1
|
Farid MS, Shafique B, Xu R, Łopusiewicz Ł, Zhao C. Potential interventions and interactions of bioactive polyphenols and functional polysaccharides to alleviate inflammatory bowel disease - A review. Food Chem 2025; 462:140951. [PMID: 39213975 DOI: 10.1016/j.foodchem.2024.140951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Inflammatory bowel disease is a multifaceted condition that is influenced by nutritional, microbial, environmental, genetic, psychological, and immunological factors. Polyphenols and polysaccharides have gained recognition for their therapeutic potential. This review emphasizes the biological effects of polyphenols and polysaccharides, and explores their antioxidant, anti-inflammatory, and microbiome-modulating properties in the management of inflammatory bowel disease (IBD). However, polyphenols encounter challenges, such as low stability and low bioavailability in the colon during IBD treatment. Hence, polysaccharide-based encapsulation is a promising solution to achieve targeted delivery, improved bioavailability, reduced toxicity, and enhanced stability. This review also discusses the significance of covalent and non-covalent interactions, and simple and complex encapsulation between polyphenols and polysaccharides. The administration of these compounds in appropriate quantities has proven beneficial in preventing the development of Crohn's disease and ulcerative colitis, ultimately leading to the management of IBD. The use of polyphenols and polysaccharides has been found to reduce histological scores and colon injury associated with IBD, increase the abundance of beneficial microbes, inhibit the development of colitis-associated cancer, promote the production of microbial end-products, such as short-chain fatty acids (SCFAs), and improve anti-inflammatory properties. Despite the combined effects of polyphenols and polysaccharides observed in both in vitro and in vivo studies, further human clinical trials are needed to comprehend their effectiveness on inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Bakhtawar Shafique
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Rui Xu
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Łukasz Łopusiewicz
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, 59 Okopowa Str. Warszawa, 01-043, Poland; Institute of Pharmacy, Department Pharmaceutical Biology, Greifswald University, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
2
|
Mao D, Guo J, Yang K, Yang F, Peng J, Jia X, Luo Z, Liu L, Yang E, Tang R, Lan H, Zheng Q. Mechanism of epigallocatechin gallate in treating non-alcoholic fatty liver disease: Insights from network pharmacology and experimental validation. Biochem Biophys Res Commun 2024; 734:150424. [PMID: 39083974 DOI: 10.1016/j.bbrc.2024.150424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
To explore the therapeutic effects along with the molecular mechanisms of epigallocatechin gallate (EGCG) in non-alcoholic fatty liver disease (NAFLD) treatment using network pharmacology as well as animal experiments. Firstly, the Traditional Chinese Medicine (TCM) Systems Pharmacology Database was searched to identify the potential targets of EGCG. The DisGeNET Database was used to screen the potential targets of NAFLD. The GeneCards Database was searched to identify related genes involved in pyroptosis. Subsequently, the intersecting genes of EGCG targeting pyroptosis to regulate NAFLD were obtained using a Venn diagram. Simultaneously, the aforementioned intersecting genes were used to construct a drug-disease target protein-protein interaction (PPI) network. The DAVID database was adopted for Gene Ontology (GO) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The main pathway-target network was determined. Next, the potential mechanism of EGCG targeting pyroptosis to regulate NAFLD was investigated and validated through in vivo experiments. 626 potential targets of EGCG, 447 target genes of NAFLD, and 568 potential targets of pyroptosis were identified. The number of common targets between EGCG, NAFLD, and pyroptosis was 266. GO biological process items and 92 KEGG pathways were determined based on the analysis results. Animal experiments demonstrated that EGCG could ameliorate body weight, glucolipid metabolism, steatosis, and liver injury, enhance insulin sensitivity, and improve glucose tolerance in NAFLD mice through the classical pathway of pyroptosis. EGCG could effectively treat NAFLD through multiple targets and pathways. It was concluded that EGCG ameliorates hepatocyte steatosis, pyroptosis, dyslipidemia, and inflammation in NAFLD mice fed a high-fat diet (HFD), and the protective mechanism could be associated with the NLRP3-Caspase-1-GSDMD classical pyroptosis pathway.
Collapse
Affiliation(s)
- Danting Mao
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Jianwei Guo
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Kunli Yang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Fan Yang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| | - Jiaojiao Peng
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Xu Jia
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
| | - Ziren Luo
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Lu Liu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Enjie Yang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Rui Tang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Haitao Lan
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Qian Zheng
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
3
|
Zhong G, Shi R, Chen Q, Zheng Y, Fan X, Sun Y, Wang S, Li M. Metabolomics reveals the potential metabolic mechanism of infliximab against DSS-induced acute and chronic ulcerative colitis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8815-8824. [PMID: 38847830 DOI: 10.1007/s00210-024-03201-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/29/2024] [Indexed: 10/30/2024]
Abstract
Inflammatory bowel disease (IBD) is often accompanied by metabolic imbalance, and infliximab (IFX) can alleviate IBD symptoms, but its metabolic mechanisms remain unclear. To investigate the relationship between IBD, metabolism, and IFX, an acute and chronic ulcerative colitis (UC) model induced by dextran sulfate sodium (DSS) was established. Plasma samples were analyzed using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, followed by multivariate statistical analysis. The results showed that IFX could alleviate colonic shortening and reduce colonic pathological damage in acute and chronic mouse colitis, improve acute and chronic UC, and ameliorate metabolic disturbances. Among the 104 elevated metabolites and 170 decreased metabolites, these metabolites mainly belonged to amino acids, glucose, and purines. The changes in these metabolites were mainly associated with drug metabolism-other enzymes, riboflavin metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phosphonate and phosphinate metabolism, and phenylalanine metabolism. In summary, this study provides a valuable approach to explore the metabolic mechanisms of IFX in treating acute and chronic UC from a metabolomics perspective.
Collapse
Affiliation(s)
- Guoqiang Zhong
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Runjie Shi
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiusan Chen
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yifeng Zheng
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiujing Fan
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan Sun
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanping Wang
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Mingsong Li
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Wang H, Chen Y, Wang Z, Yuan Y, Yue T. Novel selenium-enriched Pichia kudriavzevii as a dietary supplement to alleviate dextran sulfate sodium-induced colitis in mice by modulating the gut microbiota and host metabolism. Food Funct 2024; 15:10698-10716. [PMID: 39378068 DOI: 10.1039/d4fo02598a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Inflammatory bowel disease (IBD) poses persistent challenges due to its chronic and recurrent nature, exacerbated by the unsatisfactory outcomes of the traditional treatment approaches. In this study, we developed a dietary supplement, selenium-enriched Pichia kudriavzevii (SeY), to alleviate dextran sulfate sodium-induced colitis in mice. The newly developed functional food shows dual-functional activity, acting both as a probiotic and a reliable source of organic selenium. This study aimed to investigate the preventive effects of SeY against dextran sulfate sodium-induced colitis in mice and elucidate the underlying mechanisms. Results showed that SeY, especially at high doses (HSeY), significantly ameliorated colitis symptoms, reduced colonic damage, attenuated inflammatory responses, and mitigated oxidative stress. Furthermore, HSeY strengthened intestinal barrier function by increasing goblet cell numbers, upregulating MUC2 expression, and enhancing tight junction proteins (ZO-1, claudin-1, and occludin). Additionally, HSeY alleviated gut microbiota dysbiosis by promoting the colonization of beneficial bacteria such as norank-f-Muribaculaceae and Bacteroides, while suppressing harmful microorganisms such as norank-f-norank-o-Clostridia-UCG-014. The altered gut microbiota also affected gut metabolism, with differential metabolites primarily associated with amino acids, such as tryptophan metabolism, contributing to the mitigation of oxidative stress and inflammatory responses. Further studies involving antibiotic-mediated depletion of gut flora and fecal microbiota transfer trials corroborated that the preventive effect of HSeY against IBD relied on the gut microbiota. This study provides vital insights into colitis prevention and advances selenium-enriched fortified food-targeted nutritional interventions.
Collapse
Affiliation(s)
- Huijuan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yue Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| |
Collapse
|
5
|
Gu Q, Du Q, Xia L, Lu X, Wan X, Shao Y, He J, Wu P. Mechanistic insights into EGCG's preventive effects on obesity-induced precocious puberty through multi-omics analyses. Food Funct 2024. [PMID: 39445911 DOI: 10.1039/d4fo03844d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Epigallocatechin gallate (EGCG) has demonstrated potential effects on obesity-induced precocious puberty, but the underlying mechanisms remain unclear. Female mice were randomly assigned into control (CON), EGCG-treated (EGCG), high-fat diet (HFD), and HFD with EGCG treatment (HFDEGCG) groups. Key measurements included body weight, vaginal opening time, and serum sex hormone levels. The gut microbiota was analyzed through 16S rRNA sequencing, fecal metabolites were assessed via metabolomics, and the hypothalamic transcriptome was examined using RNA sequencing. EGCG mitigated weight gain and delayed vaginal opening in mice with obesity-induced precocious puberty. Additionally, it reduced serum estradiol levels and decreased the number of mature ovarian follicles in the HFDEGCG group compared to the HFD group. EGCG treatment partially reversed HFD-induced dysbiosis by increasing the abundance of beneficial bacteria such as Akkermansia. Metabolomic analysis revealed significant alterations in tryptophan metabolism, while transcriptome analysis identified genes involved in metabolic pathways. Correlation analyses underscored the importance of the gut-brain axis in mediating EGCG's effects. Overall, EGCG prevents obesity-induced precocious puberty by modulating the gut microbiota, altering metabolic pathways, and regulating hypothalamic gene expression.
Collapse
Affiliation(s)
- Qiuyun Gu
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiujv Du
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lina Xia
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoting Lu
- Department of Clinical Nutrition, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Xiaoqing Wan
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Shao
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieyi He
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiying Wu
- Department of Nutrition, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Liu T, Fan S, Meng P, Ma M, Wang Y, Han J, Wu Y, Li X, Su X, Lu C. Dietary Dihydroquercetin Alleviated Colitis via the Short-Chain Fatty Acids/miR-10a-5p/PI3K-Akt Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23211-23223. [PMID: 39393822 DOI: 10.1021/acs.jafc.4c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Gut microbiota provides an important insight into clarifying the mechanism of active substances with low bioavailability, but its specific action mechanism varied case by case and remained unclear. Dihydroquercetin (DHQ) is a bioactive flavonoid with low bioavailability, which showed beneficial effects on colitis alleviation and gut microbiota modulation. Herein, we aimed to explore the microbiota-dependent anticolitis mechanism of DHQ in sight of gut microbiota metabolites and their interactions with microRNAs (miRNAs). Dietary supplementation of DHQ alleviated dextran sulfate sodium-induced colitis phenotypes and improved gut microbiota dysbiosis. Fecal microbiota transplantation further revealed that the anticolitis activity of DHQ was mediated by gut microbiota. To clarify how the modulated gut microbiota alleviated colitis in mice, the tandem analyses of the microbiome and targeted metabolome were performed, and altered profiles of metabolite short-chain fatty acids (SCFAs) and bile acids and their producers were observed in DHQ-treated mice. In addition, SCFA treatment showed anticolitis activity compared to that of bile acids, along with the specific inhibition on the phosphoinositide-3-kinase (PI3K)-protein kinase B (Akt) pathway. Subsequently, the colonic miRNA profile of mice receiving SCFA treatment was sequenced, and a differentially expressed miR-10a-5p was identified. Both prediction analysis and dual-luciferase reporter assay indicated that miR-10a-5p directly bind to the 3'-untranslated regions of gene pik3ca, inhibit the PI3K-Akt pathway activation, and lead to colitis alleviation. Together, we proposed that gut microbiota mediated the anticolitis activity of DHQ through the SCFAs/miR-10a-5p/PI3K-Akt axis, and it provided a novel insight into clarifying the microbiota-dependent mechanism via the interaction between metabolites and miRNAs.
Collapse
Affiliation(s)
- Tong Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Siqing Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Pengfei Meng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Mingxia Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Yanxin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Yufei Wu
- The Affiliated People's Hospital of Ningbo University, Ningbo 315040, China
| | - Xiao Li
- Xiangshan First People's Hospital Medical and Health Group, Ningbo 315700, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and School of Marine Science, Ningbo University, Ningbo 315211, China
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
7
|
Chen S, Niu X, Zhang Y, Wen J, Bao M, Li Y, Gao Y, Wang X, Liu X, Yong Y, Yu Z, Ma X, Eun JB, Shim JH, El-Aty AMA, Ju X. Butyrolactone-I from marine fungi alleviates intestinal barrier damage caused by DSS through regulating Lactobacillus johnsonii and its metabolites in the intestine of mice. J Nutr Biochem 2024:109786. [PMID: 39447992 DOI: 10.1016/j.jnutbio.2024.109786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/01/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Butyrolactone-I (BTL-1), a secondary metabolite from the marine fungus Aspergillus terreus, exhibits numerous biological activities. Previous research has indicated that Butyrolactone-I alleviates intestinal epithelial inflammation via the TLR4/NF-κB and MAPK pathways. However, the mechanisms underlying its protection against intestinal barrier damage remain unclear. This study aims to further elucidate these mechanisms. We observed that BTL-1 administration increased the abundance of Lactobacillus johnsonii (LJ) in both in vivo and in vitro experiments, prompting an investigation into the effects of LJ and its metabolites on DSS-induced inflammatory bowel disease (IBD). The results demonstrated that BTL-1 significantly upregulated tight junction (TJ) and adherens junction (AJ) proteins, maintained intestinal barrier integrity, and alleviated DSS-induced IBD in mice. These effects were associated with the proliferation of LJ and its metabolites, such as butyric and propionic acids, and the inhibition of the MAPK signaling pathway in the colon. Interestingly, administering LJ alone produced a protective effect against DSS-induced IBD similar to that observed with BTL-1. Furthermore, butyric acid, a metabolite of LJ, also upregulated TJ/AJ proteins in intestinal epithelial cells through the MAPK signaling pathway. Our findings suggest that BTL-1 regulates intestinal flora, promotes LJ proliferation, protects intestinal barrier integrity, increases the concentrations of butyric and propionic acids, and ultimately inhibits the activation of the MAPK signaling pathway in mice to alleviate IBD. Therefore, BTL-1 could potentially be used as a natural drug to prevent IBD and maintain intestinal flora balance. IMPORTANCE: We explored how butyrolactone-I exerts a preventive effect on IBD through intestinal bacteria (Lactobacillus johnsonii).
