1
|
Wang Q, Guo C, Wang T, Shuai P, Wu W, Huang S, Li Y, Zhao P, Zeng C, Yi L. Drug protection against radiation-induced neurological injury: mechanisms and developments. Arch Toxicol 2024:10.1007/s00204-024-03933-w. [PMID: 39724149 DOI: 10.1007/s00204-024-03933-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
In daily life, individuals are frequently exposed to various forms of radiation, which, when adhering to safety standards, typically result in relatively minor health effects. However, accidental exposure to radiation levels that exceed these safety standards can lead to significant health consequences. This study focuses on the analysis of radiation-induced damage to the nervous system and the mechanisms of pharmacological protection. The findings indicate that radiation can adversely affect neural structures, memory, and neurobehaviour. A range of pharmacological agents, including traditional Chinese medicine, Western medicine, and other therapeutic drugs, can be employed to safeguard the nervous system from radiation damage. The primary protective mechanisms of these agents encompass antioxidant effects, attenuation of apoptosis, and reduction of neurogenesis. A comprehensive review of these topics will offer new insights for the development and investigation of drugs aimed at mitigating radiation-induced damage to the nervous system.
Collapse
Affiliation(s)
- Qingyu Wang
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Caimao Guo
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Tiantian Wang
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Peimeng Shuai
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wenyu Wu
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Shuqi Huang
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yuanyuan Li
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Pei Zhao
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Chengkai Zeng
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lan Yi
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Obianwuna UE, Chang X, Oleforuh-Okoleh VU, Onu PN, Zhang H, Qiu K, Wu S. Phytobiotics in poultry: revolutionizing broiler chicken nutrition with plant-derived gut health enhancers. J Anim Sci Biotechnol 2024; 15:169. [PMID: 39648201 PMCID: PMC11626766 DOI: 10.1186/s40104-024-01101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/05/2024] [Indexed: 12/10/2024] Open
Abstract
As the global population continues to expand, the demand for broiler chicken production to supply safe and high-quality meat is increasing. To meet this ever-growing demand, broiler chickens with enhanced growth performance are being developed, but they often face challenges related to oxidative stress, which can adversely affect gut health. Phytobiotics, which are plant-derived feed additives known for their antimicrobial, antioxidant, immune-modulating, and growth-promoting properties, have emerged as promising natural alternatives to synthetic antibiotics. This review consolidates recent advancements in the use of phytobiotics-derived products from leaves, roots, seeds, flowers, and their extracts in broiler diets reared under standard experimental conditions, without the introduction of stressors. The focus is on elucidating the key mechanisms through which phytobiotics improve gut health, including their effects on gut morphology, integrity, microflora composition, antioxidant capacity, and immune function. The review highlights the potential of phytobiotics to revolutionize broiler nutrition by acting as natural enhancers of gut health. Research findings reveal that phytobiotics significantly improve intestinal health, and boost growth performance, offering a sustainable approach to managing to gut dysfunction. These findings indicate a potential shift in how gut-health related challenges in broilers can be addressed, moving towards natural phytobiotic therapy. However, several challenges persist. Optimizing the dosage of phytobiotics, ensuring consistent performance, and overcoming the limitations related to their extraction and application are key areas requiring further investigation. The review emphasizes the importance of continued research to refine phytobiotic formulations, explore synergistic effects, and incorporate advanced technologies such as AI-driven methods and precision nutrition to tailor feeding strategies more effectively. Additionally, the development of innovative delivery systems, such as nanoencapsulation, is suggested as a way to enhance the effectiveness and reliability of phytobiotics. By highlighting the potential of phytobiotics to revolutionize broiler nutrition, this review supports the poultry industry's shift towards antibiotic-free and sustainable dietary solutions, offering new perspectives on the future of broiler chicken production.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinyu Chang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Patience N Onu
- Department of Animal Science, Ebonyi State University, Abakiliki, Ebonyi State, Nigeria
| | - Haijun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shugeng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Li Z, Meng C, Azad MAK, Lin W, Gui J, Cui Y, Lan W, He Q, Kong X. Dietary Chinese herbal formula supplementation improves yolk fatty acid profile in aged laying hens. Vet Q 2024; 44:1-11. [PMID: 38404134 PMCID: PMC10898270 DOI: 10.1080/01652176.2024.2319828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Chinese herbal formula (CHF) has the potential to improve the performance of aged laying hens through integrated regulation of various physiological functions. The present study aimed to investigate the effects of dietary CHF supplementation on the yolk fatty acid profile in aged laying hens. A total of 144 healthy 307-day-old Xinyang black-feather laying hens were randomly allocated into two groups: a control group (CON, fed a basal diet) and a CHF group (fed a basal diet supplemented with 1% CHF; contained 0.30% Leonurus japonicus Houtt., 0.20% Salvia miltiorrhiza Bge., 0.25% Ligustrum lucidum Ait., and 0.25% Taraxacum mongolicum Hand.-Mazz. for 120 days). The fatty acid concentrations in egg yolks were analyzed using a targeted metabolomics technology at days 60 and 120 of the trial. The results showed that dietary CHF supplementation increased (p < .05) the concentrations of several saturated fatty acids (SFA, including myristic acid and stearic acid), monounsaturated fatty acids (MUFA, including petroselinic acid, elaidic acid, trans-11-eicosenoic acid, and cis-11-eicosenoic acid), polyunsaturated fatty acids (PUFA, including linolelaidic acid, linoleic acid, γ-linolenic acid, α-linolenic acid, 11c,14c-eicosadienoic acid, eicosatrienoic acid, homo-γ-linolenic acid, arachidonic acid, and docosapentaenoic acid), and fatty acid indexes (total MUFA, n-3 and n-6 PUFA, PUFA/SFA, hypocholesterolemic/hypercholesterolaemic ratio, health promotion index, and desirable fatty acids) in egg yolks. Collectively, these findings suggest that dietary CHF supplementation could improve the nutritional value of fatty acids in egg yolks of aged laying hens, which would be beneficial for the production of healthier eggs to meet consumer demands.
