1
|
Pu L, Shamir R. 4CAC: 4-class classifier of metagenome contigs using machine learning and assembly graphs. Nucleic Acids Res 2024; 52:e94. [PMID: 39287139 PMCID: PMC11514454 DOI: 10.1093/nar/gkae799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/13/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
Microbial communities usually harbor a mix of bacteria, archaea, plasmids, viruses and microeukaryotes. Within these communities, viruses, plasmids, and microeukaryotes coexist in relatively low abundance, yet they engage in intricate interactions with bacteria. Moreover, viruses and plasmids, as mobile genetic elements, play important roles in horizontal gene transfer and the development of antibiotic resistance within microbial populations. However, due to the difficulty of identifying viruses, plasmids, and microeukaryotes in microbial communities, our understanding of these minor classes lags behind that of bacteria and archaea. Recently, several classifiers have been developed to separate one or more minor classes from bacteria and archaea in metagenome assemblies. However, these classifiers often overlook the issue of class imbalance, leading to low precision in identifying the minor classes. Here, we developed a classifier called 4CAC that is able to identify viruses, plasmids, microeukaryotes, and prokaryotes simultaneously from metagenome assemblies. 4CAC generates an initial four-way classification using several sequence length-adjusted XGBoost models and further improves the classification using the assembly graph. Evaluation on simulated and real metagenome datasets demonstrates that 4CAC substantially outperforms existing classifiers and combinations thereof on short reads. On long reads, it also shows an advantage unless the abundance of the minor classes is very low. 4CAC runs 1-2 orders of magnitude faster than the other classifiers. The 4CAC software is available at https://github.com/Shamir-Lab/4CAC.
Collapse
Affiliation(s)
- Lianrong Pu
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
- School of Computer Science and Technology, Shandong University, Qingdao, China
| | - Ron Shamir
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
González A, Badiola I, Fullaondo A, Rodríguez J, Odriozola A. Personalised medicine based on host genetics and microbiota applied to colorectal cancer. ADVANCES IN GENETICS 2024; 112:411-485. [PMID: 39396842 DOI: 10.1016/bs.adgen.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) ranks second in incidence and third in cancer mortality worldwide. This situation, together with the understanding of the heterogeneity of the disease, has highlighted the need to develop a more individualised approach to its prevention, diagnosis and treatment through personalised medicine. This approach aims to stratify patients according to risk, predict disease progression and determine the most appropriate treatment. It is essential to identify patients who may respond adequately to treatment and those who may be resistant to treatment to avoid unnecessary therapies and minimise adverse side effects. Current research is focused on identifying biomarkers such as specific mutated genes, the type of mutations and molecular profiles critical for the individualisation of CRC diagnosis, prognosis and treatment guidance. In addition, the study of the intestinal microbiota as biomarkers is being incorporated due to the growing scientific evidence supporting its influence on this disease. This article comprehensively addresses the use of current and emerging diagnostic, prognostic and predictive biomarkers in precision medicine against CRC. The effects of host genetics and gut microbiota composition on new approaches to treating this disease are discussed. How the gut microbiota could mitigate the side effects of treatment is reviewed. In addition, strategies to modulate the gut microbiota, such as dietary interventions, antibiotics, and transplantation of faecal microbiota and phages, are discussed to improve CRC prevention and treatment. These findings provide a solid foundation for future research and improving the care of CRC patients.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | | | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
3
|
Maier L, Stein-Thoeringer C, Ley RE, Brötz-Oesterhelt H, Link H, Ziemert N, Wagner S, Peschel A. Integrating research on bacterial pathogens and commensals to fight infections-an ecological perspective. THE LANCET. MICROBE 2024; 5:100843. [PMID: 38608681 DOI: 10.1016/s2666-5247(24)00049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 04/14/2024]
Abstract
The incidence of antibiotic-resistant bacterial infections is increasing, and development of new antibiotics has been deprioritised by the pharmaceutical industry. Interdisciplinary research approaches, based on the ecological principles of bacterial fitness, competition, and transmission, could open new avenues to combat antibiotic-resistant infections. Many facultative bacterial pathogens use human mucosal surfaces as their major reservoirs and induce infectious diseases to aid their lateral transmission to new host organisms under some pathological states of the microbiome and host. Beneficial bacterial commensals can outcompete specific pathogens, thereby lowering the capacity of the pathogens to spread and cause serious infections. Despite the clinical relevance, however, the understanding of commensal-pathogen interactions in their natural habitats remains poor. In this Personal View, we highlight directions to intensify research on the interactions between bacterial pathogens and commensals in the context of human microbiomes and host biology that can lead to the development of innovative and sustainable ways of preventing and treating infectious diseases.
Collapse
Affiliation(s)
- Lisa Maier
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Christoph Stein-Thoeringer
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany; Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Ruth E Ley
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; Max Planck Institute for Biology, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Hannes Link
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Samuel Wagner
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany.
| |
Collapse
|
4
|
Fang GY, Liu XQ, Jiang YJ, Mu XJ, Huang BW. Horizontal gene transfer in activated sludge enhances microbial antimicrobial resistance and virulence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168908. [PMID: 38013098 DOI: 10.1016/j.scitotenv.2023.168908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Activated sludge (AS) plays a vital role in removing organic pollutants and nutrients from wastewater. However, the risks posed by horizontal gene transfer (HGT) between bacteria in AS are still unclear. Here, a total of 478 high-quality non-redundant metagenome-assembled genomes (MAGs) were obtained. >50 % and 5 % of MAGs were involved in at least one HGT and recent HGT, respectively. Most of the transfers (82.4 %) of antimicrobial resistance genes (ARGs) occurred among the classes of Alphaproteobacteria and Gammaproteobacteria. The bacteria involved in the transfers of virulence factor genes (VFGs) mainly include Alphaproteobacteria (42.3 %), Bacteroidia (19.2 %), and Gammaproteobacteria (11.5 %). Moreover, the number of ARGs and VFGs in the classes of Alphaproteobacteria and Gammaproteobacteria was higher than that in other bacteria (P < 0.001). Mobile genetic elements were important contributors to ARGs and VFGs in AS bacteria. These results have implications for the management of antimicrobial resistance and virulence in activated sludge microorganisms.
Collapse
Affiliation(s)
- Guan-Yu Fang
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, PR China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang A&F University, Hangzhou 311300, PR China.
| | - Xing-Quan Liu
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, PR China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Yu-Jian Jiang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Xiao-Jing Mu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Bing-Wen Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| |
Collapse
|
5
|
Lerner A, Benzvi C, Vojdani A. The Potential Harmful Effects of Genetically Engineered Microorganisms (GEMs) on the Intestinal Microbiome and Public Health. Microorganisms 2024; 12:238. [PMID: 38399642 PMCID: PMC10892181 DOI: 10.3390/microorganisms12020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Gut luminal dysbiosis and pathobiosis result in compositional and biodiversified alterations in the microbial and host co-metabolites. The primary mechanism of bacterial evolution is horizontal gene transfer (HGT), and the acquisition of new traits can be achieved through the exchange of mobile genetic elements (MGEs). Introducing genetically engineered microbes (GEMs) might break the harmonized balance in the intestinal compartment. The present objectives are: 1. To reveal the role played by the GEMs' horizontal gene transfers in changing the landscape of the enteric microbiome eubiosis 2. To expand on the potential detrimental effects of those changes on the human genome and health. A search of articles published in PubMed/MEDLINE, EMBASE, and Scielo from 2000 to August 2023 using appropriate MeSH entry terms was performed. The GEMs' horizontal gene exchanges might induce multiple human diseases. The new GEMs can change the long-term natural evolution of the enteric pro- or eukaryotic cell inhabitants. The worldwide regulatory authority's safety control of GEMs is not enough to protect public health. Viability, biocontainment, and many other aspects are only partially controlled and harmful consequences for public health should be avoided. It is important to remember that prevention is the most cost-effective strategy and primum non nocere should be the focus.
Collapse
Affiliation(s)
- Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Center for Autoimmune Diseases, Ramat Gan 52621, Israel;
- Ariel Campus, Ariel University, Ariel 40700, Israel
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Center for Autoimmune Diseases, Ramat Gan 52621, Israel;
| | | |
Collapse
|
6
|
Schwarzerova J, Zeman M, Babak V, Jureckova K, Nykrynova M, Varga M, Weckwerth W, Dolejska M, Provaznik V, Rychlik I, Cejkova D. Detecting horizontal gene transfer among microbiota: an innovative pipeline for identifying co-shared genes within the mobilome through advanced comparative analysis. Microbiol Spectr 2024; 12:e0196423. [PMID: 38099617 PMCID: PMC10782964 DOI: 10.1128/spectrum.01964-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/31/2023] [Indexed: 01/13/2024] Open
Abstract
Horizontal gene transfer (HGT) is a key driver in the evolution of bacterial genomes. The acquisition of genes mediated by HGT may enable bacteria to adapt to ever-changing environmental conditions. Long-term application of antibiotics in intensive agriculture is associated with the dissemination of antibiotic resistance genes among bacteria with the consequences causing public health concern. Commensal farm-animal-associated gut microbiota are considered the reservoir of the resistance genes. Therefore, in this study, we identified known and not-yet characterized mobilized genes originating from chicken and porcine fecal samples using our innovative pipeline followed by network analysis to provide appropriate visualization to support proper interpretation.