Collapse
Affiliation(s)
- Shengwei Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Shenzheng Institute of Guangdong Ocean University, Organization X, Shenzheng, China
| | - Xueting Niu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Shenzheng Institute of Guangdong Ocean University, Organization X, Shenzheng, China
| | - Yi Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiaying Wen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Shenzheng Institute of Guangdong Ocean University, Organization X, Shenzheng, China
| | - Minglong Bao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Shenzheng Institute of Guangdong Ocean University, Organization X, Shenzheng, China
| | - Yin Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Shenzheng Institute of Guangdong Ocean University, Organization X, Shenzheng, China
| | - Yuan Gao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Shenzheng Institute of Guangdong Ocean University, Organization X, Shenzheng, China
| | - Xinchen Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Shenzheng Institute of Guangdong Ocean University, Organization X, Shenzheng, China
| | - Xiaoxi Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yanhong Yong
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Zhichao Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xingbing Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Jong-Bang Eun
- Department of Food Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Han Shim
- Natural Products Chemistry Laboratory, Biotechnology Research Institute, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211-Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Xianghong Ju
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Shenzheng Institute of Guangdong Ocean University, Organization X, Shenzheng, China.
| |
Collapse
|
8
|
Liu L, Ma L, Liu H, Zhao F, Li P, Zhang J, Lü X, Zhao X, Yi Y. Targeted discovery of gut microbiome-remodeling compounds for the treatment of systemic inflammatory response syndrome. mSystems 2024; 9:e0078824. [PMID: 39235366 PMCID: PMC11494991 DOI: 10.1128/msystems.00788-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/09/2024] [Indexed: 09/06/2024] Open
Abstract
Systemic inflammatory response syndrome (SIRS) is a severe inflammatory response that can lead to organ dysfunction and death. Modulating the gut microbiome is a promising therapeutic approach for managing SIRS. This study assesses the therapeutic potential of the Xuanfei Baidu (XFBD) formula in treating SIRS. The results showed that XFBD administration effectively reduced mortality rates and inflammation in SIRS mice. Using 16S rRNA sequencing and fecal microbiota transplantation (FMT), we substantiated that the therapeutic effects of XFBD are partly attributed to gut microbiota modulation. We conducted in vitro experiments to accurately assess the gut microbiome remodeling effects of 51 compounds isolated from XFBD. These compounds exhibited varying abilities to induce a microbial structure that closely resembles that of the healthy control group. By quantifying their impact on microbial structure and clustering their regulatory patterns, we devised multiple gut microbiome remodeling compound (GMRC) cocktails. GMRC cocktail C, comprising aucubin, gentiopicroside, syringic acid, gallic acid, p-hydroxybenzaldehyde, para-hydroxybenzoic acid, and isoimperatorin, demonstrated superior efficacy in treating SIRS compared to a single compound or to other cocktails. Finally, in vitro experiments showcased that GMRC cocktail C effectively rebalanced bacteria composition in SIRS patients. This study underscores XFBD's therapeutic potential in SIRS and highlights the importance of innovative treatment approaches for this disease by targeting the gut microbiota.IMPORTANCEDeveloping effective treatment strategies for systemic inflammatory response syndrome (SIRS) is crucial due to its severe and often life-threatening nature. While traditional treatments like dexamethasone have shown efficacy, they also come with significant side effects and limitations. This study makes significant strides by demonstrating that the Xuanfei Baidu (XFBD) formula can substantially reduce mortality rates and inflammation in SIRS mice through effective modulation of the gut microbiota. By quantitatively assessing the impact of 51 compounds derived from XFBD on the gut microbiome, we developed a potent gut microbiome remodeling compound cocktail. This cocktail outperformed individual compounds and other mixtures in efficacy against SIRS. These findings highlight the potential of XFBD as a therapeutic solution for SIRS and underscore the critical role of innovative strategies targeting the gut microbiota in addressing this severe inflammatory condition.
Collapse
Affiliation(s)
- Luyao Liu
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| | - Lin Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huan Liu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Zhao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Pu Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Air Force Medical University, China, Shaanxi
| | - Junhua Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| | - Xin Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| |
Collapse
|
9
|
Mousa WK, Al Ali A. The Gut Microbiome Advances Precision Medicine and Diagnostics for Inflammatory Bowel Diseases. Int J Mol Sci 2024; 25:11259. [PMID: 39457040 PMCID: PMC11508888 DOI: 10.3390/ijms252011259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
The gut microbiome emerges as an integral component of precision medicine because of its signature variability among individuals and its plasticity, which enables personalized therapeutic interventions, especially when integrated with other multiomics data. This promise is further fueled by advances in next-generation sequencing and metabolomics, which allow in-depth high-precision profiling of microbiome communities, their genetic contents, and secreted chemistry. This knowledge has advanced our understanding of our microbial partners, their interaction with cellular targets, and their implication in human conditions such as inflammatory bowel disease (IBD). This explosion of microbiome data inspired the development of next-generation therapeutics for treating IBD that depend on manipulating the gut microbiome by diet modulation or using live products as therapeutics. The current landscape of artificial microbiome therapeutics is not limited to probiotics and fecal transplants but has expanded to include community consortia, engineered probiotics, and defined metabolites, bypassing several limitations that hindered rapid progress in this field such as safety and regulatory issues. More integrated research will reveal new therapeutic targets such as enzymes or receptors mediating interactions between microbiota-secreted molecules that drive or modulate diseases. With the shift toward precision medicine and the enhanced integration of host genetics and polymorphism in treatment regimes, the following key questions emerge: How can we effectively implement microbiomics to further personalize the treatment of diseases like IBD, leveraging proven and validated microbiome links? Can we modulate the microbiome to manage IBD by altering the host immune response? In this review, we discuss recent advances in understanding the mechanism underpinning the role of gut microbes in driving or preventing IBD. We highlight developed targeted approaches to reverse dysbiosis through precision editing of the microbiome. We analyze limitations and opportunities while defining the specific clinical niche for this innovative therapeutic modality for the treatment, prevention, and diagnosis of IBD and its potential implication in precision medicine.
Collapse
Affiliation(s)
- Walaa K. Mousa
- College of Pharmacy, Al Ain University of Science and Technology, Abu Dhabi 64141, United Arab Emirates;
- College of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Aya Al Ali
- College of Pharmacy, Al Ain University of Science and Technology, Abu Dhabi 64141, United Arab Emirates;
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| |
Collapse
|
10
|
Qian X, Lin X, Hu W, Zhang L, Chen W, Zhang S, Ge S, Xu X, Luo K. Intestinal homeostasis disrupted by Periodontitis exacerbates Alzheimer's Disease in APP/PS1 mice. J Neuroinflammation 2024; 21:263. [PMID: 39425119 PMCID: PMC11489998 DOI: 10.1186/s12974-024-03256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
Periodontitis exacerbates Alzheimer's disease (AD) through multiple pathways. Both periodontitis and AD are intricately correlated to intestinal homeostasis, yet there is still a lack of direct evidence regarding whether periodontitis can regulate the progression of AD by modulating intestinal homeostasis. The current study induced experimental periodontitis in AD mice by bilaterally ligating the maxillary second molars with silk and administering Pg-LPS injections in APPswe/PS1ΔE9 (APP/PS1) mice. Behavioral tests and histological analyses of brain tissue were conducted after 8 weeks. Gut microbiota was analyzed and colon tissue were also evaluated. Then, fecal microbiota from mice with periodontitis was transplanted into antibiotic-treated mice to confirm the effects of periodontitis on AD and the potential mechanism was explored. The results indicated periodontitis exacerbated cognitive impairment and anxious behaviour in APP/PS1 mice, with increased Aβ deposition, microglial overactivation and neuroinflammation in brain. Moreover, the intestinal homeostasis of AD mice was altered by periodontitis, including affecting gut microbiota composition, causing colon inflammation and destroyed intestinal epithelial barrier. Furthermore, AD mice that underwent fecal transplantation from mice with periodontitis exhibited worsened AD progression and disrupted intestinal homeostasis. It also impaired intestinal barrier function, elevated peripheral inflammation, damaged blood-brain barrier (BBB) and caused neuroinflammation and synapses impairment. Taken together, the current study demonstrated that periodontitis could disrupt intestinal homeostasis to exacerbate AD progression potential via causing gut microbial dysbiosis, intestinal inflammation and intestinal barrier impairment to induce peripheral inflammation and damage BBB, ultimately leading to neuroinflammation and synapse impairment. It underscores the importance of maintaining both periodontal health and intestinal homeostasis to reduce the risk of AD.
Collapse
Affiliation(s)
- Xueshen Qian
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Xuxin Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Weiqiang Hu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Lu Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Wenqian Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China
| | - Shuang Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, 210008, P.R. China
| | - Song Ge
- School and Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Xiongcheng Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China.
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China.
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China.
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350002, P.R. China.
| |
Collapse
|
11
|
Yin D, Zhang Z, Zhu Y, Xu Z, Liu W, Liang K, Li F. Assessment of the Impact of Dietary Supplementation with Epigallocatechin Gallate (EGCG) on Antioxidant Status, Immune Response, and Intestinal Microbiota in Post-Weaning Rabbits. Animals (Basel) 2024; 14:3011. [PMID: 39457941 PMCID: PMC11504044 DOI: 10.3390/ani14203011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
This study was conducted to investigate the impact of EGCG on antioxidant stress, immune response, and intestinal microbiota flora in post-weaning rabbits. A total of 144 40 d Ira rabbits (equally divided by sex), were randomly allocated to six treatments. with five groups receiving doses of 200, 400, 600, 800, and 1000 mg/kg of EGCG, while one group served as a control without EGCG. Over 48 days, this study the assessed growth performance, antioxidant capacity, immune system, intestinal morphology, and cecal microbiota in the rabbits. The results showed that EGCG did not affect growth performance; however, significant linear and quadratic correlations were observed between the MDA, T-AOC, and GSH-Px activities in the liver and jejunum (p < 0.05). Quadratic effects were observed for the spleen and thymus indexes and serum IgG levels with increasing EGCG dosages (p < 0.05). Additionally, positive linear and quadratic effects were found on the ileal villus height and the villus height/crypt depth ratio. The relative abundances of Euryarchaeota, Patescibacteria, and Synergistota were significantly enriched in rabbits fed with high dosages (600-1000 mg/kg) of EGCG. Conclusively, the addition of large doses of EGCG (400-800 mg/kg) can effectively suppress oxidative stress and alleviate weaning stress, thereby contributing to the protection of post-weaning rabbits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fangfang Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (D.Y.)
| |
Collapse
|
12
|
Zhao X, Zhang Y, Wang P, Liu K, Zheng Y, Wen J, Wang K, Wen X. Layer by layer self-assembled hyaluronic acid nanoarmor for the treatment of ulcerative colitis. J Nanobiotechnology 2024; 22:633. [PMID: 39420343 PMCID: PMC11488142 DOI: 10.1186/s12951-024-02933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024] Open
Abstract
Natural compound-based treatments provide innovative ways for ulcerative colitis therapy. However, poor targeting and rapid degradation curtail its application, which needs to be addressed. Inspired by biomacromolecule-based materials, we have developed an orally administrated nanoparticle (GBP@HA NPs) using bovine serum albumin as a carrier for polyphenol delivery. The system synergizes galactosylated bovine serum albumin with two polyphenols, epigallocatechin gallate and tannic acid, which is then encased in "nanoarmor" of ε-Polylysine and hyaluronic acid to boost its stability and targeting. Remarkably, the nanoarmor demonstrated profound therapeutic effects in both acute and chronic mouse models of ulcerative colitis, mitigating disease symptoms via multiple mechanisms, regulating inflammation related factors and exerting a modulatory impact on gut microbiota. Further mechanistic investigations indicate that GBP@HA NPs may act through several pathways, including modulation of Keap1-Nrf2 and NF-κB signaling, as well as Caspase-1-dependent pyroptosis. Consequently, this novel armored nanotherapy promotes the way for enhanced polyphenol utilization in ulcerative colitis treatment research.
