1
|
Li S, Peng H, Sun Y, Yang J, Wang J, Bai F, Peng C, Fang S, Cai H, Chen G. Yeast β-glucan attenuates dextran sulfate sodium-induced colitis: Involvement of gut microbiota and short-chain fatty acids. Int J Biol Macromol 2024; 280:135846. [PMID: 39307486 DOI: 10.1016/j.ijbiomac.2024.135846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Yeast β-glucan intervention offers a promising strategy for managing colitis; however, the mechanisms remain unknown. In the present work, the protective effects of yeast β-glucan on DSS-induced colitis in mice was evaluated, focusing on its interaction with gut microbiota. The result showed yeast β-glucan significantly alleviated colitis symptoms, evidenced by reduced weight loss, lower disease activity index (DAI) scores, and minimized intestinal damage. It enhanced intestinal barrier integrity via upregulation of tight junction proteins, suppressed lipopolysaccharide (LPS) release, and decreased pro-inflammatory cytokines production. Additionally, yeast β-glucan boosted short-chain fatty acids (SCFAs) production, and activated their receptors, increased the relative abundances of beneficial microbes like Lactobacillus and Lachnospiraceae_UCG-006. Transcriptomic analyses suggest that yeast β-glucan mitigates inflammation by downregulating gene expression related to IL-17 pathway. Our findings highlight potential of yeast β-glucan as a therapeutic agent for colitis through modulation of gut microbiota and inflammatory responses.
Collapse
Affiliation(s)
- Sichen Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Huihui Peng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Yuning Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Jiali Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Juan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Fuqing Bai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Chuanyi Peng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Shuzhen Fang
- The First Aliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Huimei Cai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China.
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, PR China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, PR China.
| |
Collapse
|
2
|
Mihalić A, Železnjak J, Lisnić B, Jonjić S, Juranić Lisnić V, Brizić I. Immune surveillance of cytomegalovirus in tissues. Cell Mol Immunol 2024; 21:959-981. [PMID: 39134803 PMCID: PMC11364667 DOI: 10.1038/s41423-024-01186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/14/2024] [Indexed: 09/01/2024] Open
Abstract
Cytomegalovirus (CMV), a representative member of the Betaherpesvirinae subfamily of herpesviruses, is common in the human population, but immunocompetent individuals are generally asymptomatic when infected with this virus. However, in immunocompromised individuals and immunologically immature fetuses and newborns, CMV can cause a wide range of often long-lasting morbidities and even death. CMV is not only widespread throughout the population but it is also widespread in its hosts, infecting and establishing latency in nearly all tissues and organs. Thus, understanding the pathogenesis of and immune responses to this virus is a prerequisite for developing effective prevention and treatment strategies. Multiple arms of the immune system are engaged to contain the infection, and general concepts of immune control of CMV are now reasonably well understood. Nonetheless, in recent years, tissue-specific immune responses have emerged as an essential factor for resolving CMV infection. As tissues differ in biology and function, so do immune responses to CMV and pathological processes during infection. This review discusses state-of-the-art knowledge of the immune response to CMV infection in tissues, with particular emphasis on several well-studied and most commonly affected organs.
Collapse
Affiliation(s)
- Andrea Mihalić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Železnjak
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Biomedical Sciences, Croatian Academy of Sciences and Arts, Rijeka, Croatia
| | - Vanda Juranić Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
3
|
Wei Y, Li J, Zhu B, Hu Q, Lan M, Zhou J, Luo J, Zhu W, Lai Y, Long E, Zhou L. Metagenomic comparison of intestinal microbiota between normal and liver fibrotic rhesus macaques (Macaca mulatta). Sci Rep 2024; 14:15677. [PMID: 38977718 PMCID: PMC11231266 DOI: 10.1038/s41598-024-64397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Liver fibrosis is an important pathological process in chronic liver disease and cirrhosis. Recent studies have found a close association between intestinal microbiota and the development of liver fibrosis. To determine whether there are differences in the intestinal microbiota between rhesus macaques with liver fibrosis (MG) and normal rhesus macaques (MN), fecal samples were collected from 8 male MG and 12 male MN. The biological composition of the intestinal microbiota was then detected using 16S rRNA gene sequencing. The results revealed statistically significant differences in ASVs and Chao1 in the alpha-diversity and the beta-diversity of intestinal microbiota between MG and MN. Both groups shared Prevotella and Lactobacillus as common dominant microbiota. However, beneficial bacteria such as Lactobacillus were significantly less abundant in MG (P = 0.02). Predictive functional analysis using PICRUSt2 gene prediction revealed that MG exhibited a higher relative abundance of functions related to substance transport and metabolic pathways. This study may provide insight into further exploration of the mechanisms by which intestinal microbiota affect liver fibrosis and its potential future use in treating liver fibrosis.