Collapse
Affiliation(s)
- Jana Schwarzerova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Michal Zeman
- Veterinary Research Institute, Brno, Czech Republic
| | | | - Katerina Jureckova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Marketa Nykrynova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Margaret Varga
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Monika Dolejska
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, The University Hospital Brno, Brno, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Valentine Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ivan Rychlik
- Veterinary Research Institute, Brno, Czech Republic
| | - Darina Cejkova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
7
|
Vega AA, Marshall EA, Noonan AJC, Filho FSL, Yang J, Stewart GL, Johnson FD, Vucic EA, Pewarchuk ME, Shah PP, Clem BF, Nislow C, Lam S, Lockwood WW, Hallam SJ, Leung JM, Beverly LJ, Lam WL. Methionine-producing tumor micro(be) environment fuels growth of solid tumors. Cell Oncol (Dordr) 2023; 46:1659-1673. [PMID: 37318751 DOI: 10.1007/s13402-023-00832-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Recent studies have uncovered the near-ubiquitous presence of microbes in solid tumors of diverse origins. Previous literature has shown the impact of specific bacterial species on the progression of cancer. We propose that local microbial dysbiosis enables certain cancer phenotypes through provisioning of essential metabolites directly to tumor cells. METHODS 16S rDNA sequencing of 75 patient lung samples revealed the lung tumor microbiome specifically enriched for bacteria capable of producing methionine. Wild-type (WT) and methionine auxotrophic (metA mutant) E. coli cells were used to condition cell culture media and the proliferation of lung adenocarcinoma (LUAD) cells were measured using SYTO60 staining. Further, colony forming assay, Annexin V Staining, BrdU, AlamarBlue, western blot, qPCR, LINE microarray and subcutaneous injection with methionine modulated feed were used to analyze cellular proliferation, cell-cycle, cell death, methylation potential, and xenograft formation under methionine restriction. Moreover, C14-labeled glucose was used to illustrate the interplay between tumor cells and bacteria. RESULTS/DISCUSSION Our results show bacteria found locally within the tumor microenvironment are enriched for methionine synthetic pathways, while having reduced S-adenosylmethionine metabolizing pathways. As methionine is one of nine essential amino acids that mammals are unable to synthesize de novo, we investigated a potentially novel function for the microbiome, supplying essential nutrients, such as methionine, to cancer cells. We demonstrate that LUAD cells can utilize methionine generated by bacteria to rescue phenotypes that would otherwise be inhibited due to nutrient restriction. In addition to this, with WT and metA mutant E. coli, we saw a selective advantage for bacteria with an intact methionine synthetic pathway to survive under the conditions induced by LUAD cells. These results would suggest that there is a potential bi-directional cross-talk between the local microbiome and adjacent tumor cells. In this study, we focused on methionine as one of the critical molecules, but we also hypothesize that additional bacterial metabolites may also be utilized by LUAD. Indeed, our radiolabeling data suggest that other biomolecules are shared between cancer cells and bacteria. Thus, modulating the local microbiome may have an indirect effect on tumor development, progression, and metastasis.
Collapse
Affiliation(s)
- Alexis A Vega
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
- Brown Cancer Center, University of Louisville School of Medicine, 505 S. Hancock St. Rm 204, Louisville, KY, 40202, USA
| | - Erin A Marshall
- Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Avery J C Noonan
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, Canada
| | | | - Julia Yang
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Greg L Stewart
- Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Fraser D Johnson
- Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | | | - Michelle E Pewarchuk
- Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Parag P Shah
- Brown Cancer Center, University of Louisville School of Medicine, 505 S. Hancock St. Rm 204, Louisville, KY, 40202, USA
| | - Brian F Clem
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
- Brown Cancer Center, University of Louisville School of Medicine, 505 S. Hancock St. Rm 204, Louisville, KY, 40202, USA
| | - Corey Nislow
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Stephen Lam
- Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - William W Lockwood
- Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Steven J Hallam
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, BC, Canada
- Biofactorial High-Throughput Biology Facility, University of British Columbia, Vancouver, BC, Canada
| | - Janice M Leung
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Levi J Beverly
- Brown Cancer Center, University of Louisville School of Medicine, 505 S. Hancock St. Rm 204, Louisville, KY, 40202, USA.
| | - Wan L Lam
- Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Pu L, Shamir R. 3CAC: improving the classification of phages and plasmids in metagenomic assemblies using assembly graphs. Bioinformatics 2022; 38:ii56-ii61. [PMID: 36124804 DOI: 10.1093/bioinformatics/btac468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MOTIVATION Bacteriophages and plasmids usually coexist with their host bacteria in microbial communities and play important roles in microbial evolution. Accurately identifying sequence contigs as phages, plasmids and bacterial chromosomes in mixed metagenomic assemblies is critical for further unraveling their functions. Many classification tools have been developed for identifying either phages or plasmids in metagenomic assemblies. However, only two classifiers, PPR-Meta and viralVerify, were proposed to simultaneously identify phages and plasmids in mixed metagenomic assemblies. Due to the very high fraction of chromosome contigs in the assemblies, both tools achieve high precision in the classification of chromosomes but perform poorly in classifying phages and plasmids. Short contigs in these assemblies are often wrongly classified or classified as uncertain. RESULTS Here we present 3CAC, a new three-class classifier that improves the precision of phage and plasmid classification. 3CAC starts with an initial three-class classification generated by existing classifiers and improves the classification of short contigs and contigs with low confidence classification by using proximity in the assembly graph. Evaluation on simulated metagenomes and on real human gut microbiome samples showed that 3CAC outperformed PPR-Meta and viralVerify in both precision and recall, and increased F1-score by 10-60 percentage points. AVAILABILITY AND IMPLEMENTATION The 3CAC software is available on https://github.com/Shamir-Lab/3CAC. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Lianrong Pu
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ron Shamir
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
9
|
Garza DR, von Meijenfeldt FAB, van Dijk B, Boleij A, Huynen MA, Dutilh BE. Nutrition or nature: using elementary flux modes to disentangle the complex forces shaping prokaryote pan-genomes. BMC Ecol Evol 2022; 22:101. [PMID: 35974327 PMCID: PMC9382767 DOI: 10.1186/s12862-022-02052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/22/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Microbial pan-genomes are shaped by a complex combination of stochastic and deterministic forces. Even closely related genomes exhibit extensive variation in their gene content. Understanding what drives this variation requires exploring the interactions of gene products with each other and with the organism's external environment. However, to date, conceptual models of pan-genome dynamics often represent genes as independent units and provide limited information about their mechanistic interactions. RESULTS We simulated the stochastic process of gene-loss using the pooled genome-scale metabolic reaction networks of 46 taxonomically diverse bacterial and archaeal families as proxies for their pan-genomes. The frequency by which reactions are retained in functional networks when stochastic gene loss is simulated in diverse environments allowed us to disentangle the metabolic reactions whose presence depends on the metabolite composition of the external environment (constrained by "nutrition") from those that are independent of the environment (constrained by "nature"). By comparing the frequency of reactions from the first group with their observed frequencies in bacterial and archaeal families, we predicted the metabolic niches that shaped the genomic composition of these lineages. Moreover, we found that the lineages that were shaped by a more diverse metabolic niche also occur in more diverse biomes as assessed by global environmental sequencing datasets. CONCLUSION We introduce a computational framework for analyzing and interpreting pan-reactomes that provides novel insights into the ecological and evolutionary drivers of pan-genome dynamics.
Collapse
Affiliation(s)
- Daniel R Garza
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands.
- Microbial Systems Biology, Laboratory of Molecular Bacteriology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Louvain, Belgium.
| | - F A Bastiaan von Meijenfeldt
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB, Den Burg, The Netherlands
| | - Bram van Dijk
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Annemarie Boleij
- Department of Pathology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Bas E Dutilh
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Institute of Biodiversity, Faculty of Biology, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
10
|
Tao S, Chen H, Li N, Wang T, Liang W. The Spread of Antibiotic Resistance Genes In Vivo Model. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:3348695. [PMID: 35898691 PMCID: PMC9314185 DOI: 10.1155/2022/3348695] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 12/20/2022]
Abstract
Infections caused by antibiotic-resistant bacteria are a major public health threat. The emergence and spread of antibiotic resistance genes (ARGs) in the environment or clinical setting pose a serious threat to human and animal health worldwide. Horizontal gene transfer (HGT) of ARGs is one of the main reasons for the dissemination of antibiotic resistance in vitro and in vivo environments. There is a consensus on the role of mobile genetic elements (MGEs) in the spread of bacterial resistance. Most drug resistance genes are located on plasmids, and the spread of drug resistance genes among microorganisms through plasmid-mediated conjugation transfer is the most common and effective way for the spread of multidrug resistance. Experimental studies of the processes driving the spread of antibiotic resistance have focused on simple in vitro model systems, but the current in vitro protocols might not correctly reflect the HGT of antibiotic resistance genes in realistic conditions. This calls for better models of how resistance genes transfer and disseminate in vivo. The in vivo model can better mimic the situation that occurs in patients, helping study the situation in more detail. This is crucial to develop innovative strategies to curtail the spread of antibiotic resistance genes in the future. This review aims to give an overview of the mechanisms of the spread of antibiotic resistance genes and then demonstrate the spread of antibiotic resistance genes in the in vivo model. Finally, we discuss the challenges in controlling the spread of antibiotic resistance genes and their potential solutions.