Collapse
Affiliation(s)
- Xinxin Zhao
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuchen Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Pengchong Wang
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an Shaanxi, 710068, China
| | - Kailai Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yunhe Zheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jinpeng Wen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ke Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Xiaopeng Wen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
13
|
Cheng G, Jian S, Li W, Yan L, Chen T, Cheng T, Liu Z, Ye G, Tang H, Zhang L. Epigallocatechin gallate protects mice from Salmonella enterica ser. Typhimurium infection by modulating bacterial virulence through quorum sensing inhibition. Front Cell Infect Microbiol 2024; 14:1432111. [PMID: 39479281 PMCID: PMC11521958 DOI: 10.3389/fcimb.2024.1432111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Salmonella enterica ser. Typhimurium is a common pathogen that poses a considerable public health threat, contributing to severe gastrointestinal diseases and widespread foodborne illnesses. The virulence of S. Typhimurium is regulated by quorum sensing (QS) and the type III secretion system (T3SS). This study investigated the inhibitory effects and anti-QS activity of epigallocatechin gallate (EGCG), which is a bioactive ingredient found in green tea, on the virulence of S. Typhimurium. In vitro bacterial experiments demonstrated that EGCG inhibited the production of autoinducers, biofilm formation, and flagellar activity by downregulating the expression of AI-1, AI-2, Salmonella pathogenicity islands (SPI)-1, SPI-2, and genes related to flagella, fimbriae, and curli fibers. In a mouse model of S. Typhimurium-induced enteritis, EGCG considerably reduced intestinal colonization by S. Typhimurium and alleviated intestinal damage. In conclusion, EGCG protects the intestines of mice infected with S. Typhimurium by inhibiting QS-induced virulence gene expression, demonstrating its potential as a therapeutic agent for controlling S. Typhimurium infections.
Collapse
Affiliation(s)
- Guoqiang Cheng
- Animal Experiment Center, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Shanqiu Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wen Li
- Department of Science, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Liangchun Yan
- Animal Experiment Center, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Tiezhu Chen
- Animal Experiment Center, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Tingting Cheng
- Animal Experiment Center, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Zongxiu Liu
- Department of Innovation, Chengdu Qiankun Animal Pharmaceutical Co., Ltd, Chengdu, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li Zhang
- Animal Experiment Center, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| |
Collapse
|
14
|
Mei L, Wang J, Hao Y, Zeng X, Yang Y, Wu Z, Ji Y. A comprehensive update on the immunoregulatory mechanisms of Akkermansia muciniphila: insights into active ingredients, metabolites, and nutrient-driven modulation. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39413040 DOI: 10.1080/10408398.2024.2416481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Akkermansia muciniphila (A. muciniphila) has gained recognition as a pioneering probiotic, exhibiting considerable potential to enhance immune conditions across both humans and animals. The health benefits of A. muciniphila are attributed to its various components, including outer membrane proteins (PilQ and Amuc_1100), secreted proteins (P9 and AmTARS), extracellular vesicles, and metabolites such as SCFAs, ornithine lipids, γ-aminobutyric acid, cobalamin, and inosine. The dynamic control of the mucus layer by A. muciniphila plays a crucial role in regulating intestinal mucosal immunity. Furthermore, A. muciniphila modulates immune function by interacting with macrophages, dendritic cells, T lymphocytes, and Paneth cells. Increasing the abundance of A. muciniphila in the gut through nutritional strategies represents a safe and effective means to augment immune function. Various polyphenols, oligosaccharides, and polysaccharides have been shown to elevate the levels of this bacterium, thereby contributing to favorable immunoregulatory outcomes. This paper delves into the latest research advancements related to the probiotic mechanisms of A. muciniphila and provides an overview of the current understanding of how its abundance responds to nutrients. These insights offer a theoretical foundation for the utilization of A. muciniphila in immunoregulation.
Collapse
Affiliation(s)
- Lihua Mei
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Jiaxin Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Wang H, Chen J, Chen X, Liu Y, Wang J, Meng Q, Wang H, He Y, Song Y, Li J, Ju Z, Xiao P, Qian J, Song Z. Cancer-Associated Fibroblasts Expressing Sulfatase 1 Facilitate VEGFA-Dependent Microenvironmental Remodeling to Support Colorectal Cancer. Cancer Res 2024; 84:3371-3387. [PMID: 39250301 DOI: 10.1158/0008-5472.can-23-3987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/18/2024] [Accepted: 07/16/2024] [Indexed: 09/11/2024]
Abstract
Tumor stroma plays a critical role in fostering tumor progression and metastasis. Cancer-associated fibroblasts (CAF) are a major component of the tumor stroma. Identifying the key molecular determinants for the protumor properties of CAFs could enable the development of more effective treatment strategies. In this study, through analyses of single-cell sequencing data, we identified a population of CAFs expressing high levels of sulfatase 1 (SULF1), which was associated with poor prognosis in patients with colorectal cancer. Colorectal cancer models using mice with conditional SULF1 knockout in fibroblasts revealed the tumor-supportive function of SULF1+ CAFs. Mechanistically, SULF1+ CAFs enhanced the release of VEGFA from heparan sulfate proteoglycan. The increased bioavailability of VEGFA initiated the deposition of extracellular matrix and enhanced angiogenesis. In addition, intestinal microbiota-produced butyrate suppressed SULF1 expression in CAFs through its histone deacetylase (HDAC) inhibitory activity. The insufficient butyrate production in patients with colorectal cancer increased the abundance of SULF1+ CAFs, thereby promoting tumor progression. Importantly, tumor growth inhibition by HDAC was dependent on SULF1 expression in CAFs, and patients with colorectal cancer with more SULF1+ CAFs were more responsive to treatment with the HDAC inhibitor chidamide. Collectively, these findings unveil the critical role of SULF1+ CAFs in colorectal cancer and provide a strategy to stratify patients with colorectal cancer for HDAC inhibitor treatment. Significance: SULF1+ cancer-associated fibroblasts play a tumor-promoting role in colorectal cancer by stimulating extracellular matrix deposition and angiogenesis and can serve as a biomarker for the therapeutic response to HDAC inhibitors in patients.
Collapse
Affiliation(s)
- Huijuan Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Jiaxin Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Xiaoyu Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Yingqiang Liu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Jiawei Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Qing Meng
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Huogang Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Ying He
- Huzhou Key Laboratory of Translational Medicine, Huzhou, China
| | - Yujia Song
- Hangzhou No. 14 High School, Hangzhou, China
| | - Jingyun Li
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junbin Qian
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Child Health, Hangzhou, China
| | - Zhangfa Song
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
16
|
Hamilton AM, Krout IN, White AC, Sampson TR. Microbiome-based therapeutics for Parkinson's disease. Neurotherapeutics 2024:e00462. [PMID: 39393983 DOI: 10.1016/j.neurot.2024.e00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/13/2024] Open
Abstract
Recent experimental and clinical data demonstrate a significant dysregulation of the gut microbiome in individuals with Parkinson's disease (PD). With an immense influence on all aspects of physiology, this dysregulation has potential to directly or indirectly contribute to disease pathology. Experimental models have bridged these associations toward defined contributions, identifying various microbiome-dependent impacts to PD pathology. These studies have laid the foundation for human translation, examining whether certain members of the microbiome and/or whole restoration of the gut microbiome community can provide therapeutic benefit for people living with PD. Here, we review recent and ongoing clinically-focused studies that use microbiome-targeted therapies to limit the severity and progression of PD. Fecal microbiome transplants, prebiotic interventions, and probiotic supplementation are each emerging as viable methodologies to augment the gut microbiome and potentially limit PD symptoms. While still early, the data in the field to date support continued cross-talk between experimental systems and human studies to identify key microbial factors that contribute to PD pathologies.
Collapse
Affiliation(s)
- Adam M Hamilton
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Ian N Krout
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Alexandria C White
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA
| | - Timothy R Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA.
| |
Collapse
|
17
|
Xie Q, Sun J, Sun M, Wang Q, Wang M. Perturbed microbial ecology in neuromyelitis optica spectrum disorder: Evidence from the gut microbiome and fecal metabolome. Mult Scler Relat Disord 2024; 92:105936. [PMID: 39418776 DOI: 10.1016/j.msard.2024.105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is a central nervous system inflammatory demyelinating immune-mediated ailment, which is influenced by genetic, epigenetic, and environmental elements. The escalating incidence of NMOSD in recent years implies alterations in environmental risk factors. Recent research has established a correlation between gut microbiomes and the development of NMOSD. METHODS Metagenomic shotgun sequencing and gas chromatography-mass spectrometry (GC-MS) were employed to assess alterations of the structure and function in the fecal microbiome, as well as levels of short-chain fatty acids (SCFAs) in fecal and blood samples, among individuals with neuromyelitis optica spectrum disorder (NMOSD) during the acute phase (n = 25), the remission phase (n = 11), and a group of healthy controls (HCs) (n = 24). We further explored the correlation between gut microbiota and the pathogenesis of NMOSD through fecal microbiota transplantation (FMT). The gut microbiome from human donors diagnosed with NMOSD or HCs was transplanted into germ-free mice, followed by an analysis of the alterations in the structure and functionality of the transplanted mice's gut microbiome. Additionally, the impact of microbiome transfer on the immunity and spinal cord of germ-free mice was assessed through various techniques, including ELISA, flow cytometry, western blot, histopathology, and transcriptome sequencing. RESULTS (1) At the taxonomic levels of genus and species, there were significant differences in the α-diversity of the microbiome between HCs and NMOSD patients in the acute phase, with NMOSD patients having higher species diversity. (2) In the acute phase, the gut microbiota of NMOSD patients was characterized by Ruminococcaceae_unclassified, Campylobacter, Parabacteroides, Lactobacillus, Akkermansia, Streptococcus oralis, Clostridium leptum, Clostridium asparagiforme, Firmicutes bacterium CAG 238, and Lactobacillus fermentum. (3) The relative abundances of Coprobacter, Turicimonas, Gemmiger, Enterobacter, Roseburia sp.CAG 471, Veillonella tobetsuensis, Proteobacteria bacterium CAG 139, Ruminococcus bicirculans, Lactococcus lactis, Flavonifractor plautii, and Streptococcus cristatus were notably lower in patients experiencing remission compared to NMOSD patients in the acute phase, On the other hand, the relative abundances of Flavonifractor (P = 0.049) and Clostridium aldenense (P = 0.049) were significantly higher. Following medication, the gut microbiome distribution in NMOSD patients during remission closely resembled that of healthy controls (HCs). (4) Compared with HCs, acetate levels in the feces of patients with NMOSD in the acute phase were significantly lower. (5) In addition, we transplanted feces from NMOSD patients into germ-free mice and revealed a significant increase in the levels of IL-6, IL-17A, and IL-23 in the blood of mice belonging to the NMOSD fecal transplantation (NFMT) group. Additionally, the IL-10 level exhibited a significant reduction. Moreover, the proportion of Th17 cells displayed a significant increase, while the proportion of Treg cells exhibited a significant decrease in the spleens of NFMT mice. CONCLUSION Patients in the acute phase of neuromyelitis optica spectrum disorder (NMOSD) exhibited imbalances in their gut microbiota and a deficiency in short-chain fatty acids (SCFAs). Following drug treatment, the composition of intestinal microbes in NMOSD patients during the remission phase closely resembled that of the healthy control population. The FMT experiment provided evidence of the significant association between intestinal flora and the pathogenesis of NMOSD. Consequently, investigating gut microbiota and identifying novel microbial markers hold promise for the diagnosis and treatment of NMOSD patients.
Collapse
Affiliation(s)
- QinFang Xie
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - Jing Sun
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - MengJiao Sun
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - Qi Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China.
| | - ManXia Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China.
| |
Collapse
|
18
|
Cui C, Du M, Zhao Y, Tang J, Liu M, Min G, Chen R, Zhang Q, Sun Z, Weng H. Functional Ginger-Derived Extracellular Vesicles-Coated ZIF-8 Containing TNF-α siRNA for Ulcerative Colitis Therapy by Modulating Gut Microbiota. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53460-53473. [PMID: 39303016 DOI: 10.1021/acsami.4c10562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Tumor necrosis factor-α (TNF-α) plays a causal role in the pathogenesis of ulcerative colitis (UC), and anti-TNF-α siRNA shows great promise in UC therapy. However, delivering siRNA with site-targeted stability and therapeutic efficacy is still challenging due to the complex and dynamic intestinal microenvironment. Here, based on the functional plant-derived ginger extracellular vesicles (EVs) and porous ZIF-8 nanoparticles, we propose a novel TNF-α siRNA delivery strategy (EVs@ZIF-8@siRNA) for UC targeted therapy. Ginger EVs show strong colon and macrophage targeting, as well as robust resistance to acidic degradation in the stomach. Moreover, 6-shogaol in ginger-derived EVs displays anti-inflammatory effects, which enhance the treatment efficiency by cooperation with TNF-α siRNA. In vitro experiments reveal that ZIF-8 nanoparticles have high TNF-α siRNA loading capacity and promote siRNA escape from cellular lysosomes. In vivo experiments show that the TNF-α level is reduced more significantly in colonic tissue than other nontargeted inflammation related factors, showing a good targeting of this composite nanoparticle. Furthermore, gut microbiota sequencing results demonstrate that the nanoparticles can promote intestinal barrier repair by regulating the intestinal microbial balance and restoring the intestinal health of UC mice. Therefore, the developed EVs@ZIF-8@siRNA nanoparticles may represent a novel colon-targeted oral drug, providing a promising therapeutic strategy for UC therapy.
