1
|
Hodžić A, Veinović G, Alić A, Seki D, Kunert M, Nikolov G, Sukara R, Šupić J, Tomanović S, Berry D. A metalloprotease secreted by an environmentally acquired gut bacterium hinders Borrelia afzelii colonization in Ixodes ricinus. Front Cell Infect Microbiol 2024; 14:1476266. [PMID: 39450335 PMCID: PMC11499241 DOI: 10.3389/fcimb.2024.1476266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024] Open
Abstract
Although the importance of the microbiome in the context of tick biology and vector competence has recently come into a broader research focus, the field is still in its infancy and the complex ecological interactions between the tick residential bacteria and pathogens are obscure. Here, we show that an environmentally acquired gut bacterium has the potential to impair Borrelia afzelii colonization within the tick vector through a secreted metalloprotease. Oral introduction of either Bacillus cereus LTG-1 isolate or its purified enhancin (BcEnhancin) protein significantly reduces B. afzelii burden in the guts of Ixodes ricinus ticks. This effect is attributed to the ability of BcEnhancin to degrade a glycan-rich peritrophic matrix (PM), which is a gut protective barrier essential for Borrelia survival. Our study highlights the importance of the gut microbiome in determining tick vector competence and provides a deeper mechanistic insight into the complex network of interactions between Borrelia, the tick, and the tick microbiome.
Collapse
Affiliation(s)
- Adnan Hodžić
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Gorana Veinović
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Amer Alić
- Department of Clinical Sciences of Veterinary Medicine, Faculty of Veterinary Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - David Seki
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Martin Kunert
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Georgi Nikolov
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Ratko Sukara
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jovana Šupić
- Department of Clinical Sciences of Veterinary Medicine, Faculty of Veterinary Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Snežana Tomanović
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Zhong Z, Wang K, Wang J. Tick symbiosis. CURRENT OPINION IN INSECT SCIENCE 2024; 62:101163. [PMID: 38244689 DOI: 10.1016/j.cois.2024.101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
As obligate blood-feeders, ticks serve as vectors for a variety of pathogens that pose threats on both human and livestock health. The microbiota that ticks harbor play important roles in influencing tick nutrition, development, reproduction, and vector. These microbes also affect the capacity of ticks to transmit pathogens (vector competence). Therefore, comprehending the functions of tick microbiota will help in developing novel and effective tick control strategies. Here, we summarize the effects of main tick symbiotic bacteria on tick physiology and vector competency.
Collapse
Affiliation(s)
- Zhengwei Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, PR China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Kun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, PR China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, PR China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, PR China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, PR China.
| |
Collapse
|
3
|
Boulanger N, Insonere JLM, Van Blerk S, Barthel C, Serres C, Rais O, Roulet A, Servant F, Duron O, Lelouvier B. Cross-alteration of murine skin and tick microbiome concomitant with pathogen transmission after Ixodes ricinus bite. MICROBIOME 2023; 11:250. [PMID: 37952001 PMCID: PMC10638774 DOI: 10.1186/s40168-023-01696-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Ticks are major vectors of diseases affecting humans such as Lyme disease or domestic animals such as anaplasmosis. Cross-alteration of the vertebrate host skin microbiome and the tick microbiome may be essential during the process of tick feeding and for the mechanism of pathogen transmission. However, it has been poorly investigated. METHODS We used mice bitten by field-collected ticks (nymphs and adult ticks) in different experimental conditions to investigate, by 16S rRNA gene metabarcoding, the impact of blood feeding on both the mouse skin microbiome and the tick microbiome. We also investigated by PCR and 16S rRNA gene metabarcoding, the diversity of microorganisms transmitted to the host during the process of tick bite at the skin interface and the dissemination of the pathogen in host tissues (blood, heart, and spleen). RESULTS Most of the commensal bacteria present in the skin of control mice were replaced during the blood-feeding process by bacteria originating from the ticks. The microbiome of the ticks was also impacted by the blood feeding. Several pathogens including tick-borne pathogens (Borrelia/Borreliella, Anaplasma, Neoehrlichia, Rickettsia) and opportunistic bacteria (Williamsia) were transmitted to the skin microbiome and some of them disseminated to the blood or spleen of the mice. In the different experiments of this study, skin microbiome alteration and Borrelia/Borreliella transmission were different depending on the tick stages (nymphs or adult female ticks). CONCLUSIONS Host skin microbiome at the bite site was deeply impacted by the tick bite, to an extent which suggests a role in the tick feeding, in the pathogen transmission, and a potentially important impact on the skin physiopathology. The diversified taxonomic profiles of the tick microbiome were also modified by the blood feeding. Video Abstract.
