1
|
Żak-Bochenek A, Żebrowska-Różańska P, Bajzert J, Łaczmański Ł, Szponar B, Siwińska N, Gładysz K, Sikorska K, Chełmońska-Soyta A. Investigating the potential immunomodulatory effects of commercial oral probiotic supplements on equine gastrointestinal tract barrier function. Front Immunol 2025; 15:1487664. [PMID: 39906737 PMCID: PMC11790434 DOI: 10.3389/fimmu.2024.1487664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/24/2024] [Indexed: 02/06/2025] Open
Abstract
Background Oral probiotic dietary supplements are widely used in veterinary medicine, including in horses. It is hypothesized that the presence of probiotic strains can both modulate the intestinal microbiota and affect mucosal immunity parameters. Such a study has not yet been conducted in horses. Methods This study involved 12 healthy horses, which were randomly divided into a control group and a group that received a commercial oral probiotic formula containing Lactobacillus rhamnosus, Pedioccus acidilactici or Enterococcus faecium for 84 days. Fecal samples were collected from all horses on day 0 (D0), 28 days after starting the probiotic (D28), 56 days (D56), 84 days (D84) and 28 days after stopping the probiotic (DX) treatment. The samples were subjected to microbiome analysis via next-generation sequencing of hypervariable regions V3-V4 and V7-V9 of the 16S rRNA gene for analysis of short-chain fatty acids via HPLC analysis and fecal secretory immunoglobulin A (SIgA) quantification via ELISA. Results Microbiome analysis revealed no significant differences in either alpha or beta diversity parameters between the groups. No probiotic strains were detected in the samples. Significant changes were detected in three taxa: the family Bacteroidales RF16 group, the genus Erysipelotrichaceae UCG-004, and the genus Fibrobacter during the study in both groups. In all the cases, there was a gradual decrease in relative abundance over time. The concentrations of SCFAs, specifically acetic and propionic acids, significantly increased over time in both groups according to the generalized linear mixed effects (GLME) model. There were no significant differences in fecal SIgA secretion. Conclusion The present study revealed no effect of the use of a commercial probiotic dietary supplement on either mucosal immunity or the composition of the intestinal microbiota.
Collapse
Affiliation(s)
- Agnieszka Żak-Bochenek
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | - Joanna Bajzert
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Łukasz Łaczmański
- Laboratory of Genomics and Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Bogumiła Szponar
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Natalia Siwińska
- Department of Internal Diseases and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Klaudia Gładysz
- Student Scientific Association, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Katarzyna Sikorska
- Division of Phytopathology and Mycology, Department of Plant Protection, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Anna Chełmońska-Soyta
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
2
|
Wang P, Huang Q, Zhu Y, Chen L, Ye K. Fusobacterium Nucleatum Promotes Microsatellite Instability in Colorectal Carcinoma Through Up-regulation of miRNA-155-5p-Targeted Inhibition of MSH6 via the TLR4/NF-κB Signaling Pathway. Adv Biol (Weinh) 2024; 8:e2400293. [PMID: 39334517 DOI: 10.1002/adbi.202400293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/26/2024] [Indexed: 09/30/2024]
Abstract
Fusobacterium nucleatum (Fn) is significantly associated with poor prognosis in colorectal carcinoma (CRC), however, mechanisms of Fn in DNA mismatch repair (MMR) and microsatellite instability (MSI) in CRC have not been fully elucidated. Clinical samples are collected to analyze the relationship between Fn abundance and microsatellite stability. Tumor cells are treated with Fn to detect the expression of proteins related to toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (Myd88), mutS homolog 6 (MSH6), and nuclear factor-κB (NF-κB) signaling pathways, respectively. Combined with the prediction results from TargetScan, the regulatory role of microRNA upstream of MSH6 is demonstrated. The effect of this regulatory axis on CRC development is demonstrated using a nude mouse tumor model. Compared with microsatellite stability (MSS)-type CRC patients, MSI-type showed higher Fn abundance. Fn treatment of CRC cells activated TLR4/Myd88/NF-κB signaling pathway, transcriptionally activating miRNA-155-5p expression, thereby negatively regulating MSH6. Fn treatment accelerated the malignant progression of CRC in mice, and this process is inhibited by miRNA-155-5p antagomir. Fn in CRC upregulated miRNA-155-5p by activating TLR4/NF-κB signaling to inhibit MSH6, and this regulatory pathway may affect MSS of cancer cells.
Collapse
Affiliation(s)
- Pengcheng Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, No. 34, Zhongshan North Road, Fuzhou, 362000, China
| | - Qiaozhen Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, No. 34, Zhongshan North Road, Fuzhou, 362000, China
| | - Yuejia Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, No. 34, Zhongshan North Road, Fuzhou, 362000, China
| | - Liquan Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, No. 34, Zhongshan North Road, Fuzhou, 362000, China
| | - Kai Ye
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, No. 34, Zhongshan North Road, Fuzhou, 362000, China
| |
Collapse
|
3
|
Żak-Bochenek A, Żebrowska-Różańska P, Bajzert J, Siwińska N, Madej JP, Kaleta-Kuratewicz K, Bochen P, Łaczmański Ł, Chełmońska-Soyta A. Comparison and characterization of the bacterial microbiota and SIgA production in different gastrointestinal segments in horses. Vet Res Commun 2024; 48:3605-3620. [PMID: 39180603 PMCID: PMC11538275 DOI: 10.1007/s11259-024-10489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024]
Abstract
In the gastrointestinal mucosa, there is a close cooperation between secretory immunoglobulin A (SIgA) and the composition of the microbiota, which aims to maintain homeostasis as well as act as a protective barrier. The purpose of this study was to determine the composition of microbiota and SIgA production in different parts of the digestive tract (small intestine, cecum, colon and rectum) of nine healthy horses and its reflection in the feces. For this purpose, we determined: the composition of the microbiome (by next-generation Sequencing of Hypervariable Regions V3-V4 and V7-V9 of the 16 S rRNA gene analysis), the amount of SIgA in the intestinal content samples (by ELISA), as well as the number of IgA-producing cells (IgA+) in the tissue samples (by immohistochemical analysis). Significant differences were observed between the small intestine and the large colon in the composition and diversity of the microbiome, as well as the number of IgA + cells in the mucosal lamina propria and the abundance of SIgA in the intestinal lumen. The small intestine in relation to the large colon is characterised by fewer IgA + cells, more SIgA in the intestinal contents and a less diverse microbiome. However, the cecum appears to be the third separate ecosystem, with a high number of IgA + cells and a diverse microbiome. The fecal sample reflects the current state of the large colon, both in terms of the microbiome and SIgA content; however, it is not known to what extent it may be influenced by dysbiosis in other parts of the digestive tract.
Collapse
Affiliation(s)
- Agnieszka Żak-Bochenek
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C. Norwida 31, 50-375, Wrocław, Poland.
| | - P Żebrowska-Różańska
- Laboratory of Genomics and Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - J Bajzert
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C. Norwida 31, 50-375, Wrocław, Poland
| | - N Siwińska
- Department of Internal Diseases and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C. Norwida 31, 50-375, Wrocław, Poland
| | - J P Madej
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C. Norwida 31, 50-375, Wrocław, Poland
| | - K Kaleta-Kuratewicz
- Department of Biostructure and Animal Physiology, Division of Histology and Embryology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C. Norwida 25, 50-375, Wrocław, Poland
| | - P Bochen
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Ł Łaczmański
- Laboratory of Genomics and Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - A Chełmońska-Soyta
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C. Norwida 31, 50-375, Wrocław, Poland
| |
Collapse
|
4
|
Guo S, Xing S, Wu Z, Chen F, Pan X, Li Q, Liu W, Zhang G. Leucine restriction ameliorates Fusobacterium nucleatum-driven malignant progression and radioresistance in nasopharyngeal carcinoma. Cell Rep Med 2024; 5:101753. [PMID: 39357525 PMCID: PMC11513822 DOI: 10.1016/j.xcrm.2024.101753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/19/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Radiotherapy resistance is the main cause of treatment failure among patients with nasopharyngeal carcinoma (NPC). Recently, increasing evidence has linked the presence of intratumoral Fusobacterium nucleatum (Fn) with the malignant progression and therapeutic resistance of multiple tumor types, but its influence on NPC has remained largely unknown. We found that Fn is prevalent in the tumor tissue of patients with NPC and is associated with radioresistance. Fn invaded and proliferated inside NPC cells and aggravated tumor progression. Mechanistically, Fn slowed mitochondrial dysfunction by promoting mitochondrial fusion and decreasing ROS generation, preventing radiation-induced oxidative damage. Fn inhibited PANoptosis by the SLC7A5/leucine-mTORC1 axis during irradiation stress, thus promoting radioresistance. Treatment with the mitochondria-targeted antibiotics or dietary restriction of leucine reduced intratumoral Fn load, resensitizing tumors to radiotherapy in vivo. These findings demonstrate that Fn has the potential to be a predictive marker for radioresistance and to help guide individualized treatment for patients with NPC.
Collapse
Affiliation(s)
- Songhe Guo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Shan Xing
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - ZhenYu Wu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Fangfang Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Xiaoyun Pan
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Qifan Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Wanli Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China.
| |
Collapse
|
5
|
Ramakodi MP. Don't let valuable microbiome data go to waste: combined usage of merging and direct-joining of sequencing reads for low-quality paired-end amplicon data. Biotechnol Lett 2024; 46:791-805. [PMID: 38970710 DOI: 10.1007/s10529-024-03509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
The pernicious nature of low-quality sequencing data warrants improvement in the bioinformatics workflow for profiling microbial diversity. The conventional merging approach, which drops a copious amount of sequencing reads when processing low-quality amplicon data, requires alternative methods. In this study, a computational workflow, a combination of merging and direct-joining where the paired-end reads lacking overlaps are concatenated and pooled with the merged sequences, is proposed to handle the low-quality amplicon data. The proposed computational strategy was compared with two workflows; the merging approach where the paired-end reads are merged, and the direct-joining approach where the reads are concatenated. The results showed that the merging approach generates a significantly low number of amplicon sequences, limits the microbiome inference, and obscures some microbial associations. In comparison to other workflows, the combination of merging and direct-joining strategy reduces the loss of amplicon data, improves the taxonomy classification, and importantly, abates the misleading results associated with the merging approach when analysing the low-quality amplicon data. The mock community analysis also supports the findings. In summary, the researchers are suggested to follow the merging and direct-joining workflow to avoid problems associated with low-quality data while profiling the microbial community structure.
Collapse
Affiliation(s)
- Meganathan P Ramakodi
- CSIR-National Environmental Engineering Research Institute (NEERI), Hyderabad Zonal Centre, IICT Campus, Tarnaka, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
6
|
Qiao C, Bian S, Huang H, Xiao H, Ma L, Han R. Impact of ovalbumin allergy on oral and gut microbiome dynamics in 6-week-old BALB/c mice. Front Microbiol 2024; 15:1439452. [PMID: 39290514 PMCID: PMC11406088 DOI: 10.3389/fmicb.2024.1439452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Background The gut microbiota is known to have a significant impact on the development of food allergy, and several recent studies have suggested that both oral microbiota, which first come into contact with allergenic foods, may have a profound influence on the development of food allergy. Methods In this study, we have established an ovalbumin-sensitive mice model by utilizing ovalbumin as a sensitizing agent. Subsequently, we performed a comprehensive analysis of the gut and oral microbiota in ovalbumin-sensitive mice and the control mice using full-length 16S rRNA sequencing analysis. Results Interestingly, both the gut and oral microbiota of ovalbumin-sensitized mice exhibited significant dysbiosis. The relative abundance of s__Lactobacillus_intestinalis in the gut microbiota of ovalbumin-sensitive mice exhibited a significant decrease, whereas the abundance of s__Agrobacterium_radiobacter and s__Acinetobacter_sp__CIP_56_2 displayed a significant increase. Furthermore, the relative abundance of s__unclassified_g__Staphylococcus, s__Streptococcus_hyointestinalis, and s__unclassified_g__Dechloromonas in the oral microbiota of ovalbumin-sensitive mice revealed a significant decrease. In contrast, the abundance of 63 other species, including s__Proteiniclasticum_ruminis, s__Guggenheimella_bovis, and s__Romboutsia_timonensis, demonstrated a significant increase. The random forest classifier achieved the best accuracy in predicting the outcome of food allergy using three gut and three oral biomarkers, with accuracies of 94.12 and 100%, respectively. Based on the predictions of the PICRUSt2 analysis, the only consistent finding observed across multiple samples from both the groups of mice was a significant up-regulation of the nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway in the ovalbumin-sensitized mice. Conclusion Our study demonstrates that ovalbumin-sensitized mice experience substantial alterations in both gut and oral microbial composition and structure, and specific strains identified in this study may serve as potential biomarkers for food allergy screening. Moreover, our findings highlight that the oral environment, under the same experimental conditions, exhibited greater precision in detecting a larger number of species. Additionally, it is worth noting that the NOD-like receptor signaling pathway plays a vital role in the pathogenesis of OVA (ovalbumin)-induced allergy. These findings will generate novel concepts and strategies in the realm of food allergy prevention and treatment.