Collapse
Affiliation(s)
- Shuan Tao
- School of Medical, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu Province, China
| | - Huimin Chen
- School of Medical, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Na Li
- Bengbu Medical College, Bengbu, Anhui Province, China
| | - Tong Wang
- Nanjing Brain Hospital Affiliated Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wei Liang
- Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu Province, China
| |
Collapse
|
11
|
Shkoporov AN, Turkington CJ, Hill C. Mutualistic interplay between bacteriophages and bacteria in the human gut. Nat Rev Microbiol 2022; 20:737-749. [PMID: 35773472 DOI: 10.1038/s41579-022-00755-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Bacteriophages (phages) are often described as obligate predators of their bacterial hosts, and phage predation is one of the leading forces controlling the density and distribution of bacterial populations. Every 48 h half of all bacteria on Earth are killed by phages. Efficient killing also forms the basis of phage therapy in humans and animals and the use of phages as food preservatives. In turn, bacteria have a plethora of resistance systems against phage attack, but very few bacterial species, if any, have entirely escaped phage predation. However, in complex communities and environments such as the human gut, this antagonistic model of attack and counter-defence does not fully describe the scope of phage-bacterium interactions. In this Review, we explore some of the more mutualistic aspects of phage-bacterium interactions in the human gut, and we suggest that the relationship between phages and their bacterial hosts in the gut is best characterized not as a fight to the death between enemies but rather as a mutualistic relationship between partners.
Collapse
Affiliation(s)
- Andrey N Shkoporov
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland. .,Department of Medicine, University College Cork, Cork, Ireland.
| | | | - Colin Hill
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
12
|
Multilocus Sequence Typing and Virulence Potential of Vibrio parahaemolyticus Strains Isolated from Aquatic Bird Feces. Microbiol Spectr 2022; 10:e0088622. [PMID: 35695558 PMCID: PMC9241773 DOI: 10.1128/spectrum.00886-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus is a Gram-negative, foodborne pathogenic bacterium that causes human gastroenteritis. This organism is ubiquitously present in the marine environment. Detection of V. parahaemolyticus in aquatic birds has been previously reported; however, the characterization of isolates of this bacterium recovered from these birds remains limited. The present study isolated and characterized V. parahaemolyticus from aquatic bird feces at the Bangpu Recreation Center (Samut Prakan province, Thailand) from 2016 to 2017, using multilocus sequence typing (MLST) and genome analysis. The results showed that V. parahaemolyticus was present in 34.9% (76/218) of the collected bird fecal samples. Among the ldh-positive V. parahaemolyticus isolates (n = 308), 1% (3/308) were positive for tdh, 1.3% (4/308) were positive for trh, and 0.3% (1/308) were positive for both tdh and trh. In turn, the MLST analysis revealed that 49 selected V. parahaemolyticus isolates resolved to 36 STs, 26 of which were novel (72.2%). Moreover, a total of 10 identified STs were identical to globally reported pathogenic strains (ST1309, ST1919, ST491, ST799, and ST2516) and environmental strains (ST1879, ST985, ST288, ST1925, and ST260). The genome analysis of isolates possessing tdh and/or trh (ST985, ST1923, ST1924, ST1929 and ST2516) demonstrated that the organization of the T3SS2α and T3SS2β genes in bird fecal isolates were almost identical to those of human clinical strains posing public health concerns of pathogen dissemination in the recreational area. The results of this study suggest that aquatic birds are natural reservoirs of new strains with high genetic diversity and are alternative sources of potentially pathogenic V. parahaemolyticus in the marine environment. IMPORTANCE To our knowledge, infection of foodborne bacterium V. parahamolyticus occurs via the consumption of undercooked seafood contaminated with pathogenic strains. Aquatic bird is a neglectable source that can transmit V. parahaemolyticus along coastal areas. This study reported the detection of potentially pathogenic V. parahamolyticus harboring virulence genes from aquatic bird feces at the recreational center situated near the Gulf of Thailand. These strains shared identical genetic profile to the clinical isolates that previously reported in many countries. Furthermore, the strains from aquatic birds showed extremely high genetic diversity. Our research pointed out that the aquatic bird is possibly involved in the evolution of novel strains of V. parahaemolyticus and play a role in dissimilation of the potentially pathogenic strains across geographical distance.
Collapse
|
13
|
Vicuña R, González B. The microbial world in a changing environment. REVISTA CHILENA DE HISTORIA NATURAL 2021. [DOI: 10.1186/s40693-021-00099-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
Background
In this article we would like to touch on the key role played by the microbiota in the maintenance of a sustainable environment in the entire planet. For obvious reasons, this article does not intend to review thoroughly this extremely complex topic, but rather to focus on the main threats that this natural scenario is presently facing.
Methods
Recent literature survey.
Results
Despite the relevance of microorganisms have in our planet, the effects of climate change on microbial communities have been scarcely and not systematically addressed in literature. Although the role of microorganisms in emissions of greenhouse gases has received some attention, there are several microbial processes that are affected by climate change with consequences that are presently under assessment. Among them, host-pathogen interactions, the microbiome of built environment, or relations among plants and beneficial microbes.
Conclusions
Further research is required to advance in knowledge of the effect of climate change on microbial communities. One of the main targets should be a complete evaluation of the global microbial functional diversity and the design of new strategies to cope with limitations in methods to grow microorganisms in the laboratory. These efforts should contribute to raise a general public awareness on the major role played by the microbiota on the various Earth ecosystems.
Collapse
|
14
|
Li R, Zhu L, Yang K, Li H, Zhu YG, Cui L. Impact of Urbanization on Antibiotic Resistome in Different Microplastics: Evidence from a Large-Scale Whole River Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8760-8770. [PMID: 34132095 DOI: 10.1021/acs.est.1c01395] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) are becoming ubiquitous in environments and viewed as carriers of antibiotic resistance genes (ARGs). Rivers connecting differently urbanized areas contribute a significant input of MPs and ARGs to the environment. However, a systematic study assessing the role of urbanization in shaping antibiotic resistome and mobilome in riverine MPs is lacking. Here, we conducted a large-scale study by placing five types of MPs (polyethylene, polypropylene, polystyrene, polyethylene-fiber, and polyethylene-fiber-polyethylene) into Beilun River with an urbanization gradient. A total of 314 ARGs and 57 mobile genetic elements (MGEs) were detected in MPs by high-throughput quantitative polymerase chain reaction (PCR). The ARGs in MPs showed a clear spatial distribution with the abundance increased by 2 orders of magnitude from rural to urban regions. A holistic analysis of 13 socioeconomic and environmental factors identified that urbanization predominantly contributed to both the abundance and potential MGE-mediated dissemination of ARGs in riverine MPs. Notably, MPs types were found to significantly affect the resistome and dissemination risk of ARGs, with polypropylene being the preferred substrates to acquire and spread ARGs. This work highlights the necessity of controlling MPs and ARGs pollution in urban areas and provides an important guide for the future usage and disposal of plastics.
Collapse
Affiliation(s)
- Ruilong Li
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- School of Marine Science, Guangxi University, Nanning 530004, China
| | - Longji Zhu
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kai Yang
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hongzhe Li
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
15
|
Kim M, Park J, Kang M, Yang J, Park W. Gain and loss of antibiotic resistant genes in multidrug resistant bacteria: One Health perspective. J Microbiol 2021; 59:535-545. [PMID: 33877574 DOI: 10.1007/s12275-021-1085-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022]
Abstract
The emergence of multidrug resistance (MDR) has become a global health threat due to the increasing unnecessary use of antibiotics. Multidrug resistant bacteria occur mainly by accumulating resistance genes on mobile genetic elements (MGEs), made possible by horizontal gene transfer (HGT). Humans and animal guts along with natural and engineered environments such as wastewater treatment plants and manured soils have proven to be the major reservoirs and hotspots of spreading antibiotic resistance genes (ARGs). As those environments support the dissemination of MGEs through the complex interactions that take place at the human-animal-environment interfaces, a growing One Health challenge is for multiple sectors to communicate and work together to prevent the emergence and spread of MDR bacteria. However, maintenance of ARGs in a bacterial chromosome and/or plasmids in the environments might place energy burdens on bacterial fitness in the absence of antibiotics, and those unnecessary ARGs could eventually be lost. This review highlights and summarizes the current investigations into the gain and loss of ARG genes in MDR bacteria among human-animal-environment interfaces. We also suggest alternative treatments such as combinatory therapies or sequential use of different classes of antibiotics/adjuvants, treatment with enzyme-inhibitors, and phage therapy with antibiotics to solve the MDR problem from the perspective of One Health issues.
