1
|
Zhang H, Guo D, Lei Y, Lozano-Torres JL, Deng Y, Xu J, Hu L. Cover crop rotation suppresses root-knot nematode infection by shaping soil microbiota. THE NEW PHYTOLOGIST 2025; 245:363-377. [PMID: 39468918 DOI: 10.1111/nph.20220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Cover crop integration into grain crop rotations is a promising strategy for mitigating nematode-induced diseases in agriculture. However, the precise mechanisms underlying this phenomenon remain elusive. Here, we first assessed the impact of five commonly used cover crops on the suppression of rice root-knot nematodes (RKNs). We then chose ryegrass as a model to explore the mechanistic basis of the suppression effect. Contrary to expectations, while ryegrass rotation significantly enhances soil fertility, this increased fertility has minimal impact on RKN suppression. Furthermore, neither integrated ryegrass residues nor root exudates exhibit direct toxicity towards RKNs. We demonstrated that ryegrass rotation primarily suppresses RKNs by enriching beneficial soil microbiota. By complementing with isolated bacteria strains, we further demonstrated that ryegrass-enriched bacteria not only directly reduce RKN infectivity and preference, but also activate plant immunity via the OsLRR-RLK-MAPK-WRKY-JA cascade, thereby diminishing RKN infection. Our study highlights the crucial role of soil microbiota in plant-nematode interactions, challenging conventional views on the direct effects of cover crops in nematode suppression. It offers a mechanistic understanding of the regulation potential and action modes of cover crops in mitigating nematode diseases, providing valuable insights for sustainable agriculture.
Collapse
Affiliation(s)
- Hualiang Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Dongsheng Guo
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, China
| | - Yuting Lei
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Jose L Lozano-Torres
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, the Netherlands
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Lingfei Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, China
| |
Collapse
|
2
|
Su XS, Zhang YB, Jin WJ, Zhang ZJ, Xie ZK, Wang RY, Wang YJ, Qiu Y. Lily viruses regulate the viral community of the Lanzhou lily rhizosphere and indirectly affect rhizosphere carbon and nitrogen cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176808. [PMID: 39396785 DOI: 10.1016/j.scitotenv.2024.176808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
The rhizosphere, where plant roots interact intensely with the soil, is a crucial but understudied area in terms of the impact of virus infection. In this study, we investigated the effects of lily symptomless virus (LSV) and cucumber mosaic virus (CMV) on the Lanzhou lily (Lilium davidii var. unicolor) rhizosphere using metagenomics and bioinformatics analysis. We found that virus infection significantly altered soil pH, inorganic carbon, nitrate nitrogen, and total sulfur. Co-infection with LSV and CMV had a greater influence than single infections on the α- and β-diversity of the rhizosphere viral community in which the absolute abundance of certain virus families (Siphoviridae, Podoviridae, and Myoviridae) increased significantly, whereas bacteria, fungi, and archaea remained relatively unaffected. These altered virus populations influenced the rhizosphere microbial carbon and nitrogen cycles by exerting top-down control on bacteria. Co-infection potentially weakened rhizosphere carbon fixation and promoted processes such as methane oxidation, nitrification, and denitrification. In addition, the co-occurrence network of bacteria and viruses in the rhizosphere revealed substantial changes in microbial community composition under co-infection. Our partial-least-squares path model confirmed that the diversity of the rhizosphere viral community indirectly regulated the carbon and nitrogen cycling functions of the microbial community, thus affecting the accumulation of carbon and nitrogen nutrients in the soil. Our results are the first report of the effects of virus infection on the lily rhizosphere, particularly for co-infection; they therefore complement research on the plant virus pathogenic mechanisms, and increase our understanding of the ecological role of rhizosphere soil viruses.
Collapse
Affiliation(s)
- Xue-Si Su
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China.
| | - Yu-Bao Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China.
| | - Wei-Jie Jin
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China.
| | - Zhan-Jun Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Zhong-Kui Xie
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China.
| | - Ruo-Yu Wang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China.
| | - Ya-Jun Wang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Yang Qiu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China.
| |
Collapse
|
3
|
Wang Y, Tong D, Yu H, Zhou Y, Tang C, Dahlgren RA, Xu J. Viral involvement in microbial anaerobic methane oxidation-mediated arsenic mobilization in paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 484:136758. [PMID: 39644851 DOI: 10.1016/j.jhazmat.2024.136758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Anaerobic oxidation of methane (AOM) facilitates arsenic (As) mobilization, posing a significant environmental risk. Soil viruses potentially participate in the microbial AOM process, yet their roles in methane-mediated As mobilization of paddy soil remain elusive. Here, an anaerobic microcosm study was conducted by inoculating microbial suspension with extracellular free virus and mitomycin C (MC)-induced virus, along with 13CH4 injection. The results showed that extracellular free virus enhanced while MC-induced virus suppressed 13CH4-mediated As mobilization. During the AOM process, both viruses inhibited 13CH4 oxidation to 13CO2. However, the extracellular free virus suppressed whereas the MC-induced virus enhanced 13CH4 consumption, likely attributed to the viral influence on the ANME-2d abundance. The methane consumption differences were inferred to influence As reduction, as evidenced by a strong correlation between As(III) and 13CH4 consumption concentrations. Moreover, virus-mediated methane assimilation into microbial biomass carbon influenced the overall microbial population. An increased abundance of Geobacter in the extracellular free virus treatment elevated net As(III) concentrations (up to 260 %) relative to treatment without virus in the presence of 13CH4. In contrast, MC-induced virus led to a net 122 % reduction in As(III) concentration due to decreased Geobacter abundance. These findings provide new insights into soil viruses in microbial AOM-driven As mobilization, highlighting their crucial functions in soil ecosystems.
Collapse
Affiliation(s)
- Youjing Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Di Tong
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Haodan Yu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Yujie Zhou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Caixian Tang
- La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant & Soil Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Liu Y, Wang Y, Shi W, Wu N, Liu W, Francis F, Wang X. Enterobacter-infecting phages in nitrogen-deficient paddy soil impact nitrogen-fixation capacity and rice growth by shaping the soil microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177382. [PMID: 39505046 DOI: 10.1016/j.scitotenv.2024.177382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/03/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Bacteriophages ("phage") play important roles in nutrient cycling and ecology in environments by regulating soil microbial community structure. Here, metagenomic sequencing showed that a low relative abundance of nitrogen-fixing bacteria but high abundance of Enterobacter-infecting phages in paddy soil where rice plants showed nitrogen deficiency. From soil in the same field, we also isolated and identified a novel virulent phage (named here as Apdecimavirus NJ2) that infects several species of Enterobacter and characterized its impact on nitrogen fixation in the soil and in plants. It has the morphology of the Autographiviridae family, with a dsDNA genome of 39,605 bp, 47 predicted open reading frames and 52.64 % GC content. Based on genomic characteristics, comparative genomics and phylogenetic analysis, Apdecimavirus NJ2 should be a novel species in the genus Apdecimavirus, subfamily Studiervirinae. After natural or sterilized field soil was potted and inoculated with the phage, soil nitrogen-fixation capacity and rice growth were impaired, the abundance of Enterobacter decreased, along with the bacterial community composition and biodiversity changed compared with that of the unadded control paddy soil. Our work provides strong evidence that phages can affect the soil nitrogen cycle by changing the bacterial community. Controlling phages in the soil could be a useful strategy for improving soil nitrogen fixation.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Functional & Evolutionary Entomology, University of Liège, Gembloux Agro-BioTech, Passage des Déportés, 2, 5030 Gembloux, Belgium
| | - Yajiao Wang
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China
| | - Wenchong Shi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Nan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenwen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Frederic Francis
- Functional & Evolutionary Entomology, University of Liège, Gembloux Agro-BioTech, Passage des Déportés, 2, 5030 Gembloux, Belgium.
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
5
|
Lund MC, Hopkins A, Dayaram A, Galatowitsch ML, Stainton D, Harding JS, Lefeuvre P, Zhu Q, Kraberger S, Varsani A. Diverse microviruses circulating in invertebrates within a lake ecosystem. J Gen Virol 2024; 105. [PMID: 39565345 DOI: 10.1099/jgv.0.002049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Microviruses are single-stranded DNA bacteriophages and members of the highly diverse viral family Microviridae. Microviruses have a seemingly ubiquitous presence across animal gut microbiomes and other global environmental ecosystems. Most of the studies on microvirus diversity so far have been associated with vertebrate gut viromes. In this study, we investigate the less explored invertebrate microviruses in a freshwater ecosystem. We analysed microviruses from invertebrates in the Chironomidae, Gastropoda, Odonata, Sphaeriidae, Unionidae clades, as well as from water and benthic sediment sampled from a lake ecosystem in New Zealand. Using gene-sharing networks and an expanded framework of informal and proposed microvirus subfamilies, the 463 distinct microvirus genomes identified in this study were grouped as follows: 382 genomes in the Gokushovirinae subfamily and 47 in the Pichovirinae subfamily clade, 18 belonging to Group D, 3 belonging to the proposed Alpavirinae subfamily clade, 1 belonging to the proposed Occultatumvirinae/Tainavirinae subfamilies clade and 12 belonging to an undefined viral cluster VC 1. Inverse associations of microviruses were noted between environmental benthic sediment samples and the Odonata group, while 'defended' invertebrates in the Gastropoda, Sphaeriidae and Unionidae groups showed correlative associations in the principal coordinate analysis of unique microvirus genomes (each genome sharing <98% genome-wide pairwise identity with each other) across sample types. This study expands the known diversity of microviruses and highlights the diversity of these relatively poorly classified bacteriophages.
Collapse
Affiliation(s)
- Michael C Lund
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Andrew Hopkins
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Anisha Dayaram
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | - Daisy Stainton
- School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Jon S Harding
- School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Pierre Lefeuvre
- CIRAD, UMR PVBMT, College of Agriculture, Can Tho University, Can Tho, Vietnam
| | - Qiyun Zhu
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Simona Kraberger
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Arvind Varsani
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative, Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| |
Collapse
|
6
|
L’Espérance E, Bouyoucef LS, Dozois JA, Yergeau E. Tipping the plant-microbe competition for nitrogen in agricultural soils. iScience 2024; 27:110973. [PMID: 39391734 PMCID: PMC11466649 DOI: 10.1016/j.isci.2024.110973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Nitrogen (N) is the most limiting nutrient in agroecosystems, and its indiscriminate application is at the center of the environmental challenges facing agriculture. To solve this dilemma, crops' nitrogen use efficiency (NUE) needs to increase - in other words, more of the applied nitrogen needs to reach humans. Microbes are the key to cracking this problem. Microbes use nitrogen as an energy source, an electron acceptor, or incorporate it in their biomass. These activities change the form and availability of nitrogen for crops' uptake, impacting its NUE, yields and produce quality. Plants (and microbes) have, however, evolved many mechanisms to compete for soil nitrogen. Understanding and harnessing these competitive mechanisms would enable us to tip the nitrogen balance to the advantage of crops. We will review these competitive mechanisms and highlight some approaches that were applied to reduce microbial competition for N in an agricultural context.