Collapse
Affiliation(s)
- Chuanyue Qiao
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Department of Stomatology, Traditional Chinese Medical Hospital of Huangdao District, Qingdao, China
| | - Shuang Bian
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Hao Huang
- Department of Stomatology, Qingdao Eighth People's Hospital, Qingdao, China
| | - Han Xiao
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Lei Ma
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Rui Han
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Ray M, Ashwini M, Halami PM. The Occurrence of Colistin Resistance in Potential Lactic Acid Bacteria of Food-Producing Animals in India. Curr Microbiol 2024; 81:297. [PMID: 39105865 DOI: 10.1007/s00284-024-03826-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
The overuse of colistin, the last-resort antibiotic, has led to the emergence of colistin-resistant bacteria, which is a major concern. Lactic acid bacteria which are generally regarded as safe are known to be reservoirs of antibiotic resistance that possibly pose a threat to human and animal health. Therefore, this study assessed the prevalence of colistin antimicrobial resistance in livestock in India, that is lactic acid bacteria in healthy chickens, sheep, beef, and swine of Mysore. Diverse phenotypic and genotypic colistin resistance were examined among the lactic acid bacterial species (n = 84) isolated from chicken (n = 44), sheep (n = 16), beef (n = 14), and swine (n = 10). Hi-comb, double-disk diffusion tests, Minimum Inhibitory Concentration (MIC), and biofilm formation were assessed for phenotypic colistin resistance. Specific primers for colistin-resistant genes were used for the determination of genotypic colistin resistance. Around 20%, 18%, and 1% were colistin-resistant Lactobacillus, Enterococcus, and Pediococcus species, respectively. Among these, 66.67% exhibited MDR phenotypes, including colistin antibiotic. The identified resistant isolates are Levilactobacillus brevis LBA and LBB (2), Limosilactobacillus fermentum LBF (1), and Pediococcus acidilactici CHBI (1). The mcr-1 and mcr-3 genes were detected in Levilactobacillus brevis LBA, LBB, and Pediococcus acidilactici CHBI isolated from chicken and sheep intestines respectively. The study identified colistin resistance determinants in lactobacilli from food animals, emphasizing the need for enhanced surveillance and monitoring of resistance spread. These findings underscore colistin resistance as a significant medical concern and should be integrated into India's ongoing antimicrobial resistance monitoring programs.
Collapse
Affiliation(s)
- Mousumi Ray
- Department of Microbiology and Fermentation Technology, CSIR- Central Food Technological Research Institute, Mysuru, 570020, India
| | - M Ashwini
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Prakash M Halami
- Department of Microbiology and Fermentation Technology, CSIR- Central Food Technological Research Institute, Mysuru, 570020, India.
| |
Collapse
|
8
|
Ramanan V, Sarkar IN. Augmenting bacterial similarity measures using a graph-based genome representation. mSystems 2024; 9:e0049724. [PMID: 38940518 PMCID: PMC11265277 DOI: 10.1128/msystems.00497-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
Relationships between bacterial taxa are traditionally defined using 16S rRNA nucleotide similarity or average nucleotide identity. Improvements in sequencing technology provide additional pairwise information on genome sequences, which may provide valuable information on genomic relationships. Mapping orthologous gene locations between genome pairs, known as synteny, is typically implemented in the discovery of new species and has not been systematically applied to bacterial genomes. Using a data set of 378 bacterial genomes, we developed and tested a new measure of synteny similarity between a pair of genomes, which was scaled onto 16S rRNA distance using covariance matrices. Based on the input gene functions used (i.e., core, antibiotic resistance, and virulence), we observed varying topological arrangements of bacterial relationship networks by applying (i) complete linkage hierarchical clustering and (ii) K-nearest neighbor graph structures to synteny-scaled 16S data. Our metric improved clustering quality comparatively to state-of-the-art average nucleotide identity metrics while preserving clustering assignments for the highest similarity relationships. Our findings indicate that syntenic relationships provide more granular and interpretable relationships for within-genera taxa compared to pairwise similarity measures, particularly in functional contexts. IMPORTANCE Given the prevalence and necessity of the 16S rRNA measure in bacterial identification and analysis, this additional analysis adds a functional and synteny-based layer to the identification of relatives and clustering of bacteria genomes. It is also of computational interest to model the bacterial genome as a graph structure, which presents new avenues of genomic analysis for bacteria and their closely related strains and species.
Collapse
Affiliation(s)
- Vivek Ramanan
- Center of Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Center for Biomedical Informatics, Brown University, Providence, Rhode Island, USA
| | - Indra Neil Sarkar
- Center of Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Center for Biomedical Informatics, Brown University, Providence, Rhode Island, USA
- Rhode Island Quality Institute, Providence, Rhode Island, USA
| |
Collapse
|
9
|
Huang X, Zhang DY, Li D, Lv Y, Chen S, Bai F. Human gastric microbiota analysis of refractory H. pylori infection. Sci Rep 2024; 14:15619. [PMID: 38972876 PMCID: PMC11228035 DOI: 10.1038/s41598-024-66339-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
H. pylori infection is gaining increasing attention, but detailed investigations into its impact on gastric microbiota remain limited. We collected gastric mucosa samples from 47 individuals divided into three groups: 1. Group HP: patients with initial positive H. pylori infection (25 cases); 2. Group ck: H. pylori-negative patients (14 cases); 3. Group DiffHP: patients with refractory H. pylori infection (8 cases). The samples were analyzed using 16S rDNA sequencing and functional prediction with PICRUSt. Group HP showed differences in flora distribution and function compared to Group ck, while Group DiffHP overlapped with Group HP. The abundances of Aeromonas piscicola, Shewanella algae, Vibrio plantisponsor, Aeromonas caviae, Serratia marcescens, Vibrio parahaemolyticus, Microbacterium lacticum, and Prevotella nigrescens were significantly reduced in both Group DiffHP and Group HP compared to Group ck. Vibrio shilonii was reduced only in Group DiffHP compared to Group ck, while Clostridium perfringens and Paracoccus marinus were increased only in Group DiffHP. LEfSe analysis revealed that Clostridium perfringens and Paracoccus marinus were enriched, whereas Vibrio shilonii was reduced in Group DiffHP compared to Group ck at the species level. In individuals with refractory H. pylori infection, the gastric microbiota exhibited enrichment in various human diseases, organic systems, and metabolic pathways (amino acid metabolism, carbohydrate metabolism, transcription, replication and repair, cell cycle pathways, and apoptosis). Patients with multiple failed H. pylori eradication exhibited significant changes in the gastric microbiota. An increase in Clostridium perfringens and Paracoccus marinus and a decrease in Vibrio shilonii appears to be characteristic of refractory H. pylori infection.
Collapse
Affiliation(s)
- Xianfeng Huang
- Graduate School, Hainan Medical University, Haikou, 571199, China
| | - Da-Ya Zhang
- Graduate School, Hainan Medical University, Haikou, 571199, China
| | - Da Li
- Graduate School, Hainan Medical University, Haikou, 571199, China
| | - Yanting Lv
- Graduate School, Hainan Medical University, Haikou, 571199, China
| | - Shiju Chen
- Graduate School, Hainan Medical University, Haikou, 571199, China
| | - Feihu Bai
- Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Yehai Avenue, #368, Longhua District, Haikou, 570216, Hainan Province, China.
- The Gastroenterology Clinical Medical Center of Hainan Province, Haikou, 570216, China.
| |
Collapse
|
10
|
Zhang T, Bai S, Ding X, Zeng Q, Xuan Y, Xu S, Mao X, Peng H, Zhang K, Wang J. Pu-erh tea theabrownin improves the ovarian function and gut microbiota in laying hens. Poult Sci 2024; 103:103795. [PMID: 38723460 PMCID: PMC11101868 DOI: 10.1016/j.psj.2024.103795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/13/2024] [Accepted: 04/21/2024] [Indexed: 05/21/2024] Open
Abstract
Studies have reported that theabrownin can moderate the lipid metabolism and intestinal microbiota, thereby affecting the health of humans and model animals, however the research on laying hens is scarce. The present study aimed to investigate the effects of dietary theabrownin supplementation on lipid metabolism, microbial composition and ovarian function in laying hens. A total of 80 laying hens (25 wk of age) were fed with normal diet (CON) and normal diet +100 mg/kg theabrownin (PT group) for 12 wk. The results showed that the addition of theabrownin enhanced villus height of duodenum and decreased crypt depth of jejunum (P < 0.05). At the same time, compared with CON, the concentration of IL-6 and the mRNA expression of IL-1β and IL-6 were decreased significantly in PT group (P < 0.05). Dietary theabrownin reduced the concentration of total cholesterol and glycerol, while decreased lipid droplet optical density in liver (P < 0.05). Compared with CON group, the mRNA expression of PPARγ, HMG-CoAS, ACC were down-regulated and the mRNA expression of CYP8B1 was up-regulated in PT group (P < 0.05). The ACE, Chao1 and Observed_species indexes in cecum microbiota were increased by PT group intervention (P < 0.05). Dietary PT supplementation enhanced the relative abundance of Firmicutes (phylum), Lactobacillus (genus) and the Firmicutes to Bacteroidetes ratio, and reduced the relative abundance of Bacteroidetes (phylum) in cecum (P < 0.05). The organic acids and its derivatives were up-regulated by theabrownin intervention in serum metabolites (P < 0.05). Dietary theabrownin supplementation resulted in higher mRNA expression of Bcl-2 and SIRT1 in ovary and increased the concentration of estradiol in serum (P < 0.05). These discovering indicated that dietary theabrownin supplementation enhanced the intestinal function and influenced serum metabolism by improving intestinal morphology, microbiota community structure and reducing the concentration and expression of inflammatory cytokines in intestine. Dietary theabrownin reduced hepatic lipid deposition and it also decreased the cell apoptosis rate to improve ovarian function and egg weight which were associated with the SIRT1 pathway.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiping Bai
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuemei Ding
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiufeng Zeng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yue Xuan
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huanwei Peng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Keying Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jianping Wang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
11
|
Isokääntä H, Tomnikov N, Vanhatalo S, Munukka E, Huovinen P, Hakanen AJ, Kallonen T. High-throughput DNA extraction strategy for fecal microbiome studies. Microbiol Spectr 2024; 12:e0293223. [PMID: 38747618 PMCID: PMC11237708 DOI: 10.1128/spectrum.02932-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
Microbiome studies are becoming larger in size to detect the potentially small effect that environmental factors have on our gut microbiomes, or that the microbiome has on our health. Therefore, fast and reproducible DNA isolation methods are needed to handle thousands of fecal samples. We used the Chemagic 360 chemistry and Magnetic Separation Module I (MSMI) instrument to compare two sample preservatives and four different pre-treatment protocols to find an optimal method for DNA isolation from thousands of fecal samples. The pre-treatments included bead beating, sample handling in tube and plate format, and proteinase K incubation. The optimal method offers a sufficient yield of high-quality DNA without contamination. Three human fecal samples (adult, senior, and infant) with technical replicates were extracted. The extraction included negative controls (OMNIgeneGUT, DNA/RNA shield fluid, and Chemagic Lysis Buffer 1) to detect cross-contamination and ZymoBIOMICS Gut Microbiome Standard as a positive control to mimic the human gut microbiome and assess sensitivity of the extraction method. All samples were extracted using Chemagic DNA Stool 200 H96 kit (PerkinElmer, Finland). The samples were collected in two preservatives, OMNIgeneGUT and DNA/RNA shield fluid. DNA quantity was measured using Qubit-fluorometer, DNA purity and quality using gel electrophoresis, and taxonomic signatures with 16S rRNA gene-based sequencing with V3V4 and V4 regions. Bead beating increased bacterial diversity. The largest increase was detected in gram-positive genera Blautia, Bifidobacterium, and Ruminococcus. Preservatives showed minor differences in bacterial abundances. The profiles between the V3V4 and V4 regions differed considerably with lower diversity samples. Negative controls showed signs from genera abundant in fecal samples. Technical replicates of the Gut Standard and stool samples showed low variation. The selected isolation protocol included recommended steps from manufacturer as well as bead beating. Bead beating was found to be necessary to detect hard-to-lyse bacteria. The protocol was reproducible in terms of DNA yield among different stool replicates and the ZymoBIOMICS Gut Microbiome Standard. The MSM1 instrument and pre-treatment in a 96-format offered the possibility of automation and handling of large sample collections. Both preservatives were feasible in terms of sample handling and had low variation in taxonomic signatures. The 16S rRNA target region had a high impact on the composition of the bacterial profile. IMPORTANCE Next-generation sequencing (NGS) is a widely used method for determining the composition of the gut microbiota. Due to the differences in the gut microbiota composition between individuals, microbiome studies have expanded into large population studies to maximize detection of small effects on microbe-host interactions. Thus, the demand for a rapid and reliable microbial profiling is continuously increasing, making the optimization of high-throughput 96-format DNA extraction integral for NGS-based downstream applications. However, experimental protocols are prone to bias and errors from sample collection and storage, to DNA extraction, primer selection and sequencing, and bioinformatics analyses. Methodological bias can contribute to differences in microbiome profiles, causing variability across studies and laboratories using different protocols. To improve consistency and confidence of the measurements, the standardization of microbiome analysis methods has been recognized in many fields.