Collapse
Affiliation(s)
- Misung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jaeeun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Mingyeong Kang
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jihye Yang
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
16
|
Bombaywala S, Mandpe A, Paliya S, Kumar S. Antibiotic resistance in the environment: a critical insight on its occurrence, fate, and eco-toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24889-24916. [PMID: 33765260 DOI: 10.1007/s11356-021-13143-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The overuse, misuse, and underuse of antibiotics tend to increase the antibiotic burden in the environment resulting into the evolution in microbial community to possess resistance that renders antibiotics ineffective against them. The current review recapitulates the present state of knowledge about the occurrence and fate of antibiotics in various environmental matrices. Also, the prevalence of antibiotic-resistant bacteria/antibiotic-resistant genes (ARB/ARGs) in various biological and non-biological systems, eco-toxicity of antibiotics on non-target organisms, and remediation methods for antibiotics and ARB/ARGs removal were critically reviewed. Furthermore, a comparison of various technologies for their efficiency to eliminate antibiotic residues and ARB/ARGs is made. The study identified gaps in the investigation of toxic effects of low concentration of antibiotics and the mixture of multiple antibiotics on non-target organisms. The study of antibiotics' phytotoxicity and toxicity towards sediment and soil-dwelling organisms are also recognized as a knowledge gap. The review also details policies implemented across the globe to fight against antibiotic resistance, and the scarcity of data on lab to land transferred remediation technology was identified. The present study entails a critical review of literature providing guidelines for the articulation of policies for prudent use of antibiotics, limits on the amount of antibiotics in pharmaceutical formulations, and regular surveillance in the Indian context.
Collapse
Affiliation(s)
- Sakina Bombaywala
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 02, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Ashootosh Mandpe
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 02, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Sonam Paliya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 02, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Sunil Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 2010 02, India.
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 4400 20, India.
| |
Collapse
|
17
|
Boddy SL, Giovannelli I, Sassani M, Cooper-Knock J, Snyder MP, Segal E, Elinav E, Barker LA, Shaw PJ, McDermott CJ. The gut microbiome: a key player in the complexity of amyotrophic lateral sclerosis (ALS). BMC Med 2021; 19:13. [PMID: 33468103 PMCID: PMC7816375 DOI: 10.1186/s12916-020-01885-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Much progress has been made in mapping genetic abnormalities linked to amyotrophic lateral sclerosis (ALS), but the majority of cases still present with no known underlying cause. Furthermore, even in families with a shared genetic abnormality there is significant phenotypic variability, suggesting that non-genetic elements may modify pathogenesis. Identification of such disease-modifiers is important as they might represent new therapeutic targets. A growing body of research has begun to shed light on the role played by the gut microbiome in health and disease with a number of studies linking abnormalities to ALS. MAIN BODY The microbiome refers to the genes belonging to the myriad different microorganisms that live within and upon us, collectively known as the microbiota. Most of these microbes are found in the intestines, where they play important roles in digestion and the generation of key metabolites including neurotransmitters. The gut microbiota is an important aspect of the environment in which our bodies operate and inter-individual differences may be key to explaining the different disease outcomes seen in ALS. Work has begun to investigate animal models of the disease, and the gut microbiomes of people living with ALS, revealing changes in the microbial communities of these groups. The current body of knowledge will be summarised in this review. Advances in microbiome sequencing methods will be highlighted, as their improved resolution now enables researchers to further explore differences at a functional level. Proposed mechanisms connecting the gut microbiome to neurodegeneration will also be considered, including direct effects via metabolites released into the host circulation and indirect effects on bioavailability of nutrients and even medications. CONCLUSION Profiling of the gut microbiome has the potential to add an environmental component to rapidly advancing studies of ALS genetics and move research a step further towards personalised medicine for this disease. Moreover, should compelling evidence of upstream neurotoxicity or neuroprotection initiated by gut microbiota emerge, modification of the microbiome will represent a potential new avenue for disease modifying therapies. For an intractable condition with few current therapeutic options, further research into the ALS microbiome is of crucial importance.
Collapse
Affiliation(s)
- Sarah L Boddy
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Ilaria Giovannelli
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Matilde Sassani
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Michael P Snyder
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, USA
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
- Division of Cancer-Microbiome Research, DKFZ, Heidelberg, Germany
| | - Lynne A Barker
- Centre for Behavioural Science and Applied Psychology, Sheffield Hallam University, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
18
|
Lai S, Jia L, Subramanian B, Pan S, Zhang J, Dong Y, Chen WH, Zhao XM. mMGE: a database for human metagenomic extrachromosomal mobile genetic elements. Nucleic Acids Res 2021; 49:D783-D791. [PMID: 33074335 PMCID: PMC7778953 DOI: 10.1093/nar/gkaa869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Extrachromosomal mobile genetic elements (eMGEs), including phages and plasmids, that can move across different microbes, play important roles in genome evolution and shaping the structure of microbial communities. However, we still know very little about eMGEs, especially their abundances, distributions and putative functions in microbiomes. Thus, a comprehensive description of eMGEs is of great utility. Here we present mMGE, a comprehensive catalog of 517 251 non-redundant eMGEs, including 92 492 plasmids and 424 759 phages, derived from diverse body sites of 66 425 human metagenomic samples. About half the eMGEs could be further grouped into 70 074 clusters using relaxed criteria (referred as to eMGE clusters below). We provide extensive annotations of the identified eMGEs including sequence characteristics, taxonomy affiliation, gene contents and their prokaryotic hosts. We also calculate the prevalence, both within and across samples for each eMGE and eMGE cluster, enabling users to see putative associations of eMGEs with human phenotypes or their distribution preferences. All eMGE records can be browsed or queried in multiple ways, such as eMGE clusters, metagenomic samples and associated hosts. The mMGE is equipped with a user-friendly interface and a BLAST server, facilitating easy access/queries to all its contents easily. mMGE is freely available for academic use at: https://mgedb.comp-sysbio.org.
Collapse
Affiliation(s)
- Senying Lai
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Longhao Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Balakrishnan Subramanian
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shaojun Pan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Jinglong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Yanqi Dong
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Shanghai 200433, China
- Research Institute of Intelligent Complex System, Fudan University, Shanghai 200433, China
| |
Collapse
|
19
|
Ojemaye MO, Adefisoye MA, Okoh AI. Nanotechnology as a viable alternative for the removal of antimicrobial resistance determinants from discharged municipal effluents and associated watersheds: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 275:111234. [PMID: 32866924 DOI: 10.1016/j.jenvman.2020.111234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/25/2020] [Accepted: 08/12/2020] [Indexed: 05/20/2023]
Abstract
Effective and efficient utilization of antimicrobial drugs has been one of the important cornerstone of modern medicine. However, since antibiotics were first discovered by Alexander Fleming about a century ago, the time clock of antimicrobial resistance (AMR) started ticking somewhat leading to a global fear of a possible "post-antimicrobial era". Antibiotic resistance (AR) remains a serious challenge causing global outcry in both the clinical setting and the environment. The huge influence of municipal wastewater effluent discharges on the aquatic environment has made the niche a hotspot of research interest in the study of emergence and spread of AMR microbes and their resistance determinants/genes. The current review adopted a holistic approach in studying the proliferation of antibiotic resistance determinants (ARDs) as well as their impacts and fate in municipal wastewater effluents and the receiving aquatic environments. The various strategies deployed hitherto for the removal of resistance determinants in municipal effluents were carefully reviewed, while the potential for the use of nanotechnology as a viable alternative is explicitly explored. Also, highlighted in this review are the knowledge gaps to be filled in order to curtail the spread of AMR in aquatic environment and lastly, suggestions on the applicability of nanotechnology in eliminating AMR determinants in municipal wastewater treatment facilities are proffered.
Collapse
Affiliation(s)
- Mike O Ojemaye
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, South Africa.
| | - Martins A Adefisoye
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, South Africa.
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, South Africa.
| |
Collapse
|
20
|
Duan H, Yu L, Tian F, Zhai Q, Fan L, Chen W. Antibiotic-induced gut dysbiosis and barrier disruption and the potential protective strategies. Crit Rev Food Sci Nutr 2020; 62:1427-1452. [PMID: 33198506 DOI: 10.1080/10408398.2020.1843396] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The oral antibiotic therapies administered widely to people and animals can cause gut dysbiosis and barrier disruption inevitably. Increasing attention has been directed toward antibiotic-induced gut dysbiosis, which involves a loss of diversity, changes in the abundances of certain taxa and consequent effects on their metabolic capacity, and the spread of antibiotic-resistant bacterial strains. Treatment with beta-lactam, glycopeptide, and macrolide antibiotics is associated with the depletion of beneficial commensal bacteria in the genera Bifidobacterium and Lactobacillus. The gut microbiota is a reservoir for antibiotic resistance genes, the prevalence of which increases sharply after antibiotic ingestion. The intestinal barrier, which comprises secretory, physical, and immunological barriers, is also a target of antibiotics. Antibiotic induced changes in the gut microbiota composition could induce weakening of the gut barrier through changes in mucin, cytokine, and antimicrobial peptide production by intestinal epithelial cells. Reports have indicated that dietary interventions involving prebiotics, probiotics, omega-3 fatty acids, and butyrate supplementation, as well as fecal microbiota transplantation, can alleviate antibiotic-induced gut dysbiosis and barrier injuries. This review summarizes the characteristics of antibiotic-associated gut dysbiosis and barrier disruption, as well as the strategies for alleviating this condition. This information is intended to provide a foundation for the exploration of safer, more efficient, and affordable strategies to prevent or relieve antibiotic-induced gut injuries.