Collapse
Affiliation(s)
- Emmy L’Espérance
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V1B7, Canada
| | - Lilia Sabrina Bouyoucef
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V1B7, Canada
| | - Jessica A. Dozois
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V1B7, Canada
| | - Etienne Yergeau
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V1B7, Canada
| |
Collapse
|
7
|
Huang X, Braga LPP, Ding C, Yang B, Ge T, Di H, He Y, Xu J, Philippot L, Li Y. Impact of Viruses on Prokaryotic Communities and Greenhouse Gas Emissions in Agricultural Soils. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2407223. [PMID: 39373699 DOI: 10.1002/advs.202407223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/09/2024] [Indexed: 10/08/2024]
Abstract
Viruses are abundant and ubiquitous in soil, but their importance in modulating greenhouse gas (GHG) emissions in terrestrial ecosystems remains largely unknown. Here, various loads of viral communities are introduced into paddy soils with different fertilization histories via a reciprocal transplant approach to study the role of viruses in regulating greenhouse gas emissions and prokaryotic communities. The results showed that the addition of viruses has a strong impact on methane (CH4) and nitrous oxide (N2O) emissions and, to a minor extent, carbon dioxide (CO2) emissions, along with dissolved carbon and nitrogen pools, depending on soil fertilization history. The addition of a high viral load resulted in a decrease in microbial biomass carbon (MBC) by 31.4%, with changes in the relative abundance of 16.6% of dominant amplicon sequence variants (ASVs) in comparison to control treatments. More specifically, large effects of viral pressure are observed on some specific microbial communities with decreased relative abundance of prokaryotes that dissimilate sulfur compounds and increased relative abundance of Nanoarchaea. Structural equation modeling further highlighted the differential direct and indirect effects of viruses on CO2, N2O, and CH4 emissions. These findings underpin the understanding of the complex microbe-virus interactions and advance current knowledge on soil virus ecology.
Collapse
Affiliation(s)
- Xing Huang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lucas P P Braga
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Chenxiao Ding
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bokai Yang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hongjie Di
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Laurent Philippot
- Université Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, Dijon, 21000, France
| | - Yong Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Albin D, Ramsahoye M, Kochavi E, Alistar M. PhageScanner: a reconfigurable machine learning framework for bacteriophage genomic and metagenomic feature annotation. Front Microbiol 2024; 15:1446097. [PMID: 39355420 PMCID: PMC11442244 DOI: 10.3389/fmicb.2024.1446097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Bacteriophages are the most prolific organisms on Earth, yet many of their genomes and assemblies from metagenomic sources lack protein sequences with identified functions. While most bacteriophage proteins are structural proteins, categorized as Phage Virion Proteins (PVPs), a considerable number remain unclassified. Complicating matters further, traditional lab-based methods for PVP identification can be tedious. To expedite the process of identifying PVPs, machine-learning models are increasingly being employed. Existing tools have developed models for predicting PVPs from protein sequences as input. However, none of these efforts have built software allowing for both genomic and metagenomic data as input. In addition, there is currently no framework available for easily curating data and creating new types of machine learning models. In response, we introduce PhageScanner, an open-source platform that streamlines data collection for genomic and metagenomic datasets, model training and testing, and includes a prediction pipeline for annotating genomic and metagenomic data. PhageScanner also features a graphical user interface (GUI) for visualizing annotations on genomic and metagenomic data. We further introduce a BLAST-based classifier that outperforms ML-based models and an efficient Long Short-Term Memory (LSTM) classifier. We then showcase the capabilities of PhageScanner by predicting PVPs in six previously uncharacterized bacteriophage genomes. In addition, we create a new model that predicts phage-encoded toxins within bacteriophage genomes, thus displaying the utility of the framework.
Collapse
Affiliation(s)
- Dreycey Albin
- Department of Computer Science, University of Colorado at Boulder, Boulder, CO, United States
| | - Michelle Ramsahoye
- Department of Computer Science, University of Colorado at Boulder, Boulder, CO, United States
| | - Eitan Kochavi
- Department of Computer Science, University of Colorado at Boulder, Boulder, CO, United States
| | - Mirela Alistar
- Department of Computer Science, University of Colorado at Boulder, Boulder, CO, United States
- ATLAS Institute, University of Colorado at Boulder, Boulder, CO, United States
| |
Collapse
|
9
|
Gonzalez V, Abarca-Hurtado J, Arancibia A, Claverías F, Guevara MR, Orellana R. Novel Insights on Extracellular Electron Transfer Networks in the Desulfovibrionaceae Family: Unveiling the Potential Significance of Horizontal Gene Transfer. Microorganisms 2024; 12:1796. [PMID: 39338472 PMCID: PMC11434368 DOI: 10.3390/microorganisms12091796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/30/2024] Open
Abstract
Some sulfate-reducing bacteria (SRB), mainly belonging to the Desulfovibrionaceae family, have evolved the capability to conserve energy through microbial extracellular electron transfer (EET), suggesting that this process may be more widespread than previously believed. While previous evidence has shown that mobile genetic elements drive the plasticity and evolution of SRB and iron-reducing bacteria (FeRB), few have investigated the shared molecular mechanisms related to EET. To address this, we analyzed the prevalence and abundance of EET elements and how they contributed to their differentiation among 42 members of the Desulfovibrionaceae family and 23 and 59 members of Geobacteraceae and Shewanellaceae, respectively. Proteins involved in EET, such as the cytochromes PpcA and CymA, the outer membrane protein OmpJ, and the iron-sulfur cluster-binding CbcT, exhibited widespread distribution within Desulfovibrionaceae. Some of these showed modular diversification. Additional evidence revealed that horizontal gene transfer was involved in the acquiring and losing of critical genes, increasing the diversification and plasticity between the three families. The results suggest that specific EET genes were widely disseminated through horizontal transfer, where some changes reflected environmental adaptations. These findings enhance our comprehension of the evolution and distribution of proteins involved in EET processes, shedding light on their role in iron and sulfur biogeochemical cycling.
Collapse
Affiliation(s)
- Valentina Gonzalez
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay-Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Departamento de Química y Medio Ambiente, Sede Viña del Mar, Universidad Técnica Federico Santa María, Avenida Federico Santa María 6090, Viña del Mar 2520000, Chile
| | - Josefina Abarca-Hurtado
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
| | - Alejandra Arancibia
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
- HUB Ambiental UPLA, Universidad de Playa Ancha, Leopoldo Carvallo 207, Playa Ancha, Valparaíso 2340000, Chile
| | - Fernanda Claverías
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay-Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
| | - Miguel R. Guevara
- Laboratorio de Data Science, Facultad de Ingeniería, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2340000, Chile;
| | - Roberto Orellana
- Laboratorio de Biología Celular y Ecofisiología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Leopoldo Carvallo 270, Valparaíso 2360001, Chile; (V.G.); (J.A.-H.); (A.A.)
- HUB Ambiental UPLA, Universidad de Playa Ancha, Leopoldo Carvallo 207, Playa Ancha, Valparaíso 2340000, Chile
- Núcleo Milenio BioGEM, Valparaíso 2390123, Chile
| |
Collapse
|
10
|
Sbardellati DL, Vannette RL. Targeted viromes and total metagenomes capture distinct components of bee gut phage communities. MICROBIOME 2024; 12:155. [PMID: 39175056 PMCID: PMC11342477 DOI: 10.1186/s40168-024-01875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Despite being among the most abundant biological entities on earth, bacteriophage (phage) remain an understudied component of host-associated systems. One limitation to studying host-associated phage is the lack of consensus on methods for sampling phage communities. Here, we compare paired total metagenomes and viral size fraction metagenomes (viromes) as methods for investigating the dsDNA viral communities associated with the GI tract of two bee species: the European honey bee Apis mellifera and the eastern bumble bee Bombus impatiens. RESULTS We find that viromes successfully enriched for phage, thereby increasing phage recovery, but only in honey bees. In contrast, for bumble bees, total metagenomes recovered greater phage diversity. Across both bee species, viromes better sampled low occupancy phage, while total metagenomes were biased towards sampling temperate phage. Additionally, many of the phage captured by total metagenomes were absent altogether from viromes. Comparing between bees, we show that phage communities in commercially reared bumble bees are significantly reduced in diversity compared to honey bees, likely reflecting differences in bacterial titer and diversity. In a broader context, these results highlight the complementary nature of total metagenomes and targeted viromes, especially when applied to host-associated environments. CONCLUSIONS Overall, we suggest that studies interested in assessing total communities of host-associated phage should consider using both approaches. However, given the constraints of virome sampling, total metagenomes may serve to sample phage communities with the understanding that they will preferentially sample dominant and temperate phage. Video Abstract.
Collapse
Affiliation(s)
| | - Rachel Lee Vannette
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
| |
Collapse
|
11
|
Franco GC, Leiva J, Nand S, Lee DM, Hajkowski M, Dick K, Withers B, Soto L, Mingoa BR, Acholonu M, Hutchins A, Neely L, Anand A. Soil Microbial Communities and Wine Terroir: Research Gaps and Data Needs. Foods 2024; 13:2475. [PMID: 39200402 PMCID: PMC11354026 DOI: 10.3390/foods13162475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Microbes found in soil can have a significant impact on the taste and quality of wine, also referred to as wine terroir. To date, wine terroir has been thought to be associated with the physical and chemical characteristics of the soil. However, there is a fragmented understanding of the contribution of vineyard soil microbes to wine terroir. Additionally, vineyards can play an important role in carbon sequestration since the promotion of healthy soil and microbial communities directly impacts greenhouse gas emissions in the atmosphere. We review 24 studies that explore the role of soil microbial communities in vineyards and their influence on grapevine health, grape composition, and wine quality. Studies spanning 2015 to 2018 laid a foundation by exploring soil microbial biogeography in vineyards, vineyard management effects, and the reservoir function of soil microbes for grape-associated microbiota. On the other hand, studies spanning 2019 to 2023 appear to have a more specific and targeted approach, delving into the relationships between soil microbes and grape metabolites, the microbial distribution at different soil depths, and microbial influences on wine flavor and composition. Next, we identify research gaps and make recommendations for future work. Specifically, most of the studies utilize targeted sequencing (16S, 26S, ITS), which only reveals community composition. Utilizing high-throughput omics approaches such as shotgun sequencing (to infer function) and transcriptomics (for actual function) is vital to determining the specific mechanisms by which soil microbes influence grape chemistry. Going forward, understanding the long-term effects of vineyard management practices and climate change on soil microbiology, grapevine trunk diseases, and the role of bacteriophages in vineyard soil and wine-making would be a fruitful investigation. Overall, the studies presented shed light on the importance of soil microbiomes and their interactions with grapevines in shaping wine production. However, there are still many aspects of this complex ecosystem that require further exploration and understanding to support sustainable viticulture and enhance wine quality.
Collapse
Affiliation(s)
- Gabriela Crystal Franco
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Jasmine Leiva
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Sanjiev Nand
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Danica Marvi Lee
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Michael Hajkowski
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Katherine Dick
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Brennan Withers
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - LuzMaria Soto
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Benjamin-Rafael Mingoa
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Michael Acholonu
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| | - Amari Hutchins
- Department of Biology, Howard University, 2400 6th St NW, Washington, DC 20059, USA;
| | - Lucy Neely
- Neely Winery, Spring Ridge Vineyard, 555 Portola Road, Portola Valley, CA 94028, USA;
| | - Archana Anand
- Department of Biology, College of Science and Engineering, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA; (G.C.F.); (J.L.); (S.N.); (D.M.L.); (M.H.); (K.D.); (B.W.); (L.S.); (B.-R.M.); (M.A.)
| |
Collapse
|
12
|
Carreira C, Lønborg C, Acharya B, Aryal L, Buivydaite Z, Borim Corrêa F, Chen T, Lorenzen Elberg C, Emerson JB, Hillary L, Khadka RB, Langlois V, Mason-Jones K, Netherway T, Sutela S, Trubl G, Wa Kang'eri A, Wang R, White RA, Winding A, Zhao T, Sapkota R. Integrating viruses into soil food web biogeochemistry. Nat Microbiol 2024:10.1038/s41564-024-01767-x. [PMID: 39095499 DOI: 10.1038/s41564-024-01767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2024] [Indexed: 08/04/2024]
Abstract
The soil microbiome is recognized as an essential component of healthy soils. Viruses are also diverse and abundant in soils, but their roles in soil systems remain unclear. Here we argue for the consideration of viruses in soil microbial food webs and describe the impact of viruses on soil biogeochemistry. The soil food web is an intricate series of trophic levels that span from autotrophic microorganisms to plants and animals. Each soil system encompasses contrasting and dynamic physicochemical conditions, with labyrinthine habitats composed of particles. Conditions are prone to shifts in space and time, and this variability can obstruct or facilitate interactions of microorganisms and viruses. Because viruses can infect all domains of life, they must be considered as key regulators of soil food web dynamics and biogeochemical cycling. We highlight future research avenues that will enable a more robust understanding of the roles of viruses in soil function and health.