Collapse
Affiliation(s)
- Heidi Isokääntä
- Infections and Immunity Unit, Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku, Turku, Finland
| | - Natalie Tomnikov
- Department of Clinical Microbiology, Tyks Laboratories, Turku University Hospital, Turku, Finland
| | - Sanja Vanhatalo
- Infections and Immunity Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eveliina Munukka
- Clinical Microbiome Bank, Microbe Center, Turku University Hospital and University of Turku, Turku, Finland
- Division of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland
| | - Pentti Huovinen
- Infections and Immunity Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Antti J. Hakanen
- Infections and Immunity Unit, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Clinical Microbiology, Tyks Laboratories, Turku University Hospital, Turku, Finland
- Clinical Microbiome Bank, Microbe Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Teemu Kallonen
- Infections and Immunity Unit, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Clinical Microbiology, Tyks Laboratories, Turku University Hospital, Turku, Finland
- Clinical Microbiome Bank, Microbe Center, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
12
|
Zuo Y, Lu Y, Pang J, Jin S, Zhang X, Zhao E, Li Y. Detection and comparison of tumor cell-associated microbiota from different compartments of colorectal cancer. Front Oncol 2024; 14:1374769. [PMID: 38835371 PMCID: PMC11148212 DOI: 10.3389/fonc.2024.1374769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Intratumoral microbes play an important role in the development of colorectal cancer (CRC). However, studying intratumoral microbes in CRC faces technical challenges, as tumor microbe communities are often contaminated by fecal microbes due to the structure of the gut folds and villi. The present study aimed to develop a new method for isolating tumor cell-associated microbiota and comparing microbial populations from different compartments. Materials and methods The distribution of intestinal bacteria was detected using immunohistochemistry combined with 5R-16s rRNA gene sequencing to explore the effects of the sampling site and number of washes on the detection of microbiota. The 5R-16s rRNA gene sequencing was performed using 44 samples from 11 patients with CRC, including CRC tumor tissues (TT), normal tissues adjacent to CRC (NT), tumor cells (TC), and normal cells (NC). TC and NC were obtained from the TT and NT using an enzymatic digestion method. The microbiota and their potential functions in the four groups were analyzed and compared to determine the differential microbiota related to CRC. Results Bacteria were mainly distributed in the feces covering intestinal tissues and in the epithelial cells and macrophages within the tissues. Different sampling sites and number of washes led to detection of different microbiota distributions. Although the cleaning method could be controlled, sampling sites varied and led to different microbiota distributions. The phyla of Firmicutes and Bacteroidetes were highly abundant in the conventionally used tissue samples, whereas Proteobacteria was the most abundant phyla in the cell samples isolated with the new method (i.e., after cell enzymatic hydrolysis). Detection of CRC cell-associated microbiota using a cell enzymatic digestion method showed that some bacteria, such as Fusobacterium, Eikenella, Shewanella, and Listeria, were more abundant in TT than NT, whereas the abundance of Akkermansia was lower in TT than NT. The tumor/normal ratios of some bacteria, such as Gemella, Escherichia, Shigella, and Blautia, were different between the cell and tissue samples. Conclusion The cell enzymatic digestion method reduced fecal bacterial contamination, enabling low biomass intratumoral microbiota to be detected and allowing prediction of bacterial distributions.
Collapse
Affiliation(s)
- Yanzhen Zuo
- Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei, China
| | - Yanjie Lu
- Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei, China
| | - Jiayu Pang
- Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei, China
| | - Shunkang Jin
- Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei, China
| | - Xinyu Zhang
- Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei, China
| | - Enhong Zhao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Yuhong Li
- Cancer Research Laboratory, Chengde Medical College, Chengde, Hebei, China
| |
Collapse
|
13
|
Graham AS, Patel F, Little F, van der Kouwe A, Kaba M, Holmes MJ. Using short-read 16S rRNA sequencing of multiple variable regions to generate high-quality results to a species level. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.591068. [PMID: 38798511 PMCID: PMC11118338 DOI: 10.1101/2024.05.13.591068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Introduction Short-read amplicon sequencing studies have typically focused on 1-2 variable regions of the 16S rRNA gene. Species-level resolution is limited in these studies, as each variable region enables the characterisation of a different subsection of the microbiome. Although long-read sequencing techniques take advantage of all 9 variable regions by sequencing the entire 16S rRNA gene, they are substantially more expensive. This work assessed the feasibility of accurate species-level resolution and reproducibility using a relatively new sequencing kit and bioinformatics pipeline developed for short-read sequencing of multiple variable regions of the 16S rRNA gene. In addition, we evaluated the potential impact of different sample collection methods on our outcomes. Methods Using xGen™ 16S Amplicon Panel v2 kits, sequencing of all 9 variable regions of the 16S rRNA gene was carried out on an Illumina MiSeq platform. Mock cells and mock DNA for 8 bacterial species were included as extraction and sequencing controls respectively. Within-run and between-run replicate samples, and pairs of stool and rectal swabs collected at 0-5 weeks from the same participants, were incorporated. Observed relative abundances of each species were compared to theoretical abundances provided by ZymoBIOMICS. Paired Wilcoxon rank sum tests and distance-based intraclass correlation coefficients were used to statistically compare alpha and beta diversity measures, respectively, for pairs of replicates and stool/rectal swab sample pairs. Results Using multiple variable regions of the 16S ribosomal Ribonucleic Acid (rRNA) gene, we found that we could accurately identify taxa to a species level and obtain highly reproducible results at a species level. Yet, the microbial profiles of stool and rectal swab sample pairs differed substantially despite being collected concurrently from the same infants. Conclusion This protocol provides an effective means for studying infant gut microbial samples at a species level. However, sample collection approaches need to be accounted for in any downstream analysis.
Collapse
Affiliation(s)
- Amy S Graham
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
| | - Fadheela Patel
- Department of Pathology, Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Francesca Little
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Andre van der Kouwe
- Athinoula A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Mamadou Kaba
- Department of Pathology, Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Martha J Holmes
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- ImageTech, Simon Fraser University, Surrey, BC, Canada
| |
Collapse
|
14
|
Ren M, Pan H, Zhou X, Yu M, Ji F. Alterations of the duodenal mucosal microbiome in patients with metabolic dysfunction-associated steatotic liver disease. Sci Rep 2024; 14:9124. [PMID: 38643212 PMCID: PMC11032335 DOI: 10.1038/s41598-024-59605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/12/2024] [Indexed: 04/22/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD), is associated with altered gut microbiota; however, there has been a focus on fecal samples, which are not representative of the entire digestive tract. Mucosal biopsies of the descending duodenum were collected. Five regions of the 16S rRNA gene were amplified and sequenced. Other assessments conducted on the study subjects included body mass index, transient elastography, liver enzymes, and lipid profile. Fifty-one subjects (36 with MASLD and 15 controls) were evaluated. There was no significant difference between the two groups regarding alpha- or beta-diversity of the duodenal mucosal microbiota. Linear discriminant analysis effect size (LEfSe) analysis showed that the genera Serratia and Aggregatibacter were more abundant in the duodenal mucosa of patients with MASLD, whereas the duodenal mucosal microbiota of the healthy controls was enriched with the genus Petrobacter. PICRUSt2 analysis revealed that genes associated with amino acid degradation and carboxylate degradation were significantly enriched in the duodenal mucosal microbiota of patients with MASLD. Our findings reveal the duodenal mucosal microbiota in patients with MASLD, which could contribute to future studies investigating the causal relationship between duodenal microbiota and MASLD.
Collapse
Affiliation(s)
- Mengting Ren
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Cancer Center, Department of Gastroenterology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Hanghai Pan
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Cancer Center, Department of Gastroenterology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Xinxin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Mosang Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
15
|
Babis W, Jastrzebski JP, Ciesielski S. Fine-Tuning of DADA2 Parameters for Multiregional Metabarcoding Analysis of 16S rRNA Genes from Activated Sludge and Comparison of Taxonomy Classification Power and Taxonomy Databases. Int J Mol Sci 2024; 25:3508. [PMID: 38542482 PMCID: PMC10971298 DOI: 10.3390/ijms25063508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 11/12/2024] Open
Abstract
Taxonomic classification using metabarcoding is a commonly used method in microbiological studies of environmental samples and during monitoring of biotechnological processes. However, it is difficult to compare results from different laboratories, due to the variety of bioinformatics tools that have been developed and used for data analysis. This problem is compounded by different choices regarding which variable region of the 16S rRNA gene and which database is used for taxonomic identification. Therefore, this study employed the DADA2 algorithm to optimize the preprocessing of raw data obtained from the sequencing of activated sludge samples, using simultaneous analysis of three frequently used regions of 16S rRNA (V1-V3, V3-V4, V4-V5). Additionally, the study evaluated which variable region and which of the frequently used microbial databases for taxonomic classification (Greengenes2, Silva, RefSeq) more accurately classify OTUs into taxa. Adjusting the values of selected parameters of the DADA2 algorithm, we obtained the highest possible numbers of OTUs for each region. Regarding biodiversity within regions, the V3-V4 region had the highest Simpson and Shannon indexes, and the Chao1 index was similar to that of the V1-V3 region. Beta-biodiversity analysis revealed statistically significant differences between regions. When comparing databases for each of the regions studied, the highest numbers of taxonomic groups were obtained using the SILVA database. These results suggest that standardization of metabarcoding of short amplicons may be possible.
Collapse
Affiliation(s)
- Wiktor Babis
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (W.B.); (J.P.J.)
| | - Jan P. Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (W.B.); (J.P.J.)
| | - Slawomir Ciesielski
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, 11-709 Olsztyn, Poland
| |
Collapse
|
16
|
Masenya K, Manganyi MC, Dikobe TB. Exploring Cereal Metagenomics: Unravelling Microbial Communities for Improved Food Security. Microorganisms 2024; 12:510. [PMID: 38543562 PMCID: PMC10974370 DOI: 10.3390/microorganisms12030510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 11/12/2024] Open
Abstract
Food security is an urgent global challenge, with cereals playing a crucial role in meeting the nutritional requirements of populations worldwide. In recent years, the field of metagenomics has emerged as a powerful tool for studying the microbial communities associated with cereal crops and their impact on plant health and growth. This chapter aims to provide a comprehensive overview of cereal metagenomics and its role in enhancing food security through the exploration of beneficial and pathogenic microbial interactions. Furthermore, we will examine how the integration of metagenomics with other tools can effectively address the adverse effects on food security. For this purpose, we discuss the integration of metagenomic data and machine learning in providing novel insights into the dynamic interactions shaping plant-microbe relationships. We also shed light on the potential applications of leveraging microbial diversity and epigenetic modifications in improving crop resilience and yield sustainability. Ultimately, cereal metagenomics has revolutionized the field of food security by harnessing the potential of beneficial interactions between cereals and their microbiota, paving the way for sustainable agricultural practices.
Collapse
Affiliation(s)
- Kedibone Masenya
- National Zoological Gardens, South African National Biodiversity Institute, 32 Boom St., Pretoria 0001, South Africa
| | - Madira Coutlyne Manganyi
- Department of Biological and Environmental Sciences, Sefako Makgatho Health Sciences University, P.O. Box 139, Pretoria 0204, South Africa;
| | - Tshegofatso Bridget Dikobe
- Department of Botany, School of Biological Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
| |
Collapse
|
17
|
Eisenhofer R, Wright S, Weyrich L. Benchmarking a targeted 16S ribosomal RNA gene enrichment approach to reconstruct ancient microbial communities. PeerJ 2024; 12:e16770. [PMID: 38440408 PMCID: PMC10911074 DOI: 10.7717/peerj.16770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/16/2023] [Indexed: 03/06/2024] Open
Abstract
The taxonomic characterization of ancient microbiomes is a key step in the rapidly growing field of paleomicrobiology. While PCR amplification of the 16S ribosomal RNA (rRNA) gene is a widely used technique in modern microbiota studies, this method has systematic biases when applied to ancient microbial DNA. Shotgun metagenomic sequencing has proven to be the most effective method in reconstructing taxonomic profiles of ancient dental calculus samples. Nevertheless, shotgun sequencing approaches come with inherent limitations that could be addressed through hybridization enrichment capture. When employed together, shotgun sequencing and hybridization capture have the potential to enhance the characterization of ancient microbial communities. Here, we develop, test, and apply a hybridization enrichment capture technique to selectively target 16S rRNA gene fragments from the libraries of ancient dental calculus samples generated with shotgun techniques. We simulated data sets generated from hybridization enrichment capture, indicating that taxonomic identification of fragmented and damaged 16S rRNA gene sequences was feasible. Applying this enrichment approach to 15 previously published ancient calculus samples, we observed a 334-fold increase of ancient 16S rRNA gene fragments in the enriched samples when compared to unenriched libraries. Our results suggest that 16S hybridization capture is less prone to the effects of background contamination than 16S rRNA amplification, yielding a higher percentage of on-target recovery. While our enrichment technique detected low abundant and rare taxa within a given sample, these assignments may not achieve the same level of specificity as those achieved by unenriched methods.
Collapse
Affiliation(s)
| | - Sterling Wright
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, United States
| | - Laura Weyrich
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
18
|
Zhao B, Liu R, Li Y, Xu H, Li X, Gu J, Zhang X, Wang Y, Wang Y. Changes of putative pathogenic species within the water bacterial community in large-scale drinking water treatment and distribution systems. WATER RESEARCH 2024; 249:120947. [PMID: 38043356 DOI: 10.1016/j.watres.2023.120947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Although the management of microbes in drinking water is of paramount importance for public health, there remain challenges in comprehensively examining pathogenic bacteria in the water supply system at the species level. In this study, high-throughput sequencing of nearly full-length 16S rRNA genes was performed to investigate the changes of the water bacterial community in three large-scale drinking water treatment plants (DWTPs) and their corresponding distribution systems during winter and summer. Our findings revealed significant differences in the bacterial community structure between winter and summer water samples for each DWTP and its distribution management area (DMA). In the groundwater-fed DWTP, selective enrichment of mycobacterial species was observed in both seasons, and the subsequent DMA also exhibited strong selection for specific mycobacterial species. In one of the surface water-fed DWTPs, certain Legionella species present in the source water in winter were selectively enriched in the bacterial community after pre-oxidation, although they were susceptible to the subsequent purification steps. A variety of putative pathogenic species (n = 83) were identified based on our pathogen identification pipeline, with the dominant species representing opportunistic pathogens commonly found in water supply systems. While pathogen removal primarily occurred during the purification processes of DWTPs, especially for surface water-fed plants, the relative abundance of pathogenic bacteria in the DMA water flora was lower than that in the DWTP effluent flora, indicating a diminished competitiveness of pathogens within the DMA ecosystem.