Collapse
Affiliation(s)
- Zhihua Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Chengwen Meng
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Md Abul Kalam Azad
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Wencao Lin
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jue Gui
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yadong Cui
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Wei Lan
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Qinghua He
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, China
| |
Collapse
|
4
|
Li Y, Wang K, Li C. Oxidative Stress in Poultry and the Therapeutic Role of Herbal Medicine in Intestinal Health. Antioxidants (Basel) 2024; 13:1375. [PMID: 39594517 PMCID: PMC11591273 DOI: 10.3390/antiox13111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
The intensive broiler farming model has accelerated the development of the poultry farming industry. However, it has also inevitably brought about many stressors that lead to oxidative stress in the organism. The intestine is the leading site of nutrient digestion, absorption, and metabolism, as well as a secretory and immune organ. Oxidative stress in animal production can harm the intestine, potentially leading to significant losses for the farming industry. Under conditions of oxidative stress, many free radicals are produced in the animal's body, attacking the intestinal mucosal tissues and destroying the barrier integrity of the intestinal tract, leading to disease. Recently, herbs have been shown to have a favorable safety profile and promising application in improving intestinal oxidative stress in poultry. Therefore, future in-depth studies on the specific mechanisms of herbs and their extracts for treating intestinal oxidative stress can provide a theoretical basis for the clinical application of herbs and new therapeutic options for intestinal oxidative stress injury during poultry farming. This review focuses on the causes and hazards of oxidative stress in the intestinal tract of poultry, and on herbs and their extracts with therapeutic potential, to provide a reference for developing and applying new antioxidants.
Collapse
Affiliation(s)
| | | | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (K.W.)
| |
Collapse
|
5
|
Luo J, Zhang D, Pu Q, Wen Z, Wu X, Chai J, Chen L, Wang J, Chen G, Luo T, Yang C, Huang Y. Skeletal muscle-derived exosomes selectively coated miRNAs and participate in myoblast proliferation and differentiation mediated by miR-4331-3p. Int J Biol Macromol 2024; 281:136225. [PMID: 39368577 DOI: 10.1016/j.ijbiomac.2024.136225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
The phenotypic characteristics and meat quality of skeletal muscles are collectively determined by muscle cells and their intricate interactions with the extracellular microenvironment. In this study, we evaluated muscle fiber phenotypes in the longissimus dorsi (HC-L) and psoas major (HC-P) of Hechuan black pigs. The results revealed significant differences in muscle fiber diameter, density, and type (P < 0.05). Subsequently, co-culture experiments with myoblasts demonstrated that skeletal muscle-derived exosomes (SKM-Exos) promoted myoblast proliferation and differentiation with P-Exo exhibiting superior efficacy in promoting the augmentation of MyHCIIa fiber. Furthermore, SKM-Exos are inherently heterogeneous, and the microRNAs (miRNAs) present in SKM-Exos are selectively coated. Notably, the expression of miR-4331-3p was significantly higher in SKM-Exos than in the corresponding skeletal muscles. The expression of miR-4331-3p was significantly elevated in the SKM-Exos of HC-L compared to that of HC-P, and it interacted with differentially expressed genes between HC-L and HC-P. Moreover, miR-4331-3p enhanced myoblast proliferation and inhibited differentiation. Our findings offer valuable insights into the molecular processes that contribute to meat formation, including intricate cellular interactions.