Collapse
Affiliation(s)
- Nathalie Boulanger
- UR7290: Virulence bactérienne précoce: groupe Borrelia, FMTS, University of Strasbourg, Strasbourg, France.
| | | | | | - Cathy Barthel
- UR7290: Virulence bactérienne précoce: groupe Borrelia, FMTS, University of Strasbourg, Strasbourg, France
| | - Céline Serres
- Vaiomer, 516 rue Pierre et Marie Curie, 31670, Labège, France
| | - Olivier Rais
- Laboratoire d'écologie et d'épidémiologie parasitaires Institut de Biologie, University of Neuchatel, 2000, Neuchâtel, Switzerland
| | - Alain Roulet
- Vaiomer, 516 rue Pierre et Marie Curie, 31670, Labège, France
| | | | - Olivier Duron
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université de Montpellier (UM), 911 Avenue Agropolis, 34394, Montpellier, France
| | | |
Collapse
|
4
|
Hajdusek O, Kopacek P, Perner J. Experimental platforms for functional genomics in ticks. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101102. [PMID: 37586557 DOI: 10.1016/j.cois.2023.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Ticks are blood-feeding ectoparasites that devastate cattle farming and are an omnipresent nuisance to pets and humans, posing a threat of pathogen transmission. Laboratory experimental models can be instrumental in the search for molecular targets of novel acaricides or vaccines. Mainly, though, the experimental models represent invaluable tools for broadening our basic understanding of key processes of tick blood-feeding physiology and vector competence. In order to understand the function of a single component within the full complexity of a feeding tick, genetic or biochemical interventions are used for systemic phenotypisation. In this work, we summarise current experimental modalities that represent powerful approaches for determining biological functions of tick molecular components.
Collapse
Affiliation(s)
- Ondrej Hajdusek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Petr Kopacek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
| |
Collapse
|
5
|
Maitre A, Wu-Chuang A, Mateos-Hernández L, Piloto-Sardiñas E, Foucault-Simonin A, Cicculli V, Moutailler S, Paoli JC, Falchi A, Obregón D, Cabezas-Cruz A. Rickettsial pathogens drive microbiota assembly in Hyalomma marginatum and Rhipicephalus bursa ticks. Mol Ecol 2023; 32:4660-4676. [PMID: 37366236 DOI: 10.1111/mec.17058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Most tick-borne pathogens (TBPs) are secondarily acquired by ticks during feeding on infected hosts, which imposes 'priority effect' constraints, as arrival order influences the establishment of new species in a microbial community. Here we tested whether once acquired, TBPs contribute to bacterial microbiota functioning by increasing community stability. For this, we used Hyalomma marginatum and Rhipicephalus bursa ticks collected from cattle in different locations of Corsica and combined 16S rRNA amplicon sequencing and co-occurrence network analysis, with high-throughput pathogen detection, and in silico removal of nodes to test for impact of rickettsial pathogens on network properties. Despite its low centrality, Rickettsia showed preferential connections in the networks, notably with a keystone taxon in H. marginatum, suggesting facilitation of Rickettsia colonisation by the keystone taxon. In addition, conserved patterns of community assembly in both tick species were affected by Rickettsia removal, suggesting that privileged connections of Rickettsia in the networks make this taxon a driver of community assembly. However, Rickettsia removal had minor impact on the conserved 'core bacterial microbiota' of H. marginatum and R. bursa. Interestingly, networks of the two tick species with Rickettsia have similar node centrality distribution, a property that is lost after Rickettsia removal, suggesting that this taxon drives specific hierarchical interactions between bacterial microbes in the microbiota. The study indicates that tick-borne Rickettsia play a significant role in the tick bacterial microbiota, despite their low centrality. These bacteria are influential and contribute to the conservation of the 'core bacterial microbiota' while also promoting community stability.