Collapse
Affiliation(s)
- Bei Zhao
- Beijing Waterworks Group Co., Ltd, Beijing, PR China; Beijing Engineering Research Center for Drinking Water Quality, Beijing, PR China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, PR China; Weiqiao-UCAS Science and Technology Park, Binzhou Institute of Technology, Binzhou, Shandong, PR China.
| | - Yuxian Li
- Beijing Waterworks Group Co., Ltd, Beijing, PR China; Beijing Engineering Research Center for Drinking Water Quality, Beijing, PR China
| | - Hao Xu
- Beijing Waterworks Group Co., Ltd, Beijing, PR China; Beijing Engineering Research Center for Drinking Water Quality, Beijing, PR China
| | - Xiangyi Li
- Beijing Waterworks Group Co., Ltd, Beijing, PR China; Beijing Engineering Research Center for Drinking Water Quality, Beijing, PR China
| | - Junnong Gu
- Beijing Waterworks Group Co., Ltd, Beijing, PR China; Beijing Engineering Research Center for Drinking Water Quality, Beijing, PR China
| | - Xiaolan Zhang
- Beijing Waterworks Group Co., Ltd, Beijing, PR China; Beijing Engineering Research Center for Drinking Water Quality, Beijing, PR China
| | - Yue Wang
- Beijing Waterworks Group Co., Ltd, Beijing, PR China
| | - Yansong Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
19
|
Ramakodi MP. Merging and concatenation of sequencing reads: a bioinformatics workflow for the comprehensive profiling of microbiome from amplicon data. FEMS Microbiol Lett 2024; 371:fnae009. [PMID: 38305133 DOI: 10.1093/femsle/fnae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/03/2024] Open
Abstract
A comprehensive profiling of microbial diversity is essential to understand the ecosystem functions. Universal primer sets such as the 515Y/926R could amplify a part of 16S and 18S rRNA and infer the diversity of prokaryotes and eukaryotes. However, the analyses of mixed sequencing data pose a bioinformatics challenge; the 16S and 18S rRNA sequences need to be separated first and analysed individually/independently due to variations in the amplicon length. This study describes an alternative strategy, a merging and concatenation workflow, to analyse the mixed amplicon data without separating the 16S and 18S rRNA sequences. The workflow was tested with 24 mock community (MC) samples, and the analyses resolved the composition of prokaryotes and eukaryotes adequately. In addition, there was a strong correlation (cor = 0.950; P-value = 4.754e-10) between the observed and expected abundances in the MC samples, which suggests that the computational approach could infer the microbial proportions accurately. Further, 18 samples collected from the Sundarbans mangrove region were analysed as a case study. The analyses identified Proteobacteria, Bacteroidota, Actinobacteriota, Cyanobacteria, and Crenarchaeota as dominant bacterial phyla and eukaryotic divisions such as Metazoa, Gyrista, Cryptophyta, Chlorophyta, and Dinoflagellata were found to be dominant in the samples. Thus, the results support the applicability of the method in environmental microbiome research. The merging and concatenation workflow presented here requires considerably less computational resources and uses widely/commonly used bioinformatics packages, saving researchers analyses time (for equivalent sample numbers, compared to the conventional approach) required to infer the diversity of major microbial domains from mixed amplicon data at comparable accuracy.
Collapse
Affiliation(s)
- Meganathan P Ramakodi
- CSIR-National Environmental Engineering Research Institute (NEERI), Hyderabad Zonal Centre, CSIR-IICT Campus, Tarnaka, Hyderabad 500007, India
| |
Collapse
|
20
|
Koike K, Honda R, Aoki M, Yamamoto‐Ikemoto R, Syutsubo K, Matsuura N. A quantitative sequencing method using synthetic internal standards including functional and phylogenetic marker genes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:497-511. [PMID: 37465846 PMCID: PMC10667660 DOI: 10.1111/1758-2229.13189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
The method of spiking synthetic internal standard genes (ISGs) to samples for amplicon sequencing, generating sequences and converting absolute gene numbers from read counts has been used only for phylogenetic markers and has not been applied to functional markers. In this study, we developed ISGs, including gene sequences of the 16S rRNA, pmoA, encoding a subunit of particulate methane monooxygenase and amoA, encoding a subunit of ammonia monooxygenase. We added ISGs to the samples, amplified the target genes and performed amplicon sequencing. For the mock community, the copy numbers converted from read counts using ISGs were equivalent to those obtained by the quantitative real-time polymerase chain reaction (4.0 × 104 versus 4.1 × 104 and 3.0 × 103 versus 4.0 × 103 copies μL-DNA-1 for 16S rRNA and pmoA genes, respectively), but we also identified underestimation, possibly due to primer coverage (7.8 × 102 versus 3.7 × 103 μL-DNA-1 for amoA gene). We then applied this method to environmental samples and analysed phylogeny, functional diversity and absolute quantities. One Methylocystis population was most abundant in the sludge samples [16S rRNA gene (3.8 × 109 copies g-1 ) and the pmoA gene (2.3 × 109 copies g-1 )] and were potentially interrelated. This study demonstrates that ISG spiking is useful for evaluating sequencing data processing and quantifying functional markers.
Collapse
Affiliation(s)
- Kazuyoshi Koike
- Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawaJapan
| | - Ryo Honda
- Faculty of Geosciences and Civil EngineeringKanazawa UniversityKanazawaJapan
| | - Masataka Aoki
- Regional Environment Conservation DivisionNational Institute for Environmental Studies (NIES)IbarakiJapan
| | | | - Kazuaki Syutsubo
- Regional Environment Conservation DivisionNational Institute for Environmental Studies (NIES)IbarakiJapan
- Research Center for Water Environment Technology, School of Engineeringthe University of TokyoTokyoJapan
| | - Norihisa Matsuura
- Faculty of Geosciences and Civil EngineeringKanazawa UniversityKanazawaJapan
| |
Collapse
|
21
|
Pernigoni N, Guo C, Gallagher L, Yuan W, Colucci M, Troiani M, Liu L, Maraccani L, Guccini I, Migliorini D, de Bono J, Alimonti A. The potential role of the microbiota in prostate cancer pathogenesis and treatment. Nat Rev Urol 2023; 20:706-718. [PMID: 37491512 DOI: 10.1038/s41585-023-00795-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 07/27/2023]
Abstract
The human body hosts a complex and dynamic population of trillions of microorganisms - the microbiota - which influences the body in homeostasis and disease, including cancer. Several epidemiological studies have associated specific urinary and gut microbial species with increased risk of prostate cancer; however, causal mechanistic data remain elusive. Studies have associated bacterial generation of genotoxins with the occurrence of TMPRSS2-ERG gene fusions, a common, early oncogenic event during prostate carcinogenesis. A subsequent study demonstrated the role of the gut microbiota in prostate cancer endocrine resistance, which occurs, at least partially, through the generation of androgenic steroids fuelling oncogenic signalling via the androgen receptor. These studies present mechanistic evidence of how the host microbiota might be implicated in prostate carcinogenesis and tumour progression. Importantly, these findings also reveal potential avenues for the detection and treatment of prostate cancer through the profiling and modulation of the host microbiota. The latter could involve approaches such as the use of faecal microbiota transplantation, prebiotics, probiotics, postbiotics or antibiotics, which can be used independently or combined with existing treatments to reverse therapeutic resistance and improve clinical outcomes in patients with prostate cancer.
Collapse
Affiliation(s)
- Nicolò Pernigoni
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Christina Guo
- Institute of Cancer Research, London, UK
- Royal Marsden Hospital, London, UK
| | | | - Wei Yuan
- Institute of Cancer Research, London, UK
| | - Manuel Colucci
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Martina Troiani
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Lei Liu
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Luisa Maraccani
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Ilaria Guccini
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Denis Migliorini
- Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Lausanne and Geneva, Geneva, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Johann de Bono
- Institute of Cancer Research, London, UK
- Royal Marsden Hospital, London, UK
| | - Andrea Alimonti
- Institute of Oncology Research, Bellinzona, Switzerland.
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.
- Veneto Institute of Molecular Medicine, Padova, Italy.
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland.
- Department of Medicine, University of Padova, Padova, Italy.
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
22
|
Leontidou K, Abad-Recio IL, Rubel V, Filker S, Däumer M, Thielen A, Lanzén A, Stoeck T. Simultaneous analysis of seven 16S rRNA hypervariable gene regions increases efficiency in marine bacterial diversity detection. Environ Microbiol 2023; 25:3484-3501. [PMID: 37974518 DOI: 10.1111/1462-2920.16530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
Environmental DNA sequencing is the gold standard to reveal microbial community structures. In most applications, a one-fragment PCR approach is applied to amplify a taxonomic marker gene, usually a hypervariable region of the 16S rRNA gene. We used a new reverse complement (RC)-PCR-based assay that amplifies seven out of the nine hypervariable regions of the 16S rRNA gene, to interrogate bacterial communities in sediment samples collected from different coastal marine sites with an impact gradient. In parallel, we employed a traditional one-fragment analysis of the hypervariable V3-V4 region to investigate whether the RC-PCR reveals more of the 'unseen' diversity obtained by the one-fragment approach. As a benchmark for the full deck of diversity, we subjected the samples to PCR-free metagenomic sequencing. None of the two PCR-based approaches recorded the full taxonomic repertoire obtained from the metagenomics datasets. However, the RC-PCR approach detected 2.8 times more bacterial genera compared to the near-saturation sequenced V3-V4 samples. RC-PCR is an ideal compromise between the standard one-fragment approach and metagenomics sequencing and may guide future environmental sequencing studies, in which bacterial diversity is a central subject.
Collapse
Affiliation(s)
- Kleopatra Leontidou
- Ecology Group, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Ion L Abad-Recio
- Marine Ecosystems Functioning, AZTI, Marine Research, Basque Research and Technology Alliance, Pasia, Gipuzkoa, Spain
| | - Verena Rubel
- Ecology Group, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Sabine Filker
- Molecular Ecology Group, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Martin Däumer
- SeqIT, Laboratory for Molecular Diagnostics and Services, Kaiserslautern, Germany
| | - Alexander Thielen
- SeqIT, Laboratory for Molecular Diagnostics and Services, Kaiserslautern, Germany
| | - Anders Lanzén
- Marine Ecosystems Functioning, AZTI, Marine Research, Basque Research and Technology Alliance, Pasia, Gipuzkoa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Thorsten Stoeck
- Ecology Group, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
23
|
Chatman CC, Olson EG, Freedman AJ, Dittoe DK, Ricke SC, Majumder ELW. Co-exposure to Polyethylene Fiber and Salmonella enterica Typhimurium Alters Microbiome and Metabolome of in vitro Chicken Cecal Mesocosms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568320. [PMID: 38045247 PMCID: PMC10690274 DOI: 10.1101/2023.11.22.568320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Humans and animals encounter a summation of exposures during their lifetime (the exposome). In recent years, the scope of the exposome has begun to include microplastics. Microplastics (MPs) have increasingly been found in locations where there could be an interaction with Salmonella enterica Typhimurium, one of the commonly isolated serovars from processed chicken. In this study, the microbiota response to a 24-hour co-exposure to Salmonella enterica Typhimurium and/or low-density polyethylene (PE) microplastics in an in vitro broiler cecal model was determined using 16S rRNA amplicon sequencing (Illumina) and untargeted metabolomics. Community sequencing results indicated that PE fiber with and without S. Typhimurium yielded a lower Firmicutes/Bacteroides ratio compared to other treatment groups, which is associated with poor gut health, and overall had greater changes to the cecal microbial community composition. However, changes in the total metabolome were primarily driven by the presence of S. Typhimurium. Additionally, the co-exposure to PE Fiber and S. Typhimurium caused greater cecal microbial community and metabolome changes than either exposure alone. Our results indicate that polymer shape is an important factor in effects resulting from exposure. It also demonstrates that microplastic-pathogen interactions cause metabolic alterations to the chicken cecal microbiome in an in vitro chicken cecal model.
Collapse
Affiliation(s)
| | - Elena G Olson
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison
| | | | | | - Steven C Ricke
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison
- Meat Science and Animal Biologics Discovery Program, University of Wisconsin-Madison
| | | |
Collapse
|
24
|
Wu D, Wang W, Yao Y, Li H, Wang Q, Niu B. Microbial interactions within beneficial consortia promote soil health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165801. [PMID: 37499809 DOI: 10.1016/j.scitotenv.2023.165801] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/26/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
By ecologically interacting with various biotic and abiotic agents acting in soil ecosystems, highly diverse soil microorganisms establish complex and stable assemblages and survive in a community context in natural settings. Besides facilitating soil microbiome to maintain great levels of population homeostasis, such microbial interactions drive soil microbes to function as the major engine of terrestrial biogeochemical cycling. It is verified that the regulative effect of microbe-microbe interplay plays an instrumental role in microbial-mediated promotion of soil health, including bioremediation of soil pollutants and biocontrol of soil-borne phytopathogens, which is considered an environmentally friendly strategy for ensuring the healthy condition of soils. Specifically, in microbial consortia, it has been proven that microorganism-microorganism interactions are involved in enhancing the soil health-promoting effectiveness (i.e., efficacies of pollution reduction and disease inhibition) of the beneficial microbes, here defined as soil health-promoting agents. These microbial interactions can positively regulate the soil health-enhancing effect by supporting those soil health-promoting agents utilized in combination, as multi-strain soil health-promoting agents, to overcome three main obstacles: inadequate soil colonization, insufficient soil contaminant eradication and inefficient soil-borne pathogen suppression, all of which can restrict their probiotic functionality. Yet the mechanisms underlying such beneficial interaction-related adjustments and how to efficiently assemble soil health-enhancing consortia with the guidance of microbe-microbe communications remain incompletely understood. In this review, we focus on bacterial and fungal soil health-promoting agents to summarize current research progress on the utilization of multi-strain soil health-promoting agents in the control of soil pollution and soil-borne plant diseases. We discuss potential microbial interaction-relevant mechanisms deployed by the probiotic microorganisms to upgrade their functions in managing soil health. We emphasize the interplay-related factors that should be taken into account when building soil health-promoting consortia, and propose a workflow for assembling them by employing a reductionist synthetic community approach.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; The Center for Basic Forestry Research, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Weixiong Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; The Center for Basic Forestry Research, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yanpo Yao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Hongtao Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Qi Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Ben Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; The Center for Basic Forestry Research, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
25
|
Schorr L, Mathies M, Elinav E, Puschhof J. Intracellular bacteria in cancer-prospects and debates. NPJ Biofilms Microbiomes 2023; 9:76. [PMID: 37813921 PMCID: PMC10562400 DOI: 10.1038/s41522-023-00446-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
Recent evidence suggests that some human cancers may harbor low-biomass microbial ecosystems, spanning bacteria, viruses, and fungi. Bacteria, the most-studied kingdom in this context, are suggested by these studies to localize within cancer cells, immune cells and other tumor microenvironment cell types, where they are postulated to impact multiple cancer-related functions. Herein, we provide an overview of intratumoral bacteria, while focusing on intracellular bacteria, their suggested molecular activities, communication networks, host invasion and evasion strategies, and long-term colonization capacity. We highlight how the integration of sequencing-based and spatial techniques may enable the recognition of bacterial tumor niches. We discuss pitfalls, debates and challenges in decisively proving the existence and function of intratumoral microbes, while reaching a mechanistic elucidation of their impacts on tumor behavior and treatment responses. Together, a causative understanding of possible roles played by intracellular bacteria in cancer may enable their future utilization in diagnosis, patient stratification, and treatment.