Collapse
Affiliation(s)
- Chenyang Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Miao Du
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Yihang Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Jiaze Tang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Mengge Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Geng Min
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Rongchen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Qiang Zhang
- Department of Critical Care Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Zhaowei Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| | - Haibo Weng
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
| |
Collapse
|
19
|
Cao M, Zhang Z, Hu H, Wu Y, He T, Huang C, Wang K, Zhang Q, Cao M, Huang J, Li Y. Comprehensive studies of the serine carboxypeptidase-like (SCPL) gene family in Carya cathayensis revealed the roles of SCPL4 in epigallocatechin-3-gallate (EGCG) synthesis and drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109183. [PMID: 39378646 DOI: 10.1016/j.plaphy.2024.109183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Hickory (Carya cathayensis) nuts are rich in epigallocatechin-3-gallate (EGCG) with multiple health functions. EGCG also regulates plant growth, development and stress responses. However, research on the synthesis mechanism of EGCG and its function in hickory is currently limited. Herein, 44 serine carboxypeptidase-like (SCPL) members were identified from the hickory genome and classified into three major categories: SCPL-I, SCPL-II, and SCPL-III. In the CcSCPLs-IA branch, CcSCPL3/4/5/8/9/11/13 showed differential expression patterns in various tissues, especially with relatively high expression levels in plant roots, female flowers and seed coat. These proteins have a catalytic triad composed of serine (Ser), aspartic acid (Asp) and histidine (His). Ser-His in the triad and arginine (Arg) mediated the docking of CcSCPL3/4/5/11 with 1-O-galloyl-β-d-glucose (βG) and epigallocatechin (EGC), whereas the Asp of the triad did not. CcSCPL4 was further confirmed to promote the synthesis of EGCG in tobacco leaves. CcSCPL4 may function as monomer and be mainly localized within cellular structures outside the nucleus. Notably, the expression level of CcSCPL4 significantly changed after drought, cold, and salt stress, with the highest expression level under drought stress. Meanwhile CcSCPL4 over-expression could enhance the drought resistance of Saccharomyces cerevisiae and Arabidopsis. This study elucidates key enzymes for EGCG synthesis and their role in drought resistance, providing insights into the EGCG synthesis pathway and molecular breeding of hickory in future.
Collapse
Affiliation(s)
- Minghao Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ziyue Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Huangpeng Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yuanpeng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Tengjie He
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Chunying Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ketao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Qixiang Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Min Cao
- Songyang County Bureau of Natural Resources, Songyang, 323400, China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
20
|
Zhao M, Cui Y, Wang F, Wu F, Li C, Liu S, Chen B. Ursolic Acid Regulates Immune Balance, Modulates Gut Microbial Metabolism, and Improves Liver Health in Mice. Int J Mol Sci 2024; 25:10623. [PMID: 39408951 PMCID: PMC11477038 DOI: 10.3390/ijms251910623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Ursolic acid (UA) has demonstrated significant immunomodulatory and hepatoprotective effects; however, the underlying mechanisms remain unclear. This study aims to analyze the impact of UA on the gut microbiome, metabolome, and liver transcriptome, investigate UA's role in maintaining gut immune homeostasis and liver health, and evaluate the potential contributions of gut microbes and their metabolites to these beneficial effects. Our findings indicate that UA enhances immune balance in the jejunum, fortifies intestinal barrier function, and promotes overall gut health. UA modulates the intestinal microbiota and its metabolic processes, notably increasing the abundance of beneficial bacteria such as Odoribacter and Parabacteroides, along with their metabolites, including ornithine and lactucin. Additionally, UA inhibits the expression of interleukin-1 receptor 1 (IL1R1) and calcium (Ca2+) voltage-gated channel auxiliary subunit beta 2 (CACNB2) while enhancing the synthesis pathways of retinol and ascorbic acid, thereby exerting a protective influence on liver function. In summary, UA enhances intestinal immune homeostasis and promotes liver health, with these advantageous effects potentially mediated by beneficial bacteria (Odoribacter and Parabacteroides) and their metabolites (ornithine and lactucin).
Collapse
Affiliation(s)
- Man Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| | - Yali Cui
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071051, China
| | - Fengxia Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| | - Fengyang Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| | - Chong Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| | - Shudong Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| |
Collapse
|
21
|
Mo X, Cheng R, Shen L, Liu N, Sun Y, Lin S, Jiang G, Li X, Peng X, Zhang Y, Liao Y, Yan H, Liu L. Yeast β-glucan alleviates high-fat diet-induced Alzheimer's disease-like pathologies in rats via the gut-brain axis. Int J Biol Macromol 2024; 278:134939. [PMID: 39179066 DOI: 10.1016/j.ijbiomac.2024.134939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/15/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Targeting the gut microbiota may be an emerging strategy for the prevention and treatment of Alzheimer's disease (AD). Macro-molecular yeast β-glucan (BG), derived from the yeast of Saccharomyces cerevisiae, regulates the gut microbiota. This study aimed to investigate the effect and mechanism of long-term BG in high-fat diet (HFD)-induced AD-like pathologies from the perspective of the gut microbiota. Here, we found that 80 weeks of BG treatment ameliorated HFD-induced cognitive dysfunction in rats. In the hippocampus, BG alleviated HFD-induced the activation of astrocytes, microglia, NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome pathway, and AD-like pathologies. BG modulated gut dysbiosis through increasing the levels of beneficial bacteria and short-chain fatty acids (SCFAs). BG also attenuated HFD-induced gut barrier impairment. Correlation analysis revealed a close relationship among microbiota, SCFAs, and AD-like pathologies. Furthermore, the fecal microbiota of BG-treated rats and SCFAs treatment mitigated AD-like pathologies via the NLRP3 inflammasome pathway in HFD-fed aged rats. These results suggested that long-term BG promotes the production of SCFAs derived from gut microbiota, which further inhibits NLRP3 inflammasome-mediated neuroinflammation, thereby alleviating HFD-induced AD-like pathologies in rats. BG may become a new strategy for targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoxing Mo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Ruijie Cheng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Lihui Shen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Nian Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yunhong Sun
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Shan Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Guanhua Jiang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Xiaoqin Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Xiaobo Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Yan Zhang
- The Hubei Provincial Key Laboratory of Yeast Function, Yichang 443003, China.
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| |
Collapse
|
22
|
Peng Y, Zhu J, Li Y, Yue X, Peng Y. Almond polysaccharides inhibit DSS-induced inflammatory response in ulcerative colitis mice through NF-κB pathway. Int J Biol Macromol 2024; 281:136206. [PMID: 39362427 DOI: 10.1016/j.ijbiomac.2024.136206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Ulcerative colitis (UC), a type of inflammatory bowel disease (IBD), is a chronic recurrent inflammatory disease of the colon. Our previous findings demonstrated that almond polysaccharide (AP-1) exhibits significant anti-inflammatory activity in vitro. Therefore, this study aimed to explore the ameliorative effect of AP-1 on dextrose sodium sulfate (DSS)-induced UC mice and to elucidate its possible mechanism of action. By observing changes in body weight, fecal viscosity, stool blood, disease activity index, and colon length, we found that AP-1 attenuated inflammation. It inhibited TNF-α, IL-1β, and IL-6 while boosting anti-inflammatory IL-10 levels. Histomorphologically, AP-1 protected against DSS-induced colonic tissue damage by reducing inflammatory cell infiltration and mucosal injury. It also lowered myeloperoxidase (MPO) and NO while increasing total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) in colonic tissues. Moreover, using the Western blot technique, AP-1 was shown to inhibit the phosphorylation of p65 and IκB-α proteins in the NF-κB/iNOS/COX2 signaling pathway and down-regulate the expression of inflammation-associated proteins COX2 and iNOS, thus slowing down and ameliorating inflammatory processes. Therefore, the safe and effective beneficial effects of AP-1 make it a promising therapeutic strategy for relieving IBD, especially UC.
Collapse
Affiliation(s)
- Yanqi Peng
- Department of Food Science, College of Public Health, Shenyang Medical College, Shenyang 110034, China; College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiayi Zhu
- College of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Yingshuo Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yanyu Peng
- Department of Histology and Embryology, Shenyang Medical College, Shenyang 110034, China; Key Laboratory of Human Ethnic Specificity and Phenomics of Critical Illness in Liaoning Province, China.
| |
Collapse
|
23
|
Cai W, Pierzynowska K, Stiernborg M, Xu J, Nilsson IA, Svensson U, Melas PA, Lavebratt C. Multispecies synbiotics alleviate dextran sulfate sodium (DSS)-induced colitis: Effects on clinical scores, intestinal pathology, and plasma biomarkers in male and female mice. Clin Nutr ESPEN 2024; 63:74-83. [PMID: 38923468 DOI: 10.1016/j.clnesp.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is characterized by recurrent inflammation of the gastrointestinal tract and has been linked to an imbalance in gut bacteria. Synbiotics, which combine probiotics and prebiotics, are emerging as potential IBD treatments. AIM To examine the effects of four synbiotic formulations on intestinal inflammation and peripheral biomarkers in a rodent IBD model of both sexes. METHODS Colitis was induced in male and female C57BL/6 mice using 1% dextran sulfate sodium (DSS). Concurrently, a non-exposed control group was maintained. Starting on day 4 post-induction, DSS-exposed mice received one of four synbiotic preparations (Synbio1-4 composed of lactic acid bacteria, Bifidobacterium and dietary fibres), an anti-inflammatory drug used to treat IBD (mesalazine), or placebo (water) until day 14. Clinical symptoms and body weight were monitored daily. Blood samples (taken on days -3, 4, and 14, relative to DSS introduction), were used to analyze plasma biomarkers. At the end of the study, intestinal tissues underwent histological and morphological evaluation. RESULTS Compared to placebo, the Synbio1-, 2- and 3-treated groups had improved clinical scores by day 14. Synbio1 was the only preparation that led to clinical improvements to scores comparable to those of controls. The Synbio1-and 3-treated groups also demonstrated histological improvements in the colon. Plasma biomarker analyses revealed significant Synbio1-induced changes in plasma IL17A, VEGFD, and TNFRSF11B levels that correlated with improved clinical or histological scores. Sex-stratified analyses revealed that most therapeutic-like effects were more pronounced in females. CONCLUSION Our findings underscore the potential therapeutic benefits of specific synbiotics for IBD management. However, further research is needed to validate these outcomes in human subjects.
Collapse
Affiliation(s)
- Wenjie Cai
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm, Sweden; Karolinska University Hospital Solna, Center for Molecular Medicine, Stockholm, Sweden
| | | | - Miranda Stiernborg
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm, Sweden; Karolinska University Hospital Solna, Center for Molecular Medicine, Stockholm, Sweden
| | - Jingjing Xu
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm, Sweden; Karolinska University Hospital Solna, Center for Molecular Medicine, Stockholm, Sweden
| | - Ida Ak Nilsson
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm, Sweden; Karolinska University Hospital Solna, Center for Molecular Medicine, Stockholm, Sweden
| | | | - Philippe A Melas
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, 11364 Stockholm, Sweden
| | - Catharina Lavebratt
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm, Sweden; Karolinska University Hospital Solna, Center for Molecular Medicine, Stockholm, Sweden.
| |
Collapse
|
24
|
Lee J, Lee MS, Kim Y. Effects of Green Tea and Java Pepper Mixture on Gut Microbiome and Colonic MicroRNA-221/222 in Mice with Dextran Sulfate Sodium-Induced Colitis. Prev Nutr Food Sci 2024; 29:279-287. [PMID: 39371512 PMCID: PMC11450278 DOI: 10.3746/pnf.2024.29.3.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 10/08/2024] Open
Abstract
In this study, we aimed to investigate the regulatory effects of a green tea and java pepper mixture (GTP) on the gut microbiome and microRNA (miR)-221/222 expression in mice with dextran sulfate sodium (DSS)-induced colitis. Male C57BL/6J mice were divided into four groups: DSS-, DSS+, GTP50, and GTP100. In the GTP50 and GTP100 groups, GTP was orally administered to mice at doses of 50 and 100 mg/kg body weight, respectively, every day for 2 weeks, and colitis was induced in the DSS+, GTP50, and GTP100 groups by adding 3% DSS to their drinking water for 1 week. GTP was found to mitigate the severity of inflammation and the damage to goblet cells caused by DSS-induced colitis. The results showed that compared with the DSS- group, the relative abundance of Bacteroidetes was increased and that of Proteobacteria and Candidatus Melainabacteria was decreased in the GTP100 group. The ratio of Firmicutes to Bacteroidetes was also reduced in the GTP100 group. However, GTP administration did not modulate the microbial diversity. GTP administration upregulated the mRNA and protein levels of occludin and zonula occludens 1. In addition, GTP effectively downregulated the expression of miR-221 and miR-222. Overall, GTP altered the gut microbiota composition and downregulated colonic miR-221/222 expression in mice with DSS-induced colitis.
Collapse
Affiliation(s)
- Jumi Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Mak-Soon Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
| | - Yangha Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
25
|
Liu Y, Fang M, Tu X, Mo X, Zhang L, Yang B, Wang F, Kim YB, Huang C, Chen L, Fan S. Dietary Polyphenols as Anti-Aging Agents: Targeting the Hallmarks of Aging. Nutrients 2024; 16:3305. [PMID: 39408272 PMCID: PMC11478989 DOI: 10.3390/nu16193305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Aging is a natural biological process influenced by multiple factors and is a significant contributor to various chronic diseases. Slowing down the aging process and extending health span have been pursuits of the scientific field. Methods: Examination of the effects of dietary polyphenols on hallmarks of aging such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, disabled macroautophagy, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. Results: Polyphenols, abundant in nature, exhibit numerous biological activities, including antioxidant effects, free radical scavenging, neuroprotection, and anti-aging properties. These compounds are generally safe and effective in potentially slowing aging and preventing age-related disorders. Conclusions: The review encourages the development of novel therapeutic strategies using dietary polyphenols to create holistic anti-aging therapies and nutritional supplements.
