into secondary bile acids by gut flora contributing to a diverse pool and making the composition of bile acids highly sensitive to alterations in gut microbiota. Disturbances in bile acid homeostasis have been observed in patients with Inflammatory Bowel Diseases (IBD). In fact, a decrease in secondary bile acids was shown to occur because of IBD-associated dysbiosis. Further, the increase in luminal bile acids due to malabsorption in Crohn's ileitis and ileal resection has been implicated in the induction of diarrhea and the exacerbation of inflammation. A causal link between bile acid signaling and intestinal inflammation has been recently suggested. With respect to potential mechanisms related to bile acids and IBD, several studies have provided strong evidence for direct effects of bile acids on intestinal permeability in porcine and rodent models as well as in humans. Interestingly, different bile acids were shown to exert distinct effects on the inflammatory response and intestinal permeability that require careful consideration. Such findings revealed a potential effect for changes in the relative abundance of different bile acids on the induction of inflammation by bile acids and the development of IBD. This review summarizes current knowledge about the roles for bile acids as inflammatory mediators and modulators of intestinal permeability mainly in the context of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Nathan Calzadilla
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
- Department of Bioengineering, University of Illinois, Chicago, IL, United States
| | - Shane M. Comiskey
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
| | - Pradeep K. Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Ravinder K. Gill
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
| | - Waddah A. Alrefai
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL, United States
| |
Collapse
|