Collapse
Affiliation(s)
- Lena Schorr
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Marius Mathies
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany
| | - Eran Elinav
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany.
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Jens Puschhof
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
26
|
Thorel M, Obregon D, Mulot B, Maitre A, Mateos-Hernandez L, Moalic PY, Wu-Chuang A, Cabezas-Cruz A, Leclerc A. Conserved core microbiota in managed and free-ranging Loxodonta africana elephants. Front Microbiol 2023; 14:1247719. [PMID: 37860133 PMCID: PMC10582353 DOI: 10.3389/fmicb.2023.1247719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/30/2023] [Indexed: 10/21/2023] Open
Abstract
The gut microbiota plays a crucial role in animal health and homeostasis, particularly in endangered species conservation. This study investigated the fecal microbiota composition of European captive-bred African savanna elephants (Loxodonta africana) housed in French zoos, and compared it with wild African savanna elephants. Fecal samples were collected and processed for DNA extraction and amplicon sequencing of the 16S rRNA gene. The analysis of α and β diversity revealed significant effects of factors such as diet, daily activity, and institution on microbiota composition. Specifically, provision of branches as part of the diet positively impacted microbiota diversity. Comparative analyses demonstrated distinct differences between captive and wild elephant microbiomes, characterized by lower bacterial diversity and altered co-occurrence patterns in the captive population. Notably, specific taxa were differentially abundant in captive and wild elephants, suggesting the influence of the environment on microbiota composition. Furthermore, the study identified a core association network shared by both captive and wild elephants, emphasizing the importance of certain taxa in maintaining microbial interactions. These findings underscore the impact of environment and husbandry factors on elephant gut microbiota, highlighting the benefits of dietary enrichment strategies in zoos to promote microbiome diversity and health. The study contributes to the broader understanding of host-microbiota interactions and provides insights applicable to conservation medicine and captive animal management.
Collapse
Affiliation(s)
- Milan Thorel
- ZooParc de Beauval and Beauval Nature, Saint-Aignan, France
| | - Dasiel Obregon
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Baptiste Mulot
- ZooParc de Beauval and Beauval Nature, Saint-Aignan, France
| | - Apolline Maitre
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Lourdes Mateos-Hernandez
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | | | - Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | | |
Collapse
|
27
|
Aggarwal D, Rajan D, Bellis KL, Betteridge E, Brennan J, de Sousa C, Parkhill J, Peacock SJ, de Goffau MC, Wagner J, Harrison EM. Optimization of high-throughput 16S rRNA gene amplicon sequencing: an assessment of PCR pooling, mastermix use and contamination. Microb Genom 2023; 9:001115. [PMID: 37843887 PMCID: PMC10634443 DOI: 10.1099/mgen.0.001115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
16S rRNA gene sequencing is widely used to characterize human and environmental microbiomes. Sequencing at scale facilitates better powered studies but is limited by cost and time. We identified two areas in our 16S rRNA gene library preparation protocol where modifications could provide efficiency gains, including (1) pooling of multiple PCR amplifications per sample to reduce PCR drift and (2) manual preparation of mastermix to reduce liquid handling. Using nasal samples from healthy human participants and a serially diluted mock microbial community, we compared alpha and beta diversity, and compositional abundance where the PCR amplification was conducted in triplicate, duplicate or as a single reaction, and where manually prepared or premixed mastermix was used. One hundred and fifty-eight 16S rRNA gene sequencing libraries were prepared, including a replicate experiment. Comparing PCR pooling strategies, we found no significant difference in high-quality read counts and alpha diversity, and beta diversity by Bray-Curtis index clustered by replicate on principal coordinate analysis (PCoA) and non-metric dimensional scaling (NMDS) analysis. Choice of mastermix had no significant impact on high-quality read and alpha diversity, and beta diversity by Bray-Curtis index clustered by replicate in PCoA and NMDS analysis. Importantly, we observed contamination and variability of rare species (<0.01 %) across replicate experiments; the majority of contaminants were accounted for by removal of species present at <0.1 %, or were linked to reagents (including a primer stock). We demonstrate no requirement for pooling of PCR amplifications or manual preparation of PCR mastermix, resulting in a more efficient 16S rRNA gene PCR protocol.
Collapse
Affiliation(s)
- Dinesh Aggarwal
- Department of Medicine, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Diana Rajan
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Katherine L. Bellis
- Department of Medicine, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | | | - Joe Brennan
- Department of Medicine, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Catarina de Sousa
- Department of Medicine, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - CARRIAGE Study Team‡
- Department of Medicine, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, Netherlands
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Marcus C. de Goffau
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, Netherlands
| | - Josef Wagner
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Ewan M. Harrison
- Department of Medicine, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| |
Collapse
|
28
|
Squillario M, Bonaretti C, La Valle A, Di Marco E, Piccolo G, Minuto N, Patti G, Napoli F, Bassi M, Maghnie M, d'Annunzio G, Biassoni R. Gut-microbiota in children and adolescents with obesity: inferred functional analysis and machine-learning algorithms to classify microorganisms. Sci Rep 2023; 13:11294. [PMID: 37438382 DOI: 10.1038/s41598-023-36533-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/05/2023] [Indexed: 07/14/2023] Open
Abstract
The fecal microbiome of 55 obese children and adolescents (BMI-SDS 3.2 ± 0.7) and of 25 normal-weight subjects, matched both for age and sex (BMI-SDS - 0.3 ± 1.1) was analysed. Streptococcus, Acidaminococcus, Sutterella, Prevotella, Sutterella wadsworthensis, Streptococcus thermophilus, and Prevotella copri positively correlated with obesity. The inferred pathways strongly associated with obesity concern the biosynthesis pathways of tyrosine, phenylalanine, tryptophan and methionine pathways. Furthermore, polyamine biosynthesis virulence factors and pro-inflammatory lipopolysaccharide biosynthesis pathway showed higher abundances in obese samples, while the butanediol biosynthesis showed low abundance in obese subjects. Different taxa strongly linked with obesity have been related to an increased risk of multiple diseases involving metabolic pathways related to inflammation (polyamine and lipopolysaccharide biosynthesis). Cholesterol, LDL, and CRP positively correlated with specific clusters of microbial in obese patients. The Firmicutes/Bacteroidetes-ratio was lower in obese samples than in controls and differently from the literature we state that this ratio could not be a biomarker for obesity.
Collapse
Affiliation(s)
| | - Carola Bonaretti
- Molecular Diagnostics, Analysis Laboratory, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alberto La Valle
- Pediatric Clinic, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Eddi Di Marco
- Molecular Diagnostics, Analysis Laboratory, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gianluca Piccolo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI), Università degli Studi di Genova, Genoa, Italy
- Neuro-Oncology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Nicola Minuto
- Pediatric Clinic, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giuseppa Patti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI), Università degli Studi di Genova, Genoa, Italy
- Department of Pediatrics, Pediatric Clinic, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147, Genoa, Italy
| | - Flavia Napoli
- Department of Pediatrics, Pediatric Clinic, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147, Genoa, Italy
| | - Marta Bassi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI), Università degli Studi di Genova, Genoa, Italy
- Department of Pediatrics, Pediatric Clinic, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147, Genoa, Italy
| | - Mohamad Maghnie
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI), Università degli Studi di Genova, Genoa, Italy
- Department of Pediatrics, Pediatric Clinic, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147, Genoa, Italy
| | - Giuseppe d'Annunzio
- Department of Pediatrics, Pediatric Clinic, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147, Genoa, Italy.
| | - Roberto Biassoni
- Molecular Diagnostics, Analysis Laboratory, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
29
|
Li Y, Wang C, Zheng L, Ma W, Li M, Guo Z, Zhao Q, Zhang K, Liu R, Liu Y, Tian Z, Bai Y, Zhong Y, Liao H. Natural variation of GmRj2/Rfg1 determines symbiont differentiation in soybean. Curr Biol 2023; 33:2478-2490.e5. [PMID: 37301200 DOI: 10.1016/j.cub.2023.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/17/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Symbiotic nitrogen fixation (SNF) provides much of the N utilized by leguminous plants throughout growth and development. Legumes may simultaneously establish symbiosis with different taxa of microbial symbionts. Yet, the mechanisms used to steer associations toward symbionts that are most propitious across variations in soil types remain mysterious. Here, we demonstrate that GmRj2/Rfg1 is responsible for regulating symbiosis with multiple taxa of soybean symbionts. In our experiments, the GmRj2/Rfg1SC haplotype favored association with Bradyrhizobia, which is mostly distributed in acid soils, whereas the GmRj2/Rfg1HH haplotype and knockout mutants of GmRj2/Rfg1SC associated equally with Bradyrhizobia and Sinorhizobium. Association between GmRj2/Rfg1 and NopP, furthermore, appeared to be involved in symbiont selection. Furthermore, geographic distribution analysis of 1,821 soybean accessions showed that GmRj2/Rfg1SC haplotypes were enriched in acidic soils where Bradyrhizobia were the dominant symbionts, whereas GmRj2/Rfg1HH haplotypes were most prevalent in alkaline soils dominated by Sinorhizobium, and neutral soils harbored no apparent predilections toward either haplotype. Taken together, our results suggest that GmRj2/Rfg1 regulates symbiosis with different symbionts and is a strong determinant of soybean adaptability across soil regions. As a consequence, the manipulation of the GmRj2/Rfg1 genotype or application of suitable symbionts according to the haplotype at the GmRj2/Rfg1 locus might be suitable strategies to explore for increasing soybean yield through the management of SNF.
Collapse
Affiliation(s)
- Yanjun Li
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cunhu Wang
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lei Zheng
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjing Ma
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingjia Li
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zilong Guo
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingsong Zhao
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kefei Zhang
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ran Liu
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjia Zhong
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hong Liao
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
30
|
Svobodová K, Maitre A, Obregón D, Wu-Chuang A, Thaduri S, Locke B, de Miranda JR, Mateos-Hernández L, Krejčí AB, Cabezas-Cruz A. Gut microbiota assembly of Gotland varroa-surviving honey bees excludes major viral pathogens. Microbiol Res 2023; 274:127418. [PMID: 37315341 DOI: 10.1016/j.micres.2023.127418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023]
Abstract
The spread of the parasite Varroa destructor and associated viruses has resulted in massive honey bee colony losses with considerable economic and ecological impact. The gut microbiota has a major role in shaping honey bees tolerance and resistance to parasite infestation and viral infection, but the contribution of viruses to the assembly of the host microbiota in the context of varroa resistance and susceptibility remains unclear. Here, we used a network approach including viral and bacterial nodes to characterize the impact of five viruses, Apis Rhabdovirus-1 (ARV-1), Black Queen Cell virus (BQCV), Lake Sinai virus (LSV), Sacbrood virus (SBV) and Deformed wing virus (DWV) on the gut microbiota assembly of varroa-susceptible and Gotland varroa-surviving honey bees. We found that microbiota assembly was different in varroa-surviving and varroa-susceptible honey bees with the network of the latter having a whole module not present in the network of the former. Four viruses, ARV-1, BQCV, LSV, and SBV, were tightly associated with bacterial nodes of the core microbiota of varroa-susceptible honey bees, while only two viruses BQCV and LSV, appeared correlated with bacterial nodes in varroa-surviving honey bees. In silico removal of viral nodes caused major re-arrangement of microbial networks with changes in nodes centrality and significant reduction of the networks' robustness in varroa-susceptible, but not in varroa-surviving honey bees. Comparison of predicted functional pathways in bacterial communities using PICRUSt2 showed the superpathway for heme b biosynthesis from uroporphyrinogen-III and a pathway for arginine, proline, and ornithine interconversion as significantly increased in varroa-surviving honey bees. Notably, heme and its reduction products biliverdin and bilirubin have been reported as antiviral agents. These findings show that viral pathogens are differentially nested in the bacterial communities of varroa-surviving and varroa-susceptible honey bees. These results suggest that Gotland honey bees are associated with minimally-assembled and reduced bacterial communities that exclude viral pathogens and are resilient to viral nodes removal, which, together with the production of antiviral compounds, may explain the resiliency of Gotland honey bees to viral infections. In contrast, the intertwined virus-bacterium interactions in varroa-susceptible networks suggest that the complex assembly of microbial communities in this honey bee strain favor viral infections, which may explain viral persistence in this honey bee strain. Further understanding of protective mechanisms mediated by the microbiota could help developing novel ways to control devastating viral infections affecting honey bees worldwide.