Collapse
Affiliation(s)
- Jia Luo
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Daiyu Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Qiang Pu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhenhao Wen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xiaoqian Wu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jie Chai
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Li Chen
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Jingyong Wang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Guanhua Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Taorun Luo
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Changfeng Yang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yongfu Huang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Liu Y, Xiong M, Hu X, Li Y, Zhang W, He W, Luo S, Zang J, Yang W, Chen Y. Dietary Bacillus velezensis KNF-209 supplementation improves growth performance, enhances immunity, and promotes gut health in broilers. Poult Sci 2024; 103:103946. [PMID: 38954902 PMCID: PMC11267042 DOI: 10.1016/j.psj.2024.103946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
This study aimed to investigate the effects of dietary Bacillus velezensis KNF-209 (BV-KNF-209) on the growth performance, immunity, and gut health of broilers. A total of 540 one-day-old male Cobb-500 broilers were randomly divided into 5 groups of 6 replicates with 18 broilers per replicate. Dietary treatments were corn-soybean meal basal diets supplemented with 0, 50, 100, 200, and 400 mg/kg BV-KNF-209 (CON, BV 50, BV 100, BV 200, and BV 400 groups, respectively) for 42 d. Compared with the CON group, the average daily gains (ADG) at 0 to 42 d in the BV 100 and BV 200 groups were significantly increased (P < 0.01), and the feed-to-gain (F:G) ratios were significantly decreased at 0 to 21 d (P < 0.01) and 0 to 42 d (P < 0.05). The BV 200 and BV 400 groups had higher serum immunoglobulin M (IgM) levels at d 21 and 42 (P < 0.05). The serum levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) were significantly decreased in the BV 50, BV 100, and BV 200 groups at d 21 (P < 0.05), and serum IL-1β and IL-6 levels were also reduced in the BV 100 and BV 200 groups at d 42 (P < 0.05). Meanwhile, increased interleukin-10 (IL-10) levels in the jejunal and ileal mucosa at d 42 were observed in the BV 100, BV 200, and BV 400 groups (P < 0.05), while the IL-1β and IL-6 levels (P < 0.01) were decreased. The BV 200 and BV 400 groups showed significantly higher activities of lipase and trypsin (P < 0.05) in jejunal digesta as well as higher activities of amylase and trypsin (P < 0.01) in ileal digesta at d 42. The cecal acetic acid and propionic acid levels in the BV groups and lactic acid levels in the BV 50, BV 100, and BV 200 groups (P < 0.05) were significantly higher compared to those in the CON group. Overall, dietary BV-KNF-209 supplementation significantly improved broiler growth performance, an effect that may have been achieved by heightening immunity, increasing digestive enzyme activity, and raising intestinal short-chain fatty acids and lactic acid levels.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mengqin Xiong
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiao Hu
- Wuhan Kernel Bio-tech Co., Ltd, Wuhan 430074, China
| | - Yongchen Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wanjun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenjun He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sunlin Luo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianjun Zang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenjun Yang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Li B, Xiang T, Bindawa Isah M, Chen C, Zhang X. In vitro simulated saliva, gastric, and intestinal digestion followed by faecal fermentation reveals a potential modulatory activity of Epimedium on human gut microbiota. J Pharm Biomed Anal 2024; 245:116151. [PMID: 38652940 DOI: 10.1016/j.jpba.2024.116151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Herba Epimedii, known for its rich array of bioactive ingredients and widespread use in ethnopharmacological practices, still lacks a comprehensive understanding of its gastrointestinal biotransformation. In this study, we qualitatively explored the dynamic changes in Epimedium sagittatum components during in vitro simulated digestions, with a quantitative focus on its five major flavonoids. Notably, significant metabolism of E. sagittatum constituents occurred in the simulated small intestinal fluid and colonic fermentation stages, yielding various low molecular weight metabolites. Flavonoids like kaempferol glycosides were fully metabolized in the simulated intestinal fluid, while hyperoside digestion occurred during simulated colon digestion. Colonic fermentation led to the production of two known bioactive isoflavones, genistein, and daidzein. The content and bioaccessibility of the five major epimedium flavonoids-icariin, epimedin A, epimedin B, epimedin C, and baohuoside I-significantly increased after intestinal digestion. During colon fermentation, these components gradually decreased but remained incompletely metabolized after 72 h. Faecal samples after E. sagittatum fermentation exhibited shift towards dominance by Lactobacillus (Firmicutes), Bifidobacterium (Actinobacteria), Streptococcus (Firmicutes), and Dialister (Firmicutes). These findings enhance our comprehension of diverse stages of Herba Epimedii constituents in the gut, suggesting that the primary constituents become bioaccessible in the colon, where new bioactive compounds may emerge.