Collapse
Affiliation(s)
- Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Research Laboratory for Probiotics at, Jiangnan University, Wuxi, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Research Laboratory for Probiotics at, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Research Laboratory for Probiotics at, Jiangnan University, Wuxi, Jiangsu, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Research Laboratory for Probiotics at, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Research Laboratory for Probiotics at, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
21
|
Wallace MJ, Fishbein SRS, Dantas G. Antimicrobial resistance in enteric bacteria: current state and next-generation solutions. Gut Microbes 2020; 12:1799654. [PMID: 32772817 PMCID: PMC7524338 DOI: 10.1080/19490976.2020.1799654] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Antimicrobial resistance is one of the largest threats to global health and imposes substantial burdens in terms of morbidity, mortality, and economic costs. The gut is a key conduit for the genesis and spread of antimicrobial resistance in enteric bacterial pathogens. Distinct bacterial species that cause enteric disease can exist as invasive enteropathogens that immediately evoke gastrointestinal distress, or pathobionts that can arise from established bacterial commensals to inflict dysbiosis and disease. Furthermore, various environmental reservoirs and stressors facilitate the evolution and transmission of resistance. In this review, we present a comprehensive discussion on circulating resistance profiles and gene mobilization strategies of the most problematic species of enteric bacterial pathogens. Importantly, we present emerging approaches toward surveillance of pathogens and their resistance elements as well as promising treatment strategies that can circumvent common resistance mechanisms.
Collapse
Affiliation(s)
- M. J. Wallace
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA,The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - S. R. S. Fishbein
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA,The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - G. Dantas
- Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA,The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA,Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA,CONTACT G. Dantas Department of Pathology & Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
22
|
van der Goot E, van Spronsen FJ, Falcão Salles J, van der Zee EA. A Microbial Community Ecology Perspective on the Gut-Microbiome-Brain Axis. Front Endocrinol (Lausanne) 2020; 11:611. [PMID: 32982988 PMCID: PMC7492586 DOI: 10.3389/fendo.2020.00611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Els van der Goot
- Molecular Neurobiology, Groningen Institute for Evolutionary Sciences, University of Groningen, Groningen, Netherlands
- Microbial Ecology Cluster, Groningen Institute for Evolutionary Sciences, University of Groningen, Groningen, Netherlands
| | - Francjan J. van Spronsen
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, Netherlands
| | - Joana Falcão Salles
- Microbial Ecology Cluster, Groningen Institute for Evolutionary Sciences, University of Groningen, Groningen, Netherlands
| | - Eddy A. van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
23
|
Saak CC, Dinh CB, Dutton RJ. Experimental approaches to tracking mobile genetic elements in microbial communities. FEMS Microbiol Rev 2020; 44:606-630. [PMID: 32672812 PMCID: PMC7476777 DOI: 10.1093/femsre/fuaa025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Horizontal gene transfer is an important mechanism of microbial evolution and is often driven by the movement of mobile genetic elements between cells. Due to the fact that microbes live within communities, various mechanisms of horizontal gene transfer and types of mobile elements can co-occur. However, the ways in which horizontal gene transfer impacts and is impacted by communities containing diverse mobile elements has been challenging to address. Thus, the field would benefit from incorporating community-level information and novel approaches alongside existing methods. Emerging technologies for tracking mobile elements and assigning them to host organisms provide promise for understanding the web of potential DNA transfers in diverse microbial communities more comprehensively. Compared to existing experimental approaches, chromosome conformation capture and methylome analyses have the potential to simultaneously study various types of mobile elements and their associated hosts. We also briefly discuss how fermented food microbiomes, given their experimental tractability and moderate species complexity, make ideal models to which to apply the techniques discussed herein and how they can be used to address outstanding questions in the field of horizontal gene transfer in microbial communities.
Collapse
Affiliation(s)
- Christina C Saak
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Cong B Dinh
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Rachel J Dutton
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
24
|
Dimitriou V, Biehl LM, Hamprecht A, Vogel W, Dörfel D, Peter S, Schafhausen P, Rohde H, von Lilienfeld-Toal M, Klassert TE, Slickers P, Ehricht R, Slevogt H, Christ H, Hellmich M, Farowski F, Tsakmaklis A, Higgins PG, Seifert H, Vehreschild MJGT. Controlling intestinal colonization of high-risk haematology patients with ESBL-producing Enterobacteriaceae: a randomized, placebo-controlled, multicentre, Phase II trial (CLEAR). J Antimicrob Chemother 2020; 74:2065-2074. [PMID: 31220256 DOI: 10.1093/jac/dkz124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES We assessed the efficacy and safety of an oral antimicrobial regimen for short- and long-term intestinal eradication of ESBL-producing Escherichia coli and Klebsiella pneumoniae (ESBL-EC/KP) in immunocompromised patients. METHODS We performed a randomized (2:1), double-blind multicentre Phase II study in four haematology-oncology departments. Patients colonized with ESBL-EC/KP received a 7 day antimicrobial regimen of oral colistin (2 × 106 IU 4×/day), gentamicin (80 mg 4×/day) and fosfomycin (three administrations of 3 g every 72 h), or placebo. Faecal, throat and urine specimens were collected on day 0, 6 ± 2, 11 ± 2, 28 ± 4 and 42 ± 4 after treatment initiation, and the quantitative burden of ESBL-EC/KP, resistance genes and changes in intestinal microbiota were analysed. Clinicaltrials.gov: NCT01931592. RESULTS As the manufacture of colistin powder was suspended worldwide, the study was terminated prematurely. Overall, 29 (18 verum/11 placebo) out of 47 patients were enrolled. The short-term intestinal eradication was marginal at day 6 (verum group 15/18, 83.3% versus placebo 2/11, 18.2%; relative risk 4.58, 95% CI 1.29-16.33; Fisher's exact test P = 0.001) and not evident at later timepoints. Quantitative analysis showed a significant decrease of intestinal ESBL-EC/KP burden on day 6. Sustained intestinal eradication (day 28 + 42) was not achieved (verum, 38.9% versus placebo, 27.3%; P = 0.299). In the verum group, mcr-1 genes were detected in two faecal samples collected after treatment. Microbiome analysis showed a significant decrease in alpha diversity and a shift in beta diversity. CONCLUSIONS In this prematurely terminated study of a 7 day oral antimicrobial eradication regimen, short-term ESBL-EC/KP suppression was marginal, while an altered intestinal microbiota composition was clearly apparent.
Collapse
Affiliation(s)
- Vassiliki Dimitriou
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Lena M Biehl
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Axel Hamprecht
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany.,Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Wichard Vogel
- Department of Oncology, Haematology, Immunology, Rheumatology and Pulmonology, Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Daniela Dörfel
- Department of Oncology, Haematology, Immunology, Rheumatology and Pulmonology, Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Silke Peter
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Philippe Schafhausen
- Department of Oncology and Haematology, Hubertus Wald Tumorzentrum/University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Holger Rohde
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Tilman E Klassert
- Host Septomics Research Group, Jena University Hospital, Jena, Germany
| | | | - Ralf Ehricht
- Center for Applied Research, InfectoGnostics Research Campus, Jena, Germany.,Department for Optical Molecular Diagnostics and Systems Technology, Leibniz-Institute of Photonic Technology (IPHT), Jena, Germany
| | - Hortense Slevogt
- Host Septomics Research Group, Jena University Hospital, Jena, Germany
| | - Hildegard Christ
- Institute of Medical Statistics, Informatics and Epidemiology, University of Cologne, Cologne, Germany
| | - Martin Hellmich
- Institute of Medical Statistics, Informatics and Epidemiology, University of Cologne, Cologne, Germany
| | - Fedja Farowski
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Anastasia Tsakmaklis
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Paul G Higgins
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany.,Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Harald Seifert
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany.,Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Maria J G T Vehreschild
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany.,Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
25
|
Gut microbiota modulation: a novel strategy for prevention and treatment of colorectal cancer. Oncogene 2020; 39:4925-4943. [PMID: 32514151 PMCID: PMC7314664 DOI: 10.1038/s41388-020-1341-1] [Citation(s) in RCA: 332] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023]
Abstract
Research about the role of gut microbiome in colorectal cancer (CRC) is a newly emerging field of study. Gut microbiota modulation, with the aim to reverse established microbial dysbiosis, is a novel strategy for prevention and treatment of CRC. Different strategies including probiotics, prebiotics, postbiotics, antibiotics, and fecal microbiota transplantation (FMT) have been employed. Although these strategies show promising results, mechanistically by correcting microbiota composition, modulating innate immune system, enhancing gut barrier function, preventing pathogen colonization and exerting selective cytotoxicity against tumor cells, it should be noted that they are accompanied by risks and controversies that can potentially introduce clinical complications. During bench-to-bedside translation, evaluation of risk-and-benefit ratio, as well as patient selection, should be carefully performed. In view of the individualized host response to gut microbiome intervention, developing personalized microbiome therapy may be the key to successful clinical treatment.