Collapse
Affiliation(s)
- Karolína Svobodová
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic.
| | - Apolline Maitre
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France; INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), 20250 Corte, France; EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Srinivas Thaduri
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden
| | - Barbara Locke
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden
| | - Lourdes Mateos-Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Alena Bruce Krejčí
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France.
| |
Collapse
|
31
|
Stupak A, Kwaśniewski W. Evaluating Current Molecular Techniques and Evidence in Assessing Microbiome in Placenta-Related Health and Disorders in Pregnancy. Biomolecules 2023; 13:911. [PMID: 37371491 PMCID: PMC10296270 DOI: 10.3390/biom13060911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
The microbiome is of great interest due to its potential influence on the occurrence and treatment of some human illnesses. It may be regarded as disruptions to the delicate equilibrium that humans ordinarily maintain with their microorganisms or the microbiota in their environment. The focus of this review is on the methodologies and current understanding of the functional microbiome in pregnancy outcomes. We present how novel techniques bring new insights to the contemporary field of maternal-fetal medicine with a critical analysis. The maternal microbiome in late pregnancy has been extensively studied, although data on maternal microbial changes during the first trimester are rare. Research has demonstrated that, in healthy pregnancies, the origin of the placental microbiota is oral (gut) rather than vaginal. Implantation, placental development, and maternal adaptation to pregnancy are complex processes in which fetal and maternal cells interact. Microbiome dysbiosis or microbial metabolites are rising as potential moderators of antenatal illnesses related to the placenta, such as fetal growth restriction, preeclampsia, and others, including gestational diabetes and preterm deliveries. However, because of the presence of antimicrobial components, it is likely that the bacteria identified in placental tissue are (fragments of) bacteria that have been destroyed by the placenta's immune cells. Using genomic techniques (metagenomics, metatranscriptomics, and metaproteomics), it may be possible to predict some properties of a microorganism's genome and the biochemical (epigenetic DNA modification) and physical components of the placenta as its environment. Despite the results described in this review, this subject needs further research on some major and crucial aspects. The phases of an in utero translocation of the maternal gut microbiota to the fetus should be explored. With a predictive knowledge of the impacts of the disturbance on microbial communities that influence human health and the environment, genomics may hold the answer to the development of novel therapies for the health of pregnant women.
Collapse
Affiliation(s)
- Aleksandra Stupak
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, Staszica Str. 16, 20-081 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Gynecological Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland
| |
Collapse
|
32
|
Mu C, Zhao Q, Zhao Q, Yang L, Pang X, Liu T, Li X, Wang B, Fung SY, Cao H. Multi-omics in Crohn's disease: New insights from inside. Comput Struct Biotechnol J 2023; 21:3054-3072. [PMID: 37273853 PMCID: PMC10238466 DOI: 10.1016/j.csbj.2023.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023] Open
Abstract
Crohn's disease (CD) is an inflammatory bowel disease (IBD) with complex clinical manifestations such as chronic diarrhea, weight loss and hematochezia. Despite the increasing incidence worldwide, cure of CD remains extremely difficult. The rapid development of high-throughput sequencing technology with integrated-omics analyses in recent years has provided a new means for exploring the pathogenesis, mining the biomarkers and designing targeted personalized therapeutics of CD. Host genomics and epigenomics unveil heredity-related mechanisms of susceptible individuals, while microbiome and metabolomics map host-microbe interactions in CD patients. Proteomics shows great potential in searching for promising biomarkers. Nonetheless, single omics technology cannot holistically connect the mechanisms with heterogeneity of pathological behavior in CD. The rise of multi-omics analysis integrates genetic/epigenetic profiles with protein/microbial metabolite functionality, providing new hope for comprehensive and in-depth exploration of CD. Herein, we emphasized the different omics features and applications of CD and discussed the current research and limitations of multi-omics in CD. This review will update and deepen our understanding of CD from integration of broad omics spectra and will provide new evidence for targeted individualized therapeutics.
Collapse
Affiliation(s)
- Chenlu Mu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qianjing Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qing Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Lijiao Yang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaoqi Pang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaomeng Li
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Shan-Yu Fung
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
33
|
Ye L, Wu BS, Xu ZA, Ji XF, Guan L, Li PP, Li Y, Cheng HW, Xiao J. Evidence for an intra-tumoral microbiome in pituitary neuroendocrine tumors with different clinical phenotypes. J Neurooncol 2023; 163:133-142. [PMID: 37140882 DOI: 10.1007/s11060-023-04318-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
PURPOSE Bacteria have been observed in the tumor environment for decades and have been demonstrated to play important roles in the pathogenesis and development of several different tumors. So far there is a clear lack of specific studies relating to the presence of bacteria in pituitary neuroendocrine tumors (PitNETs). METHODS In this study, we performed five region-based amplification and bacterial 16 S rRNA sequencing to identify the microbiome of PitNET tissues across four clinical phenotypes. Multiple filter procedures were performed to inhibit the risk of contamination with bacteria and bacterial DNA. Histological analysis was also conducted to validate the localization of bacteria in the intra-tumoral region. RESULTS We identified common and diverse bacterial types across the four clinical phenotypes of PitNET. We also predicted the potential functions of these bacteria in tumor phenotypes and found that these functions were reported in certain previous mechanistic studies. Our data indicate that the pathogenesis and development of tumors may correlate with the behavior of intra-tumoral bacteria. Histological results, including lipopolysaccharide (LPS) staining and fluorescence in situ hybridization (FISH) for bacterial 16 S rRNA clearly demonstrated the localization of bacteria in the intra-tumoral region. Staining for Iba-1 suggested that the proportion of microglia was more abundant in FISH-positive regions than in FISH-negative regions. Furthermore, in FISH-positive regions, the microglia exhibited a longitudinally branched morphology that was different to the compact morphology observed in FISH-negative regions. CONCLUSION In summary, we provide an evidence for the existence of intra-tumoral bacteria in PitNET.
Collapse
Affiliation(s)
- Lei Ye
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China
| | - Bing-Shan Wu
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China
| | - Zi-Ao Xu
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China
| | - Xue-Fei Ji
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China
| | - Liao Guan
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China
| | - Ping-Ping Li
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China
| | - Yan Li
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China
| | - Hong-Wei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China.
| | - Jin Xiao
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China.
| |
Collapse
|
34
|
De Wolfe TJ, Wright ES. Multi-factorial examination of amplicon sequencing workflows from sample preparation to bioinformatic analysis. BMC Microbiol 2023; 23:107. [PMID: 37076812 PMCID: PMC10114302 DOI: 10.1186/s12866-023-02851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND The development of sequencing technologies to evaluate bacterial microbiota composition has allowed new insights into the importance of microbial ecology. However, the variety of methodologies used among amplicon sequencing workflows leads to uncertainty about best practices as well as reproducibility and replicability among microbiome studies. Using a bacterial mock community composed of 37 soil isolates, we performed a comprehensive methodological evaluation of workflows, each with a different combination of methodological factors spanning sample preparation to bioinformatic analysis to define sources of artifacts that affect coverage, accuracy, and biases in the resulting compositional profiles. RESULTS Of the workflows examined, those using the V4-V4 primer set enabled the highest level of concordance between the original mock community and resulting microbiome sequence composition. Use of a high-fidelity polymerase, or a lower-fidelity polymerase with an increased PCR elongation time, limited chimera formation. Bioinformatic pipelines presented a trade-off between the fraction of distinct community members identified (coverage) and fraction of correct sequences (accuracy). DADA2 and QIIME2 assembled V4-V4 reads amplified by Taq polymerase resulted in the highest accuracy (100%) but had a coverage of only 52%. Using mothur to assemble and denoise V4-V4 reads resulted in a coverage of 75%, albeit with marginally lower accuracy (99.5%). CONCLUSIONS Optimization of microbiome workflows is critical for accuracy and to support reproducibility and replicability among microbiome studies. These considerations will help reveal the guiding principles of microbial ecology and impact the translation of microbiome research to human and environmental health.
Collapse
Affiliation(s)
- Travis J. De Wolfe
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, 450 Technology Drive Rm. 426, Pittsburgh, PA 15219 USA
- Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, 4480 Oak Street Rm. 208B, Vancouver, BC V6H 4E4 Canada
- Gut4Health, BC Children’s Hospital Research Institute, University of British Columbia, 950 West 28th Avenue Rm. 211, Vancouver, BC V5Z 4H4 Canada
| | - Erik S. Wright
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, 450 Technology Drive Rm. 426, Pittsburgh, PA 15219 USA
| |
Collapse
|
35
|
Msaddak A, Mars M, Quiñones MA, Lucas MM, Pueyo JJ. Lupin, a Unique Legume That Is Nodulated by Multiple Microsymbionts: The Role of Horizontal Gene Transfer. Int J Mol Sci 2023; 24:ijms24076496. [PMID: 37047476 PMCID: PMC10094711 DOI: 10.3390/ijms24076496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Lupin is a high-protein legume crop that grows in a wide range of edaphoclimatic conditions where other crops are not viable. Its unique seed nutrient profile can promote health benefits, and it has been proposed as a phytoremediation plant. Most rhizobia nodulating Lupinus species belong to the genus Bradyrhizobium, comprising strains that are phylogenetically related to B. cytisi, B. hipponenese, B. rifense, B. iriomotense/B. stylosanthis, B. diazoefficiens, B. japonicum, B. canariense/B. lupini, and B. retamae/B. valentinum. Lupins are also nodulated by fast-growing bacteria within the genera Microvirga, Ochrobactrum, Devosia, Phyllobacterium, Agrobacterium, Rhizobium, and Neorhizobium. Phylogenetic analyses of the nod and nif genes, involved in microbial colonization and symbiotic nitrogen fixation, respectively, suggest that fast-growing lupin-nodulating bacteria have acquired their symbiotic genes from rhizobial genera other than Bradyrhizobium. Horizontal transfer represents a key mechanism allowing lupin to form symbioses with bacteria that were previously considered as non-symbiotic or unable to nodulate lupin, which might favor lupin’s adaptation to specific habitats. The characterization of yet-unstudied Lupinus species, including microsymbiont whole genome analyses, will most likely expand and modify the current lupin microsymbiont taxonomy, and provide additional knowledge that might help to further increase lupin’s adaptability to marginal soils and climates.
Collapse
Affiliation(s)
- Abdelhakim Msaddak
- Department of Soil. Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, 28006 Madrid, Spain
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources, BVBAA, Faculty of Sciences, University of Gabès, Erriadh, Zrig, Gabès 6072, Tunisia
| | - Mohamed Mars
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources, BVBAA, Faculty of Sciences, University of Gabès, Erriadh, Zrig, Gabès 6072, Tunisia
| | - Miguel A. Quiñones
- Department of Soil. Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, 28006 Madrid, Spain
| | - M. Mercedes Lucas
- Department of Soil. Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, 28006 Madrid, Spain
| | - José J. Pueyo
- Department of Soil. Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, 28006 Madrid, Spain
| |
Collapse
|
36
|
Rieder J, Kapopoulou A, Bank C, Adrian-Kalchhauser I. Metagenomics and metabarcoding experimental choices and their impact on microbial community characterization in freshwater recirculating aquaculture systems. ENVIRONMENTAL MICROBIOME 2023; 18:8. [PMID: 36788626 PMCID: PMC9930364 DOI: 10.1186/s40793-023-00459-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/02/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Microbial communities in recirculating aquaculture systems (RAS) play a role in system success, nutrient cycling, and water quality. Considering the increasing socio-economic role of fish farming, e.g., regarding food security, an in-depth understanding of aquaculture microbial communities is also relevant from a management perspective, especially regarding the growth, development, and welfare of the farmed animal. However, the current data on the composition of microbial communities within RAS is patchy, which is partly attributable to diverging method choices that render comparative analyses challenging. Therefore, there is a need for accurate, standardized, and user-friendly methods to study microbial communities in aquaculture systems. RESULTS We compared sequencing approach performances (3 types of 16S short amplicon sequencing, PacBio long-read amplicon sequencing, and amplification-free shotgun metagenomics) in the characterization of microbial communities in two commercial RAS fish farms. Results showed that 16S primer choice and amplicon length affect some values (e.g., diversity measures, number of assigned taxa or distinguishing ASVs) but have no impact on spatio-temporal patterns between sample types, farms and time points. This implies that 16S rRNA approaches are adequate for community studies. The long-read amplicons underperformed regarding the quantitative resolution of spatio-temporal patterns but were suited to identify functional services, e.g., nitrification cycling and the detection of pathogens. Finally, shotgun metagenomics extended the picture to fungi, viruses, and bacteriophages, opening avenues for exploring inter-domain interactions. All sequencing datasets agreed on major prokaryotic players, such as Actinobacteriota, Bacteroidota, Nitrospirota, and Proteobacteria. CONCLUSION The different sequencing approaches yielded overlapping and highly complementary results, with each contributing unique data not obtainable with the other approaches. We conclude that a tiered approach constitutes a strategy for obtaining the maximum amount of information on aquaculture microbial communities and can inform basic research on community evolution dynamics. For specific and/or applied questions, single-method approaches are more practical and cost-effective and could lead to better farm management practices.