Collapse
Affiliation(s)
- Yuankui Wei
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Junhui Li
- Departmemt of Institute of Laboratory Animal Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Baoqiang Zhu
- Department of Pharmacy, 363 Hospital, Chengdu, Sichuan, China
| | - Qi Hu
- Institute of Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ming Lan
- Departmemt of Institute of Laboratory Animal Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jia Zhou
- Departmemt of Institute of Laboratory Animal Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jianbo Luo
- Departmemt of Institute of Laboratory Animal Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Wanlong Zhu
- Department of Pharmacy, The Second People's Hospital of Panzhihua, Panzhihua, Sichuan, China
| | - Yong Lai
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Enwu Long
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
- Departmemt of Institute of Laboratory Animal Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Liang Zhou
- Departmemt of Institute of Laboratory Animal Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Li S, Gong M. Mendelian randomisation analysis reveals the possible causal relationship between infections, microbiota and clinical disease. Gut 2024; 73:1216-1217. [PMID: 37414439 DOI: 10.1136/gutjnl-2023-329787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023]
Affiliation(s)
- Shifang Li
- Laboratory of Immunology and Vaccinology, FARAH, University of Liege, Liege, Belgium
| | - Meijiao Gong
- Laboratory of Immunology and Vaccinology, FARAH, University of Liege, Liege, Belgium
| |
Collapse
|
5
|
Espinar-Buitrago MDLS, Magro-López E, Vázquez-Alejo E, Muñoz-Fernández MÁ. Enhanced Immunomodulatory Effects of Thymosin-Alpha-1 in Combination with Polyanionic Carbosilane Dendrimers against HCMV Infection. Int J Mol Sci 2024; 25:1952. [PMID: 38396631 PMCID: PMC10887890 DOI: 10.3390/ijms25041952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Resistance and toxicity associated with current treatments for human cytomegalovirus (HCMV) infection highlight the need for alternatives and immunotherapy has emerged as a promising strategy. This study examined the in vitro immunological effects of co-administration of Thymosin-alpha-1 (Tα1) and polyanionic carbosilane dendrimers (PCDs) on peripheral blood mononuclear cells (PBMCs) during HCMV infection. The biocompatibility of PCDs was assessed via MTT and LDH assays. PBMCs were pre-treated with the co-administered compounds and then exposed to HCMV for 48 h. Morphological alterations in PBMCs were observed using optical microscopy and total dendritic cells (tDCs), myeloid dendritic cells (mDCs), and plasmacytoid dendritic cells (pDCs), along with CD4+/CD8+ T cells and regulatory T cells (Treg), and were characterized using multiparametric flow cytometry. The findings revealed that Tα1 + PCDs treatments increased DC activation and maturation. Furthermore, increased co-receptor expression, intracellular IFNγ production in T cells and elevated Treg functionality and reduced senescence were evident with Tα1 + G2-S24P treatment. Conversely, reduced co-receptor expression, intracellular cytokine production in T cells, lower functionality and higher senescence in Treg were observed with Tα1 + G2S16 treatment. In summary, Tα1 + PCDs treatments demonstrate synergistic effects during early HCMV infection, suggesting their use as an alternative therapeutic for preventing virus infection.
Collapse
Affiliation(s)
- María de la Sierra Espinar-Buitrago
- Section of Immunology, Immuno-Molecular Biology Laboratory (LIBM), University General Hospital Gregorio Marañon (HGUGM), 28007 Madrid, Spain; (M.d.l.S.E.-B.); (E.M.-L.); (E.V.-A.)
- Gregorio Marañon Health Research Institute (IiSGM), 28009 Madrid, Spain
- Center for Biomedical Research in Bioengineering, Biomaterials and Nanotechnology Network (CIBER-BBN), 28029 Madrid, Spain
| | - Esmeralda Magro-López
- Section of Immunology, Immuno-Molecular Biology Laboratory (LIBM), University General Hospital Gregorio Marañon (HGUGM), 28007 Madrid, Spain; (M.d.l.S.E.-B.); (E.M.-L.); (E.V.-A.)