Collapse
Affiliation(s)
- Cátia Carreira
- Department of Environmental Science, Aarhus University, Roskilde, Denmark.
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal.
| | | | - Basistha Acharya
- Directorate of Agricultural Research, Nepal Agricultural Research Council, Khajura, Nepal
| | - Laxman Aryal
- Nepal Agricultural Research Council, National Wheat Research Program, Bhairahawa, Nepal
| | - Zivile Buivydaite
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Felipe Borim Corrêa
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Tingting Chen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | | | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Luke Hillary
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Ram B Khadka
- National Plant Pathology Research Center, Nepal Agricultural Research Council, Lalitpur, Nepal
| | - Valérie Langlois
- Département de Biochimie, Microbiologie et Bio-informatique, Université Laval, Québec City, Québec, Canada
| | - Kyle Mason-Jones
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Tarquin Netherway
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Suvi Sutela
- Natural Resources Institute Finland, Helsinki, Finland
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | - Ruiqi Wang
- Department of Environmental Biology, Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| | - Richard Allen White
- Computational Intelligence to Predict Health and Environmental Risks, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
- North Carolina Research Campus, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Anne Winding
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Tianci Zhao
- Microbial Ecology Cluster, Genomics Research in Ecology and Evolution in Nature, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Rumakanta Sapkota
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
13
|
Davies T, Cando‐Dumancela C, Liddicoat C, Dresken R, Damen RH, Edwards RA, Ramesh SA, Breed MF. Ecological phage therapy: Can bacteriophages help rapidly restore the soil microbiome? Ecol Evol 2024; 14:e70185. [PMID: 39145040 PMCID: PMC11322231 DOI: 10.1002/ece3.70185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Soil microbiota underpin ecosystem functionality yet are rarely targeted during ecosystem restoration. Soil microbiota recovery following native plant revegetation can take years to decades, while the effectiveness of soil inoculation treatments on microbiomes remains poorly explored. Therefore, innovative restoration treatments that target soil microbiota represent an opportunity to accelerate restoration outcomes. Here, we introduce the concept of ecological phage therapy-the application of phage for the targeted reduction of the most abundant and dominant bacterial taxa present in degraded ecosystems. We propose that naturally occurring bacteriophages-viruses that infect bacteria-could help rapidly shift soil microbiota towards target communities. Bacteriophages sculpt the microbiome by lysis of specific bacteria, and if followed by the addition of reference soil microbiota, such treatments could facilitate rapid reshaping of soil microbiota. Here, we experimentally tested this concept in a pilot study. We collected five replicate pre-treatment degraded soil samples, then three replicate soil samples 48 hours after phage, bacteria, and control treatments. Bacterial 16S rDNA sequencing showed that phage-treated soils had reduced bacterial diversity; however, when we combined ecological phage therapy with reference soil inoculation, we did not see a shift in soil bacterial community composition from degraded soil towards a reference-like community. Our pilot study provides early evidence that ecological phage therapy could help accelerate the reshaping of soil microbiota with the ultimate aim of reducing timeframes for ecosystem recovery. We recommend the next steps for ecological phage therapy be (a) developing appropriate risk assessment and management frameworks, and (b) focussing research effort on its practical application to maximise its accessibility to restoration practitioners.
Collapse
Affiliation(s)
- Tarryn Davies
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | | | - Craig Liddicoat
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Romy Dresken
- School of Biological Sciences and the Environment InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Rudolf H. Damen
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
- HAN University of Applied SciencesNijmegenNetherlands
| | - Robert A. Edwards
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Sunita A. Ramesh
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Martin F. Breed
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| |
Collapse
|
14
|
Bittleston LS. Connecting microbial community assembly and function. Curr Opin Microbiol 2024; 80:102512. [PMID: 39018765 DOI: 10.1016/j.mib.2024.102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
Microbial ecology is moving away from purely descriptive analyses to experiments that can determine the underlying mechanisms driving changes in community assembly and function. More species-rich microbial communities generally have higher functional capabilities depending on if there is positive selection of certain species or complementarity among different species. When building synthetic communities or laboratory enrichment cultures, there are specific choices that can increase the number of species able to coexist. Higher resource complexity or the addition of physical niches are two of the many factors leading to greater biodiversity and associated increases in functional capabilities. We can use principles from community ecology and knowledge of microbial physiology to generate improved microbiomes for use in medicine, agriculture, or environmental management.
Collapse
|
15
|
Zhu Y, Yan S, Chen X, Li Y, Xie S. Thallium spill shifts the structural and functional characteristics of viral communities with different lifestyles in river sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174531. [PMID: 38971241 DOI: 10.1016/j.scitotenv.2024.174531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Thallium (Tl), a highly toxic heavy metal, can affect microbial community, while little is known about its effect on viral community. The present study investigated the variation of viral communities, as well as their interactions with microbial hosts under Tl stress. Tl in sediments significantly altered the composition and diversity of the viral communities, but showed no significant links with the prokaryotic communities, which may reveal a potential discrepancy in the sensitivity of the viral and prokaryotic communities to heavy metal stress. Auxiliary metabolic genes (AMGs) involved in denitrification, methane oxidation and organic sulfur transformation were enriched at T1-contaminated sites, while the abundance of AMGs related to methanogenesis and sulfate reduction were higher at pristine sites. Specially, the enrichment of AMGs involved in assimilatory sulfate reduction in Tl-contaminated sites could possibly reduce Tl bioavailability by enhancing the microbially-driven sulfur cycling to generate sulfides that could be complexed with Tl. Moreover, there was a significantly positive correlation between virus-carrying metal resistant genes and the sedimentary Tl concentration, implying that Tl contamination might enhance the metal resistant potential of the viruses. Serving as the functional gene reservoir, the response of viral AMGs to Tl stress could represent a potential pathway for microorganisms to be adapted to the metal-polluted environments. Our study provided novel insights into the impact of Tl spill on viral communities, shedding light on functional characteristics and the links of virus-host interaction with Tl level.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yangyang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
16
|
Graham EB, Camargo AP, Wu R, Neches RY, Nolan M, Paez-Espino D, Kyrpides NC, Jansson JK, McDermott JE, Hofmockel KS. A global atlas of soil viruses reveals unexplored biodiversity and potential biogeochemical impacts. Nat Microbiol 2024; 9:1873-1883. [PMID: 38902374 PMCID: PMC11222151 DOI: 10.1038/s41564-024-01686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/25/2024] [Indexed: 06/22/2024]
Abstract
Historically neglected by microbial ecologists, soil viruses are now thought to be critical to global biogeochemical cycles. However, our understanding of their global distribution, activities and interactions with the soil microbiome remains limited. Here we present the Global Soil Virus Atlas, a comprehensive dataset compiled from 2,953 previously sequenced soil metagenomes and composed of 616,935 uncultivated viral genomes and 38,508 unique viral operational taxonomic units. Rarefaction curves from the Global Soil Virus Atlas indicate that most soil viral diversity remains unexplored, further underscored by high spatial turnover and low rates of shared viral operational taxonomic units across samples. By examining genes associated with biogeochemical functions, we also demonstrate the viral potential to impact soil carbon and nutrient cycling. This study represents an extensive characterization of soil viral diversity and provides a foundation for developing testable hypotheses regarding the role of the virosphere in the soil microbiome and global biogeochemistry.
Collapse
Affiliation(s)
- Emily B Graham
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
- School of Biological Sciences, Washington State University, Pullman, WA, USA.
| | - Antonio Pedro Camargo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ruonan Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Russell Y Neches
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Matt Nolan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Paez-Espino
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nikos C Kyrpides
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Kirsten S Hofmockel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Agronomy, Iowa State University, Ames, IA, USA
| |
Collapse
|
17
|
Irby I, Broddrick JT. Microbial adaptation to spaceflight is correlated with bacteriophage-encoded functions. Nat Commun 2024; 15:3474. [PMID: 38750067 PMCID: PMC11096397 DOI: 10.1038/s41467-023-42104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 09/27/2023] [Indexed: 05/18/2024] Open
Abstract
Evidence from the International Space Station suggests microbial populations are rapidly adapting to the spacecraft environment; however, the mechanism of this adaptation is not understood. Bacteriophages are prolific mediators of bacterial adaptation on Earth. Here we survey 245 genomes sequenced from bacterial strains isolated on the International Space Station for dormant (lysogenic) bacteriophages. Our analysis indicates phage-associated genes are significantly different between spaceflight strains and their terrestrial counterparts. In addition, we identify 283 complete prophages, those that could initiate bacterial lysis and infect additional hosts, of which 21% are novel. These prophage regions encode functions that correlate with increased persistence in extreme environments, such as spaceflight, to include antimicrobial resistance and virulence, DNA damage repair, and dormancy. Our results correlate microbial adaptation in spaceflight to bacteriophage-encoded functions that may impact human health in spaceflight.
Collapse
Affiliation(s)
- Iris Irby
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, CA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jared T Broddrick
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, CA, USA.
| |
Collapse
|
18
|
Wang Y, Gao Y, Wang X, Lin Y, Xu G, Yang F, Ni K. Insights into the phage community structure and potential function in silage fermentation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120837. [PMID: 38593737 DOI: 10.1016/j.jenvman.2024.120837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
The virus that infects bacteria known as phage, plays a crucial role in the biogeochemical cycling of nutrients. However, the community structure and potential functions of phages in silage fermentation remain largely unexplored. In this study, we utilized viral metagenomics (viromics) to investigate the types, lifestyles, functions, and nutrient utilization patterns of phages in silage. Our findings indicated a high prevalence of annotated phages belonging to Caudovirales and Geplafuvirales, as well as unclassified phages in silage. The predominant host types for these phages were Campylobacterales and Enterobacterales. Virulent phages dominated the silage environment due to their broader range of hosts and enhanced survival capabilities. All identified phages present in silage were found to be non-pathogenic. Although temperate and virulent phages carried distinct genes associated with nutrient cycling processes, the shared genes (prsA) involved in carbon metabolism underscore the potential significance of phages in regulating carbon metabolism in silage. Overall, our findings provide a valuable foundation for further exploring the complex interactions between phages and microorganisms in regulating silage fermentation quality.
Collapse
Affiliation(s)
- Yuan Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Yu Gao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Xin Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Yanli Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Gang Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China; College of Animal Science, Guizhou University, Guiyang, 550025, PR China.
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
19
|
Zhao M, Luo Z, Wang Y, Liao H, Yu Z, Zhou S. Phage lysate can regulate the humification process of composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:221-230. [PMID: 38412754 DOI: 10.1016/j.wasman.2024.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/24/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Phages play a crucial role in orchestrating top-down control within microbial communities, influencing the dynamics of the composting process. Despite this, the impact of phage-induced thermophilic bacterial lysis on humification remains ambiguous. This study investigates the effects of phage lysate, derived explicitly from Geobacillus subterraneus, on simulated composting, employing ultrahigh-resolution mass spectrometry and 16S rRNA sequencing techniques. The results show the significant role of phage lysate in expediting humus formation over 40 days. Notably, the rapid transformation of protein-like precursors released from phage-induced lysis of the host bacterium resulted in a 14.8 % increase in the proportion of lignins/CRAM-like molecules. Furthermore, the phage lysate orchestrated a succession in bacterial communities, leading to the enrichment of core microbes, exemplified by the prevalence of Geobacillus. Through network analysis, it was revealed that these enriched microbes exhibit a capacity to convert protein and lignin into essential building blocks such as amino acids and phenols. Subsequently, these components were polymerized into humus, aligning with the phenol-protein theory. These findings enhance our understanding of the intricate microbial interactions during composting and provide a scientific foundation for developing engineering-ready composting humification regulation technologies.
