1
|
Li Z, Xu J, Zhang F, Wang L, Yue Y, Wang L, Chen J, Ma H, Feng J, Min Y. Dietary starch structure modulates nitrogen metabolism in laying hens via modifying glucose release rate. Int J Biol Macromol 2024; 279:135554. [PMID: 39270891 DOI: 10.1016/j.ijbiomac.2024.135554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
The objective of this study was to investigate the effects of starch structure (Amylopectin/Amylose, AP/AM) in a low-protein diet on production performance, nitrogen utilization efficiency, and cecal flora in laying hens. Four hundred eighty 45-wk-age Hy-Line Gray laying hens were randomly allocated to five dietary groups and subjected to a 12-wk feeding trial. The AP/AM ratios of the five experiment diets were 1.0, 1.5, 2.0, 3.0, and 4.0. The results indicated that compared to other groups, laying hens fed with AP/AM 4.0 diets showed significantly improved average egg weight and feed conversion ratio (P < 0.05). Furthermore, as the AP/AM ratio increased, there was a significant linear enhancement in intestinal amino acids apparent digestibility, apparent metabolizable energy, and villus area (P < 0.05). Compared to the high AP groups, high-AM diets significantly increased eggshell thickness, crude protein digestibility, and reduced energy supply from amino acid oxidation in ileum (P < 0.05). Additionally, moderate-AM diets enriched with short-chain fatty acid-producing bacteria in the cecum, such as Lactobacillus, Rikenellaceae_RC9_gut_group, and Christensenellaceae_R-7_group, which are associated with the promoting nitrogen utilization. These findings may offer useful information on optimizing starch structure for the design of food products and relevant therapies due to the potential effects on nutrient metabolism and gut homeostasis.
Collapse
Affiliation(s)
- Zhuorui Li
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jingya Xu
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengdong Zhang
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Leiqing Wang
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanrui Yue
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lijun Wang
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jian Chen
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hui Ma
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia Feng
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yuna Min
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Hong W, Fu W, Zhao Q, Xue C, Cai W, Dong N, Shan A. Effects of oleanolic acid on acute liver injury triggered by lipopolysaccharide in broiler chickens. Br Poult Sci 2023; 64:697-709. [PMID: 37697900 DOI: 10.1080/00071668.2023.2251119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 09/13/2023]
Abstract
1. Infectious injury caused by lipopolysaccharide (LPS), a metabolite of gram-negative bacteria, can induce stress responses in animals and is a significant cause of morbidity and mortality in young birds. The purpose of this study was to investigate the effects of dietary supplementation with oleanolic acid (OA) on acute liver injury in broiler chickens challenged with LPS.2. In total, 120 broiler chickens were randomly divided into six groups and fed a basal diet containing 0, 50, 100, or 200 mg/kg OA or 100 mg/kg aureomycin. On d 15, broiler chickens were injected with either LPS or an equivalent volume of normal saline. Six hours after LPS injection, two broiler chicks were randomly selected for sampling in each replicate.3. The results indicated that dietary aureomycin was ineffective in alleviating LSP-associated liver injury, but protected broiler chickens from LPS-induced liver damage. This promoted a significant reduction in the levels of malondialdehyde and an increase in the levels of superoxide dismutase in liver. In addition, OA was found to cause significant reductions in the relative expression of IL-1β, IL-6, and TNF-α in broiler liver tissues, whereas the relative expression of IL-10 was significantly increased.4. In conclusion, oleanolic acid can alleviate oxidative stress and injury in the livers of broiler chickens induced by lipopolysaccharide. Consequently, oleanolic acid has potential utility as a novel anti-inflammatory and antioxidant feed additive.