Collapse
|
26
|
Vollstedt A, Baunoch D, Wolfe A, Luke N, Wojno KJ, Cline K, Belkoff L, Milbank A, Sherman N, Haverkorn R, Gaines N, Yore L, Shore N, Opel M, Korman H, Kelly C, Jafri M, Campbell M, Keating P, Hazelton D, Makhlouf B, Wenzler D, Sabry M, Burks F, Penaranda M, Smith DE, Cacdac P, Sirls L. Bacterial Interactions as Detected by Pooled Antibiotic Susceptibility Testing (P-AST) in Polymicrobial Urine Specimens. JOURNAL OF SURGICAL UROLOGY 2020; 1:101. [PMID: 36416755 PMCID: PMC9678350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Antimicrobial susceptibility is well characterized in monomicrobial infections, but bacterial species often coexist with other bacterial species. Antimicrobial susceptibility is often tested against single bacterial isolates; this approach ignores interactions between cohabiting bacteria that could impact susceptibility. Here, we use Pooled Antibiotic Susceptibility Testing to compare antimicrobial susceptibility patterns exhibited by polymicrobial and monomicrobial urine specimens obtained from patients with urinary tract infection symptoms. METHODS Urine samples were collected from patients who had symptoms consistent with a urinary tract infection. Multiplex polymerase chain reaction testing was performed to identify and quantify 31 bacterial species. Antibiotic susceptibility was determined using a novel Pooled Antibiotic Susceptibility Testing method. Antibiotic resistance rates in polymicrobial specimens were compared with those in monomicrobial infections. Using a logistic model, resistance rates were estimated when specific bacterial species were present. To assess interactions between pairs of bacteria, the predicted resistance rates were compared when a pair of bacterial species were present versus when just one bacterial species was present. RESULTS Urine specimens were collected from 3,124 patients with symptoms of urinary tract infection. Of these, multiplex polymerase chain reaction testing detected bacteria in 61.1% (1910) of specimens. Pooled Antibiotic Susceptibility Testing results were available for 70.8% (1352) of these positive specimens. Of these positive specimens, 43.9% (594) were monomicrobial, while 56.1% (758) were polymicrobial. The odds of resistance to ampicillin (p = 0.005), amoxicillin/clavulanate (p = 0.008), five different cephalosporins, vancomycin (p = <0.0001), and tetracycline (p = 0.010) increased with each additional species present in a polymicrobial specimen. In contrast, the odds of resistance to piperacillin/tazobactam decreased by 75% for each additional species present (95% CI 0.61, 0.94, p = 0.010). For one or more antibiotics tested, thirteen pairs of bacterial species exhibited statistically significant interactions compared with the expected resistance rate obtained with the Highest Single Agent Principle and Union Principle. CONCLUSION Bacterial interactions in polymicrobial specimens can result in antimicrobial susceptibility patterns that are not detected when bacterial isolates are tested by themselves. Optimizing an effective treatment regimen for patients with polymicrobial infections may depend on accurate identification of the constituent species, as well as results obtained by Pooled Antibiotic Susceptibility Testing.
Collapse
Affiliation(s)
- Annah Vollstedt
- Beaumont Hospital, 3601 W. Thirteen Mile Rd, Royal Oak, MI 48073, USA
| | | | - Alan Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | | | - Kirk J Wojno
- Comprehensive Urology-A Division of Michigan Healthcare Professionals, 31157 Woodward Ave, Royal Oak, MI 48073, USA
| | - Kevin Cline
- Regional Urology, LLC, 255 Bert Kouns, Shreveport, LA 71106, USA
| | - Laurence Belkoff
- Urologic Consultants of SE PA, 1 Presidential Blvd, Suite 115, Bala Cynwyd, PA 19004, USA
| | - Aaron Milbank
- Minnesota Urology, 11850 Blackfoot Street NW, Suite #470, Coon Rapids, MN 55125, USA
| | - Neil Sherman
- Premier Urology, 10 Parsonage Road, Suite # 118, Edison, NJ, 08837, USA
| | - Rashel Haverkorn
- Urology San Antonio, 7909 Fredericksburg Rd, Suite 150, San Antonio, TX, 78229, USA
| | - Natalie Gaines
- Urology San Antonio, 7909 Fredericksburg Rd, Suite 150, San Antonio, TX, 78229, USA
| | - Laurence Yore
- Advanced Urology of SO FL, LLC, 5350 W Atlantic Blvd, #102, Delray Beach, FL 33484, USA
| | - Neal Shore
- Carolina Urologic Research Center, 823 82nd Parkway, Suite B, Myrtle Beach, SC 29572, USA
| | | | - Howard Korman
- Comprehensive Urology-A Division of Michigan Healthcare Professionals, 31157 Woodward Ave, Royal Oak, MI 48073, USA
| | - Colleen Kelly
- Kelly Statistical Consulting, Palomar Airport Rd, Carlsbad, CA 92011, USA
| | - Mohammad Jafri
- Comprehensive Urology-A Division of Michigan Healthcare Professionals, 31157 Woodward Ave, Royal Oak, MI 48073, USA
| | - Meghan Campbell
- Pathnostics, 17661 Cowan, Irvine, CA 92614, USA
- University of Kentucky College of Medicine, 800 Rose Street MN 150, Lexington, KY 40506, USA
| | - Patrick Keating
- Comprehensive Urology-A Division of Michigan Healthcare Professionals, 31157 Woodward Ave, Royal Oak, MI 48073, USA
| | - Dylan Hazelton
- Comprehensive Urology-A Division of Michigan Healthcare Professionals, 31157 Woodward Ave, Royal Oak, MI 48073, USA
| | - Bridget Makhlouf
- Comprehensive Urology-A Division of Michigan Healthcare Professionals, 31157 Woodward Ave, Royal Oak, MI 48073, USA
| | - David Wenzler
- Comprehensive Urology-A Division of Michigan Healthcare Professionals, 31157 Woodward Ave, Royal Oak, MI 48073, USA
| | - Mansour Sabry
- Comprehensive Urology-A Division of Michigan Healthcare Professionals, 31157 Woodward Ave, Royal Oak, MI 48073, USA
| | - Frank Burks
- Comprehensive Urology-A Division of Michigan Healthcare Professionals, 31157 Woodward Ave, Royal Oak, MI 48073, USA
| | | | | | - Patrick Cacdac
- Beaumont Hospital, 3601 W. Thirteen Mile Rd, Royal Oak, MI 48073, USA
- Pathnostics, 17661 Cowan, Irvine, CA 92614, USA
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
- Comprehensive Urology-A Division of Michigan Healthcare Professionals, 31157 Woodward Ave, Royal Oak, MI 48073, USA
- Regional Urology, LLC, 255 Bert Kouns, Shreveport, LA 71106, USA
- Urologic Consultants of SE PA, 1 Presidential Blvd, Suite 115, Bala Cynwyd, PA 19004, USA
- Minnesota Urology, 11850 Blackfoot Street NW, Suite #470, Coon Rapids, MN 55125, USA
- Premier Urology, 10 Parsonage Road, Suite # 118, Edison, NJ, 08837, USA
- Urology San Antonio, 7909 Fredericksburg Rd, Suite 150, San Antonio, TX, 78229, USA
- Advanced Urology of SO FL, LLC, 5350 W Atlantic Blvd, #102, Delray Beach, FL 33484, USA
- Carolina Urologic Research Center, 823 82nd Parkway, Suite B, Myrtle Beach, SC 29572, USA
- Kelly Statistical Consulting, Palomar Airport Rd, Carlsbad, CA 92011, USA
- University of Kentucky College of Medicine, 800 Rose Street MN 150, Lexington, KY 40506, USA
| | - Larry Sirls
- Comprehensive Urology-A Division of Michigan Healthcare Professionals, 31157 Woodward Ave, Royal Oak, MI 48073, USA
| |
Collapse
|
27
|
Carr VR, Shkoporov A, Hill C, Mullany P, Moyes DL. Probing the Mobilome: Discoveries in the Dynamic Microbiome. Trends Microbiol 2020; 29:158-170. [PMID: 32448763 DOI: 10.1016/j.tim.2020.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
There has been an explosion of metagenomic data representing human, animal, and environmental microbiomes. This provides an unprecedented opportunity for comparative and longitudinal studies of many functional aspects of the microbiome that go beyond taxonomic classification, such as profiling genetic determinants of antimicrobial resistance, interactions with the host, potentially clinically relevant functions, and the role of mobile genetic elements (MGEs). One of the most important but least studied of these aspects are the MGEs, collectively referred to as the 'mobilome'. Here we elaborate on the benefits and limitations of using different metagenomic protocols, discuss the relative merits of various sequencing technologies, and highlight relevant bioinformatics tools and pipelines to predict the presence of MGEs and their microbial hosts.