Collapse
Affiliation(s)
- Meihua Zhao
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhibin Luo
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yueqiang Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Shungui Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
20
|
Schniete JK, Brüser T, Horn MA, Tschowri N. Specialized biopolymers: versatile tools for microbial resilience. Curr Opin Microbiol 2024; 77:102405. [PMID: 38070462 DOI: 10.1016/j.mib.2023.102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 02/12/2024]
Abstract
Bacteria produce a wide range of specialized biopolymers that can be classified into polysaccharides, polyamides, and polyesters and are considered to fulfill storage functions. In this review, we highlight recent developments in the field linking metabolism of biopolymers to stress and signaling physiology of the producers and demonstrating that biopolymers contribute to bacterial stress resistance and shape structure and composition of microenvironments. While specialized biopolymers are currently the focus of much attention in biotechnology as innovative and biodegradable materials, our understanding about the regulation and functions of these valuable compounds for the producers, microbial communities, and our environment is still very limited. Addressing open questions about signals, mechanisms, and functions in the area of biopolymers harbors potential for exciting discoveries with high relevance for biotechnology and fundamental research.
Collapse
Affiliation(s)
- Jana K Schniete
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany.
| | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Marcus A Horn
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Natalia Tschowri
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany
| |
Collapse
|
21
|
Huang X, Wang J, Dumack K, Anantharaman K, Ma B, He Y, Liu W, Di H, Li Y, Xu J. Temperature-dependent trophic associations modulate soil bacterial communities along latitudinal gradients. THE ISME JOURNAL 2024; 18:wrae145. [PMID: 39113591 PMCID: PMC11334336 DOI: 10.1093/ismejo/wrae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/13/2024] [Indexed: 08/21/2024]
Abstract
Understanding the environmental and biological mechanisms shaping latitudinal patterns in microbial diversity is challenging in the field of ecology. Although multiple hypotheses have been proposed to explain these patterns, a consensus has rarely been reached. Here, we conducted a large-scale field survey and microcosm experiments to investigate how environmental heterogeneity and putative trophic interactions (exerted by protist-bacteria associations and T4-like virus-bacteria associations) affect soil bacterial communities along a latitudinal gradient. We found that the microbial latitudinal diversity was kingdom dependent, showing decreasing, clumped, and increasing trends in bacteria, protists, and T4-like viruses, respectively. Climatic and edaphic drivers played predominant roles in structuring the bacterial communities; the intensity of the climatic effect increased sharply from 30°N to 32°N, whereas the intensity of the edaphic effect remained stable. Biotic associations were also essential in shaping the bacterial communities, with protist-bacteria associations showing a quadratic distribution, whereas virus-bacteria associations were significant only at high latitudes. The microcosm experiments further revealed that the temperature component, which is affiliated with climate conditions, is the primary regulator of trophic associations along the latitudinal gradient. Overall, our study highlights a previously underestimated mechanism of how the putative biotic interactions influence bacterial communities and their response to environmental gradients.
Collapse
Affiliation(s)
- Xing Huang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Kenneth Dumack
- Institute of Zoology, Terrestrial Ecology, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Bin Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Di
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
22
|
López-Beltrán A, Botelho J, Iranzo J. Dynamics of CRISPR-mediated virus-host interactions in the human gut microbiome. THE ISME JOURNAL 2024; 18:wrae134. [PMID: 39023219 PMCID: PMC11307328 DOI: 10.1093/ismejo/wrae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/07/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Arms races between mobile genetic elements and prokaryotic hosts are major drivers of ecological and evolutionary change in microbial communities. Prokaryotic defense systems such as CRISPR-Cas have the potential to regulate microbiome composition by modifying the interactions among bacteria, plasmids, and phages. Here, we used longitudinal metagenomic data from 130 healthy and diseased individuals to study how the interplay of genetic parasites and CRISPR-Cas immunity reflects on the dynamics and composition of the human gut microbiome. Based on the coordinated study of 80 000 CRISPR-Cas loci and their targets, we show that CRISPR-Cas immunity effectively modulates bacteriophage abundances in the gut. Acquisition of CRISPR-Cas immunity typically leads to a decrease in the abundance of lytic phages but does not necessarily cause their complete disappearance. Much smaller effects are observed for lysogenic phages and plasmids. Conversely, phage-CRISPR interactions shape bacterial microdiversity by producing weak selective sweeps that benefit immune host lineages. We also show that distal (and chronologically older) regions of CRISPR arrays are enriched in spacers that are potentially functional and target crass-like phages and local prophages. This suggests that exposure to reactivated prophages and other endemic viruses is a major selective pressure in the gut microbiome that drives the maintenance of long-lasting immune memory.
Collapse
Affiliation(s)
- Adrián López-Beltrán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Parque Científico y Tecnológico UPM, Campus de Montegancedo, 28223, Madrid, Spain
| | - João Botelho
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Parque Científico y Tecnológico UPM, Campus de Montegancedo, 28223, Madrid, Spain
| | - Jaime Iranzo
- Centro de Astrobiología (CAB), CSIC-INTA, Ctra. de Torrejón a Ajalvir Km 4, 28850, Torrejón de Ardoz, Madrid, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Campus Río Ebro, 50018, Zaragoza, Spain
| |
Collapse
|
23
|
Hassim A, Lekota KE. Isolation of Bacteriophages from Soil Samples in a Poorly Equipped Field Laboratory in Kruger National Park. Methods Mol Biol 2024; 2738:91-103. [PMID: 37966593 DOI: 10.1007/978-1-0716-3549-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bacteriophages are viruses that infect bacteria. Bacteriophages are ubiquitous and are the most abundant organisms on the planet. Despite this, very little is known about the influence and effect of bacteriophages within terrestrial environments. Additionally, the natural soil microbiome profiles remain largely unexplored. Here we describe protocols that can be used, in field or rural laboratories containing only basic equipment, to make bacteriophage isolation more accessible and to facilitate such research.
Collapse
Affiliation(s)
- Ayesha Hassim
- Department of Veterinary Tropical Disease, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Kgaugelo Edward Lekota
- Unit for Environmental Sciences and Management, Microbiology, North West University, Potchefstroom, South Africa
| |
Collapse
|
24
|
Merges D, Schmidt A, Schmitt I, Neuschulz EL, Dal Grande F, Bálint M. Metatranscriptomics reveals contrasting effects of elevation on the activity of bacteria and bacterial viruses in soil. Mol Ecol 2023; 32:6552-6563. [PMID: 36321191 DOI: 10.1111/mec.16756] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 11/21/2022]
Abstract
Soil microbial diversity affects ecosystem functioning and global biogeochemical cycles. Soil bacterial communities catalyse a diversity of biogeochemical reactions and have thus sparked considerable scientific interest. One driver of bacterial community dynamics in natural ecosystems has so far been largely neglected: the predator-prey interactions between bacterial viruses (bacteriophages) and bacteria. To generate ground level knowledge on environmental drivers of these particular predator-prey dynamics, we propose an activity-based ecological framework to simultaneous capture community dynamics of bacteria and bacteriophages in soils. An ecological framework and specifically the analyses of community dynamics across latitudinal and elevational gradients have been widely used in ecology to understand community-wide responses of innumerable taxa to environmental change, in particular to climate. Here, we tested the hypothesis that the activity of bacteria and bacteriophages codeclines across an elevational gradient. We used metatranscriptomics to investigate bacterial and bacteriophage activity patterns at five sites across 400 elevational metres in the Swiss Alps in 2015 and 2017. We found that metabolic activity (transcription levels) of bacteria declined significantly with increasing elevation, but activity of bacteriophages did not. We showed that bacteriophages are consistently active in soil along the entire gradient, making bacteriophage activity patterns divergent from that of their putative bacterial prey. Future efforts will be necessary to link the environment-activity relationship to predator-prey dynamics, and to understand the magnitude of viral contributions to carbon, nitrogen and phosphorus cycling when infection causes bacterial cell death, a process that may represent an overlooked component of soil biogeochemical cycles.
Collapse
Affiliation(s)
- Dominik Merges
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Alexandra Schmidt
- Department of Biology, Limnological Institute, University Konstanz, Konstanz, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Eike Lena Neuschulz
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Department of Biology, University of Padova, Padua, Italy
| | - Miklós Bálint
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Institute of Insect Biotechnology, Justus Liebig University Gießen, Gießen, Germany
| |
Collapse
|
25
|
Gundersen MS, Fiedler AW, Bakke I, Vadstein O. The impact of phage treatment on bacterial community structure is minor compared to antibiotics. Sci Rep 2023; 13:21032. [PMID: 38030754 PMCID: PMC10687242 DOI: 10.1038/s41598-023-48434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/27/2023] [Indexed: 12/01/2023] Open
Abstract
Phage treatment is suggested as an alternative to antibiotics; however, there is limited knowledge of how phage treatment impacts resident bacterial community structure. When phages induce bacterial lysis, resources become available to the resident community. Therefore, the density of the target bacterium is essential to consider when investigating the effect of phage treatment. This has never been studied. Thus, we invaded microcosms containing a lake-derived community with Flavobacterium columnare strain Fc7 at no, low or high densities, and treated them with either the bacteriophage FCL-2, the antibiotic Penicillin or kept them untreated (3 × 3 factorial design). The communities were sampled over the course of one week, and bacterial community composition and density were examined by 16S rDNA amplicon sequencing and flow cytometry. We show that phage treatment had minor impacts on the resident community when the host F. columnare Fc7 of the phage was present, as it caused no significant differences in bacterial density α- and β-diversity, successional patterns, and community assembly. However, a significant change was observed in community composition when the phage host was absent, mainly driven by a substantial increase in Aquirufa. In contrast, antibiotics induced significant changes in all community characteristics investigated. The most crucial finding was a bloom of γ-proteobacteria and a shift from selection to ecological drift dominating community assembly. This study investigated whether the amount of a bacterial host impacted the effect of phage treatment on community structure. We conclude that phage treatment did not significantly affect the diversity or composition of the bacterial communities when the phage host was present, but introduced changes when the host was absent. In contrast, antibiotic treatment was highly disturbing to community structure. Moreover, higher amounts of the bacterial host of the phage increased the contribution of stochastic community assembly and resulted in a feast-famine like response in bacterial density in all treatment groups. This finding emphasises that the invader density used in bacterial invasion studies impacts the experimental reproducibility. Overall, this study supports that phage treatment is substantially less disturbing to bacterial communities than antibiotic treatments.
Collapse
Affiliation(s)
- Madeleine S Gundersen
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Alexander W Fiedler
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ingrid Bakke
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Olav Vadstein
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
26
|
Van Cauwenberghe J, Simms EL. How might bacteriophages shape biological invasions? mBio 2023; 14:e0188623. [PMID: 37812005 PMCID: PMC10653932 DOI: 10.1128/mbio.01886-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Invasions by eukaryotes dependent on environmentally acquired bacterial mutualists are often limited by the ability of bacterial partners to survive and establish free-living populations. Focusing on the model legume-rhizobium mutualism, we apply invasion biology hypotheses to explain how bacteriophages can impact the competitiveness of introduced bacterial mutualists. Predicting how phage-bacteria interactions affect invading eukaryotic hosts requires knowing the eco-evolutionary constraints of introduced and native microbial communities, as well as their differences in abundance and diversity. By synthesizing research from invasion biology, as well as bacterial, viral, and community ecology, we create a conceptual framework for understanding and predicting how phages can affect biological invasions through their effects on bacterial mutualists.