Collapse
Affiliation(s)
- Ben Li
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China; College of Medicine, Shaanxi University of International Trade & Commerce, Xian, China
| | - Tian Xiang
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Murtala Bindawa Isah
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China; Department of Biochemistry, Faculty of Natural and Applied Sciences, UmaruMusa Yar'adua University Katsina, P.M.B. 2218, Katsina 820102, Nigeria
| | - Chen Chen
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Xiaoying Zhang
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China; Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
8
|
Han S, Xu G, Zhang K, Ahmad S, Wang L, Chen F, Liu J, Gu X, Li J, Zhang J. Fermented Astragalus Powder, a New Potential Feed Additive for Broilers to Improve the Growth Performance and Health. Animals (Basel) 2024; 14:1628. [PMID: 38891675 PMCID: PMC11171317 DOI: 10.3390/ani14111628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
A total of 320 1-day-old broilers were randomly divided into five groups. The control group (CON) received a basal diet, while the FAP4, FAP2, and FAP1 groups were provided with the basal diet supplemented with 4%, 2%, and 1% fermented Astragalus powder, respectively. The unfermented Astragalus powder (UAP2) group was fed the basal diet supplemented with 2% UAP. Each group contained eight replicates of eight chicks each. The results revealed that the final BW and ADG in the FAP 1 and FAP2 were higher than those in the UAP2 and CON groups, while reducing F/G from day 14 to day 42. On day 42, the thymus index in the UAP and FAP groups as well as the bursa index in the FAP4 group showed significant increases compared to those in the CON group. Supplementation with 2% FAP elevated serum IgA levels in broilers on day 28 and day 42, and it also increased serum IgG levels on day 42. Furthermore, supplementation with 2% FAP elevated serum albumin (ALB) levels in broilers, while supplementation with 4% FAP increased serum (glucose) GLU levels in broilers on day 28. The serum biochemical parameters and pathological observation of the liver and kidney in the groups did not show any adverse effects on broilers' health. In addition, the serum total antioxidant capacity (T-AOC) level significantly increased in the FAP4 and FAP2 groups on day 28, and the malondialdehyde (MDA) level in both serum and liver tissue decreased in the FAP2 group on day 28 and day 42. Compared to the CON group, 2% FAP and 2% UAP supplementation reduced the relative abundance of Bacteroides and supplementation with 2% FAP increased the relative abundance of Alistipes on day 42. In conclusion, the dietary supplementation of FAP can enhance the growth performance, immune function, and antioxidant capacity and regulate microflora in broilers, of which 2% FAP is more effective. It indicates FAP exhibits significant application potential as a promising feed additive for broilers.
Collapse
Affiliation(s)
- Songwei Han
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Guowei Xu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Kang Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Saad Ahmad
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Lei Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Fubin Chen
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Jiahui Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Xueyan Gu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Jianxi Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Jingyan Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
- Cell Biology and Immunology Group, Wageningen University & Research, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
9
|
Yang Q, Wang Y, Li G, Huang X, Zheng L, Peng M, Cao Y, Wang X. Effect of dietary supplementation Ampelopsis grossedentata extract on growth performance and muscle nutrition of Megalobrama hoffmanni by gut bacterial mediation. Heliyon 2024; 10:e29008. [PMID: 38601588 PMCID: PMC11004802 DOI: 10.1016/j.heliyon.2024.e29008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Nowadays, Megalobrama hoffmanni is a typical cultured fish in south China due to its resource decline in the Pearl River. Meanwhile, since antibiotics had been banned internationally, Chinese medical herbal plant serving as alternative to antibiotics has been adopted in aquaculture. In the present study, to ensure the health growth of M. hoffmanni, extract of traditional medical herbal plant Ampelopsis grossedentata was dietary supplemented and a series experiments were performed, including growth performance determination, physiological/biochemical detection, nutrition analysis, histology analysis, and 16S rRNA amplicon sequencing. Growth performance enhancement was determined since the weight gain rate (WGR), specific growth rate (SGR), and condition factor (CF) of M. hoffmanni increased as feeding inclusion A. grossedentata extract. Interestingly, the total content of muscle fatty acids ascended via supplementing A. grossedentata extract at middle level, in which group the activities of superoxide dismutase (SOD) and catalase (CAT) significantly increased and thus retarded the lipid peroxidation process (manifesting as malondialdehyde (MDA) content rising). Additionally, immune response and inflammatory reaction was stimulated in low and high level A. grossedentata extract added groups, indicating a suitable dosage of A. grossedentata extract benefited in safety production. Moreover, gut microbiota community varied hugely as daily supplementation A. grossedentata extract and the keystone species were tightly related to lipid transformation, which ultimately led to fatty acids composition variation. Our results confirmed that dietary supplementation A. grossedentata extract at the middle level (0.5‰, w/w) is suitable for serving as feed additive in healthful aquaculture of M. hoffmanni.