- Gregorio Marañon Health Research Institute (IiSGM), 28009 Madrid, Spain
- Center for Biomedical Research in Bioengineering, Biomaterials and Nanotechnology Network (CIBER-BBN), 28029 Madrid, Spain
| | - Elena Vázquez-Alejo
- Section of Immunology, Immuno-Molecular Biology Laboratory (LIBM), University General Hospital Gregorio Marañon (HGUGM), 28007 Madrid, Spain; (M.d.l.S.E.-B.); (E.M.-L.); (E.V.-A.)
- Gregorio Marañon Health Research Institute (IiSGM), 28009 Madrid, Spain
- Center for Biomedical Research in Bioengineering, Biomaterials and Nanotechnology Network (CIBER-BBN), 28029 Madrid, Spain
| | - María Ángeles Muñoz-Fernández
- Section of Immunology, Immuno-Molecular Biology Laboratory (LIBM), University General Hospital Gregorio Marañon (HGUGM), 28007 Madrid, Spain; (M.d.l.S.E.-B.); (E.M.-L.); (E.V.-A.)
- Gregorio Marañon Health Research Institute (IiSGM), 28009 Madrid, Spain
- Center for Biomedical Research in Bioengineering, Biomaterials and Nanotechnology Network (CIBER-BBN), 28029 Madrid, Spain
- HIV-HGM Biobank, University General Hospital Gregorio Marañon (HGUGM), 28007 Madrid, Spain
| |
Collapse
|
6
|
Karandikar K, Bhonde G, Palav H, Padwal V, Velhal S, Pereira J, Meshram H, Goel A, Shah I, Patel V, Bhor VM. A novel gut microbiome-immune axis influencing pathology in HCMV infected infants with neonatal cholestasis. Microbes Infect 2023; 25:105165. [PMID: 37247806 DOI: 10.1016/j.micinf.2023.105165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/02/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
The interplay of active HCMV infection with gut dysbiosis in the immunopathology of cholestasis in neonates and infants remains unexplored. In this study, we evaluated gut microbiome profiles and immune dysfunction in a cohort of HCMV infected cholestatic infants (IgM positive, N = 21; IgM negative, N = 25) compared to healthy infants, N = 10. HCMV infected IgM positive individuals exhibited increased clinical severity in terms of liver dysfunction, altered CD4+: CD8+ ratio, and elevated Granzyme B levels in cellular immune subsets. Gut microbiome analysis revealed distinct and differential diversity and composition within infected groups aligned with clinical severity reflected through the increased abundance of Gammaproteobacteria, reduced Bifidobacteria, and a unique signature mapping to the HCMV infected IgM negative group. Correlation analyses revealed associations between Bifidobacterium breve, Gammaproteobacteria, Firmicutes, Clostridia, Finegoldia magna, Veillonella dispar, and Granzyme B expressing immune cell subsets. Our study describes a novel gut microbiome-immune axis that may influence disease severity in cholestatic infants with active HCMV infection.
Collapse
Affiliation(s)
- Kalyani Karandikar
- Department of Molecular Immunology and Microbiology, ICMR-NIRRCH, Mumbai, India
| | - Gauri Bhonde
- Department of Molecular Immunology and Microbiology, ICMR-NIRRCH, Mumbai, India
| | - Harsha Palav
- Department of Viral Immunopathogenesis, ICMR-NIRRCH, Mumbai, India
| | - Varsha Padwal
- Department of Viral Immunopathogenesis, ICMR-NIRRCH, Mumbai, India
| | - Shilpa Velhal
- Department of Viral Immunopathogenesis, ICMR-NIRRCH, Mumbai, India
| | - Jacintha Pereira
- Department of Viral Immunopathogenesis, ICMR-NIRRCH, Mumbai, India
| | - Himali Meshram
- Pediatric Infectious Diseases and Pediatric GI, Hepatology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Akshat Goel
- Pediatric Infectious Diseases and Pediatric GI, Hepatology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Ira Shah
- Pediatric Infectious Diseases and Pediatric GI, Hepatology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Vainav Patel
- Department of Viral Immunopathogenesis, ICMR-NIRRCH, Mumbai, India.
| | - Vikrant M Bhor
- Department of Molecular Immunology and Microbiology, ICMR-NIRRCH, Mumbai, India.