Collapse
Affiliation(s)
- Jessica Rieder
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute for Fish and Wildlife Health, University of Bern, Länggasstrasse 122, 3001 Bern, Switzerland
- Division of Theoretical Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Amphipole, 1015 Lausanne, Switzerland
| | - Adamandia Kapopoulou
- Division of Theoretical Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Amphipole, 1015 Lausanne, Switzerland
| | - Claudia Bank
- Division of Theoretical Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Amphipole, 1015 Lausanne, Switzerland
| | - Irene Adrian-Kalchhauser
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute for Fish and Wildlife Health, University of Bern, Länggasstrasse 122, 3001 Bern, Switzerland
| |
Collapse
|
37
|
Lin Q, Duan H, Wang S, Guo Z, Wang S, Chang Y, Chen C, Shen M, Shou H, Zhou C. Endometrial microbiota in women with and without adenomyosis: A pilot study. Front Microbiol 2023; 14:1075900. [PMID: 36744089 PMCID: PMC9895119 DOI: 10.3389/fmicb.2023.1075900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/02/2023] [Indexed: 01/21/2023] Open
Abstract
Introduction The endometrial microbiota plays an essential role in the health of the female reproductive system. However, the interactions between the microbes in the endometrium and their effects on adenomyosis remain obscure. Materials and methods We profile endometrial samples from 38 women with (n=21) or without (n=17) adenomyosis to characterize the composition of the microbial community and its potential function in adenomyosis using 5R 16S rRNA gene sequencing. Results The microbiota profiles of patients with adenomyosis were different from the control group without adenomyosis. Furthermore, analysis identified Lactobacillus zeae, Burkholderia cepacia, Weissella confusa, Prevotella copri, and Citrobacter freundii as potential biomarkers for adenomyosis. In addition, Citrobacter freundii, Prevotella copri, and Burkholderia cepacia had the most significant diagnostic value for adenomyosis. PICRUSt results identified 30 differentially regulated pathways between the two groups of patients. In particular, we found that protein export, glycolysis/gluconeogenesis, alanine, aspartate, and glutamate metabolism were upregulated in adenomyosis. Our results clarify the relationship between the endometrial microbiota and adenomyosis. Discussion The endometrial microbiota of adenomyosis exhibits a unique structure and Citrobacter freundii, Prevotella copri, and Burkholderia cepacia were identified as potential pathogenic microorganisms associated with adenomyosis. Our findings suggest that changes in the endometrial microbiota of patients with adenomyosis are of potential value for determining the occurrence, progression, early of diagnosis, and treatment oadenomyosis.
Collapse
Affiliation(s)
- Qi Lin
- Department of Minimally Invasive Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Hua Duan
- Department of Minimally Invasive Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China,*Correspondence: Hua Duan, ✉
| | - Sha Wang
- Department of Minimally Invasive Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Zhengchen Guo
- Department of Minimally Invasive Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Sirui Wang
- Department of Minimally Invasive Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yanan Chang
- Department of Minimally Invasive Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Chao Chen
- Department of Minimally Invasive Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Minghong Shen
- Department of Gynecology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Hejun Shou
- Department of Minimally Invasive Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Chang Zhou
- Department of Minimally Invasive Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
38
|
Zuckerman NS, Shulman LM. Next-Generation Sequencing in the Study of Infectious Diseases. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
39
|
Silamiķele L, Saksis R, Silamiķelis I, Kotoviča PP, Brīvība M, Kalniņa I, Kalniņa Z, Fridmanis D, Kloviņš J. Spatial variation of the gut microbiome in response to long-term metformin treatment in high-fat diet-induced type 2 diabetes mouse model of both sexes. Gut Microbes 2023; 15:2188663. [PMID: 36927522 PMCID: PMC10026874 DOI: 10.1080/19490976.2023.2188663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Antidiabetic drug metformin alters the gut microbiome composition in the context of type 2 diabetes and other diseases; however, its effects have been mainly studied using fecal samples, which offer limited information about the intestinal site-specific effects of this drug. Our study aimed to characterize the spatial variation of the gut microbiome in response to metformin treatment by using a high-fat diet-induced type 2 diabetes mouse model of both sexes. Four intestinal parts, each at the luminal and mucosal layer level, were analyzed in this study by performing 16S rRNA sequencing covering six variable regions (V1-V6) of the gene and thus allowing to obtain in-depth information about the microbiome composition. We identified significant differences in gut microbiome diversity in each of the intestinal parts regarding the alpha and beta diversities. Metformin treatment altered the abundance of different genera in all studied intestinal sites, with the most pronounced effect in the small intestine, where Lactococcus increased remarkably. The abundance of Lactobacillus was substantially lower in male mice compared to female mice in all locations, in addition to an enrichment of opportunistic pathogens. Diet type and intestinal layer had significant effects on microbiome composition at each of the sites studied. We observed a different effect of metformin treatment on the analyzed subsets, indicating the multiple dimensions of metformin's effect on the gut microbiome.
Collapse
Affiliation(s)
- Laila Silamiķele
- Human genetics and disease mechanisms, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Rihards Saksis
- Human genetics and disease mechanisms, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ivars Silamiķelis
- Human genetics and disease mechanisms, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Monta Brīvība
- Human genetics and disease mechanisms, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ineta Kalniņa
- Human genetics and disease mechanisms, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Zane Kalniņa
- Human genetics and disease mechanisms, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Dāvids Fridmanis
- Human genetics and disease mechanisms, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Jānis Kloviņš
- Human genetics and disease mechanisms, Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
40
|
Sun Y, Zhao L, Cai H, Liu W, Sun T. Composition and factors influencing community structure of lactic acid bacterial in dairy products from Nyingchi Prefecture of Tibet. J Biosci Bioeng 2023; 135:44-53. [PMID: 36384718 DOI: 10.1016/j.jbiosc.2022.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/15/2022]
Abstract
This study investigated the community composition of lactic acid bacteria (LAB) from yaks' milk (YM) Tibetan yellow cattle milk (TM) and their fermented products from different counties in the Nyingchi Prefecture, Tibet using Pacific Biosciences (PacBio) single-molecule real-time (SMRT) sequencing. Sequencing revealed 26 genera and 94 species from 71 dairy samples; amongst these Lactobacillus delbrueckii (36.17%), Streptococcus thermophilus (19.46%) and Lactococcus lactis (18.33%) were the predominant species. This study also identified the main factors influencing LAB community composition by comparing amongst samples from different locations, from different milk types, and from different altitudes. The LAB communities in YM and TM were more diverse than in fermented yaks' milk (FYM) and fermented Tibetan yellow cattle milk (FTM) samples. Similarly, whether milk was fermented or not accounted for differences in LAB species composition while altitude of the dairy products had very little effect. Milk source and production process were the most likely causes of drastic shifts in microbial community composition. In addition, fermented dairy products were enriched in genes responsible for secondary metabolic pathways that were potentially beneficial for health. Comprehensive descriptions of the microbiota in different dairy products from the Nyingchi Prefecture, Tibet might help elucidate evolutionary and functional relationships amongst bacterial communities in these products.
Collapse
Affiliation(s)
- Yue Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, PR China; Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Lixia Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, PR China; Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Hongyu Cai
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, PR China; Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, PR China; Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Tiansong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, PR China; Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot 010018, PR China.
| |
Collapse
|
41
|
Quantifying Trade-Offs in the Choice of Ribosomal Barcoding Markers for Fungal Amplicon Sequencing: a Case Study on the Grapevine Trunk Mycobiome. Microbiol Spectr 2022; 10:e0251322. [PMID: 36409146 PMCID: PMC9769941 DOI: 10.1128/spectrum.02513-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The evolution of sequencing technology and multiplexing has rapidly expanded our ability to characterize fungal diversity in the environment. However, obtaining an unbiased assessment of the fungal community using ribosomal markers remains challenging. Longer amplicons were shown to improve taxonomic resolution and resolve ambiguities by reducing the risk of spurious operational taxonomic units. We examined the implications of barcoding strategies by amplifying and sequencing two ribosomal DNA fragments. We analyzed the performance of the full internal transcribed spacer (ITS) and a longer fragment including also a part of the 28S ribosomal subunit replicated on 60 grapevine trunk core samples. Grapevine trunks harbor highly diverse fungal communities with implications for disease development. Using identical handling, amplification, and sequencing procedures, we obtained higher sequencing depths for the shorter ITS amplicon. Despite the more limited access to polymorphism, the overall diversity in amplified sequence variants was higher for the shorter ITS amplicon. We detected no meaningful bias in the phylogenetic composition due to the amplicon choice across analyzed samples. Despite the increased resolution of the longer ITS-28S amplicon, the higher and more consistent yields of the shorter amplicons produced a clearer resolution of the fungal community of grapevine stem samples. Our study highlights that the choice of ribosomal amplicons should be carefully evaluated and adjusted according to specific goals. IMPORTANCE Surveying fungal communities is key to our understanding of ecological functions of diverse habitats. Fungal communities can inform about the resilience of agricultural ecosystems, risks to human health, and impacts of pathogens. Community compositions are typically analyzed using ribosomal DNA sequences. Due to technical limitations, most fungal community surveys were based on amplifying a short but highly variable fragment. Advances in sequencing technology enabled the use of longer fragments that can address some limitations of species identification. In this study, we examined the implications of choosing either a short or long ribosomal sequence fragment by replicating the analyses on 60 grapevine wood core samples. Using highly accurate long-read sequencing, we found that the shorter fragment produced substantially higher yields. The shorter fragment also revealed more sequence and species diversity. Our study highlights that the choice of ribosomal amplicons should be carefully evaluated and adjusted according to specific goals.
Collapse
|
42
|
Fenn D, Abdel-Aziz MI, van Oort PMP, Brinkman P, Ahmed WM, Felton T, Artigas A, Póvoa P, Martin-Loeches I, Schultz MJ, Dark P, Fowler SJ, Bos LDJ, Ahmed WM, Raventos AA, Bannard-Smith J, Bos LDJ, Camprubi M, Coelho L, Dark P, Davie A, Diaz E, Goma G, Felton T, Fowler SJ, Goodacre R, Johnson C, Knobel H, Lawal O, Leopold JH, Martin-Loeches I, Nijsen TME, van Oort PMP, Povoa P, Rattray NJW, Rijnders G, Schultz MJ, Steenwelle R, Sterk PJ, Valles J, Verhoeckx F, Vink A, Weda H, White IR, Winters T, Zakharkina T. Composition and diversity analysis of the lung microbiome in patients with suspected ventilator-associated pneumonia. Crit Care 2022; 26:203. [PMID: 35794610 PMCID: PMC9261066 DOI: 10.1186/s13054-022-04068-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022] Open
Abstract
Background Ventilator-associated pneumonia (VAP) is associated with high morbidity and health care costs, yet diagnosis remains a challenge. Analysis of airway microbiota by amplicon sequencing provides a possible solution, as pneumonia is characterised by a disruption of the microbiome. However, studies evaluating the diagnostic capabilities of microbiome analysis are limited, with a lack of alignment on possible biomarkers. Using bronchoalveolar lavage fluid (BALF) from ventilated adult patients suspected of VAP, we aimed to explore how key characteristics of the microbiome differ between patients with positive and negative BALF cultures and whether any differences could have a clinically relevant role. Methods BALF from patients suspected of VAP was analysed using 16s rRNA sequencing in order to: (1) differentiate between patients with and without a positive culture; (2) determine if there was any association between microbiome diversity and local inflammatory response; and (3) correctly identify pathogens detected by conventional culture. Results Thirty-seven of 90 ICU patients with suspected VAP had positive cultures. Patients with a positive culture had significant microbiome dysbiosis with reduced alpha diversity. However, gross compositional variance was not strongly associated with culture positivity (AUROCC range 0.66–0.71). Patients with a positive culture had a significantly higher relative abundance of pathogenic bacteria compared to those without [0.45 (IQR 0.10–0.84), 0.02 (IQR 0.004–0.09), respectively], and an increased interleukin (IL)-1β was associated with reduced species evenness (rs = − 0.33, p < 0.01) and increased pathogenic bacteria presence (rs = 0.28, p = 0.013). Untargeted 16s rRNA pathogen detection was limited by false positives, while the use of pathogen-specific relative abundance thresholds showed better diagnostic accuracy (AUROCC range 0.89–0.998). Conclusion Patients with positive BALF culture had increased dysbiosis and genus dominance. An increased caspase-1-dependent IL-1b expression was associated with a reduced species evenness and increased pathogenic bacterial presence, providing a possible causal link between microbiome dysbiosis and lung injury development in VAP. However, measures of diversity were an unreliable predictor of culture positivity and 16s sequencing used agnostically could not usefully identify pathogens; this could be overcome if pathogen-specific relative abundance thresholds are used. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-022-04068-z.
Collapse
|
43
|
Al-Ashhab A, Alexander-Shani R, Avrahami Y, Ehrlich R, Strem RI, Meshner S, Shental N, Sharon G. Sparus aurata and Lates calcarifer skin microbiota under healthy and diseased conditions in UV and non-UV treated water. Anim Microbiome 2022; 4:42. [PMID: 35729615 PMCID: PMC9210813 DOI: 10.1186/s42523-022-00191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/10/2022] [Indexed: 11/15/2022] Open
Abstract
Background The welfare of farmed fish is influenced by numerous environmental and management factors. Fish skin is an important site for immunity and a major route by which infections are acquired. The objective of this study was to characterize bacterial composition variability on skin of healthy, diseased, and recovered Gilthead Seabream (Sparus aurata) and Barramundi (Lates calcarifer). S. aurata, which are highly sensitive to gram-negative bacteria, were challenged with Vibrio harveyi. In addition, and to provide a wider range of infections, both fish species (S. aurata and L. calcarifer) were infected with gram-positive Streptococcus iniae, to compare the response of the highly sensitive L. calcarifer to that of the more resistant S. aurata. All experiments also compared microbial communities found on skin of fish reared in UV (a general practice used in aquaculture) and non-UV treated water tanks. Results Skin swab samples were taken from different areas of the fish (lateral lines, abdomen and gills) prior to controlled infection, and 24, 48 and 72 h, 5 days, one week and one-month post-infection. Fish skin microbial communities were determined using Illumina iSeq100 16S rDNA for bacterial sequencing. The results showed that naturally present bacterial composition is similar on all sampled fish skin sites prior to infection, but the controlled infections (T1 24 h post infection) altered the bacterial communities found on fish skin. Moreover, when the naturally occurring skin microbiota did not quickly recover, fish mortality was common following T1 (24 h post infection). We further confirmed the differences in bacterial communities found on skin and in the water of fish reared in non-UV and UV treated water under healthy and diseased conditions. Conclusions Our experimental findings shed light on the fish skin microbiota in relation to fish survival (in diseased and healthy conditions). The results can be harnessed to provide management tools for commercial fish farmers; predicting and preventing fish diseases can increase fish health, welfare, and enhance commercial fish yields. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00191-y.