Collapse
Affiliation(s)
- Qiuling Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China
| | - Yunfan Wang
- Chinese Academy of Inspection & Quarantine Greater Bay Area, Zhongshan, 528437, China
| | - Geng Li
- Chinese Academy of Inspection & Quarantine Greater Bay Area, Zhongshan, 528437, China
| | - Xiaoying Huang
- Chinese Academy of Inspection & Quarantine Greater Bay Area, Zhongshan, 528437, China
| | - Lingyan Zheng
- Chinese Academy of Inspection & Quarantine Greater Bay Area, Zhongshan, 528437, China
| | - Mijun Peng
- Chinese Academy of Inspection & Quarantine Greater Bay Area, Zhongshan, 528437, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xuesong Wang
- Chinese Academy of Inspection & Quarantine Greater Bay Area, Zhongshan, 528437, China
| |
Collapse
|
10
|
Sun C, Wang Z, Tan Y, Li L, Zhou F, Hu SA, Yan QW, Li LH, Pei G. Mechanism of Mulberry Leaves and Black Sesame in Alleviating Slow Transit Constipation Revealed by Multi-Omics Analysis. Molecules 2024; 29:1713. [PMID: 38675536 PMCID: PMC11051911 DOI: 10.3390/molecules29081713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Traditional Chinese medicine (TCM) possesses the potential of providing good curative effects with no side effects for the effective management of slow transit constipation (STC), an intestinal disease characterized by colonic dyskinesia. Mulberry leaves (Morus alba L.) and black sesame (Sesamum indicum L.), referred to as SH, are processed and conditioned as per standardized protocols. SH has applications as food and medicine. Accordingly, we investigated the therapeutic potential of SH in alleviating STC. The analysis of SH composition identified a total of 504 compounds. The intervention with SH significantly improved intestinal motility, reduced the time for the first black stool, increased antioxidant activity, and enhanced water content, thereby effectively alleviating colon damage caused by STC. Transcriptome analysis revealed the SH in the treatment of STC related to SOD1, MUC2, and AQP1. The analysis of 16S rRNA gene sequences indicated notable differences in the abundance of 10 bacteria between the SH and model. Metabolomic analysis further revealed that SH supplementation increased the levels of nine metabolites associated with STC. Integrative analysis revealed that SH modulated amino acid metabolism, balanced intestinal flora, and targeted key genes (i.e., SOD1, MUC2, AQP1) to exert its effects. SH also inhibited the AQP1 expression and promoted SOD1 and MUC2 expression.
Collapse
Affiliation(s)
- Chen Sun
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (C.S.); (Y.T.); (L.L.); (F.Z.); (S.-A.H.); (Q.-W.Y.); (L.-H.L.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712046, China;
| | - Zheng Wang
- Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712046, China;
| | - Yang Tan
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (C.S.); (Y.T.); (L.L.); (F.Z.); (S.-A.H.); (Q.-W.Y.); (L.-H.L.)
- National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ling Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (C.S.); (Y.T.); (L.L.); (F.Z.); (S.-A.H.); (Q.-W.Y.); (L.-H.L.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Feng Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (C.S.); (Y.T.); (L.L.); (F.Z.); (S.-A.H.); (Q.-W.Y.); (L.-H.L.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shi-An Hu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (C.S.); (Y.T.); (L.L.); (F.Z.); (S.-A.H.); (Q.-W.Y.); (L.-H.L.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qin-Wen Yan
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (C.S.); (Y.T.); (L.L.); (F.Z.); (S.-A.H.); (Q.-W.Y.); (L.-H.L.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Lin-Hui Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (C.S.); (Y.T.); (L.L.); (F.Z.); (S.-A.H.); (Q.-W.Y.); (L.-H.L.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Gang Pei
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (C.S.); (Y.T.); (L.L.); (F.Z.); (S.-A.H.); (Q.-W.Y.); (L.-H.L.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
11
|
Dong Z, Liu Z, Xu Y, Tan B, Sun W, Ai Q, Yang Z, Zeng J. Potential for the development of Taraxacum mongolicum aqueous extract as a phytogenic feed additive for poultry. Front Immunol 2024; 15:1354040. [PMID: 38529273 PMCID: PMC10961442 DOI: 10.3389/fimmu.2024.1354040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Taraxacum mongolicum (TM) is a kind of medicinal and edible homologous plant which is included in the catalogue of feed raw materials in China. It is rich in polyphenols, flavonoids, polysaccharides and other active substances, and shows many benefits to livestock, poultry and aquatic products. The study aimed to assess the potential of TM aqueous extract (TMAE) as a substitute for poultry AGPs. Methods A total of 240 one-day-old Arbor Acker broilers were randomly assigned to four groups and fed a basal diet (Con) supplemented with 500, 1000, and 2000 mg/kg TMAE (Low, Medium, and High groups). The growth performance of the broilers was measured on day 21 and day 42. At the end of the trial, the researchers measured slaughter performance and collected serum, liver, spleen, ileum, and intestinal contents to investigate the effects of TMAE on serum biochemistry, antioxidant capacity, immune function, organ coefficient, intestinal morphology, flora composition, and short-chain fatty acids (SCFAs). Results The results showed that broilers treated with TMAE had a significantly higher average daily gain from 22 to 42 days old compared to the Con group. Various doses of TMAE resulted in different levels of improvement in serum chemistry. High doses increased serum alkaline phosphatase and decreased creatinine. TMAE also increased the antioxidant capacity of serum, liver, and ileum in broilers. Additionally, middle and high doses of TMAE enhanced the innate immune function of the liver (IL-10) and ileum (Occludin) in broilers. Compared to the control group, the TMAE treatment group exhibited an increase in the ratio of villi length to villi crypt in the duodenum. TMAE increased the abundance of beneficial bacteria, such as Alistipes and Lactobacillus, while reducing the accumulation of harmful bacteria, such as Colidextracter and Sellimonas. The cecum's SCFAs content increased with a medium dose of TMAE. Supplementing broiler diets with TMAE at varying doses enhanced growth performance and overall health. The most significant benefits were observed at a dose of 1000 mg/kg, including improved serum biochemical parameters, intestinal morphology, antioxidant capacity of the liver and ileum, immune function of the liver and ileum, and increased SCFAs content. Lactobacillus aviarius, norank_f_norank_o__Clostridia_UCG-014, and Flavonifractor are potentially dominant members of the intestinal microflora. Conclusion In conclusion, TMAE is a promising poultry feed additive and 1000 mg/kg is an effective reference dose.