Collapse
Affiliation(s)
- Jannick Van Cauwenberghe
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Ellen L. Simms
- Department of Integrative Biology, University of California, Berkeley, California, USA
| |
Collapse
|
27
|
Han M, Niu X, Xiong G, Ruan C, Chen G, Wu H, Liu Y, Zhu K, Wang G. Isolation, characterization and genomic analysis of the novel Arthrobacter sp. phage SWEP2. Arch Virol 2023; 168:276. [PMID: 37864004 DOI: 10.1007/s00705-023-05898-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/01/2023] [Indexed: 10/22/2023]
Abstract
A new virulent phage, SWEP2, infecting the Arthrobacter sp. 5B strain, was isolated from black soil samples in northeastern China. SWEP2 has a latent period of 80 min and a burst size of 45 PFU (evaluated at an MOI of 0.1). Genomic analysis revealed that the 43,398-bp dsDNA genome of phage SWEP2 contains 64 open reading frames (ORFs) and one tRNA gene. Phylogenetic analysis indicated a close relationship between SWEP2 and Arthrobacter phage Liebe, with 82.98% identity and a query coverage of 48%. Based on its distinct phenotypic and genetic characteristics, SWEP2 is identified as a novel Arthrobacter phage.
Collapse
Affiliation(s)
- Miao Han
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xinyao Niu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guangzhou Xiong
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chujin Ruan
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
- Department of Environmental Microbiology, Eawag, 8600, Dübendorf, Switzerland
| | - Guowei Chen
- School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hanqing Wu
- The Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Ying Liu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kun Zhu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Gang Wang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China.
- National Black Soil and Agriculture Research, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
28
|
Georjon H, Bernheim A. The highly diverse antiphage defence systems of bacteria. Nat Rev Microbiol 2023; 21:686-700. [PMID: 37460672 DOI: 10.1038/s41579-023-00934-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 09/14/2023]
Abstract
Bacteria and their viruses have coevolved for billions of years. This ancient and still ongoing arms race has led bacteria to develop a vast antiphage arsenal. The development of high-throughput screening methods expanded our knowledge of defence systems from a handful to more than a hundred systems, unveiling many different molecular mechanisms. These findings reveal that bacterial immunity is much more complex than previously thought. In this Review, we explore recently discovered bacterial antiphage defence systems, with a particular focus on their molecular diversity, and discuss the ecological and evolutionary drivers and implications of the existing diversity of antiphage defence mechanisms.
Collapse
Affiliation(s)
- Héloïse Georjon
- Molecular Diversity of Microbes Lab, Institut Pasteur, Université Paris Cité, INSERM, Paris, France
| | - Aude Bernheim
- Molecular Diversity of Microbes Lab, Institut Pasteur, Université Paris Cité, INSERM, Paris, France.
| |
Collapse
|
29
|
Carlson HK, Piya D, Moore ML, Magar RT, Elisabeth NH, Deutschbauer AM, Arkin AP, Mutalik VK. Geochemical constraints on bacteriophage infectivity in terrestrial environments. ISME COMMUNICATIONS 2023; 3:78. [PMID: 37596312 PMCID: PMC10439110 DOI: 10.1038/s43705-023-00297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
Lytic phages can be potent and selective inhibitors of microbial growth and can have profound impacts on microbiome composition and function. However, there is uncertainty about the biogeochemical conditions under which phage predation modulates microbial ecosystem function, particularly in terrestrial systems. Ionic strength is critical for infection of bacteria by many phages, but quantitative data is limited on the ion thresholds for phage infection that can be compared with environmental ion concentrations. Similarly, while carbon composition varies in the environment, we do not know how this variability influences the impact of phage predation on microbiome function. Here, we measured the half-maximal effective concentrations (EC50) of 80 different inorganic ions for the infection of E. coli with two canonical dsDNA and ssRNA phages, T4 and MS2, respectively. Many alkaline earth metals and alkali metals enabled lytic infection but the ionic strength thresholds varied for different ions between phages. Additionally, using a freshwater nitrate-reducing microbiome, we found that the ability of lytic phages to influence nitrate reduction end-products depended upon the carbon source as well as ionic strength. For all phage:host pairs, the ion EC50s for phage infection exceeded the ion concentrations found in many terrestrial freshwater systems. Thus, our findings support a model where phages most influence terrestrial microbial functional ecology in hot spots and hot moments such as metazoan guts, drought influenced soils, or biofilms where ion concentration is locally or transiently elevated and nutrients are available to support the growth of specific phage hosts.
Collapse
Affiliation(s)
- Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA.
| | - Denish Piya
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Madeline L Moore
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Roniya T Magar
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Nathalie H Elisabeth
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Vivek K Mutalik
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA.
| |
Collapse
|
30
|
de Sousa DM, Janssen L, Rosa RB, Belmok A, Yamada JK, Corrêa RFT, de Souza Andrade M, Inoue-Nagata AK, Ribeiro BM, de Carvalho Pontes N. Isolation, characterization, and evaluation of putative new bacteriophages for controlling bacterial spot on tomato in Brazil. Arch Virol 2023; 168:222. [PMID: 37548749 DOI: 10.1007/s00705-023-05846-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023]
Abstract
Bacterial spot is a highly damaging tomato disease caused by members of several species of the genus Xanthomonas. Bacteriophages have been studied for their potential use in the biological control of bacterial diseases. In the current study, bacteriophages were obtained from soil and tomato leaves in commercial fields in Brazil with the aim of obtaining biological control agents against bacterial spot. Phage isolation was carried out by co-cultivation with isolates of Xanthomonas euvesicatoria pv. perforans, which was prevalent in the collection areas. In a host range evaluation, none of the phage isolates was able to induce a lytic cycle in all of the bacterial isolates tested. In in vivo tests, treatment of susceptible bacterial isolates with the corresponding phage prior to application to tomato plants led to a reduction in the severity of the resulting disease. The level of disease control provided by phage application was equal to or greater than that achieved using copper hydroxide. Electron microscopy analysis showed that all of the phages had similar morphology, with head and tail structures similar to those of viruses belonging to the class Caudoviricetes. The presence of short, non-contractile tubular tails strongly suggested that these phages belong to the family Autographiviridae. This was confirmed by phylogenetic analysis, which further revealed that they all belong to the genus Pradovirus. The phages described here are closely related to each other and potentially belong to a new species within the genus. These phages will be evaluated in future studies against other tomato xanthomonad strains to assess their potential as biological control agents.
Collapse
Affiliation(s)
- Dayane Maria de Sousa
- Programa de Pós-Graduação em Olericultura, Instituto Federal Goiano (IF Goiano), Morrinhos, GO, Brazil
| | - Luis Janssen
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília (UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | - Raphael Barboza Rosa
- Programa de Pós-Graduação em Olericultura, Instituto Federal Goiano (IF Goiano), Morrinhos, GO, Brazil
| | - Aline Belmok
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília (UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | - Jaqueline Kiyomi Yamada
- Programa de Pós-Graduação em Olericultura, Instituto Federal Goiano (IF Goiano), Morrinhos, GO, Brazil
| | - Roberto Franco Teixeira Corrêa
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília (UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | - Miguel de Souza Andrade
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília (UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | | | - Bergmann Morais Ribeiro
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília (UnB), Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | - Nadson de Carvalho Pontes
- Programa de Pós-Graduação em Olericultura, Instituto Federal Goiano (IF Goiano), Morrinhos, GO, Brazil.
| |
Collapse
|
31
|
Zhu Y, Zhang Y, Yan S, Chen X, Xie S. Viral community structure and functional potential vary with lifestyle and altitude in soils of Mt. Everest. ENVIRONMENT INTERNATIONAL 2023; 178:108055. [PMID: 37356309 DOI: 10.1016/j.envint.2023.108055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
More and more focus has been placed on the processes by which viruses interact with bacteria to influence the biogeochemical cycles. The intricacy of soil matrix and the incompleteness of databases, however, constrains the investigation on the mechanisms of soil viruses exerting ecological functions. The modification of ICTV classification system in 2021 was also a huge shock to the results of the existing studies on virome. We used viral metagenomes combined with soil properties to investigate the viral community composition and auxiliary metabolic genes (AMGs) profiles of various lifestyles in soils of Mount Everest at different altitudes. Viral lifestyles and soil nutrient levels were found to significantly influence the diversity and composition of viral communities. Temperate virus lifestyle dominated in high-altitude soils with lower level of nutrients because of its stronger survival adaptability, and the structural and functional diversity of viral communities was positively correlated with the contents of nutrients (total carbon and total nitrogen). The primary types of AMGs carried by temperate and virulent viruses differed, while a variety of genes involved in carbon metabolism highlighted the potential importance of viruses in the soil carbon cycle of Mount Everest. Moreover, the abundance of AMGs encoding carbohydrate-active enzymes had a significant and positive correlation with soil C/N ratio. Overall, these findings provide a context for further exploration on the regulatory mechanisms of viruses in carbon cycle via interactions with microorganisms.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yi Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
32
|
Tong D, Wang Y, Yu H, Shen H, Dahlgren RA, Xu J. Viral lysing can alleviate microbial nutrient limitations and accumulate recalcitrant dissolved organic matter components in soil. THE ISME JOURNAL 2023; 17:1247-1256. [PMID: 37248401 PMCID: PMC10356844 DOI: 10.1038/s41396-023-01438-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Viruses are critical for regulating microbial communities and biogeochemical processes affecting carbon/nutrient cycling. However, the role of soil phages in controlling microbial physiological traits and intrinsic dissolved organic matter (DOM) properties remains largely unknown. Herein, microcosm experiments with different soil phage concentrates (including no-added phages, inactive phages, and three dilutions of active phages) at two temperatures (15 °C and 25 °C) were conducted to disclose the nutrient and DOM dynamics associated with viral lysing. Results demonstrated three different phases of viral impacts on CO2 emission at both temperatures, and phages played a role in maintaining Q10 within bounds. At both temperatures, microbial nutrient limitations (especially P limitation) were alleviated by viral lysing as determined by extracellular enzyme activity (decreased Vangle with active phages). Additionally, the re-utilization of lysate-derived DOM by surviving microbes stimulated an increase of microbial metabolic efficiency and recalcitrant DOM components (e.g., SUV254, SUV260 and HIX). This research provides direct experimental evidence that the "viral shuttle" exists in soils, whereby soil phages increase recalcitrant DOM components. Our findings advance the understanding of viral controls on soil biogeochemical processes, and provide a new perspective for assessing whether soil phages provide a net "carbon sink" vs. "carbon source" in soils.
Collapse
Affiliation(s)
- Di Tong
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Youjing Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Haodan Yu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Haojie Shen
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
33
|
Imran A, Shehzadi U, Islam F, Afzaal M, Ali R, Ali YA, Chauhan A, Biswas S, Khurshid S, Usman I, Hussain G, Zahra SM, Shah MA, Rasool A. Bacteriophages and food safety: An updated overview. Food Sci Nutr 2023; 11:3621-3630. [PMID: 37457180 PMCID: PMC10345663 DOI: 10.1002/fsn3.3360] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 07/18/2023] Open
Abstract
Despite significant advances in pathogen survival and food cleaning measures, foodborne diseases continue to be the main reason for hospitalization or other fatality globally. Conventional antibacterial techniques including pasteurization, pressurized preparation, radioactivity, as well as synthetic antiseptics could indeed decrease bacterial activity in nutrition to variable levels, despite their serious downsides like an elevated upfront outlay, the possibility of accessing malfunctions due to one corrosiveness, as well as an adverse effect upon those the foodstuffs' organoleptic properties and maybe their nutritional significance. Greatest significantly, these cleansing methods eliminate all contaminants, including numerous (often beneficial) bacteria found naturally in food. A huge amount of scientific publication that discussed the application of virus bioremediation to treat a multitude of pathogenic bacteria in meals spanning between prepared raw food to fresh fruit and vegetables although since initial idea through using retroviruses on meals. Furthermore, the quantity of widely viable bacteriophage-containing medicines licensed for use in health and safety purposes has continuously expanded. Bacteriophage bio-control, a leafy and ordinary technique that employs lytic bacteriophages extracted from the atmosphere to selectively target pathogenic bacteria and remove meaningfully decrease their stages meals, is one potential remedy that solves some of these difficulties. It has been suggested that applying bacteriophages to food is a unique method for avoiding bacterial development in vegetables. Because of their selectivity, security, stability, and use, bacteriophages are desirable. Phages have been utilized in post-harvest activities, either alone or in combination with antimicrobial drugs, since they are effective, strain-specific, informal to split and manipulate. In this review to ensure food safety, it may be viable to use retroviruses as a spontaneous treatment in the thread pollution of fresh picked fruits and vegetables, dairy, and convenience foods.