| |
Collapse
|
7
|
Song H, Lee J, Yi S, Kim WH, Kim Y, Namgoong B, Choe A, Cho G, Shin J, Park Y, Kim MS, Cho S. Red Ginseng Dietary Fiber Shows Prebiotic Potential by Modulating Gut Microbiota in Dogs. Microbiol Spectr 2023; 11:e0094923. [PMID: 37367492 PMCID: PMC10433987 DOI: 10.1128/spectrum.00949-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Red ginseng, widely used in traditional medicine for various conditions, imparts health benefits mainly by modulating the gut microbiota in humans. Given the similarities in gut microbiota between humans and dogs, red ginseng-derived dietary fiber may have prebiotic potential in dogs; however, its effects on the gut microbiota in dogs remain elusive. This double-blinded, longitudinal study investigated the impact of red ginseng dietary fiber on the gut microbiota and host response in dogs. A total of 40 healthy household dogs were randomly assigned to low-dose (n = 12), high-dose (n = 16), or control (n = 12) groups and fed a normal diet supplemented with red ginseng dietary fiber (3 g/5 kg body weight per day, 8 g/5 kg per day, or no supplement, respectively) for 8 weeks. The gut microbiota of the dogs was analyzed at 4 weeks and 8 weeks using 16S rRNA gene sequencing of fecal samples. Alpha diversity was significantly increased at 8 and 4 weeks in the low-dose and high-dose groups, respectively. Moreover, biomarker analysis showed that short-chain fatty acid producers such as Sarcina and Proteiniclasticum were significantly enriched, while potential pathogens such as Helicobacter were significantly decreased, indicating the increased gut health and pathogen resistance by red ginseng dietary fiber. Microbial network analysis showed that the complexity of microbial interactions was increased by both doses, indicating the increased stability of the gut microbiota. These findings suggest that red ginseng-derived dietary fiber could be used as a prebiotic to modulate gut microbiota and improve gut health in dogs. IMPORTANCE The canine gut microbiota is an attractive model for translational studies, as it responds to dietary interventions similarly to those in humans. Investigating the gut microbiota of household dogs that share the environment with humans can produce highly generalizable and reproducible results owing to their representativeness of the general canine population. This double-blind and longitudinal study investigated the impact of dietary fiber derived from red ginseng on the gut microbiota of household dogs. Red ginseng dietary fiber altered the canine gut microbiota by increasing diversity, enriching short-chain fatty acid-producing microbes, decreasing potential pathogens, and increasing the complexity of microbial interactions. These findings indicate that red ginseng-derived dietary fiber may promote canine gut health by modulating gut microbiota, suggesting the possibility of its use as a potential prebiotic.
Collapse
Affiliation(s)
- Hyokeun Song
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Junbum Lee
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Saehah Yi
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Woo-Hyun Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Yuna Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Beomkwan Namgoong
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Ahreum Choe
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Gunhee Cho
- Korea Ginseng Corporation, Daejeon, South Korea
| | - Jangmi Shin
- Korea Ginseng Corporation, Daejeon, South Korea
| | | | - Min Su Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- Center for Veterinary Integrated Medicine Research, Seoul National University, Seoul, South Korea
| | - Seongbeom Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
- Center for Veterinary Integrated Medicine Research, Seoul National University, Seoul, South Korea
| |
Collapse
|
8
|
Wang Y, Xue N, Wang Z, Zeng X, Ji N, Chen Q. Targeting Th17 cells: a promising strategy to treat oral mucosal inflammatory diseases. Front Immunol 2023; 14:1236856. [PMID: 37564654 PMCID: PMC10410157 DOI: 10.3389/fimmu.2023.1236856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
With the improved quality of life, oral health is under increased pressure. Numerous common oral mucosal diseases, such as oral lichen planus(OLP) and gingivitis, are related to the destruction of the oral immune barrier. The cytokines secreted by T-helper 17 (Th17) cells are essential for maintaining oral immune homeostasis and play essential roles in immune surveillance. When antigens stimulate the epithelium, Th17 cells expand, differentiate, and generate inflammatory factors to recruit other lymphocytes, such as neutrophils, to clear the infection, which helps to maintain the integrity of the epithelial barrier. In contrast, excessive Th17/IL-17 axis reactions may cause autoimmune damage. Therefore, an in-depth understanding of the role of Th17 cells in oral mucosa may provide prospects for treating oral mucosal diseases. We reviewed the role of Th17 cells in various oral and skin mucosal systemic diseases with oral characteristics, and based on the findings of these reports, we emphasize that Th17 cellular response may be a critical factor in inflammatory diseases of the oral mucosa. In addition, we should pay attention to the role and relationship of "pathogenic Th17" and "non-pathogenic Th17" in oral mucosal diseases. We hope to provide a reference for Th17 cells as a potential therapeutic target for treating oral mucosal inflammatory disorders in the future.
Collapse
Affiliation(s)
| | | | | | | | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | | |
Collapse
|