Collapse
Affiliation(s)
- Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Xiaohui Tu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Xueying Mo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Lu Zhang
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Binrui Yang
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Feijie Wang
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Liang Chen
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| |
Collapse
|
26
|
Lu Q, Zhu R, Zhou L, Zhang R, Li Z, Xu P, Wang Z, Wu G, Ren J, Jiao D, Song Y, Li J, Wang W, Liang R, Ma X, Sun Y. Gut dysbiosis contributes to the development of Budd-Chiari syndrome through immune imbalance. mSystems 2024; 9:e0079424. [PMID: 39166878 PMCID: PMC11406926 DOI: 10.1128/msystems.00794-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
Budd-Chiari syndrome (B-CS) is a rare and lethal condition characterized by hepatic venous outflow tract blockage. Gut microbiota has been linked to numerous hepatic disorders, but its significance in B-CS pathogenesis is uncertain. First, we performed a case-control study (Ncase = 140, Ncontrol = 63) to compare the fecal microbiota of B-CS and healthy individuals by metagenomics sequencing. B-CS patients' gut microbial composition and activity changed significantly, with a different metagenomic makeup, increased potentially pathogenic bacteria, including Prevotella, and disease-linked microbial function. Imbalanced cytokines in patients were demonstrated to be associated with gut dysbiosis, which led us to suspect that B-CS is associated with gut microbiota and immune dysregulation. Next, 16S ribosomal DNA sequencing on fecal microbiota transplantation (FMT) mice models examined the link between gut dysbiosis and B-CS. FMT models showed damaged liver tissues, posterior inferior vena cava, and increased Prevotella in the disturbed gut microbiota of FMT mice. Notably, B-CS-FMT impaired the morphological structure of colonic tissues and increased intestinal permeability. Furthermore, a significant increase of the same cytokines (IL-5, IL-6, IL-9, IL-10, IL-17A, IL-17F, and IL-13) and endotoxin levels in B-CS-FMT mice were observed. Our study suggested that gut microbial dysbiosis may cause B-CS through immunological dysregulation. IMPORTANCE This study revealed that gut microbial dysbiosis may cause Budd-Chiari syndrome (B-CS). Gut dysbiosis enhanced intestinal permeability, and toxic metabolites and imbalanced cytokines activated the immune system. Consequently, the escalation of causative factors led to their concentration in the portal vein, thereby compromising both the liver parenchyma and outflow tract. Therefore, we proposed that gut microbial dysbiosis induced immune imbalance by chronic systemic inflammation, which contributed to the B-CS development. Furthermore, Prevotella may mediate inflammation development and immune imbalance, showing potential in B-CS pathogenesis.
Collapse
Affiliation(s)
- Qinwei Lu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Rongtao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Lin Zhou
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruifang Zhang
- Department of Ultrasound Diagnosis, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Department of Endovascular Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peng Xu
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiwei Wang
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gang Wu
- Department of Vascular Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianzhuang Ren
- Department of Vascular Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dechao Jiao
- Department of Vascular Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Song
- Department of Vascular Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Weijie Wang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Ruopeng Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Xiuxian Ma
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Yuling Sun
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| |
Collapse
|
27
|
Gong Q, Sun Y, Liu L, Pu C, Guo Y. Oral administration of tea-derived exosome-like nanoparticles protects epithelial and immune barrier of intestine from psychological stress. Heliyon 2024; 10:e36812. [PMID: 39281430 PMCID: PMC11395767 DOI: 10.1016/j.heliyon.2024.e36812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
Psychological stress disrupts the integrity of the intestinal barrier and is strongly linked to emotional disorders, behavioral changes, and gastrointestinal dysfunction. However, there are limited treatment options available for repairing the damage to the intestinal barrier. As a natural plant-based health beverage, tea (Camellia sinensis) has been shown to have various potentially advantageous effects on the intestinal barrier and immune function. In this study, we extracted bioactive molecules from tea leaves, named exosome-like nanoparticles (ELNs), and then examined their potential protective properties for the intestinal barrier. Through in vitro experimentation, we investigated whether tea-derived ELNs (TELNs) could offer a protective effect against lipopolysaccharides-induced damage to the intestinal barrier. In an in vivo experiment, rats were exposed to water avoidance stress and subsequently administered TELNs orally. The administration of TELNs resulted in the enhancement of the epithelial barrier in the intestine, effectively preventing bacterial translocation to the submucosae. Additionally, TELNs were found to improve the function of the intestinal immune barrier through the mediation of interleukin-22 and the increased secretion of antimicrobial peptide Reg3g. Notably, miR-44 and miR-54 in TELNs exhibited similar protective effects on the intestinal barrier. These findings suggest that TELNs possess the ability to restore the integrity of the intestinal barrier in the context of psychological stress.
Collapse
Affiliation(s)
- Qianyuan Gong
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yueshan Sun
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Lei Liu
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Chunlan Pu
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yuanbiao Guo
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| |
Collapse
|
28
|
Yin Y, Wang R, Li Y, Qin W, Pan L, Yan C, Hu Y, Wang G, Ai L, Mei Q, Li L. Protection against DSS-induced colitis in mice through FcεRIα deficiency: the role of altered Lactobacillus. NPJ Biofilms Microbiomes 2024; 10:84. [PMID: 39266529 PMCID: PMC11393424 DOI: 10.1038/s41522-024-00563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
The role of mast cells (MCs) in ulcerative colitis (UC) development is controversial. FcεRI, the IgE high-affinity receptor, is known to activate MCs. However, its role in UC remains unclear. In our study, Anti-FcεRI showed highly diagnostic value for UC. FcεRIα knockout in mice ameliorated DSS-induced colitis in a gut microbiota-dependent manner. Increased Lactobacillus abundance in FcεRIα deficient mice showed strongly correlation with the remission of colitis. RNA sequencing indicated activation of the NLRP6 inflammasome pathway in FcεRIα knockout mice. Additionally, Lactobacillus plantarum supplementation protected against inflammatory injury and goblet cell loss, with activation of the NLRP6 inflammasome during colitis. Notably, this effect was absent when the strain is unable to produce lactic acid. In summary, colitis was mitigated in FcεRIα deficient mice, which may be attributed to the increased abundance of Lactobacillus. These findings contribute to a better understanding of the relationship between allergic reactions, microbiota, and colitis.
Collapse
Affiliation(s)
- Yue Yin
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruilong Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanning Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenfei Qin
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Letian Pan
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chenyuan Yan
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yusen Hu
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Guangqiang Wang
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China.
| | - Qixiang Mei
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China.
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Li Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
29
|
Xing D, Zheng T, Chen X, Xie Z. Yellow Teas Protect against DSS-Induced Ulcerative Colitis by Inhibiting TLR4/NF-κB/NLRP3 Inflammasome in Mice. Foods 2024; 13:2843. [PMID: 39272608 PMCID: PMC11395497 DOI: 10.3390/foods13172843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Yellow tea (YT), a slightly fermented tea with a unique yellowing process and mellow taste, is becoming widely popular. Currently, the YT includes bud yellow tea (BYT), small-leaf yellow tea (SYT), and large-leaf yellow tea (LYT) based on maturity of raw materials. Previous studies have shown that YT has outstanding potential in preventing metabolic syndrome. However, the distinct effects and mechanisms of different types of YT on ulcerative colitis (UC) are still unclear. This study investigated the effects and mechanisms of continuous or intermittent intervention of three yellow tea water extracts (YTEs) on dextran sulfate sodium (DSS)-induced ulcerative colitis in CD-1 mice. The results showed that YTE intervention significantly improves the syndrome of DSS-induced UC in mice. Mechanistic studies reveal that YTEs increase the expression levels of tight junction (TJ) proteins and reduce the levels of pro-inflammatory cytokines in the colon by inactivating TLR4/NF-κB/NLRP3. YTE treatment protected intestinal barrier integrity and reduced serum lipopolysaccharide (LPS) levels. Interestingly, our results indicate that large-leaf yellow tea (LYT) has a better alleviating effect than BYT and SYT. YTE intervention before DSS administration has a certain degree of preventive effect on ulcerative colitis, while continuous YTE intervention after DSS induction has a significant reversing effect on the damage caused by DSS. Our results indicated that drinking YT may have preventive and therapeutic effect on UC, especially drinking LYT.
Collapse
Affiliation(s)
- Dawei Xing
- Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, School of Biological and Environmental Engineering, Chaohu University, 1 Bantang Road, Hefei 238024, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Tao Zheng
- Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, School of Biological and Environmental Engineering, Chaohu University, 1 Bantang Road, Hefei 238024, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Xiaoju Chen
- Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, School of Biological and Environmental Engineering, Chaohu University, 1 Bantang Road, Hefei 238024, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| |
Collapse
|
30
|
Ross FC, Mayer DE, Horn J, Cryan JF, Del Rio D, Randolph E, Gill CIR, Gupta A, Ross RP, Stanton C, Mayer EA. Potential of dietary polyphenols for protection from age-related decline and neurodegeneration: a role for gut microbiota? Nutr Neurosci 2024; 27:1058-1076. [PMID: 38287652 DOI: 10.1080/1028415x.2023.2298098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Many epidemiological studies have shown the beneficial effects of a largely plant-based diet, and the strong association between the consumption of a Mediterranean-type diet with healthy aging including a lower risk of cognitive decline. The Mediterranean diet is characterized by a high intake of olive oil, fruits and vegetables and is rich in dietary fiber and polyphenols - both of which have been postulated to act as important mediators of these benefits. Polyphenols are large molecules produced by plants to protect them from environmental threats and injury. When ingested by humans, as little as 5% of these molecules are absorbed in the small intestine with the majority metabolized by the gut microbiota into absorbable simple phenolic compounds. Flavan-3-ols, a type of flavonoid, contained in grapes, berries, pome fruits, tea, and cocoa have been associated with many beneficial effects on several risk factors for cardiovascular disease, cognitive function and brain regions involved in memory formation. Both preclinical and clinical studies suggest that these brain and heart benefits can be attributed to endothelial vascular effects and anti-inflammatory properties among others. More recently the gut microbiota has emerged as a potential modulator of the aging brain and intriguingly polyphenols have been shown to alter microbiota composition and be metabolized by different microbial species. However, there is a need for well controlled studies in large populations to identify predictors of response, particularly given the vast inter-individual variation of human gut microbiota.
Collapse
Affiliation(s)
- F C Ross
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - D E Mayer
- Institute of Human Nutrition, Columbia University, New York, USA
| | - J Horn
- Oppenheimer Centre for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - J F Cryan
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Department Anatomy & Neuroscience, University College Cork, Co. Cork, Ireland
| | - D Del Rio
- Department of Food and Drugs, University of Parma, Parma, Italy
| | - E Randolph
- Oppenheimer Centre for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - C I R Gill
- Nutrition Innovation Centre for Food and Health, Northern Ireland, UK
| | - A Gupta
- Division of Digestive Diseases, UCLA, Los Angeles, USA
- Goodman Luskin Microbiome Center at UCLA, Los Angeles, CA, USA
| | - R P Ross
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - C Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - E A Mayer
- Oppenheimer Centre for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, USA
- Goodman Luskin Microbiome Center at UCLA, Los Angeles, CA, USA
| |
Collapse
|
31
|
Zhang H, Hao Z, Zhang R, Tong J, Wang X, Liu J, Gao Y, Wang X, Su Q, Wen H, Fan Y, Liu F, Li X, Tong C, Wang X. Artemisia argyi polyphenols Attenuates DSS-induced colitis in mice by regulating the structural composition of gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155897. [PMID: 39032279 DOI: 10.1016/j.phymed.2024.155897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Intestinal health is affected by heredity, lifestyle, and structure of gut microbiota. The imbalance of symbiotic and harmful bacteria in gut microbiota may increase the occurrence of colonic inflammation. Supplementary A. muciniphila can improve the survival rate of colitis mice, reduce colon tissue injury, and the expression of anti-inflammatory factors was upregulated. Artemisia argyi has been reported to have anti-inflammatory, antioxidant, bactericidal, and immunomodulatory effects. However, its anti-inflammatory effect and mechanism, and its influence on gut microbiota and metabolites are still unclear yet. PURPOSE To explore whether Artemisia argyi Polyphenols(AAPs) can alleviate ulcerative colitis (UC) by changing gut microbiota. METHODS The therapeutic effect of AAPs on colitis was investigated by inducing ulcerative colitis in mice using dextran sodium sulfate (DSS) and administering different doses of AAPs orally to mice. Exploring the levels of inflammatory proteins, oxidative stress proteins, and barrier proteins using western blotting and immunofluorescence, and explored the structural changes of gut microbiota and its metabolites. Meanwhile, in order to explore whether the role of AAPs in alleviating colitis is based on the regulation of gut microbiota structure, we conducted fecal microbiota transplantation (FMT). RESULTS It showed that AAPs and FMT trial alleviated DSS-induced colonic injury, including clinical parameters and pathological injury of colon tissue, reduction in the expression of inflammatory proteins: IL-6, TNF-α, p-p65, p-IκBα, and increase in the expression of antioxidant proteins: Nrf2, NQO-1 and HO-1 and barrier proteins: Claudin-1, Occludin, ZO-1 and MUC2. AAPs and FMT promoted the content of beneficial bacteria, such as Butyricimonas and Lactobacillus, and the content of beneficial metabolites for instance acetic acid, butyric acid, and valeric acid has also increased. CONCLUSION These results suggested that AAPs might improve DSS-induced colonic injury by changing the structural of gut microbiota while promoting the synthesis of fatty acids in the intestine, thereby providing a theoretical basis for using AAPs to treat ulcerative colitis.