Collapse
Affiliation(s)
- Zhen Dong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Zhiqin Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yufeng Xu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Bin Tan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Wenqing Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Qin Ai
- DHN Business Division, Wens Foodstuff Group Co., Ltd., Zhaoqing, China
| | - Zihui Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
12
|
Xiao C, Comer L, Pan X, Everaert N, Schroyen M, Song Z. Zinc glycinate alleviates LPS-induced inflammation and intestinal barrier disruption in chicken embryos by regulating zinc homeostasis and TLR4/NF-κB pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116111. [PMID: 38350216 DOI: 10.1016/j.ecoenv.2024.116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/26/2024] [Accepted: 02/11/2024] [Indexed: 02/15/2024]
Abstract
The effect of an immune challenge induced by a lipopolysaccharide (LPS) exposure on systemic zinc homeostasis and the modulation of zinc glycinate (Zn-Gly) was investigated using a chicken embryo model. 160 Arbor Acres broiler fertilized eggs were randomly divided into 4 groups: CON (control group, injected with saline), LPS (LPS group, injected with 32 µg of LPS saline solution), Zn-Gly (zinc glycinate group, injected with 80 µg of zinc glycinate saline solution) and Zn-Gly+LPS (zinc glycinate and LPS group, injected with the same content of zinc glycinate and LPS saline solution). Each treatment consisted of eight replicates of five eggs each. An in ovo feeding procedure was performed at 17.5 embryonic day and samples were collected after 12 hours. The results showed that Zn-Gly attenuated the effects of LPS challenge-induced upregulation of pro-inflammatory factor interleukin 1β (IL-1β) level (P =0.003). The LPS challenge mediated zinc transporter proteins and metallothionein (MT) to regulate systemic zinc homeostasis, with increased expression of the jejunum zinc export gene zinc transporter protein 1 (ZnT-1) and elevated expression of the import genes divalent metal transporter 1 (DMT1), Zrt- and Irt-like protein 3 (Zip3), Zip8 and Zip14 (P < 0.05). A similar trend could be observed for the zinc transporter genes in the liver, which for ZnT-1 mitigated by Zn-Gly supplementation (P =0.01). Liver MT gene expression was downregulated in response to the LPS challenge (P =0.004). These alterations caused by LPS resulted in decreased serum and liver zinc levels and increased small intestinal, muscle and tibial zinc levels. Zn-Gly reversed the elevated expression of the liver zinc finger protein A20 induced by the LPS challenge (P =0.025), while Zn-Gly reduced the gene expression of the pro-inflammatory factors IL-1β and IL-6, decreased toll-like receptor 4 (TLR4) and nuclear factor kappa-B p65 (NF-κB p65) (P < 0.05). Zn-Gly also alleviated the LPS-induced downregulation of the intestinal barrier gene Claudin-1. Thus, LPS exposure prompted the mobilization of zinc transporter proteins and MT to perform the remodeling of systemic zinc homeostasis, Zn-Gly participated in the regulation of zinc homeostasis and inhibited the production of pro-inflammatory factors through the TLR4/NF-κB pathway, attenuating the inflammatory response and intestinal barrier damage caused by an immune challenge.