Collapse
Affiliation(s)
- W Hong
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - W Fu
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - Q Zhao
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - C Xue
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - W Cai
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - N Dong
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| | - A Shan
- The Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, P. R. China
| |
Collapse
|
3
|
Zhang B, Hong L, Ke J, Zhong Y, Cao N, Li W, Xu D, Tian Y, Huang Y, Chen W, Li B. Polysaccharide of Atractylodes macrocephala Koidz alleviate lipopolysaccharide-induced liver injury in goslings via the p53 and FOXO pathways. Poult Sci 2023; 102:102480. [PMID: 36680857 PMCID: PMC9871332 DOI: 10.1016/j.psj.2023.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
Lipopolysaccharide (LPS) can affect the immune system of geese by inducing liver injury. The polysaccharide of Atractylodes macrocephala Koidz (PAMK) have obvious immune-enhancing effects. Accordingly, this experiment investigated the effect of PAMK on LPS-induced liver injury in goslings. Two hundred 1-day-old goslings were randomly divided into the control group, LPS group, PAMK group, and PAMK+ LPS group, and the PAMK and PAMK+ LPS groups were fed the basal diet with 400 mg/kg PAMK, while the control and LPS groups were fed the basal diet. On D 21, 23, and 25 of the formal trial, the goslings in the LPS and PAMK+LPS groups were injected intraperitoneally with 2 mg/kg LPS, and goslings in the control and PAMK groups were injected intraperitoneally with the same amount of saline. Livers were collected on D 25. HE-stained sections showed that PAMK could effectively alleviate the LPS-induced indistinct hepatic cord structure, loss of cytoplasmic contents of hepatocytes, and dilatation of hepatic sinusoids. The biochemical parameters of liver tissues showed that PAMK could alleviate the LPS-induced upregulation of alanine aminotransferase and aspartate aminotransferase. To further investigate the mechanism of the mitigating effect of PAMK on LPS-induced injury, livers from the LPS and PAMK+LPS groups were selected for transcriptome sequencing. The sequencing results showed that there were 406 differentially expressed genes (DEGs) in the livers of LPS and PAMK+LPS goslings, of which 242 upregulated and 164 downregulated. The Kyoto Encyclopedia of Genes and Genome (KEGG) analysis showed that DEGs were significantly enriched in immune signal transduction, cell cycle, and cell metabolism. Besides, protein‒protein interaction analysis showed that 129 DEGs were associated with each other, including 7 DEGs enriched in the p53 and FOXO signaling pathway. In conclusion, PAMK may alleviate LPS-induced liver injury in gosling through the p53 and FOXO signaling pathway. These results provide a basis for further development of PAMK as an immunomodulator.
Collapse
Affiliation(s)
- Bingqi Zhang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Longsheng Hong
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Jingfei Ke
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yueyun Zhong
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Nan Cao
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Wanyan Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Danning Xu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Yunbo Tian
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Yunmao Huang
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Wenbin Chen
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China,Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| | - Bingxin Li
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China.
| |
Collapse
|
4
|
Konieczka P, Wojtasik-Kalinowska I, Poltorak A, Kinsner M, Szkopek D, Fotschki B, Juśkiewicz J, Banach J, Michalczuk M. Cannabidiol affects breast meat volatile compounds in chickens subjected to different infection models. Sci Rep 2022; 12:18940. [PMID: 36344735 PMCID: PMC9640543 DOI: 10.1038/s41598-022-23591-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
No study has demonstrated the use of dietary Cannabis-derived cannabidiol (CBD) to alter the stress response in chickens or examined its effects on meat volatile compounds (VOCs). Here, we subjected chickens to dysbiosis via C. perfringens infection or Escherichia coli lipopolysaccharide (LPS) treatment and investigated the potential link between meat VOCs and cecal bacterial activity and the ameliorative effect of CBD. The cecal bacterial production of short-chain fatty acids (SCFAs) was closely correlated with meat VOCs. CBD supplementation reduced the formation of breast meat spoilage VOCs, including alcohols, trimethylamine and pentanoic acid, in the challenged birds, partly by decreasing cecal putrefactive SCFA production. Meat VOC/cecal SCFA relationships differed according to the challenge, and CBD attenuated the effects of C. perfringens infection better than the effects of LPS challenge on meat VOCs. These findings provide new insights into the interactions among bioactive agent supplementation, gut microbiota activity and meat properties in birds.
Collapse
Affiliation(s)
- Paweł Konieczka
- grid.413454.30000 0001 1958 0162Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland ,grid.412607.60000 0001 2149 6795Department of Poultry Science and Apiculture, University of Warmia and Mazury, Oczapowskiego 5, 10-718 Olsztyn, Poland
| | - Iwona Wojtasik-Kalinowska
- grid.13276.310000 0001 1955 7966Department of Technique and Food Development, Warsaw University of Life Sciences, 159C Nowoursynowska, 02-776 Warsaw, Poland
| | - Andrzej Poltorak
- grid.13276.310000 0001 1955 7966Department of Technique and Food Development, Warsaw University of Life Sciences, 159C Nowoursynowska, 02-776 Warsaw, Poland
| | - Misza Kinsner
- grid.413454.30000 0001 1958 0162Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Dominika Szkopek
- grid.413454.30000 0001 1958 0162Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Bartosz Fotschki
- grid.413454.30000 0001 1958 0162Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Jerzy Juśkiewicz
- grid.413454.30000 0001 1958 0162Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Joanna Banach
- grid.425118.b0000 0004 0387 1266Institute of Natural Fibres and Medicinal Plants – National Research Institute, Wojska Polskiego 71B, 60-630 Poznań, Poland
| | - Monika Michalczuk
- grid.13276.310000 0001 1955 7966Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| |
Collapse
|