Collapse
Affiliation(s)
- Huaqiang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Henan High Tech Industry Co., Ltd., Henan Academy of Sciences, Zhengzhou 450000, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Zhonghua Hao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Ruya Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Jiang Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Xiaoke Wang
- Leicester International College, Dalian University of Technology, Dalian 116000, Liaoning province, PR China
| | - Jingjing Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Yingkui Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Xuefang Wang
- Henan High Tech Industry Co., Ltd., Henan Academy of Sciences, Zhengzhou 450000, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Qing Su
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Haojie Wen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Yi Fan
- Henan High Tech Industry Co., Ltd., Henan Academy of Sciences, Zhengzhou 450000, PR China
| | - Fang Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China
| | - Xiao Li
- Henan High Tech Industry Co., Ltd., Henan Academy of Sciences, Zhengzhou 450000, PR China.
| | - Chao Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China.
| | - Xuebing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Henan High Tech Industry Co., Ltd., Henan Academy of Sciences, Zhengzhou 450000, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan province, PR China.
| |
Collapse
|
32
|
Cui W, Chen F, Sun Z, Cui C, Xu B, Shen W, Wan F, Cheng A. Catabolism of phenolics from grape peel and its effects on gut microbiota during in vitro colonic fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7182-7193. [PMID: 38624038 DOI: 10.1002/jsfa.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Grape peels, the main by-products of wine processing, are rich in bioactive ingredients of phenolics, including proanthocyanidins, flavonoids and anthocyanins. Phenolics have the function of regulating intestinal microbiota and promoting intestinal health. From the perspective of the dietary nutrition of grape peel phenolics (GPP), the present study aimed to investigate the influence of GPP on the composition and metabolism of human gut microbiota during in vitro fermentation. RESULTS The results indicated that GPP could decrease pH and promote the production of short-chain fatty acids. ACE and Chao1 indices in GPP group were lower than that of the Blank group. GPP enhanced the levels of Lachnospiraceae UCG-004, Bacteroidetes and Roseburia, but reduced the Firmicutes/Bacteroidetes ratio. Kyoto Encyclopedia of Proteins and Genome enrichment pathways related to phenolic acid metabolism mainly included flavonoid, anthocyanin, flavone and flavonol biosynthesis. Gut microbiota could accelerate the release and breakdown of phenolic compounds, resulting in a decrease in the content of hesperetin-7-O-glucoside, delphinidin-3-O-glucoside and cyanidin-3-rutinoside etc. In vitro antibacterial test found that GPP increased the diameters of the inhibition zones of Escherichia coli and Staphylococcus aureus in a dose-dependent manner. CONCLUSION The results of the present study revealed that GPP might be a potential prebiotic-like to prevent diseases by improving gut health. The findings could provide a theoretical basis for the potential to exploit GPP as dietary nutrition to maintain intestinal function. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenyu Cui
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fuchun Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhaoyue Sun
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Caifang Cui
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ben Xu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Anwei Cheng
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
33
|
He J, Wang D, Guo K, Ji R. Camel milk polar lipids ameliorate dextran sulfate sodium-induced colitis in mice by modulating the gut microbiota. J Dairy Sci 2024; 107:6413-6424. [PMID: 38369112 DOI: 10.3168/jds.2023-23930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024]
Abstract
Milk contains abundant polar lipids, which are vital constituents of biological membranes. These polar lipids are present in the human diet as phospholipids and sphingolipids. Nevertheless, the limited focus has been on the attributes and role of camel milk polar lipids (MPL). In this study, camel MPL were isolated, and the composition of their lipidome was determined using ultra-high-performance liquid chromatography-tandem MS. This study characterized a total of 333 polar lipids, which encompassed glycerophospholipids and sphingolipids. Camel milk is rich in polar lipids, mainly phosphatidylethanolamine, sphingomyelin, and phosphatidylcholine. The results indicated that MPL intervention relieved the clinical symptoms and colon tissue damage in mice with dextran sulfate sodium-induced colitis, along with suppressing the expression of proinflammatory cytokines. Moreover, the administration of MPL partially alleviated mouse gut microbiota dysbiosis by increasing the abundance of probiotics (such as Lachnospiraceae_NK4A136_group and Muribaculaceae) and decreasing the number of harmful bacteria (such as Bacteroides and Parabacteroides). This study was conducted to investigate the potent protective effects of MPL in camel milk treatments on a mouse model of colitis and provided new ideas for the application of camel milk.
Collapse
Affiliation(s)
- Jing He
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China; China-Mongolia Joint Laboratory of Biopolymer Application "One Belt One Road," Hohhot 010018, China
| | - DanLin Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Kunjie Guo
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Rimutu Ji
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China; China-Mongolia Joint Laboratory of Biopolymer Application "One Belt One Road," Hohhot 010018, China.
| |
Collapse
|
34
|
Wang J, Qin F, Wang H, Wang L, Li C, Sun L. Exploring the gut microbiota mediated biotransformation of Senecio scandens Buch.-Ham.: Insights from metabolite spectrum with UHPLC-Q-Orbitrap HRMS and bioinformatics analysis of gut microbiota metabolites. J Pharm Biomed Anal 2024; 247:116241. [PMID: 38838440 DOI: 10.1016/j.jpba.2024.116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
Senecio scandens Buch.-Ham., a traditional Chinese medicine commonly used clinically, exhibits various pharmacological properties, including anti-inflammatory, anti-tumor, antiviral, and antibacterial activities. However, its water extracts' chemical components and metabolites are inadequately understood, limiting further research. In this study, the chemical components and metabolism processes of Senecio scandens, both in vivo (plasma, feces, urine, and bile) and in vitro (gut microbiota and liver microsomes), were characterized based on ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap high-resolution mass spectrometry. Additionally, metabolites detectable in fecal samples and intestinal microbiota incubated but absent in liver microsomes were identified as characteristic metabolites of intestinal microbiota. The targets of the characteristic metabolites of intestinal microbiota were collected, followed by exploration of potential pathways through KEGG enrichment analysis. As a result, a total of 133 chemical components were preliminarily identified, including 35 organic acids, 21 alkaloids, 19 flavonoids and their glycosides, 17 phenylpropanoids, 10 jacaranda ketones, and 31 other compounds. Notably, 12 of these were potentially novel compounds. In addition, 39 prototype components in rats and 109 metabolites were identified and characterized, including 102 in vivo and 52 metabolites in vitro (51 in rat gut microbiota and 24 in rat liver microsomes). The main metabolic pathways include oxidation, reduction, hydrolysis, methylation, glucuronidation, sulfonation, and acetylation reactions. Furthermore, KEGG enrichment analysis revealed that the characteristic metabolites of intestinal microbiota may be related to the ErbB, FoxO, mTOR, and MAPK signaling pathways, exhibiting anti-inflammatory and anti-tumor effects. In summary, the chemical components and metabolites of Senecio scandens were comprehensively identified using a rapid and accurate method, providing a scientific basis for the in-depth study of the material basis and its clinical application of Senecio scandens.
Collapse
Affiliation(s)
- Jiayue Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Feixu Qin
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongjin Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Caihong Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Lixin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
35
|
Feng Y, Pan M, Li R, He W, Chen Y, Xu S, Chen H, Xu H, Lin Y. Recent developments and new directions in the use of natural products for the treatment of inflammatory bowel disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155812. [PMID: 38905845 DOI: 10.1016/j.phymed.2024.155812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/13/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) represents a significant global health challenge, and there is an urgent need to explore novel therapeutic interventions. Natural products have demonstrated highly promising effectiveness in the treatment of IBD. PURPOSE This study systematically reviews the latest research advancements in leveraging natural products for IBD treatment. METHODS This manuscript strictly adheres to the PRISMA guidelines. Relevant literature on the effects of natural products on IBD was retrieved from the PubMed, Web of Science and Cochrane Library databases using the search terms "natural product," "inflammatory bowel disease," "colitis," "metagenomics", "target identification", "drug delivery systems", "polyphenols," "alkaloids," "terpenoids," and so on. The retrieved data were then systematically summarized and reviewed. RESULTS This review assessed the different effects of various natural products, such as polyphenols, alkaloids, terpenoids, quinones, and others, in the treatment of IBD. While these natural products offer promising avenues for IBD management, they also face challenges in terms of clinical translation and drug discovery. The advent of metagenomics, single-cell sequencing, target identification techniques, drug delivery systems, and other cutting-edge technologies heralds a new era in overcoming these challenges. CONCLUSION This paper provides an overview of current research progress in utilizing natural products for the treatment of IBD, exploring how contemporary technological innovations can aid in discovering and harnessing bioactive natural products for the treatment of IBD.
Collapse
Affiliation(s)
- Yaqian Feng
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Mengting Pan
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Ruiqiong Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Weishen He
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yangyang Chen
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Shaohua Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Hui Chen
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, China.
| | - Huilong Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Yao Lin
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|
36
|
Han D, Guan X, Zhu F, Yang Q, Su D. Oral aged garlic ( Allium sativum) alleviates ulcerative colitis in mice by improving gut homeostasis. Food Funct 2024; 15:8935-8951. [PMID: 39145619 DOI: 10.1039/d4fo03105a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Aged garlic, obtained by heating raw garlic (Allium sativum) under high temperature and controlled humidity for a period, possesses a wide range of bioactivities, but its role in ulcerative colitis and its mechanism are not fully elucidated. We investigated the bioactive constituents in aged garlic (AG) and explored the effect of oral AG delivery on DSS-induced murine colitis. The results revealed that the aging process up-regulated anti-oxidative, anti-inflammatory and anti-microbial compounds such as dihydrocaffeic acid, 5-acetylsalicylic acid, verticine, S-allyl-L-cysteine and D-fucose. Oral AG obviously alleviated colitis, reducing colon damage and enhancing anti-oxidative and anti-inflammatory effects. Escherichia coli and Streptococcus equinus dramatically were enriched in the colon of mice with colitis that were strongly associated with Parkinson's disease, bacterial invasion of epithelial cells, aerobactin biosynthesis, and heme biosynthesis, but a distinct AG-mediated alteration in the colon due to increasing abundance of Akkermansia muciniphila, Lactobacillus sp. L-YJ, Bifidobacterium breve, Blautia wexlerae, Desulfomicrobium sp. P100A, and Lentilactobacillus hilgardii was observed. Next, we demonstrated that colonic microbiome reconstruction by oral AG significantly increased the production of short-chain fatty acids such as acetic acid, propionic acid, isobutyric acid, and isovaleric acid. This study provides the first data indicating that oral AG ameliorates colonic inflammation in a gut microbiota-dependent manner. Our findings provide novel insights into the AG-mediated remission of colitis and AG as a functional food for modulating the gut microbiota to prevent and treat colitis.
Collapse
Affiliation(s)
- Deping Han
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China.
| | - Xuke Guan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Fengxia Zhu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China.
- College of Food Science and Nutritional Engineering, Shandong Agricultural University, Taian 271018, China
| | - Qing Yang
- College of Food Science and Nutritional Engineering, Shandong Agricultural University, Taian 271018, China
| | - Dingding Su
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China.
| |
Collapse
|
37
|
Cano R, Bermúdez V, Galban N, Garrido B, Santeliz R, Gotera MP, Duran P, Boscan A, Carbonell-Zabaleta AK, Durán-Agüero S, Rojas-Gómez D, González-Casanova J, Díaz-Vásquez W, Chacín M, Angarita Dávila L. Dietary Polyphenols and Gut Microbiota Cross-Talk: Molecular and Therapeutic Perspectives for Cardiometabolic Disease: A Narrative Review. Int J Mol Sci 2024; 25:9118. [PMID: 39201807 PMCID: PMC11354808 DOI: 10.3390/ijms25169118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The intricate interplay between the gut microbiota and polyphenols has emerged as a captivating frontier in understanding and potentially harnessing the therapeutic potential of these bioactive compounds. Phenolic compounds, renowned for their antioxidant, anti-inflammatory, antidiabetic, and anticancer properties, are subject to intricate transformations within the gut milieu, where the diverse microbial ecosystem exerts profound effects on their metabolism and bioavailability. Conversely, polyphenols exhibit a remarkable capacity to modulate the composition and activity of the gut microbiota, fostering a bidirectional relationship that extends beyond mere nutrient processing. This symbiotic interaction holds significant implications for human health, particularly in cardiometabolic diseases such as diabetes mellitus, metabolic-dysfunction-associated steatotic liver disease, and cardiovascular disease. Through a comprehensive exploration of molecular interactions, this narrative review elucidates the reciprocal dynamics between the gut microbiota and polyphenols, unveiling novel avenues for therapeutic intervention in cardiometabolic disorders. By unravelling the intricate cross-talk between these two entities, this review underscores the multifaceted roles of polyphenols in overall health and the pivotal role of gut microbiota modulation as a promising therapeutic strategy in mitigating the burden of cardiometabolic diseases.
Collapse
Affiliation(s)
- Raquel Cano
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Nestor Galban
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Bermary Garrido
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Raquel Santeliz
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Maria Paula Gotera
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Pablo Duran
- Centro de Investigaciones Endocrino-Metabólicas, Escuela de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela; (R.C.); (N.G.); (R.S.); (P.D.)
| | - Arturo Boscan
- Escuela de Medicina, Facultad de Medicina, Universidad del Zulia, Maracaibo 4001, Venezuela;
| | | | - Samuel Durán-Agüero
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago 7511111, Chile
| | - Diana Rojas-Gómez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 8370321, Chile;
| | - Jorge González-Casanova
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Waldo Díaz-Vásquez
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago 7511111, Chile
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Lissé Angarita Dávila
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Concepción 4260000, Chile
| |
Collapse
|
38
|
Grainger EM, Jiang K, Webb MZ, Kennedy AJ, Chitchumroonchokchai C, Riedl KM, Manubolu M, Clinton SK. Bioactive (Poly)phenol Concentrations in Plant-Based Milk Alternatives in the US Market. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18638-18648. [PMID: 39165162 DOI: 10.1021/acs.jafc.3c09063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Plant-based milk alternatives (PBMAs) are increasingly consumed as a dairy alternative [Olson, S. Milk and Non-Dairy Milk - US - 2021, 2021.]. Plant foods are rich sources of (poly)phenols, but concentrations of these bioactive phytochemicals in processed PBMAs are not well documented. We procured twenty-seven PBMA products of 6 types (almond, coconut, oat, pea, rice, and soy) for (poly)phenol analysis. Samples were analyzed via ultra high-performance liquid chromatography-diode array with mass spectrometry. The (poly)phenol content of PBMAs varies and is dependent on plant source, brand, and added flavorings. Soy milk had the highest concentration and rice milk had the lowest (91.9 ± 2.7 and 0.9 ± 0.2 mean mg ± SD/cup serving, respectively). Almond milk, the most widely consumed PBMA, averaged 12.1 ± 8.2 mg/cup serving, but the majority of (poly)phenols are derived from added flavorings. PBMAs contain a wide range of potentially bioactive (poly)phenols and may contribute significantly to overall dietary (poly)phenol intake with the potential to impact health outcomes.