Collapse
Affiliation(s)
- Victoria R Carr
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK; The Alan Turing Institute, British Library, London, UK.
| | - Andrey Shkoporov
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, Ireland
| | - Peter Mullany
- Eastman Dental Institute, University College London, London, UK
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.
| |
Collapse
|
28
|
Baedke J, Fábregas‐Tejeda A, Nieves Delgado A. The holobiont concept before Margulis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:149-155. [DOI: 10.1002/jez.b.22931] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Jan Baedke
- Department of Philosophy IRuhr University BochumBochum Germany
- Institute of Zoology and Evolutionary ResearchFriedrich‐Schiller‐UniversityJena Germany
| | - Alejandro Fábregas‐Tejeda
- Department of Philosophy IRuhr University BochumBochum Germany
- Institute of BiologyNational Autonomous University of Mexico (UNAM) Circuito Exterior Ciudad Universitaria S/N Mexico City Mexico
| | - Abigail Nieves Delgado
- Department of Philosophy IRuhr University BochumBochum Germany
- Centre for Anthropological Knowledge in Scientific and Technological Cultures (CAST)Ruhr University BochumBochum Germany
| |
Collapse
|
29
|
Greslehner GP. Microbiome Structure and Function: A New Framework for Interpreting Data. Bioessays 2020; 42:e1900255. [DOI: 10.1002/bies.201900255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/11/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Gregor P. Greslehner
- University of Bordeaux and CNRS – ImmunoConcept UMR5164, 146 rue Léo Saignat Bordeaux 33076 France
| |
Collapse
|
30
|
Proctor DM, Shelef KM, Gonzalez A, Davis CL, Dethlefsen L, Burns AR, Loomer PM, Armitage GC, Ryder MI, Millman ME, Knight R, Holmes SP, Relman DA. Microbial biogeography and ecology of the mouth and implications for periodontal diseases. Periodontol 2000 2020; 82:26-41. [PMID: 31850642 DOI: 10.1111/prd.12268] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In humans, the composition of microbial communities differs among body sites and between habitats within a single site. Patterns of variation in the distribution of organisms across time and space are referred to as "biogeography." The human oral cavity is a critical observatory for exploring microbial biogeography because it is spatially structured, easily accessible, and its microbiota has been linked to the promotion of both health and disease. The biogeographic features of microbial communities residing in spatially distinct, but ecologically similar, environments on the human body, including the subgingival crevice, have not yet been adequately explored. The purpose of this paper is twofold. First, we seek to provide the dental community with a primer on biogeographic theory, highlighting its relevance to the study of the human oral cavity. We summarize what is known about the biogeographic variation of dental caries and periodontitis and postulate that disease occurrence reflects spatial patterning in the composition and structure of oral microbial communities. Second, we present a number of methods that investigators can use to test specific hypotheses using biogeographic theory. To anchor our discussion, we apply each method to a case study and examine the spatial variation of the human subgingival microbiota in 2 individuals. Our case study suggests that the composition of subgingival communities may conform to an anterior-to-posterior gradient within the oral cavity. The gradient appears to be structured by both deterministic and nondeterministic processes, although additional work is needed to confirm these findings. A better understanding of biogeographic patterns and processes will lead to improved efficacy of dental interventions targeting the oral microbiota.
Collapse
Affiliation(s)
- Diana M Proctor
- Division of Infectious Diseases & Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katie M Shelef
- Department of Biology, Stanford University, Stanford, California, USA
| | - Antonio Gonzalez
- Departments of Pediatrics and Computer Science and Engineering, University of California at San Diego, La Jolla, California, USA
| | - Clara L Davis
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Les Dethlefsen
- Division of Infectious Diseases & Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Adam R Burns
- Division of Infectious Diseases & Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Peter M Loomer
- Ashman Department of Periodontology & Implant Dentistry, New York University College of Dentistry, New York, New York, USA
| | - Gary C Armitage
- Division of Periodontology, Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, California, USA
| | - Mark I Ryder
- Division of Periodontology, Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, California, USA
| | - Meredith E Millman
- Division of Periodontology, Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, California, USA
| | - Rob Knight
- Departments of Pediatrics and Computer Science and Engineering, University of California at San Diego, La Jolla, California, USA
| | - Susan P Holmes
- Department of Statistics, Stanford University, Stanford, California, USA
| | - David A Relman
- Division of Infectious Diseases & Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, USA.,Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
31
|
McInnes RS, McCallum GE, Lamberte LE, van Schaik W. Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Curr Opin Microbiol 2020; 53:35-43. [PMID: 32143027 DOI: 10.1016/j.mib.2020.02.002] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 01/05/2023]
Abstract
Infections caused by antibiotic-resistant bacteria are a major threat to public health. The pathogens causing these infections can acquire antibiotic resistance genes in a process termed horizontal gene transfer (HGT). HGT is a common event in the human gut microbiome, that is, the microbial ecosystem of the human intestinal tract. HGT in the gut microbiome can occur via different mechanisms of which transduction and conjugation have been best characterised. Novel bioinformatic tools and experimental approaches have been developed to determine the association of antibiotic resistance genes with their microbial hosts and to quantify the extent of HGT in the gut microbiome. Insights from studies into HGT in the gut microbiome may lead to the development of novel interventions to minimise the spread of antibiotic resistance genes among commensals and opportunistic pathogens.
Collapse
Affiliation(s)
- Ross S McInnes
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Gregory E McCallum
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lisa E Lamberte
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
32
|
Sitaraman R. The Role of Constructive Neutral Evolution in the Development of Complexity from Symbioses: A Microbe-Centric View. Results Probl Cell Differ 2020; 69:225-235. [PMID: 33263874 DOI: 10.1007/978-3-030-51849-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Symbiogenesis presents the biologist with very different explanatory issues compared to the lineal and selectionist view of evolution based on individual entities, whether genes, organisms or species. A key question is how the co-existence of two or more partners in close association during a given generation can ultimately be stabilized enough to be transmitted to the next, how the ensuing complexity is maintained and how this arrangement impacts the reproductive fitness of the collective over evolutionary time. In this chapter, we highlight some observations gleaned from the microbial world that could shed light on this problem if viewed within the framework of constructive neutral evolution.
Collapse
|
33
|
Boto L, Pineda M, Pineda R. Potential impacts of horizontal gene transfer on human health and physiology and how anthropogenic activity can affect it. FEBS J 2019; 286:3959-3967. [PMID: 31495055 DOI: 10.1111/febs.15054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/01/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
Abstract
Horizontal gene transfer (HGT) is widespread among prokaryotes driving their evolution. In this paper, we review the potential impact in humans of the HGT between prokaryotes living in close association with humans in two scenarios: horizontal transfer in human microbiomes and transfer between microbes living in human managed environments. Although our vision is focused on the possible impact of these transfers in the propagation of antibiotic resistance genes or pathogenicity determinants, we also discuss possible human physiological adaptations via gene transfer between resident and occasional bacteria in the human microbiome.
Collapse
Affiliation(s)
- Luis Boto
- Departamento DE Biodiversidad y Biologia Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Manuel Pineda
- Grupo Fisiologia Molecular y Biotecnologia de Plantas, Universidad dE Cordoba, Spain
| | - Rafael Pineda
- Instituto Maimonides de Investigacion Biomedica de Cordoba, Spain.,Departamento de Biologia Celular, Fisiologia e Inmunologia, Universidad de Cordoba, Spain
| |
Collapse
|
34
|
Horizontal Gene Transfer and Its Association with Antibiotic Resistance in the Genus Aeromonas spp. Microorganisms 2019; 7:microorganisms7090363. [PMID: 31540466 PMCID: PMC6780555 DOI: 10.3390/microorganisms7090363] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 12/24/2022] Open
Abstract
The evolution of multidrug resistant bacteria to the most diverse antimicrobials known so far pose a serious problem to global public health. Currently, microorganisms that develop resistant phenotypes to multiple drugs are associated with high morbidity and mortality. This resistance is encoded by a group of genes termed ‘bacterial resistome’, divided in intrinsic and extrinsic resistome. The first one refers to the resistance displayed on an organism without previous exposure to an antibiotic not involving horizontal genetic transfer, and it can be acquired via mutations. The latter, on the contrary, is acquired exclusively via horizontal genetic transfer involving mobile genetic elements that constitute the ‘bacterial mobilome’. This transfer is mediated by three different mechanisms: transduction, transformation, and conjugation. Recently, a problem of public health due to implications in the emergence of multi-drug resistance in Aeromonas spp. strains in water environments has been described. This is derived from the genetic material transfer via conjugation events. This is important, since bacteria that have acquired antibiotic resistance in natural environments can cause infections derived from their ingestion or direct contact with open wounds or mucosal tissue, which in turn, by their resistant nature, makes their eradication complex. Implications of the emergence of resistance in Aeromonas spp. by horizontal gene transfer on public health are discussed.
Collapse
|
35
|
Zhao JH, Guo HS. Trans-kingdom RNA interactions drive the evolutionary arms race between hosts and pathogens. Curr Opin Genet Dev 2019; 58-59:62-69. [PMID: 31472442 DOI: 10.1016/j.gde.2019.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022]
Abstract
Trans-kingdom RNA plays a key role in host-parasite interactions. Hosts export specific endogenous microRNAs (miRNAs) into pathogens to target pathogen virulence genes and inhibit their invasion. In addition, trans-kingdom sRNAs produced by parasites may function as RNA effectors to suppress host immunity. Here, we summarize recent, important findings regarding trans-kingdom RNA and focus on the roles of trans-kingdom RNA in driving an evolutionary arms race between host and pathogen. We suggest that trans-kingdom RNA is a new platform for such arms races. Furthermore, we conjecture that trans-kingdom RNA contributes to horizontal gene transfer (HGT) involved in host-pathogen interactions. In addition, we propose that trans-kingdom RNA exchange and RNA driven HGT can have a great impact on the evolutionary ecology of interacting species.