Collapse
Affiliation(s)
- Ali Imran
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Umber Shehzadi
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Fakhar Islam
- Department of Food Sciences Government College University Faisalabad Pakistan
- Department of Clinical Nutrition NUR International University Lahore Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Rehman Ali
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Yuosra Amer Ali
- Department of Food Sciences, College of Agriculture and Forestry University of Mosul Mosul Iraq
| | - Anamika Chauhan
- Department of Home Science Chaman Lal Mahavidyalaya Landhora Haridwar India
- Sri Dev Suman University Tehri India
| | - Sunanda Biswas
- Department of Food & Nutrition Acharya Prafulla Chandra College Kolkata India
| | - Sadaf Khurshid
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Ifrah Usman
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences Government College University Faisalabad Pakistan
| | - Syeda Mahvish Zahra
- Department of Environmental Design, Health and Nutritional Sciences Allama Iqbal Open University Islamabad Pakistan
- Institute of Food Science and Nutrition University of Sargodha Sargodha Pakistan
| | - Mohd Asif Shah
- Adjunct Faculty University Center for Research & Development, Chandigarh University Mohali India
| | - Adil Rasool
- Department of Management Bakhtar University Kabul Afghanistan
| |
Collapse
|
34
|
Liao H, Liu C, Ai C, Gao T, Yang QE, Yu Z, Gao S, Zhou S, Friman VP. Mesophilic and thermophilic viruses are associated with nutrient cycling during hyperthermophilic composting. THE ISME JOURNAL 2023; 17:916-930. [PMID: 37031344 PMCID: PMC10202948 DOI: 10.1038/s41396-023-01404-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/10/2023]
Abstract
While decomposition of organic matter by bacteria plays a major role in nutrient cycling in terrestrial ecosystems, the significance of viruses remains poorly understood. Here we combined metagenomics and metatranscriptomics with temporal sampling to study the significance of mesophilic and thermophilic bacteria and their viruses on nutrient cycling during industrial-scale hyperthermophilic composting (HTC). Our results show that virus-bacteria density dynamics and activity are tightly coupled, where viruses specific to mesophilic and thermophilic bacteria track their host densities, triggering microbial community succession via top-down control during HTC. Moreover, viruses specific to mesophilic bacteria encoded and expressed several auxiliary metabolic genes (AMGs) linked to carbon cycling, impacting nutrient turnover alongside bacteria. Nutrient turnover correlated positively with virus-host ratio, indicative of a positive relationship between ecosystem functioning, viral abundances, and viral activity. These effects were predominantly driven by DNA viruses as most detected RNA viruses were associated with eukaryotes and not associated with nutrient cycling during the thermophilic phase of composting. Our findings suggest that DNA viruses could drive nutrient cycling during HTC by recycling bacterial biomass through cell lysis and by expressing key AMGs. Viruses could hence potentially be used as indicators of microbial ecosystem functioning to optimize productivity of biotechnological and agricultural systems.
Collapse
Affiliation(s)
- Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chaofan Ai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tian Gao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiu-E Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhen Yu
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Shaoming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Ville-Petri Friman
- Department of Biology, University of York, Wentworth Way, YO10 5DD, York, UK.
- Department of Microbiology, University of Helsinki, Helsinki, 00014, Finland.
| |
Collapse
|
35
|
Yao K, Cai A, Han J, Che R, Hao J, Wang F, Ye M, Jiang X. The characteristics and metabolic potentials of the soil bacterial community of two typical military demolition ranges in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162562. [PMID: 36871728 DOI: 10.1016/j.scitotenv.2023.162562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
The response mechanism of soil microbiota in military polluted sites can effectively indicate the biotoxicity of ammunition. In this study, two military demolition ranges polluted soils of grenades and bullet were collected. According to high-throughput sequencing, after grenade explosion, the dominant bacteria in Site 1 (S1) are Proteobacteria (97.29 %) and Actinobacteria (1.05 %). The dominant bacterium in Site 2 (S2) is Proteobacteria (32.95 %), followed by Actinobacteria (31.17 %). After the military exercise, the soil bacterial diversity index declined significantly, and the bacterial communities interacted more closely. The indigenous bacteria in S1 were influenced more compared to those in S2. According to the environmental factor analysis, the bacteria composition can easily be influenced by heavy metals and organic pollutants, including Cu, Pb, Cr and Trinitrotoluene (TNT). About 269 metabolic pathways annotated in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database were detected in bacterial communities, including nutrition metabolism (C, 4.09 %; N, 1.14 %; S, 0.82 %), external pollutant metabolism (2.52 %) and heavy metal detoxication (2.12 %), respectively. The explosion of ammunition changes the basic metabolism of indigenous bacteria, and heavy metal stress inhibits the TNT degradation ability of bacterial communities. The pollution degree and community structure influence the metal detoxication strategy at the contaminated sites together. Heavy metal ions in S1 are mainly discharged through membrane transporters, while heavy metal ions in S2 are mainly degraded through lipid metabolism and biosynthesis of secondary metabolites. The results obtained in this study can provide deep insight into the response mechanism of the soil bacterial community in military demolition ranges with composite pollutions of heavy metals and organic substances. CAPSULE: Heavy metal stress changed the composition, interaction and metabolism of indigenous communities in military demolition ranges, especially the TNT degradation process.
Collapse
Affiliation(s)
- Keyu Yao
- National Engineering Laboratory of Soil Nutrients Management, Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Anjuan Cai
- Jiangsu Environmental Engineering Technology Co., Ltd, 210019, China
| | - Jin Han
- Jiangsu Environmental Engineering Technology Co., Ltd, 210019, China
| | - Ruijie Che
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Jiarong Hao
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Fenghe Wang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Mao Ye
- National Engineering Laboratory of Soil Nutrients Management, Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xin Jiang
- National Engineering Laboratory of Soil Nutrients Management, Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
36
|
Ashy RA, Jalal RS, Sonbol HS, Alqahtani MD, Sefrji FO, Alshareef SA, Alshehrei FM, Abuauf HW, Baz L, Tashkandi MA, Hakeem IJ, Refai MY, Abulfaraj AA. Functional annotation of rhizospheric phageome of the wild plant species Moringa oleifera. Front Microbiol 2023; 14:1166148. [PMID: 37260683 PMCID: PMC10227523 DOI: 10.3389/fmicb.2023.1166148] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/10/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction The study aims to describe phageome of soil rhizosphere of M.oleifera in terms of the genes encoding CAZymes and other KEGG enzymes. Methods Genes of the rhizospheric virome of the wild plant species Moringa oleifera were investigated for their ability to encode useful CAZymes and other KEGG (Kyoto Encyclopedia of Genes and Genomes) enzymes and to resist antibiotic resistance genes (ARGs) in the soil. Results Abundance of these genes was higher in the rhizospheric microbiome than in the bulk soil. Detected viral families include the plant viral family Potyviridae as well as the tailed bacteriophages of class Caudoviricetes that are mainly associated with bacterial genera Pseudomonas, Streptomyces and Mycobacterium. Viral CAZymes in this soil mainly belong to glycoside hydrolase (GH) families GH43 and GH23. Some of these CAZymes participate in a KEGG pathway with actions included debranching and degradation of hemicellulose. Other actions include biosynthesizing biopolymer of the bacterial cell wall and the layered cell wall structure of peptidoglycan. Other CAZymes promote plant physiological activities such as cell-cell recognition, embryogenesis and programmed cell death (PCD). Enzymes of other pathways help reduce the level of soil H2O2 and participate in the biosynthesis of glycine, malate, isoprenoids, as well as isoprene that protects plant from heat stress. Other enzymes act in promoting both the permeability of bacterial peroxisome membrane and carbon fixation in plants. Some enzymes participate in a balanced supply of dNTPs, successful DNA replication and mismatch repair during bacterial cell division. They also catalyze the release of signal peptides from bacterial membrane prolipoproteins. Phages with the most highly abundant antibiotic resistance genes (ARGs) transduce species of bacterial genera Pseudomonas, Streptomyces, and Mycobacterium. Abundant mechanisms of antibiotic resistance in the rhizosphere include "antibiotic efflux pump" for ARGs soxR, OleC, and MuxB, "antibiotic target alteration" for parY mutant, and "antibiotic inactivation" for arr-1. Discussion These ARGs can act synergistically to inhibit several antibiotics including tetracycline, penam, cephalosporin, rifamycins, aminocoumarin, and oleandomycin. The study highlighted the issue of horizontal transfer of ARGs to clinical isolates and human gut microbiome.
Collapse
Affiliation(s)
- Ruba A. Ashy
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Rewaa S. Jalal
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Hana S. Sonbol
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mashael D. Alqahtani
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fatmah O. Sefrji
- Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Sahar A. Alshareef
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatimah M. Alshehrei
- Department of Biology, Jumum College University, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Haneen W. Abuauf
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Lina Baz
- Department of Biochemistry, Faculty of Science, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Manal A. Tashkandi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Israa J. Hakeem
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammed Y. Refai
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Aala A. Abulfaraj
- Biological Sciences Department, College of Science & Arts, King AbdulAziz University, Rabigh, Saudi Arabia
| |
Collapse
|
37
|
Abstract
Soil viruses are highly abundant and have important roles in the regulation of host dynamics and soil ecology. Climate change is resulting in unprecedented changes to soil ecosystems and the life forms that reside there, including viruses. In this Review, we explore our current understanding of soil viral diversity and ecology, and we discuss how climate change (such as extended and extreme drought events or more flooding and altered precipitation patterns) is influencing soil viruses. Finally, we provide our perspective on future research needs to better understand how climate change will impact soil viral ecology.