Collapse
Affiliation(s)
- Elizabeth M Grainger
- Comprehensive Cancer Center, The Ohio State University, 460 West 10th Ave., Columbus, Ohio 43210, United States
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University College of Medicine, 1335 Lincoln Tower, 1800 Cannon Drive, Columbus, Ohio 43210, United States
| | - Kaitlyn Jiang
- Pharmaceutical Sciences, The Ohio State University College of Pharmacy, 217 Lloyd M. Parks Hall, 500 West 12th Ave., Columbus, Ohio 43210, United States
| | - Maxine Z Webb
- Comprehensive Cancer Center, The Ohio State University, 460 West 10th Ave., Columbus, Ohio 43210, United States
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University College of Medicine, 1335 Lincoln Tower, 1800 Cannon Drive, Columbus, Ohio 43210, United States
| | - Ashley J Kennedy
- The Ohio State University Interdisciplinary PhD in Nutrition Program, The Ohio State University, 301 Wiseman Hall, 400 W. 12th Avenue, Columbus, Ohio 43210, United States
| | - Chureeporn Chitchumroonchokchai
- Comprehensive Cancer Center, The Ohio State University, 460 West 10th Ave., Columbus, Ohio 43210, United States
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University College of Medicine, 1335 Lincoln Tower, 1800 Cannon Drive, Columbus, Ohio 43210, United States
| | - Ken M Riedl
- Nutrient and Phytochemical Analytic Shared Resource, The Ohio State University Comprehensive Cancer Center, 260 Parker Food Science & Technology Building, 2015 Fyffe Ct., Columbus, Ohio 43210, United States
| | - Manjunath Manubolu
- Nutrient and Phytochemical Analytic Shared Resource, The Ohio State University Comprehensive Cancer Center, 260 Parker Food Science & Technology Building, 2015 Fyffe Ct., Columbus, Ohio 43210, United States
| | - Steven K Clinton
- Comprehensive Cancer Center, The Ohio State University, 460 West 10th Ave., Columbus, Ohio 43210, United States
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University College of Medicine, 1335 Lincoln Tower, 1800 Cannon Drive, Columbus, Ohio 43210, United States
- Nutrient and Phytochemical Analytic Shared Resource, The Ohio State University Comprehensive Cancer Center, 260 Parker Food Science & Technology Building, 2015 Fyffe Ct., Columbus, Ohio 43210, United States
| |
Collapse
|
39
|
Lu Y, Liu H, Shang J, Mao Y, Meng L, Gao C. Effects of Weizhuan'an on rats with precancerous lesions of gastric cancer based on regulating gastric mucosal microflora and inflammatory factors. Front Pharmacol 2024; 15:1446244. [PMID: 39221149 PMCID: PMC11361960 DOI: 10.3389/fphar.2024.1446244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Objectives This study aimed to observe the intervention of Weizhuan'an prescription on rats with precancerous lesions of gastric cancer (PLGC) as well as its regulation on gastric mucosal microflora and inflammatory factors and explore the pharmacodynamic mechanisms of Weizhuan'an Formula. Methods The rats were classified into the blank control group (BCG); low-, medium-, and high-dose groups of Weizhuan'an prescription (LDG, MDG, and HDG, respectively); and natural recovery group (NRG) at random. The rats in the traditional Chinese medicine (TCM) group were given corresponding doses of Weizhuan'an formula, while the rats in the NRG and BCG were given an equivalent volume of distilled water for 12 weeks. After that, gastric mucosa samples of rats were collected to observe the general and pathological changes in the gastric mucosa; the changes in gastric mucosal microflora were detected by 16S rDNA amplicon sequencing, and the inflammatory factors were analyzed by cytokine antibody microarray and Western blotting. Results The results suggest that compared with the BCG, the pathology of gastric mucosa and gastric mucosal microflora and inflammatory factors in rats with PLGC have changed significantly, while Weizhuan'an formula effectively improved them, especially in the MDG and HDG (p < 0.05). Compared with the NRG, the abundance of probiotics such as Lactobacillus and Veillonella were increased, while the abundance of pathogens such as Proteobacteria and Pseudomonas was decreased (p < 0.05, p < 0.01), and the relative contents of IL-2, IL-4, IL-13, and MCP-1 in gastric mucosa were decreased (p < 0.05). Moreover, it can upregulate the DNA-binding transcriptional regulator, ABC type multidrug transport system, and related enzymes and affect the signaling pathways such as viral protein interaction with cytokine and cytokine receptor and T cell receptor signaling pathway significantly (p < 0.05, p < 0.01), which can promote drug absorption and utilization and repair damaged gastric mucosa. Conclusion The study confirmed that Weizhuan'an prescription can treat rats with PLGC by regulating gastric mucosal microflora and inflammatory factors.
Collapse
Affiliation(s)
- Yuting Lu
- Guangdong Second Provincial General Hospital, Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huayi Liu
- Department of Digestion, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Jiaju Shang
- Department of Digestion, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yijia Mao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Digestion, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Lingkai Meng
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Digestion, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Changbai Gao
- Department of Nephropathy, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
40
|
Wang Y, Nie J, Yan K, Wang J, Wang X, Zhao Y. Inflammatory diet, gut microbiota and sensorineural hearing loss: a cross-sectional and Mendelian randomization study. Front Nutr 2024; 11:1458484. [PMID: 39221159 PMCID: PMC11363541 DOI: 10.3389/fnut.2024.1458484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Aims Inflammatory diets can trigger chronic inflammation and affect gut microbiota. However, the relationship between dietary preferences and sensorineural hearing loss (SNHL) remains unclear. This study aims to elucidate the relationship between different dietary preferences and sensorineural deafness. Methods The Dietary Inflammation Index (DII) and SNHL were defined by data from the National Health and Nutrition Examination Survey (NHANES), and exploring their relationship. Using Mendelian randomization (MR) to analyze the relationship between 34 dietary preferences, 211 gut microbiota, and SNHL. Results Smooth curve fitting indicated that the risk of SNHL increased with increasing DII score when the DII score was greater than 5.15. MR results suggest that a diet including both oily and non-oily fish can substantially reduce the risk of SNHL. Additionally, six specific gut microbiota were found to have significant causal relationship with SNHL. Conclusion An inflammatory diet may increase the risk of developing SNHL. The observed relationship between fish consumption, gut microbiota, and SNHL suggests the existence of a gut-inner ear axis.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Jiayi Nie
- Xi’an University of Technology, Xi’an, China
| | - Kaige Yan
- Northwest A&F University, Yangling, China
| | - Jing Wang
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xin Wang
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Yuxiang Zhao
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
| |
Collapse
|
41
|
Du S, Tu X, Duan X, Wan H, Ai Z, Luo J, Zou Z, Luo L. Rapid Analysis of Colonic Metabolomics in High-Fat Diet Mice by Extraction Electrospray Ionization Mass Spectrometry (EESI-MS). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18294-18303. [PMID: 39083356 DOI: 10.1021/acs.jafc.4c05629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Propolis exhibits significant anti-inflammatory, antidiabetic, and antiobesity properties in both mouse models and clinical applications. However, the underlying metabolic mechanisms remain poorly understood. Traditional metabolomic methods that rely on chromatographic separation require complex preprocessing steps and extended detection periods. In this study, we employed extraction electrospray ionization mass spectrometry combined with multivariate analysis to directly profile metabolites in the colon tissue of mice. Our findings demonstrate the efficacy of ethanol extract of propolis (EEP) in mitigating weight gain, reducing inflammatory cytokines, and improving insulin resistance induced by a high-fat diet. Additionally, EEP enhanced glucose tolerance. Through collision-induced dissociation experiments, we identified 26 metabolites, with 4-hydroxyphenylacetic acid, protocatechuic acid, caffeic acid, ferulic acid, hippuric acid, histidine, and tryptophan emerging as potential biomarkers. Notably, tryptophan exhibited the highest content at 8.25 mg/g. Our research facilitates rapid profiling of colon metabolites, underscoring its significant potential for broader applications in animal metabolomic studies.
Collapse
Affiliation(s)
- Shangguang Du
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- School of Life Sciences, Nanchang Normal University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Nanchang 330022, China
| | - Xutang Tu
- School of Life Sciences, Nanchang Normal University, Nanchang 330031, China
| | - Xiaohua Duan
- School of Life Sciences, Nanchang Normal University, Nanchang 330031, China
| | - Hao Wan
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Zuozuo Ai
- School of Life Sciences, Nanchang Normal University, Nanchang 330031, China
| | - Jun Luo
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Zhengrong Zou
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- Jiangxi Province Key Laboratory of Biodiversity Conservation and Bioresource Utilization, Nanchang 330022, China
| | - Liping Luo
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
42
|
Li L, Sun H, Tan L, Guo H, He L, Chen J, Chen S, Liu D, Zhu M, OuYang Z. Miao sour soup alleviates DSS-induced colitis in mice: modulation of gut microbiota and intestinal barrier function. Food Funct 2024; 15:8370-8385. [PMID: 39023128 DOI: 10.1039/d4fo01794c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Miao sour soup (MSS), a daily fermented food in Guizhou, China, is rich in microorganisms with various beneficial activities, including anti-inflammatory and antioxidant activities. However, the therapeutic effects of MSS on IBD remain unexplored. This study aimed to investigate the protective effect of MSS against colitis in mice. In this study, we examined the microbial community structure of MSS by metagenomic sequencing and also explored the protective effect of MSS on DSS-induced colitis in mice. We investigated the effects of MSS on intestinal inflammatory response and intestinal barrier function in mice. Finally, the changes in intestinal flora were analyzed based on the 16S rRNA gene sequencing results. Significantly, the experiment result shows that MSS ameliorated the severity of DSS-induced disease in mice by mitigating colitis-associated weight loss, reducing the disease activity index of IBD, alleviating colonic hemorrhagic lesions, increasing colon length, and improving colonic tissue damage. Moreover, MSS preserved intestinal barrier integrity and restored intestinal epithelial function in mice. Additionally, MSS modulated the structure and composition of the intestinal flora. Furthermore, MSS downregulated pro-inflammatory factors and attenuated the NF-κB p65 expression, thereby mitigating the inflammatory response. These findings highlight the protective effect of MSS against DSS-induced colitis, providing substantial scientific support for potential applications of MSS as a functional food.
Collapse
Affiliation(s)
- Lincao Li
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China.
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, China.
| | - Haiyan Sun
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China.
| | - Lunbo Tan
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Hui Guo
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China.
| | - Lisi He
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China.
| | - Jieyu Chen
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China.
| | - Shuting Chen
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China.
| | - Dong Liu
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China.
| | - Mingjun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, China.
| | - Zijun OuYang
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China.
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, China.
| |
Collapse
|
43
|
Zhao W, Shen T, Zhao B, Li M, Deng Z, Huo Y, Aernouts B, Loor JJ, Psifidi A, Xu C. Epigallocatechin-3-gallate protects bovine ruminal epithelial cells against lipopolysaccharide-induced inflammatory damage by activating autophagy. J Anim Sci Biotechnol 2024; 15:109. [PMID: 39118120 PMCID: PMC11311925 DOI: 10.1186/s40104-024-01066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/19/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Subacute ruminal acidosis (SARA) causes an increase in endotoxin, which can induce immune and inflammatory responses in the ruminal epithelium of dairy cows. In non-ruminants, epigallocatechin-3-gallate (EGCG), a major bioactive ingredient of green tea, is well-known to alleviate inflammation. Whether EGCG confers protection against SARA-induced inflammation and the underlying mechanisms are unknown. RESULTS In vivo, eight ruminally cannulated Holstein cows in mid-lactation were randomly assigned to either a low-concentrate (40%) diet (CON) or a high-concentrate (60%) diet (HC) for 3 weeks to induce SARA (n = 4). Cows with SARA had greater serum concentrations of tumor necrosis factor (TNF)-α and interleukin-6, and epithelium had histological signs of damage. In vitro, immortalized bovine ruminal epithelial cells (BREC) were treated with lipopolysaccharide (LPS) to imitate the inflammatory damage caused by SARA. Our data revealed that BREC treated with 10 µg/mL LPS for 6 h successfully induce a robust inflammatory response as indicated by increased phosphorylation of IκBα and nuclear factor kappa-B (NF-κB) p65. Pre-treatment of BREC with 50 µmol/L EGCG for 6 h before LPS challenge promoted the degradation of NLR family pyrin domain containing 3 (NLRP3) inflammasome through activation of autophagy, which further repressed activation of NF-κB pathway targeting Toll-like receptor 4 (TLR4). Analyses also revealed that the ECGG upregulated tight junction (TJ) protein expression upon incubation with LPS. CONCLUSIONS Subacute ruminal acidosis causes ruminal epithelium injury and systemic inflammation in dairy cows. However, the anti-inflammatory effects of EGCG help preserve the integrity of the epithelial barrier through activating autophagy when BREC are exposed to LPS. Thus, EGCG could potentially serve as an effective therapeutic agent for SARA-associated inflammation.