Collapse
Affiliation(s)
- Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China; CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
36
|
Thingholm LB, Rühlemann MC, Koch M, Fuqua B, Laucke G, Boehm R, Bang C, Franzosa EA, Hübenthal M, Rahnavard A, Frost F, Lloyd-Price J, Schirmer M, Lusis AJ, Vulpe CD, Lerch MM, Homuth G, Kacprowski T, Schmidt CO, Nöthlings U, Karlsen TH, Lieb W, Laudes M, Franke A, Huttenhower C. Obese Individuals with and without Type 2 Diabetes Show Different Gut Microbial Functional Capacity and Composition. Cell Host Microbe 2019; 26:252-264.e10. [PMID: 31399369 DOI: 10.1016/j.chom.2019.07.004] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/17/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
Obesity and type 2 diabetes (T2D) are metabolic disorders that are linked to microbiome alterations. However, their co-occurrence poses challenges in disentangling microbial features unique to each condition. We analyzed gut microbiomes of lean non-diabetic (n = 633), obese non-diabetic (n = 494), and obese individuals with T2D (n = 153) from German population and metabolic disease cohorts. Microbial taxonomic and functional profiles were analyzed along with medical histories, serum metabolomics, biometrics, and dietary data. Obesity was associated with alterations in microbiome composition, individual taxa, and functions with notable changes in Akkermansia, Faecalibacterium, Oscillibacter, and Alistipes, as well as in serum metabolites that correlated with gut microbial patterns. However, microbiome associations were modest for T2D, with nominal increases in Escherichia/Shigella. Medications, including antihypertensives and antidiabetics, along with dietary supplements including iron, were significantly associated with microbiome variation. These results differentiate microbial components of these interrelated metabolic diseases and identify dietary and medication exposures to consider in future studies.
Collapse
Affiliation(s)
- Louise B Thingholm
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Malte C Rühlemann
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Manja Koch
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Brie Fuqua
- Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Guido Laucke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Ruwen Boehm
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Eric A Franzosa
- Biostatistics Department, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02115, USA
| | - Matthias Hübenthal
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany; Department of Dermatology, Venereology and Allergy, University Hospital, Schleswig-Holstein, 24105 Kiel, Germany
| | - Ali Rahnavard
- Biostatistics Department, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02115, USA
| | - Fabian Frost
- Department of Medicine A, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Jason Lloyd-Price
- Biostatistics Department, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02115, USA
| | - Melanie Schirmer
- Biostatistics Department, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02115, USA
| | - Aldons J Lusis
- Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Chris D Vulpe
- College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Tim Kacprowski
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; Research Group on Computational Systems Medicine, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Weihenstephan, Technical University of Munich, Freising-Weihenstephan 85354, Germany
| | - Carsten O Schmidt
- Institute for Community Medicine SHIP-KEF, University Medicine Greifswald, Greifswald 17475, Germany
| | - Ute Nöthlings
- Department of Nutrition and Food Sciences, Nutritional Epidemiology, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Tom H Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine and Research Institute of Internal Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
| | - Wolfgang Lieb
- Institute of Epidemiology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Matthias Laudes
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany.
| | - Curtis Huttenhower
- Biostatistics Department, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02115, USA
| |
Collapse
|
37
|
Lerner A, Ramesh A, Matthias T. The Revival of the Battle between David and Goliath in the Enteric Viruses and Microbiota Struggle: Potential Implication for Celiac Disease. Microorganisms 2019; 7:microorganisms7060173. [PMID: 31207872 PMCID: PMC6616392 DOI: 10.3390/microorganisms7060173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023] Open
Abstract
The human gut is inhabited by overcrowded prokaryotic communities, a major component of which is the virome, comprised of viruses, bacteriophages, archaea, eukaryotes and bacteria. The virome is required for luminal homeostasis and, by their lytic or synergic capacities, they can regulate the microbial community structure and activity. Dysbiosis is associated with numerous chronic human diseases. Since the virome can impact microbial genetics and behavior, understanding its biology, composition, cellular cycle, regulation, mode of action and potential beneficial or hostile activities can change the present paradigm of the cross-talks in the luminal gut compartment. Celiac disease is a frequent autoimmune disease in which viruses can play a role in disease development. Based on the current knowledge on the enteric virome, in relation to celiac disease pathophysiological evolvement, the current review summarizes the potential interphases between the two. Exploring and understanding the role of the enteric virome in gluten-dependent enteropathy might bring new therapeutic strategies to change the luminal eco-event for the patient’s benefit.
Collapse
Affiliation(s)
- Aaron Lerner
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany.
| | - Ajay Ramesh
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany.
| | - Torsten Matthias
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany.
| |
Collapse
|
38
|
Lerner A, Ramesh A, Matthias T. The Revival of the Battle between David and Goliath in the Enteric Viruses and Microbiota Struggle: Potential Implication for Celiac Disease. Microorganisms 2019. [PMID: 31207872 DOI: 10.3390/microorganisms7060173.pmid:31207872;pmcid:pmc6616392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
The human gut is inhabited by overcrowded prokaryotic communities, a major component of which is the virome, comprised of viruses, bacteriophages, archaea, eukaryotes and bacteria. The virome is required for luminal homeostasis and, by their lytic or synergic capacities, they can regulate the microbial community structure and activity. Dysbiosis is associated with numerous chronic human diseases. Since the virome can impact microbial genetics and behavior, understanding its biology, composition, cellular cycle, regulation, mode of action and potential beneficial or hostile activities can change the present paradigm of the cross-talks in the luminal gut compartment. Celiac disease is a frequent autoimmune disease in which viruses can play a role in disease development. Based on the current knowledge on the enteric virome, in relation to celiac disease pathophysiological evolvement, the current review summarizes the potential interphases between the two. Exploring and understanding the role of the enteric virome in gluten-dependent enteropathy might bring new therapeutic strategies to change the luminal eco-event for the patient's benefit.
Collapse
Affiliation(s)
- Aaron Lerner
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany.
| | - Ajay Ramesh
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany.
| | - Torsten Matthias
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany.
| |
Collapse
|
39
|
Lerner A, Shoenfeld Y, Matthias T. Probiotics: If It Does Not Help It Does Not Do Any Harm. Really? Microorganisms 2019; 7:E104. [PMID: 30979072 PMCID: PMC6517882 DOI: 10.3390/microorganisms7040104] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/06/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
Probiotics per definition should have beneficial effects on human health, and their consumption has tremendously increased in the last decades. In parallel, the amount of published material and claims for their beneficial efficacy soared continuously. Recently, multiple systemic reviews, meta-analyses, and expert opinions expressed criticism on their claimed effects and safety. The present review describes the dark side of the probiotics, in terms of problematic research design, incomplete reporting, lack of transparency, and under-reported safety. Highlighted are the potential virulent factors and the mode of action in the intestinal lumen, risking the physiological microbiome equilibrium. Finally, regulatory topics are discussed to lighten the heterogeneous guidelines applied worldwide. The shift in the scientific world towards a better understanding of the human microbiome, before consumption of the probiotic cargo, is highly endorsed. It is hoped that better knowledge will extend the probiotic repertoire, re-confirm efficacy or safety, establish their efficacy and substantiate their beneficial effects.
Collapse
Affiliation(s)
- Aaron Lerner
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
- AESKU.KIPP Institute, 55234 Wendelsheim, Germany.
| | - Yehuda Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 5262000, Israel.
| | | |
Collapse
|
40
|
Simon JC, Marchesi JR, Mougel C, Selosse MA. Host-microbiota interactions: from holobiont theory to analysis. MICROBIOME 2019; 7:5. [PMID: 30635058 PMCID: PMC6330386 DOI: 10.1186/s40168-019-0619-4] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 05/13/2023]
Abstract
In the recent years, the holobiont concept has emerged as a theoretical and experimental framework to study the interactions between hosts and their associated microbial communities in all types of ecosystems. The spread of this concept in many branches of biology results from the fairly recent realization of the ubiquitous nature of host-associated microbes and their central role in host biology, ecology, and evolution. Through this special series "Host-microbiota interactions: from holobiont theory to analysis," we wanted to promote this field of research which has considerable implications for human health, food production, and ecosystem protection. In this preface, we highlight a collection of articles selected for this special issue that show, use, or debate the concept of holobiont to approach taxonomically and ecologically diverse organisms, from humans and plants to sponges and insects. We also identify some theoretical and methodological challenges and propose directions for future research on holobionts.
Collapse
Affiliation(s)
- Jean-Christophe Simon
- UMR 1349, IGEPP (Institut de Génétique, Environnement et Protection des Plantes), INRA, Agrocampus Ouest, Université Rennes 1, Domaine de la Motte, 35653, Le Rheu Cedex, France.
| | - Julian R Marchesi
- Centre for Digestive and Gut Health, Imperial College London, London, W2 1NY, UK
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Christophe Mougel
- UMR 1349, IGEPP (Institut de Génétique, Environnement et Protection des Plantes), INRA, Agrocampus Ouest, Université Rennes 1, Domaine de la Motte, 35653, Le Rheu Cedex, France
| | - Marc-André Selosse
- Muséum National d'Histoire Naturelle, Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Sorbonne Universités, 57 Rue Cuvier-CP39, F-75005, Paris, France
- Faculty of Biology, University of Gdansk, Ul. Wita Stwosza 59, 80-308, Gdansk, Poland
| |
Collapse
|