Collapse
Affiliation(s)
- Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Ruonan Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
38
|
Nelkner J, Huang L, Lin TW, Schulz A, Osterholz B, Henke C, Blom J, Pühler A, Sczyrba A, Schlüter A. Abundance, classification and genetic potential of Thaumarchaeota in metagenomes of European agricultural soils: a meta-analysis. ENVIRONMENTAL MICROBIOME 2023; 18:26. [PMID: 36998097 PMCID: PMC10064710 DOI: 10.1186/s40793-023-00479-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND For a sustainable production of food, research on agricultural soil microbial communities is inevitable. Due to its immense complexity, soil is still some kind of black box. Soil study designs for identifying microbiome members of relevance have various scopes and focus on particular environmental factors. To identify common features of soil microbiomes, data from multiple studies should be compiled and processed. Taxonomic compositions and functional capabilities of microbial communities associated with soils and plants have been identified and characterized in the past few decades. From a fertile Loess-Chernozem-type soil located in Germany, metagenomically assembled genomes (MAGs) classified as members of the phylum Thaumarchaeota/Thermoproteota were obtained. These possibly represent keystone agricultural soil community members encoding functions of relevance for soil fertility and plant health. Their importance for the analyzed microbiomes is corroborated by the fact that they were predicted to contribute to the cycling of nitrogen, feature the genetic potential to fix carbon dioxide and possess genes with predicted functions in plant-growth-promotion (PGP). To expand the knowledge on soil community members belonging to the phylum Thaumarchaeota, we conducted a meta-analysis integrating primary studies on European agricultural soil microbiomes. RESULTS Taxonomic classification of the selected soil metagenomes revealed the shared agricultural soil core microbiome of European soils from 19 locations. Metadata reporting was heterogeneous between the different studies. According to the available metadata, we separated the data into 68 treatments. The phylum Thaumarchaeota is part of the core microbiome and represents a major constituent of the archaeal subcommunities in all European agricultural soils. At a higher taxonomic resolution, 2074 genera constituted the core microbiome. We observed that viral genera strongly contribute to variation in taxonomic profiles. By binning of metagenomically assembled contigs, Thaumarchaeota MAGs could be recovered from several European soil metagenomes. Notably, many of them were classified as members of the family Nitrososphaeraceae, highlighting the importance of this family for agricultural soils. The specific Loess-Chernozem Thaumarchaeota MAGs were most abundant in their original soil, but also seem to be of importance in other agricultural soil microbial communities. Metabolic reconstruction of Switzerland_1_MAG_2 revealed its genetic potential i.a. regarding carbon dioxide (CO[Formula: see text]) fixation, ammonia oxidation, exopolysaccharide production and a beneficial effect on plant growth. Similar genetic features were also present in other reconstructed MAGs. Three Nitrososphaeraceae MAGs are all most likely members of a so far unknown genus. CONCLUSIONS On a broad view, European agricultural soil microbiomes are similarly structured. Differences in community structure were observable, although analysis was complicated by heterogeneity in metadata recording. Our study highlights the need for standardized metadata reporting and the benefits of networking open data. Future soil sequencing studies should also consider high sequencing depths in order to enable reconstruction of genome bins. Intriguingly, the family Nitrososphaeraceae commonly seems to be of importance in agricultural microbiomes.
Collapse
Affiliation(s)
- Johanna Nelkner
- Genome Research of Industrial Microorganisms, CeBiTec - Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Liren Huang
- Genome Research of Industrial Microorganisms, CeBiTec - Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Timo W. Lin
- Nucleic Acids Core Facility, Faculty of Biology, Johannes Gutenberg University Mainz, Germany Mainz
| | - Alexander Schulz
- Machine Learning Group, CITEC - Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
| | - Benedikt Osterholz
- Genome Research of Industrial Microorganisms, CeBiTec - Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Christian Henke
- Computational Metagenomics Group, CeBiTec - Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University, Gießen, Germany
| | - Alfred Pühler
- Genome Research of Industrial Microorganisms, CeBiTec - Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Alexander Sczyrba
- Genome Research of Industrial Microorganisms, CeBiTec - Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Andreas Schlüter
- Genome Research of Industrial Microorganisms, CeBiTec - Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
39
|
Stone BW, Blazewicz SJ, Koch BJ, Dijkstra P, Hayer M, Hofmockel KS, Liu XJA, Mau RL, Pett-Ridge J, Schwartz E, Hungate BA. Nutrients strengthen density dependence of per-capita growth and mortality rates in the soil bacterial community. Oecologia 2023; 201:771-782. [PMID: 36847885 DOI: 10.1007/s00442-023-05322-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/15/2023] [Indexed: 03/01/2023]
Abstract
Density dependence in an ecological community has been observed in many macro-organismal ecosystems and is hypothesized to maintain biodiversity but is poorly understood in microbial ecosystems. Here, we analyze data from an experiment using quantitative stable isotope probing (qSIP) to estimate per-capita growth and mortality rates of bacterial populations in soils from several ecosystems along an elevation gradient which were subject to nutrient addition of either carbon alone (glucose; C) or carbon with nitrogen (glucose + ammonium-sulfate; C + N). Across all ecosystems, we found that higher population densities, quantified by the abundance of genomes per gram of soil, had lower per-capita growth rates in C + N-amended soils. Similarly, bacterial mortality rates in C + N-amended soils increased at a significantly higher rate with increasing population size than mortality rates in control and C-amended soils. In contrast to the hypothesis that density dependence would promote or maintain diversity, we observed significantly lower bacterial diversity in soils with stronger negative density-dependent growth. Here, density dependence was significantly but weakly responsive to nutrients and was not associated with higher bacterial diversity.
Collapse
Affiliation(s)
- Bram W Stone
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.
| | - Steven J Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Lab, Livermore, CA, USA
| | - Benjamin J Koch
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Paul Dijkstra
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Kirsten S Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Xiao Jun Allen Liu
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Rebecca L Mau
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Lab, Livermore, CA, USA
- Life and Environmental Sciences Department, University of California Merced, Merced, CA, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
40
|
Braga LPP, Schumacher RI. Awaking the dormant virome in the rhizosphere. Mol Ecol 2023; 32:2985-2999. [PMID: 36807953 DOI: 10.1111/mec.16893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023]
Abstract
The rhizosphere is a vital soil compartment providing key plant-beneficial functions. However, little is known about the mechanisms driving viral diversity in the rhizosphere. Viruses can establish lytic or lysogenic interactions with their bacterial hosts. In the latter, they assume a dormant state integrated in the host genome and can be awakened by different perturbations that impact host cell physiology, triggering a viral bloom, which is potentially a fundamental mechanism driving soil viral diversity, as 22%-68% of soil bacteria are predicted to harbour dormant viruses. Here we assessed the viral bloom response in rhizospheric viromes by exposing them to three contrasting soil perturbation agents: earthworms, herbicide and antibiotic pollutant. The viromes were next screened for rhizosphere-relevant genes and also used as inoculant on microcosms incubations to test their impacts on pristine microbiomes. Our results show that while post-perturbation viromes diverged from control conditions, viral communities exposed to both herbicide and antibiotic pollutant were more similar to each other than those influenced by earthworms. The latter also favoured an increase in viral populations harbouring genes involved in plant-beneficial functions. Post-perturbation viromes inoculated on soil microcosms changed the diversity of pristine microbiomes, suggesting that viromes are important components of the soil ecological memory driving eco-evolutionary processes that determine future microbiome trajectories according to past events. Our findings demonstrate that viromes are active players in the rhizosphere and need to be considered in efforts to understand and control the microbial processes towards sustainable crop production.
Collapse
Affiliation(s)
- Lucas P P Braga
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil.,Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Robert I Schumacher
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
41
|
Yang K, Wang X, Hou R, Lu C, Fan Z, Li J, Wang S, Xu Y, Shen Q, Friman VP, Wei Z. Rhizosphere phage communities drive soil suppressiveness to bacterial wilt disease. MICROBIOME 2023; 11:16. [PMID: 36721270 PMCID: PMC9890766 DOI: 10.1186/s40168-023-01463-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/09/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Bacterial viruses, phages, play a key role in nutrient turnover and lysis of bacteria in terrestrial ecosystems. While phages are abundant in soils, their effects on plant pathogens and rhizosphere bacterial communities are poorly understood. Here, we used metagenomics and direct experiments to causally test if differences in rhizosphere phage communities could explain variation in soil suppressiveness and bacterial wilt plant disease outcomes by plant-pathogenic Ralstonia solanacearum bacterium. Specifically, we tested two hypotheses: (1) that healthy plants are associated with stronger top-down pathogen control by R. solanacearum-specific phages (i.e. 'primary phages') and (2) that 'secondary phages' that target pathogen-inhibiting bacteria play a stronger role in diseased plant rhizosphere microbiomes by indirectly 'helping' the pathogen. RESULTS Using a repeated sampling of tomato rhizosphere soil in the field, we show that healthy plants are associated with distinct phage communities that contain relatively higher abundances of R. solanacearum-specific phages that exert strong top-down pathogen density control. Moreover, 'secondary phages' that targeted pathogen-inhibiting bacteria were more abundant in the diseased plant microbiomes. The roles of R. solanacearum-specific and 'secondary phages' were directly validated in separate greenhouse experiments where we causally show that phages can reduce soil suppressiveness, both directly and indirectly, via top-down control of pathogen densities and by alleviating interference competition between pathogen-inhibiting bacteria and the pathogen. CONCLUSIONS Together, our findings demonstrate that soil suppressiveness, which is most often attributed to bacteria, could be driven by rhizosphere phage communities that regulate R. solanacearum densities and strength of interference competition with pathogen-suppressing bacteria. Rhizosphere phage communities are hence likely to be important in determining bacterial wilt disease outcomes and soil suppressiveness in agricultural fields. Video Abstract.
Collapse
Affiliation(s)
- Keming Yang
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiaofang Wang
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Rujiao Hou
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chunxia Lu
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhe Fan
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jingxuan Li
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shuo Wang
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yangchun Xu
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Qirong Shen
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ville-Petri Friman
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
- Department of Microbiology, University of Helsinki, 00014, Helsinki, Finland.
| | - Zhong Wei
- Joint International Research Laboratory of Soil Health, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
42
|
Puxty RJ, Millard AD. Functional ecology of bacteriophages in the environment. Curr Opin Microbiol 2023; 71:102245. [PMID: 36512900 DOI: 10.1016/j.mib.2022.102245] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Bacteriophages are as ubiquitous as their bacterial hosts and often more abundant. Understanding how bacteriophages control their bacterial host populations requires a number of different approaches. Bacteriophages can control bacterial populations through lysis, drive evolution of bacterial immunity systems through infection, provide a conduit for horizontal gene transfer and alter host metabolism by carriage of auxiliary metabolic genes. Understanding and quantifying how bacteriophages drive these processes, requires both technological developments to take measurements in situ, and laboratory-based studies to understand mechanisms. Technological advances have allowed quantification of the number of infected cells in situ, revealing far-lower levels than expected. Understanding how observations in laboratory conditions relate to what occurs in the environment, and experimental confirmation of the predicted function of phage genes from observations in environmental omics data, remains challenging.
Collapse
Affiliation(s)
- Richard J Puxty
- University of Warwick, School of Life Sciences, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom.
| | - Andrew D Millard
- University of Leicester, Dept of Genetics and Genome Biology, University Road, Leicester, United Kingdom.
| |
Collapse
|
43
|
Lee S, Sieradzki ET, Nicol GW, Hazard C. Propagation of viral genomes by replicating ammonia-oxidising archaea during soil nitrification. THE ISME JOURNAL 2023; 17:309-314. [PMID: 36414709 PMCID: PMC9859776 DOI: 10.1038/s41396-022-01341-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022]
Abstract
Ammonia-oxidising archaea (AOA) are a ubiquitous component of microbial communities and dominate the first stage of nitrification in some soils. While we are beginning to understand soil virus dynamics, we have no knowledge of the composition or activity of those infecting nitrifiers or their potential to influence processes. This study aimed to characterise viruses having infected autotrophic AOA in two nitrifying soils of contrasting pH by following transfer of assimilated CO2-derived 13C from host to virus via DNA stable-isotope probing and metagenomic analysis. Incorporation of 13C into low GC mol% AOA and virus genomes increased DNA buoyant density in CsCl gradients but resulted in co-migration with dominant non-enriched high GC mol% genomes, reducing sequencing depth and contig assembly. We therefore developed a hybrid approach where AOA and virus genomes were assembled from low buoyant density DNA with subsequent mapping of 13C isotopically enriched high buoyant density DNA reads to identify activity of AOA. Metagenome-assembled genomes were different between the two soils and represented a broad diversity of active populations. Sixty-four AOA-infecting viral operational taxonomic units (vOTUs) were identified with no clear relatedness to previously characterised prokaryote viruses. These vOTUs were also distinct between soils, with 42% enriched in 13C derived from hosts. The majority were predicted as capable of lysogeny and auxiliary metabolic genes included an AOA-specific multicopper oxidase suggesting infection may augment copper uptake essential for central metabolic functioning. These findings indicate virus infection of AOA may be a frequent process during nitrification with potential to influence host physiology and activity.