Collapse
Affiliation(s)
- Wanli Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Taiyu Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Bichen Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Moli Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Zhaoju Deng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yihui Huo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Ben Aernouts
- Department of Biosystems, Division of Animal and Human Health Engineering, KU Leuven University, Kleinhoefstraat 4, Geel, 2440, Belgium
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Androniki Psifidi
- Department of Clinical Science and Services, Queen Mother Hospital for Animals, The Royal Veterinary College, North Mymms, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Chuang Xu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
44
|
Knez E, Kadac-Czapska K, Grembecka M. The importance of food quality, gut motility, and microbiome in SIBO development and treatment. Nutrition 2024; 124:112464. [PMID: 38657418 DOI: 10.1016/j.nut.2024.112464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
The prevalence of small intestinal bacterial overgrowth (SIBO) is rising worldwide, particularly in nations with high rates of urbanization. Irritable bowel syndrome, inflammatory bowel illnesses, and nonspecific dysmotility are strongly linked to SIBO. Moreover, repeated antibiotic therapy promotes microorganisms' overgrowth through the development of antibiotic resistance. The primary cause of excessive fermentation in the small intestine is a malfunctioning gastrointestinal motor complex, which results in the gut's longer retention of food residues. There are anatomical and physiological factors affecting the functioning of the myoelectric motor complex. Except for them, diet conditions the activity of gastrointestinal transit. Indisputably, the Western type of nutrition is unfavorable. Some food components have greater importance in the functioning of the gastrointestinal motor complex than others. Tryptophan, an essential amino acid and precursor of the serotonin hormone, accelerates intestinal transit, and gastric emptying, similarly to fiber and polyphenols. Additionally, the effect of food on the microbiome is important, and diet should prevent bacterial overgrowth and exhibit antimicrobial effects against pathogens. Therefore, knowledge about proper nutrition is essential to prevent the development and recurrence of SIBO. Since the scientific world was unsure whether there was a long-term or potential solution for SIBO until quite recently, research on a number of the topics included in the article should be performed. The article aimed to summarize current knowledge about proper nutrition after SIBO eradication and the prevention of recurrent bacterial overgrowth. Moreover, a connection was found between diet, gut dysmotility, and SIBO.
Collapse
Affiliation(s)
- Eliza Knez
- Department of Bromatology, Medical University of Gdańsk, Gdańsk, Poland
| | | | | |
Collapse
|
45
|
Yang M, Yan R, Sha R, Wang X, Zhou S, Li B, Zheng Q, Cao Y. Epigallocatechin gallate alleviates non-alcoholic fatty liver disease through the inhibition of the expression and activity of Dipeptide kinase 4. Clin Nutr 2024; 43:1769-1780. [PMID: 38936303 DOI: 10.1016/j.clnu.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent glocal cause of chronic hepatic disease, with incidence rates that continue to rise steadily. Treatment options for affected patients are currently limited to dietary changes and exercise interventions, with no drugs having been licensed for the treatment of this disease. There is thus a pressing need for the development of novel therapeutic strategies. Work from our group suggests that the primary bioactive ingredient in green tea, epigallocatechin gallate (EGCG), may help reduce liver fat content and protect against hepatic injury through the inhibition of dipeptidyl peptidase 4 (DPP4) expression and activity. The study investigated the potential pathways by which EGCG may improve NAFLD, identified the sites of interaction between EGCG and DPP4, and proposed novel clinical treatment strategies. METHODS A clinical randomized controlled trial was conducted to investigate the potential efficacy of EGCG in NAFLD patients. The study compared relevant indices before and after EGCG administration. Animal models of NAFLD were constructed using male C57BL/6J mice fed a high-fat diet to observe the ameliorative effects of EGCG on the livers of the model mice and to investigate the potential pathways by which EGCG alleviates NAFLD. The interaction mechanism between EGCG and DPP4 was investigated using oleic acid and palmitic acid-treated HepG2 cell lines. Plasmids in which different sites had been disrupted were used to identify the effective interaction sites. RESULTS ECGC was found to suppress the accumulation of lipids, inhibit inflammation, remediate dysregulated lipid metabolism, and improve the pathogenesis of NAFLD via the inhibition of the expression and activity of DPP4. CONCLUSIONS The study results indicate that EGCG has a positive impact on improving NAFLD. These results highlight promising new opportunities to safely and effectively treat NAFLD in the clinic. STUDY ID NUMBER ChiCTR2300076741; https://www.chictr.org.cn/.
Collapse
Affiliation(s)
- Mingfeng Yang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Ruike Yan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Ruohe Sha
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Xinxin Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Shiting Zhou
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Baifeng Li
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| | - Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University 110122, Shenyang, Liaoning Province, PR China.
| | - Yanli Cao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
46
|
Jia Y, Zhang T, He M, Yang B, Wang Z, Liu Y. Melatonin Protects Against Colistin-Induced Intestinal Inflammation and Microbiota Dysbiosis. J Pineal Res 2024; 76:e12989. [PMID: 38978438 DOI: 10.1111/jpi.12989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
Colistin is renowned as a last-resort antibiotic due to the emergence of multidrug-resistant pathogens. However, its potential toxicity significantly hampers its clinical utilization. Melatonin, chemically known as N-acetyl-5-hydroxytryptamine, is an endogenous hormone produced by the pineal gland and possesses diverse biological functions. However, the protective role of melatonin in alleviating antibiotic-induced intestinal inflammation remains unknown. Herein, we reveal that colistin stimulation markedly elevates intestinal inflammatory levels and compromises the gut barrier. In contrast, pretreatment with melatonin safeguards mice against intestinal inflammation and mucosal damage. Microbial diversity analysis indicates that melatonin supplementation prevents a reduction in the abundance of Erysipelotrichales and Bifidobacteriales, as well as an increase in Desulfovibrionales abundance, following colistin exposure. Remarkably, short-chain fatty acids (SCFAs) analysis shows that propanoic acid contributes to the protective effect of melatonin on colistin-induced intestinal inflammation. Furthermore, the protection effects of melatonin and propanoic acid on LPS-induced cellular inflammation in RAW 264.7 cells are confirmed. Mechanistic investigations suggest that intervention with melatonin and propanoic acid can repress the activation of the TLR4 signal and its downstream NF-κB and MAPK signaling pathways, thereby mitigating the toxic effects of colistin. Our work highlights the unappreciated role of melatonin in preventing the potential detrimental effects of colistin on intestinal health and suggests a combined therapeutic strategy to effectively manage intestinal infectious diseases.
Collapse
Affiliation(s)
- Yuqian Jia
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tingting Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Mengping He
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Bingqing Yang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
47
|
Li Y, Wu L, Yong Y, Niu X, Gao Y, Zhou Q, Xie H, Liu X, Li Y, Yu Z, Abd El-Aty AM, Ju X. Enhancing gut barrier integrity: Upregulation of tight junction proteins by chitosan oligosaccharide through the ERK1/2 signaling pathway. Nutrition 2024; 124:112428. [PMID: 38663127 DOI: 10.1016/j.nut.2024.112428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 06/17/2024]
Abstract
OBJECTIVES This study aimed to explore the protective mechanism of chitosan oligosaccharide (COS) against lipopolysaccharide (LPS)-induced inflammatory responses in IEC-6 cells and dextran sodium sulfate (DSS)-induced colitis in mice. METHODS The cell inflammation model was constructed by LPS in vitro and enteritis model by DSS in vivo. RESULTS Following LPS exposure, IEC-6 cell proliferation significantly decreased, epithelial cell integrity was compromised, and TNF-α and IL-1β levels were increased. However, COS pretreatment reversed these changes. In vivo, DSS-treated mice exhibited evident pathological alterations, including heightened inflammatory levels and significantly decreased expression of tight junction proteins and critical proteins in the Mitogen activated proteins kinase signaling pathway. Nevertheless, COS administration notably reduced inflammatory levels and increased the expression of tight junction proteins and key proteins in the Mitogen activated proteins kinase signaling pathway. CONCLUSIONS Our findings suggest that COS safeguards gut barrier integrity by upregulating tight junction proteins through the ERK1/2 signaling pathway. Therefore, COS has emerged as a promising candidate for novel drug interventions against inflammatory bowel disease.
Collapse
Affiliation(s)
- Yin Li
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Lianyun Wu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xueting Niu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Yuan Gao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Qiu Zhou
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Huili Xie
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Youquan Li
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Zhichao Yu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China.
| |
Collapse
|
48
|
Su Q, Yang SP, Guo JP, Rong YR, Sun Y, Chai YR. Epigallocatechin-3-gallate ameliorates lipopolysaccharide-induced acute thymus involution in mice via AMPK/Sirt1 pathway. Microbiol Immunol 2024; 68:281-293. [PMID: 38886542 DOI: 10.1111/1348-0421.13159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
The thymus, a site to culture the naïve T lymphocytes, is susceptible to atrophy or involution due to aging, inflammation, and oxidation. Epigallocatechin-3-gallate (EGCG) has been proven to possess anti-inflammatory, antioxidant, and antitumor activity. Here, we investigate the effects of EGCG on thymic involution induced by lipopolysaccharide (LPS), an endotoxin derived from Gram-negative bacteria. The methodology included an in vivo experiment on female Kunming mice exposed to LPS and EGCG. Morphological assessment of thymic involution, immunohistochemical detection, and thymocyte subsets analysis by flow cytometry were further carried out to evaluate the potential role of EGCG on the thymus. As a result, we found that EGCG alleviated LPS-induced thymic atrophy, increased mitochondrial membrane potential and superoxide dismutase levels, and decreased malondialdehyde and reactive oxygen species levels. In addition, EGCG pre-supplement restored the ratio of thymocyte subsets, the expression of autoimmune regulator, sex-determining region Y-box 2, and Nanog homebox, and reduced the number of senescent cells and collagen fiber deposition. Western blotting results indicated that EGCG treatment elevated LPS-induced decrease in pAMPK, Sirt1 protein expression. Collectively, EGCG relieved thymus architecture and function damaged by LPS via regulation of AMPK/Sirt1 signaling pathway. Our findings may provide a new strategy on protection of thymus from involution caused by LPS by using EGCG. And EGCG might be considered as a potential agent for the prevention and treatment of thymic involution.
Collapse
Affiliation(s)
- Qing Su
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shu-Ping Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
- School of Medical Technology, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Jun-Ping Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yi-Ren Rong
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yun Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yu-Rong Chai
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| |
Collapse
|
49
|
Liu X, Li S, Wang L, Ma K. Microecological regulation in HCC therapy: Gut microbiome enhances ICI treatment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167230. [PMID: 38734322 DOI: 10.1016/j.bbadis.2024.167230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
The exploration of the complex mechanisms of cancer immunotherapy is rapidly evolving worldwide, and our focus is on the interaction of hepatocellular carcinoma (HCC) with immune checkpoint inhibitors (ICIs), particularly as it relates to the regulatory role of the gut microbiome. An important basis for the induction of immune responses in HCC is the presence of specific anti-tumor cells that can be activated and reinforced by ICIs, which is why the application of ICIs results in sustained tumor response rates in the majority of HCC patients. However, mechanisms of acquired resistance to immunotherapy in unresectable HCC result in no long-term benefit for some patients. The significant heterogeneity of inter-individual differences in the gut microbiome in response to treatment with ICIs makes it possible to target modulation of specific gut microbes to assist in augmenting checkpoint blockade therapies in HCC. This review focuses on the complex relationship between the gut microbiome, host immunity, and HCC, and emphasizes that manipulating the gut microbiome to improve response rates to cancer ICI therapy is a clinical strategy with unlimited potential.
Collapse
Affiliation(s)
- Xuliang Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shiyao Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Liming Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China; Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China; Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China.
| | - Kexin Ma
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
50
|
Li T, Zhou X, Zhang Q, Miao Q, Woodman OL, Chen Y, Qin C. Formyl peptide receptor 1 mitigates colon inflammation and maintains mucosal homeostasis through the inhibition of CREB-C/EBPβ-S100a8 signaling. Mucosal Immunol 2024; 17:651-672. [PMID: 38614323 DOI: 10.1016/j.mucimm.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Excessive inflammatory responses are the main characteristic of ulcerative colitis (UC). Activation of formyl peptide receptor 1 (FPR1) has been found to promote the proliferation and migration of epithelial cells, but its role and therapeutic potential in UC remain unclear. This study observed an increased expression of FPR1 in a mouse model of colitis. Interestingly, FPR1 deficiency exacerbated UC and increased the secretion of the proinflammatory mediator from immune cells (e.g. macrophages), S100a8, a member of the damage-associated molecular patterns. Notably, the administration of the FPR agonist Cmpd43 ameliorated colon injury in a preclinical mice model of UC, likely via inhibiting phosphorylation of cyclic adenosine monophosphate-response element-binding protein and expression of CCAAT/enhancer-binding protein β, which in turn suppressed the secretion of S100a8. In conclusion, these findings discovered a novel role of FPR1 in the development of colitis and will facilitate the development of FPR1-based pharmacotherapy to treat UC.
Collapse
Affiliation(s)
- Tingting Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaojun Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China; Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Shandong University, Jinan, China
| | - Qian Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qi Miao
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Yuguo Chen
- Department of Emergency Medicine, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Chengxue Qin
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; Department of Emergency Medicine, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Baker Heart and Diabetes Institute, Melbourne, Australia.
| |
Collapse
|