Collapse
Affiliation(s)
- Chuanpi Xiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Luke Comer
- Nutrition and Animal Microbiota Ecosystems lab, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Xue Pan
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Nadia Everaert
- Nutrition and Animal Microbiota Ecosystems lab, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
13
|
Wen X, Wan F, Wu Y, Liu Y, Zhong R, Chen L, Zhang H. Caffeic acid modulates intestinal microbiota, alleviates inflammatory response, and enhances barrier function in a piglet model challenged with lipopolysaccharide. J Anim Sci 2024; 102:skae233. [PMID: 39158070 PMCID: PMC11401994 DOI: 10.1093/jas/skae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024] Open
Abstract
Young animals are highly susceptible to intestinal damage due to incomplete intestinal development, making them vulnerable to external stimuli. Weaning stress in piglets, for instance, disrupts the balance of intestinal microbiota and metabolism, triggering intestinal inflammation and resulting in gut damage. Caffeic acid (CA), a plant polyphenol, can potentially improve intestinal health. Here, we evaluated the effects of dietary CA on the intestinal barrier and microbiota using a lipopolysaccharide (LPS)-induced intestinal damage model. Eighteen piglets were divided into three groups: control group (CON), LPS group (LPS), and CA + LPS group (CAL). On the 21st and 28th day, six piglets in each group were administered either LPS (80 μg/kg body weight; Escherichia coli O55:B5) or saline. The results showed that dietary CA improved the intestinal morphology and barrier function, and alleviated the inflammatory response. Moreover, dietary CA also improved the diversity and composition of the intestinal microbiota by increasing Lactobacillus and Terrisporobacter while reducing Romboutsia. Furthermore, the LPS challenge resulted in a decreased abundance of 14 different bile acids and acetate, which were restored to normal levels by dietary CA. Lastly, correlation analysis further revealed the potential relationship between intestinal microbiota, metabolites, and barrier function. These findings suggest that dietary CA could enhance intestinal barrier function and positively influence intestinal microbiota and its metabolites to mitigate intestinal damage in piglets. Consuming foods rich in CA may effectively reduce the incidence of intestinal diseases and promote intestinal health in piglets.
Collapse
Affiliation(s)
- Xiaobin Wen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Wan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - You Wu
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yueping Liu
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Zhao J, Duan X, Yan S, Liu Y, Wang K, Hu M, Chai Q, Liu L, Ge C, Jia J, Dou T. Transcriptomics reveals the molecular regulation of Chinese medicine formula on improving bone quality in broiler. Poult Sci 2023; 102:103044. [PMID: 37717480 PMCID: PMC10507442 DOI: 10.1016/j.psj.2023.103044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Skeletal disorder is of concern to the poultry industry as it affects animal welfare and production performance. Traditional Chinese medicine could improve bone quality and reduce the incidence of bone disease, but the molecular regulation of Chinese medicine formula (CMF) on improving bone quality in broilers is still unclear. This study was performed to research the effects of CMF on skeletal performance of Cobb broilers and reveal the molecular regulation. A total of 120 one-day-old Cobb broilers were randomly allocated into 4 equal groups of 30 chickens, with 5 replicates and 6 chickens in each replicate. The control (CON) group was fed a diet without CMF, while the CMF1, CMF2, and CMF3 groups were supplemented with different CMF at 6,000 mg/kg diet, respectively. The broilers were raised to 60 d of age, then bone tissues were collected for biomechanical properties, micro-CT detection and transcriptomic sequencing analysis. The results showed that CMF3 improved the biomechanical properties of broiler tibia, via increasing the elastic modulus (P < 0.05), yield strength (P > 0.05), maximum stress (P < 0.05) and fracture stress (P < 0.05) of the tibia. Micro-CT analysis indicated that CMF3 increased the bone mineral density (BMD), bone volume/total volume (BV/TV), bone surface density (BS/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), and decreased the trabecular separation (Tb.Sp) of femur cancellous bone (P < 0.05). RNA-seq analysis revealed 2,177 differentially expressed genes (DEGs) (|log2FoldChange| ≥ 1, FDR < 0.05) between the CMF3 group and CON group. Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) analysis showed 13 pathways mostly associated with bone growth and development and bone metabolism, and we identified 39 bone-related DEGs. This study suggests that CMF3 could improve bone strength and bone microstructure of broilers, and showed a positive effect on bone performance. Our research could provide a theoretical reference for the development of pollution-free feed additives to improve the skeletal performance of broilers, which could help promote healthy farming of chickens.
Collapse
Affiliation(s)
- Jingying Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Xiaohua Duan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China; Yunnan University of Chinese Medicine, 650500 Kunming, China
| | - Shixiong Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Yong Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Kun Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Mei Hu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Qian Chai
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Lixian Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China; Yunnan Vocational and Technical College of Agriculture, 650031 Kunming, China
| | - Changrong Ge
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Junjing Jia
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Tengfei Dou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China.