Collapse
Affiliation(s)
- Sungeun Lee
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134 Ecully, France
| | - Ella T Sieradzki
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134 Ecully, France
| | - Graeme W Nicol
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134 Ecully, France.
| | - Christina Hazard
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134 Ecully, France.
| |
Collapse
|
44
|
Wang S, Yu S, Zhao X, Zhao X, Mason-Jones K, Zhu Z, Redmile-Gordon M, Li Y, Chen J, Kuzyakov Y, Ge T. Experimental evidence for the impact of phages on mineralization of soil-derived dissolved organic matter under different temperature regimes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157517. [PMID: 35872205 DOI: 10.1016/j.scitotenv.2022.157517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Microbial mineralization of dissolved organic matter (DOM) plays an important role in regulating C and nutrient cycling. Viruses are the most abundant biological agents on Earth, but their effect on the density and activity of soil microorganisms and, consequently, on mineralization of DOM under different temperatures remains poorly understood. To assess the impact of viruses on DOM mineralization, we added soil phage concentrate (active vs. inactive phage control) to four DOM extracts containing inoculated microbial communities and incubated them at 18 °C and 23 °C for 32 days. Infection with active phages generally decreased DOM mineralization at day one and showed accelerated DOM mineralization later (especially from day 5 to 15) compared to that with the inactivated phages. Overall, phage infection increased the microbially driven CO2 release. Notably, while higher temperature increased the total CO2 release, the cumulative CO2 release induced by phage infection (difference between active phages and inactivated control) was not affected. However, higher temperatures advanced the response time of the phages but shortening its active period. Our findings suggest that bacterial predation by phages can significantly affect soil DOM mineralization. Therefore, higher temperatures may accelerate host-phage interactions and thus, the duration of C recycling.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Senxiang Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xiaoyan Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xiaolei Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Kyle Mason-Jones
- Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Zhenke Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Marc Redmile-Gordon
- Department of Environmental Horticulture, Royal Horticultural Society, Wisley GU23 6QB, UK
| | - Yong Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, 37077 Göttingen, Germany
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
45
|
Garvey M. Bacteriophages and Food Production: Biocontrol and Bio-Preservation Options for Food Safety. Antibiotics (Basel) 2022; 11:1324. [PMID: 36289982 PMCID: PMC9598955 DOI: 10.3390/antibiotics11101324] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Food safety and sustainable food production is an important part of the Sustainable Development goals aiming to safeguard the health and wellbeing of humans, animals and the environment. Foodborne illness is a major cause of morbidity and mortality, particularly as the global crisis of antimicrobial resistance proliferates. In order to actively move towards sustainable food production, it is imperative that green biocontrol options are implemented to prevent and mitigate infectious disease in food production. Replacing current chemical pesticides, antimicrobials and disinfectants with green, organic options such as biopesticides is a step towards a sustainable future. Bacteriophages, virus which infect and kill bacteria are an area of great potential as biocontrol agents in agriculture and aquaculture. Lytic bacteriophages offer many advantages over traditional chemical-based solutions to control microbiological contamination in the food industry. The innate specificity for target bacterial species, their natural presence in the environment and biocompatibility with animal and humans means phages are a practical biocontrol candidate at all stages of food production, from farm-to-fork. Phages have demonstrated efficacy as bio-sanitisation and bio-preservation agents against many foodborne pathogens, with activity against biofilm communities also evident. Additionally, phages have long been recognised for their potential as therapeutics, prophylactically and metaphylactically. Further investigation is warranted however, to overcome their limitations such as formulation and stability issues, phage resistance mechanisms and transmission of bacterial virulence factors.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland;
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
46
|
Chaïb A, Philippe C, Jaomanjaka F, Barchi Y, Oviedo-Hernandez F, Claisse O, Le Marrec C. Phage-host interactions as a driver of population dynamics during wine fermentation: Betting on underdogs. Int J Food Microbiol 2022; 383:109936. [PMID: 36179497 DOI: 10.1016/j.ijfoodmicro.2022.109936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/03/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
Abstract
Winemaking is a complex process in which numerous microorganisms, mainly yeasts and lactic acid bacteria (LAB), play important roles. After alcoholic fermentation (AF), most wines undergo malolactic fermentation (MLF) to improve their organoleptic properties and microbiological stability. Oenococcus oeni is mainly responsible for this crucial process where L-malic acid (MA) in wine converts to softer L-lactic acid. The bacterium is better adapted to the limiting conditions imposed by the wine matrix and performs MLF under regular winemaking conditions, especially in wines with a pH below 3.5. Traditionally, this process has been conducted by the natural microbiota present within the winery. However, the start, duration and qualitative impact of spontaneous MLF are unpredictable, which prompts winemakers to use pure starter cultures of selected bacteria to promote a more reliable, simple, fast and efficient fermentation. Yet, their use does not always ensure a problem-free fermentation. Spontaneous initiation of the process may prove very difficult or does not occur at all. Such difficulties arise from a combination of factors found in some wines upon the completion of AF (high ethanol concentration, low temperature and pH, low nutrient concentrations, presence of free and bound SO2). Alongside these well documented facts, research has also provided evidence that negative interactions between O. oeni and other biological entities such as yeasts may also impact MLF. Another insufficiently described, but highly significant factor inhibiting bacterial growth is connected to the presence of bacteriophages of O. oeni which are frequently associated to musts and wines. The purpose of this review is to summarize the current knowledge about the phage life cycles and possible impacts on the trajectory of the microbiota during winemaking.
Collapse
Affiliation(s)
- Amel Chaïb
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, Villenave d'Ornon, France
| | - Cécile Philippe
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, Villenave d'Ornon, France
| | - Féty Jaomanjaka
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, Villenave d'Ornon, France
| | - Yasma Barchi
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, Villenave d'Ornon, France
| | - Florencia Oviedo-Hernandez
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, Villenave d'Ornon, France
| | - Olivier Claisse
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, Villenave d'Ornon, France
| | - Claire Le Marrec
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, Villenave d'Ornon, France.
| |
Collapse
|
47
|
Inglis LK, Edwards RA. How Metagenomics Has Transformed Our Understanding of Bacteriophages in Microbiome Research. Microorganisms 2022; 10:microorganisms10081671. [PMID: 36014086 PMCID: PMC9415785 DOI: 10.3390/microorganisms10081671] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The microbiome is an essential part of most ecosystems. It was originally studied mostly through culturing but relatively few microbes can be cultured, so much of the microbiome was left unexplored. The emergence of metagenomic sequencing techniques changed that and allowed the study of microbiomes from all sorts of habitats. Metagenomic sequencing also allowed for a more thorough exploration of prophages, viruses that integrate into bacterial genomes, and how they benefit their hosts. One issue with using open-access metagenomic data is that sequences added to databases often have little to no metadata to work with, so finding enough sequences can be difficult. Many metagenomes have been manually curated but this is a time-consuming process and relies heavily on the uploader to be accurate and thorough when filling in metadata fields and the curators to be working with the same ontologies. Using algorithms to automatically sort metagenomes based on either the taxonomic profile or the functional profile may be a viable solution to the issues with manually curated metagenomes, but it requires that the algorithm is trained on carefully curated datasets and using the most informative profile possible in order to minimize errors.
Collapse
|
48
|
Microbial eco-evolutionary dynamics in the plant rhizosphere. Curr Opin Microbiol 2022; 68:102153. [DOI: 10.1016/j.mib.2022.102153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/01/2022] [Accepted: 04/01/2022] [Indexed: 01/08/2023]
|
49
|
Mhuireach GÁ, Dietz L, Gillett T. One or many? Multi-species livestock grazing influences soil microbiome community structure and antibiotic resistance potential. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.926824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Soil health has been highlighted as a key dimension of regenerative agriculture, given its critical importance for food production, carbon sequestration, water filtration, and nutrient cycling. Microorganisms are critical components of soil health, as they are responsible for mediating 90% of soil functions. Multi-species rotational grazing (MSRG) is a promising strategy for maintaining and improving soil health, yet the potential effects of MSRG on soil microbiomes are poorly understood. To address this knowledge gap, we collected soil microbial samples at three timepoints during the 2020 grazing season for 12 total paddocks, which were equally split into four different grazing treatments—cattle only, sheep only, swine only, or multi-species. Shallow shotgun metagenomic sequencing was used to characterize soil microbial community taxonomy and antibiotic resistome. Results demonstrated broad microbial diversity in all paddock soil microbiomes. Samples collected early in the season tended to have greater archaeal and bacterial alpha diversity than samples collected later for all grazing treatments, while no effect was observed for fungi or viruses. Beta diversity, however, was strongly influenced by both grazing treatment and month for all microbial kingdoms, suggesting a pronounced effect of different livestock on microbial composition. Cattle-only and swine-only paddocks were more dissimilar from multi-species paddocks than those grazed by sheep. We identified a large number of differentially abundant taxa driving community dissimilarities, including Methanosarcina spp., Candidatus Nitrocosmicus oleophilus, Streptomyces spp., Pyricularia spp., Fusarium spp., and Tunggulvirus Pseudomonas virus ϕ-2. In addition, a wide variety of antibiotic resistance genes (ARGs) were present in all samples, regardless of grazing treatment; the majority of these encoded efflux pumps and antibiotic modification enzymes (e.g., transferases). This novel study demonstrates that grazing different species of livestock, either separately or together, can impact soil microbial community structure and antibiotic resistance capacity, though further research is needed to fully characterize these impacts. Increasing the knowledge base about soil microbial community structure and function under real-world grazing conditions will help to construct metrics that can be incorporated into traditional soil health tests and allow producers to manage livestock operations for optimal soil microbiomes.
Collapse
|
50
|
Florent P, Cauchie HM, Herold M, Jacquet S, Ogorzaly L. Soil pH, Calcium Content and Bacteria as Major Factors Responsible for the Distribution of the Known Fraction of the DNA Bacteriophage Populations in Soils of Luxembourg. Microorganisms 2022; 10:1458. [PMID: 35889177 PMCID: PMC9321959 DOI: 10.3390/microorganisms10071458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages participate in soil life by influencing bacterial community structure and function, biogeochemical cycling and horizontal gene transfer. Despite their great abundance, diversity, and importance in microbial processes, they remain little explored in environmental studies. The influence of abiotic factors on the persistence of bacteriophages is now recognized; however, it has been mainly studied under experimental conditions. This study aimed to determine whether the abiotic factors well-known to influence bacteriophage persistence also control the natural distribution of the known DNA bacteriophage populations. To this end, soil from eight study sites including forests and grasslands located in the Attert River basin (Grand Duchy of Luxembourg) were sampled, covering different soil and land cover characteristics. Shotgun metagenomics, reference-based bioinformatics and statistical analyses allowed characterising the diversity of known DNA bacteriophage and bacterial communities. After combining soil properties with the identified DNA bacteriophage populations, our in-situ study highlighted the influence of pH and calcium cations on the diversity of the known fraction of the soil DNA bacteriophages. More interestingly, significant relationships were established between bacteriophage and bacterial populations. This study provides new insights into the importance of abiotic and biotic factors in the distribution of DNA bacteriophages and the natural ecology of terrestrial bacteriophages.
Collapse
Affiliation(s)
- Perrine Florent
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg; (P.F.); (H.-M.C.); (M.H.)
- Faculté des Sciences, de la Technologie et de la Communication (FSTC), Doctoral School in Science and Engineering (DSSE), University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Henry-Michel Cauchie
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg; (P.F.); (H.-M.C.); (M.H.)
| | - Malte Herold
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg; (P.F.); (H.-M.C.); (M.H.)
| | - Stéphan Jacquet
- INRAE, UMR CARRTEL, Université Savoie Mont Blanc, 74200 Thonon-les-Bains, France;
| | - Leslie Ogorzaly
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg; (P.F.); (H.-M.C.); (M.H.)
| |
Collapse
|