Collapse
|
44
|
Application of Fluorescence In Situ Hybridization (FISH) in Oral Microbial Detection. Pathogens 2022; 11:pathogens11121450. [PMID: 36558784 PMCID: PMC9788346 DOI: 10.3390/pathogens11121450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Varieties of microorganisms reside in the oral cavity contributing to the occurrence and development of microbes associated with oral diseases; however, the distribution and in situ abundance in the biofilm are still unclear. In order to promote the understanding of the ecosystem of oral microbiota and the diagnosis of oral diseases, it is necessary to monitor and compare the oral microorganisms from different niches of the oral cavity in situ. The fluorescence in situ hybridization (FISH) has proven to be a powerful tool for representing the status of oral microorganisms in the oral cavity. FISH is one of the most routinely used cytochemical techniques for genetic detection, identification, and localization by a fluorescently labeled nucleic acid probe, which can hybridize with targeted nucleic acid sequences. It has the advantages of rapidity, safety, high sensitivity, and specificity. FISH allows the identification and quantification of different oral microorganisms simultaneously. It can also visualize microorganisms by combining with other molecular biology technologies to represent the distribution of each microbial community in the oral biofilm. In this review, we summarized and discussed the development of FISH technology and the application of FISH in oral disease diagnosis and oral ecosystem research, highlighted its advantages in oral microbiology, listed the existing problems, and provided suggestions for future development..
Collapse
|
45
|
Kumaishi K, Usui E, Suzuki K, Kobori S, Sato T, Toda Y, Takanashi H, Shinozaki S, Noda M, Takakura A, Matsumoto K, Yamasaki Y, Tsujimoto H, Iwata H, Ichihashi Y. High throughput method of 16S rRNA gene sequencing library preparation for plant root microbial community profiling. Sci Rep 2022; 12:19289. [PMID: 36369356 PMCID: PMC9652414 DOI: 10.1038/s41598-022-23943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
Microbiota are a major component of agroecosystems. Root microbiota, which inhabit the inside and surface of plant roots, play a significant role in plant growth and health. As next-generation sequencing technology allows the capture of microbial profiles without culturing the microbes, profiling of plant microbiota has become a staple tool in plant science and agriculture. Here, we have increased sample handling efficiency in a two-step PCR amplification protocol for 16S rRNA gene sequencing of plant root microbiota, improving DNA extraction using AMPure XP magnetic beads and PCR purification using exonuclease. These modifications reduce sample handling and capture microbial diversity comparable to that obtained by the manual method. We found a buffer with AMPure XP magnetic beads enabled efficient extraction of microbial DNA directly from plant roots. We also demonstrated that purification using exonuclease before the second PCR step enabled the capture of higher degrees of microbial diversity, thus allowing for the detection of minor bacteria compared with the purification using magnetic beads in this step. In addition, our method generated comparable microbiome profile data in plant roots and soils to that of using common commercially available DNA extraction kits, such as DNeasy PowerSoil Pro Kit and FastDNA SPIN Kit for Soil. Our method offers a simple and high-throughput option for maintaining the quality of plant root microbial community profiling.
Collapse
Affiliation(s)
- Kie Kumaishi
- grid.509462.cRIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074 Japan
| | - Erika Usui
- grid.509462.cRIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074 Japan
| | - Kenta Suzuki
- grid.509462.cRIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074 Japan
| | - Shungo Kobori
- grid.509462.cRIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074 Japan
| | - Takumi Sato
- grid.509462.cRIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074 Japan
| | - Yusuke Toda
- grid.26999.3d0000 0001 2151 536XGraduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657 Japan
| | - Hideki Takanashi
- grid.26999.3d0000 0001 2151 536XGraduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657 Japan
| | - Satoshi Shinozaki
- MAYEKAWA Research Institute Co., LTD, Koto-Ku, Tokyo, 135-8482 Japan
| | - Munehiro Noda
- MAYEKAWA Research Institute Co., LTD, Koto-Ku, Tokyo, 135-8482 Japan
| | - Akiko Takakura
- MAYEKAWA Research Institute Co., LTD, Koto-Ku, Tokyo, 135-8482 Japan
| | - Kayoko Matsumoto
- MAYEKAWA Research Institute Co., LTD, Koto-Ku, Tokyo, 135-8482 Japan
| | - Yuji Yamasaki
- grid.265107.70000 0001 0663 5064Arid Land Research Center, Tottori University, Tottori, 680-0001 Japan
| | - Hisashi Tsujimoto
- grid.265107.70000 0001 0663 5064Arid Land Research Center, Tottori University, Tottori, 680-0001 Japan
| | - Hiroyoshi Iwata
- grid.26999.3d0000 0001 2151 536XGraduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657 Japan
| | - Yasunori Ichihashi
- grid.509462.cRIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074 Japan
| |
Collapse
|
46
|
Is There a Universal Endurance Microbiota? Microorganisms 2022; 10:microorganisms10112213. [DOI: 10.3390/microorganisms10112213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
Billions of microbes sculpt the gut ecosystem, affecting physiology. Since endurance athletes’ performance is often physiology-limited, understanding the composition and interactions within athletes’ gut microbiota could improve performance. Individual studies describe differences in the relative abundance of bacterial taxa in endurance athletes, suggesting the existence of an “endurance microbiota”, yet the taxa identified are mostly non-overlapping. To narrow down the source of this variation, we created a bioinformatics workflow and reanalyzed fecal microbiota from four 16S rRNA gene sequence datasets associated with endurance athletes and controls, examining diversity, relative abundance, correlations, and association networks. There were no significant differences in alpha diversity among all datasets and only one out of four datasets showed a significant overall difference in bacterial community abundance. When bacteria were examined individually, there were no genera with significantly different relative abundance in all four datasets. Two genera were significantly different in two datasets (Veillonella and Romboutsia). No changes in correlated abundances were consistent across datasets. A power analysis using the variance in relative abundance detected in each dataset indicated that much larger sample sizes will be necessary to detect a modest difference in relative abundance especially given the multitude of covariates. Our analysis confirms several challenges when comparing microbiota in general, and indicates that microbes consistently or universally associated with human endurance remain elusive.
Collapse
|
47
|
Heidrich V, Beule L. Are short-read amplicons suitable for the prediction of microbiome functional potential? A critical perspective. IMETA 2022; 1:e38. [PMID: 38868716 PMCID: PMC10989910 DOI: 10.1002/imt2.38] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 06/14/2024]
Abstract
Taxonomic marker gene analysis allows uncovering taxonomic profiles of microbial communities at low cost, making it omnipresent in microbiome research. There is an ever-expanding set of tools to extract further biological information from this kind of data. In this perspective, we enunciate several concerns regarding the biological validity of predicting functional potential from taxonomic profiles, especially when they are generated by short-read sequencing. The taxonomic resolution of marker genes, intragenomic variability of marker genes, and the compositional nature of microbiome data are discussed. Combining actual measurements of microbiome functions with predicted functional potentials is proposed as a powerful approach to better understand microbiome functioning. In this context, the significance of predicted functional potentials for generating and testing hypotheses is highlighted. We argue that functions of microbiomes predicted from microbiome DNA read count data generated by short-read amplicon sequencing should not serve as the only basis to draw biological inferences.
Collapse
Affiliation(s)
- Vitor Heidrich
- Centro de Oncologia MolecularHospital Sírio‐LibanêsSão PauloBrazil
- Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil
| | - Lukas Beule
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated PlantsInstitute for Ecological Chemistry, Plant Analysis and Stored Product ProtectionBerlinGermany
| |
Collapse
|
48
|
Detection of human pathogenic bacteria in rectal DNA samples from Zalophus californianus in the Gulf of California, Mexico. Sci Rep 2022; 12:14859. [PMID: 36050340 PMCID: PMC9434536 DOI: 10.1038/s41598-022-18903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/22/2022] [Indexed: 12/05/2022] Open
Abstract
Human intrusions into undisturbed wildlife areas greatly contribute to the emergence of infectious diseases. To minimize the impacts of novel emerging infectious diseases (EIDs) on human health, a comprehensive understanding of the microbial species that reside within wildlife species is required. The Gulf of California (GoC) is an example of an undisturbed ecosystem. However, in recent decades, anthropogenic activities within the GoC have increased. Zalophus californianus has been proposed as the main sentinel species in the GoC; hence, an assessment of sea lion bacterial microbiota may reveal hidden risks for human health. We evaluated the presence of potential human pathogenic bacterial species from the gastrointestinal (GI) tracts of wild sea lions through a metabarcoding approach. To comprehensively evaluate this bacterial consortium, we considered the genetic information of six hypervariable regions of 16S rRNA. Potential human pathogenic bacteria were identified down to the species level by integrating the RDP and Pplacer classifier outputs. The combined genetic information from all analyzed regions suggests the presence of at least 44 human pathogenic bacterial species, including Shigella dysenteriae and Bacillus anthracis. Therefore, the risks of EIDs from this area should be not underestimated.
Collapse
|
49
|
Kawaka F. Characterization of symbiotic and nitrogen fixing bacteria. AMB Express 2022; 12:99. [PMID: 35907164 PMCID: PMC9339069 DOI: 10.1186/s13568-022-01441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
Symbiotic nitrogen fixing bacteria comprise of diverse species associated with the root nodules of leguminous plants. Using an appropriate taxonomic method to confirm the identity of superior and elite strains to fix nitrogen in legume crops can improve sustainable global food and nutrition security. The current review describes taxonomic methods preferred and commonly used to characterize symbiotic bacteria in the rhizosphere. Peer reviewed, published and unpublished articles on techniques used for detection, classification and identification of symbiotic bacteria were evaluated by exploring their advantages and limitations. The findings showed that phenotypic and cultural techniques are still affordable and remain the primary basis of species classification despite their challenges. Development of new, robust and informative taxonomic techniques has really improved characterization and identification of symbiotic bacteria and discovery of novel and new species that are effective in biological nitrogen fixation (BNF) in diverse conditions and environments.
Collapse
Affiliation(s)
- Fanuel Kawaka
- Department of Biological Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O. Box 210-40601, Bondo, Kenya.
| |
Collapse
|
50
|
Elsherbiny NM, Ramadan M, Abu Faddan NH, Hassan EA, Ali ME, Abd El-Rehim ASED, Abbas WA, Abozaid MAA, Hassanin E, Mohamed GA, Hetta HF, Salah M. Impact of Geographical Location on the Gut Microbiota Profile in Egyptian Children with Type 1 Diabetes Mellitus: A Pilot Study. Int J Gen Med 2022; 15:6173-6187. [PMID: 35864993 PMCID: PMC9296103 DOI: 10.2147/ijgm.s361169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/10/2022] [Indexed: 12/11/2022] Open
Abstract
Purpose To investigate the compositional and functional characteristics of T1DM-associated gut microbiota in two Egyptian cities and to study the geographical locality effects. Patients and Methods This case-control study included 32 children with controlled T1DM and 16 controls, selected from two different regions of Egypt. The gut microbiota of both diabetic and control children was analyzed through 16S rRNA gene sequencing; this was done using the Illumina MiSeq platform. Results Consistent findings among the diabetic children included significantly lower alpha diversity than the control children, as well as a lower mean Firmicutes/Bacteroidetes (F/B) ratio, and reduced proportions of Firmicutes and the genera Prevotella and Ruminococcus. In the diabetic children, there were also significantly enriched representations of Actinobacteria, Bacteroidetes, and Proteobacteria and the genera Lactobacilli, Bacteroides, and Faecalibacterium. When comparing the two diabetic groups, the Ismailia group (IsDM) was found to have a significantly higher F/B ratio and diversity indices, with resultant differences at the functional level. Conclusion There are a number of consistent changes in the microbiota profile characterizing the diabetic groups irrespective of the geographical location including significantly lower alpha diversity, mean Firmicutes/ Bacteroidetes (F/B) ratio, and reduced proportions of Firmicutes and genera Prevotella and Ruminococcus. There are also significantly enriched representations of Actinobacteria, Bacteroidetes, and Proteobacteria and genera Lactobacilli, Bacteroides, and Faecalibacterium pointing to the greater driving power of the disease.
Collapse
Affiliation(s)
- Nahla M Elsherbiny
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohammed Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Nagla H Abu Faddan
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Elham Ahmed Hassan
- Department of Gastroenterology and Tropical Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed E Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | | | - Wael A Abbas
- Department of Internal Medicine, Gastroenterology and Hepatology Unit, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed A A Abozaid
- Department of Internal Medicine, Gastroenterology and Hepatology Unit, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Ghada A Mohamed
- Department of Internal Medicine, Endocrine Unit, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohammed Salah
- Department of Microbiology and Immunology, Faculty of pharmacy, Port Said University, Port Said, Egypt
| |
Collapse
|