| |
Collapse
|
15
|
Li X, Chen X, Yuan W, Zhang X, Mao A, Zhao W, Yao N, Deng X, Xu C. Effects of Platycladus orientalis Leaf Extract on the Growth Performance, Fur-Production, Serum Parameters, and Intestinal Microbiota of Raccoon Dogs. Animals (Basel) 2023; 13:3151. [PMID: 37835757 PMCID: PMC10571531 DOI: 10.3390/ani13193151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Platycladus orientalis leaves are rich in flavonoids and polysaccharides, which offer high medicinal and nutritional benefits. This study aimed to investigate the impact of P. orientalis leaf extract (PLE) on the growth performance, fur quality, serum parameters, and intestinal microbiota of raccoon dogs. Sixty healthy male black raccoon dogs, aged 85 (±5) days, were randomly assigned to four groups and fed a basal diet supplemented with 0, 0.25, 0.50, and 1.00 g/kg PLE for 125 days (designated as groups P0, P1, P2, and P3, respectively). The results revealed that the raccoon dogs in group P1 exhibited increased average daily gain and underfur length while showing a decreased feed/gain ratio compared to group P0 (p < 0.05). However, the heart index in group P2 was significantly lower than in group P0 (p < 0.05), and the kidney index and serum alanine aminotransferase activities in group P3 were higher than in groups P2 and P0 (p < 0.05), suggesting potential adverse effects at higher PLE dosages. Notably, dietary PLE supplementation led to a reduction in serum glucose concentrations (p < 0.05), which may have implications for glucose regulation. Furthermore, the study explored the impact of dietary supplementation with 0.25 g/kg PLE on the raccoon dogs' intestinal microbiota using high-throughput sequencing. The results showed significant alterations in the microbial community structure, with a notable decrease in the abundance of Prevotella copri in response to 0.25 g/kg PLE supplementation (p < 0.05). In conclusion, supplementing raccoon dogs' diet with 0.25 g/kg PLE can lead to improved growth performance and a positive influence on the intestinal microbiota. However, caution should be exercised regarding higher dosages, as they may have adverse effects on certain parameters. As a result, PLE holds promise as a potential feed additive for fur animal production.
Collapse
Affiliation(s)
- Xiao Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun 130112, China; (X.L.)
- Innovation Center for Feeding and Utilization of Special Animals in Jinlin Province and Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, 4899 Juye Street, Changchun 130112, China
| | - Xiaoli Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun 130112, China; (X.L.)
- Innovation Center for Feeding and Utilization of Special Animals in Jinlin Province and Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, 4899 Juye Street, Changchun 130112, China
| | - Weitao Yuan
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun 130112, China; (X.L.)
- Innovation Center for Feeding and Utilization of Special Animals in Jinlin Province and Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, 4899 Juye Street, Changchun 130112, China
| | - Xiuli Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (X.Z.); (X.D.)
| | - Aipeng Mao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun 130112, China; (X.L.)
- Innovation Center for Feeding and Utilization of Special Animals in Jinlin Province and Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, 4899 Juye Street, Changchun 130112, China
| | - Weigang Zhao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun 130112, China; (X.L.)
- Innovation Center for Feeding and Utilization of Special Animals in Jinlin Province and Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, 4899 Juye Street, Changchun 130112, China
| | - Naiquan Yao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xuming Deng
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (X.Z.); (X.D.)
| | - Chao Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun 130112, China; (X.L.)
- Innovation Center for Feeding and Utilization of Special Animals in Jinlin Province and Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, 4899 Juye Street, Changchun 130112, China
| |
Collapse
|
16
|
Zhang J, Zhao Q, Qin Y, Si W, Zhang H, Zhang J. The Effect of Epimedium Isopentenyl Flavonoids on the Broiler Gut Health Using Microbiomic and Metabolomic Analyses. Int J Mol Sci 2023; 24:ijms24087646. [PMID: 37108810 PMCID: PMC10141048 DOI: 10.3390/ijms24087646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Epimedium (EM), also known as barrenwort, is a traditional medicinal plant rich in isopentenyl flavonols, which have beneficial biological activities and can improve human and animal health, but its mechanism is still unclear. In this study, ultra-high-performance liquid chromatography/quadrupole-time-of-flight-mass spectrometry (UHPLC-Q-TOF/MS) and ultra-high-performance liquid chromatography triple-quadrupole mass spectrometry (UHPLC-QqQ-MS/MS) were used to analyse the main components of EM, and isopentenyl flavonols such as Epimedin A, B, and C as well as Icariin were the major components of EM. Meanwhile, broilers were selected as model animals to illuminate the mechanism of Epimedium isopentenyl flavonols (EMIE) on gut health. The results showed that supplementation with 200 mg/kg EM improved the immune response, increased cecum short-chain fatty acids (SCFAs) and lactate concentrations, and improved nutrient digestibility in broilers. In addition, 16S rRNA sequencing showed that EMIE altered the composition of cecal microbiome, increasing the relative abundance of beneficial bacteria (Candidatus Soleaferrea and Lachbospiraceae NC2004 group and Butyricioccus) and reducing that of harmful bacteria (UBA1819, Negativibacillus, and Eisenbergiella). Metabolomic analysis identified 48 differential metabolites, of which Erosnin and Tyrosyl-Tryptophan were identified as core biomarkers. Erosnin and tyrosyl-tryptophan are potential biomarkers to evaluate the effects of EMIE. This shows that EMIE may regulate the cecum microbiota through Butyricicoccus, with changes in the relative abundance of the genera Eisenbergiella and Un. Peptostreptococcaceae affecting the serum metabolite levels of the host. EMIE is an excellent health product, and dietary isopentenyl flavonols, as bioactive components, can improve health by altering the microbiota structure and the plasma metabolite profiles. This study provides the scientific basis for the future application of EM in diets.
Collapse
Affiliation(s)
- Jiaqi Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Si
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiyan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|