Collapse
Affiliation(s)
- Apolline Maitre
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Lourdes Mateos-Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Elianne Piloto-Sardiñas
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, San José de las Lajas, Cuba
| | - Angélique Foucault-Simonin
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Vincent Cicculli
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Jean-Christophe Paoli
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), Corte, France
| | - Alessandra Falchi
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
6
|
Wu-Chuang A, Mateos-Hernandez L, Maitre A, Rego ROM, Šíma R, Porcelli S, Rakotobe S, Foucault-Simonin A, Moutailler S, Palinauskas V, Aželytė J, Sǐmo L, Obregon D, Cabezas-Cruz A. Microbiota perturbation by anti-microbiota vaccine reduces the colonization of Borrelia afzelii in Ixodes ricinus. MICROBIOME 2023; 11:151. [PMID: 37482606 PMCID: PMC10364381 DOI: 10.1186/s40168-023-01599-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 06/14/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Ticks can transmit a broad variety of pathogens of medical importance, including Borrelia afzelii, the causative agent of Lyme borreliosis in Europe. Tick microbiota is an important factor modulating, not only vector physiology, but also the vector competence. Anti-microbiota vaccines targeting keystone taxa of tick microbiota can alter tick feeding and modulate the taxonomic and functional profiles of bacterial communities in the vector. However, the impact of anti-microbiota vaccine on tick-borne pathogen development within the vector has not been tested. RESULTS Here, we characterized the Ixodes ricinus microbiota modulation in response to B. afzelii infection and found that the pathogen induces changes in the microbiota composition, its beta diversity and structure of bacterial community assembly. Tick microbiota perturbation by anti-microbiota antibodies or addition of novel commensal bacteria into tick midguts causes departures from the B. afzelii-induced modulation of tick microbiota which resulted in a lower load of the pathogen in I. ricinus. Co-occurrence networks allowed the identification of emergent properties of the bacterial communities which better defined the Borrelia infection-refractory states of the tick microbiota. CONCLUSIONS These findings suggest that Borrelia is highly sensitive to tick microbiota perturbations and that departure from the modulation induced by the pathogen in the vector microbiota pose a high cost to the spirochete. Network analysis emerges as a suitable tool to identify emergent properties of the vector microbiota associated with infection-refractory states. Anti-microbiota vaccines can be used as a tool for microbiota perturbation and control of important vector-borne pathogens. Video Abstract.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Lourdes Mateos-Hernandez
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Apolline Maitre
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Ryan O M Rego
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Radek Šíma
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Biopticka Laborator S.R.O, Plzen, Czech Republic
| | - Stefania Porcelli
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Sabine Rakotobe
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Angélique Foucault-Simonin
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Sara Moutailler
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | | | - Justė Aželytė
- Nature Research Centre, Akademijos 2, 09412, Vilnius, Lithuania
| | - Ladislav Sǐmo
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Dasiel Obregon
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France.
| |
Collapse
|
7
|
Fernández-Ruiz N, Pinecki-Socias S, Estrada-Peña A, Wu-Chuang A, Maitre A, Obregón D, Cabezas-Cruz A, de Blas I, Nijhof AM. Decontamination protocols affect the internal microbiota of ticks. Parasit Vectors 2023; 16:189. [PMID: 37286996 DOI: 10.1186/s13071-023-05812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/14/2023] [Indexed: 06/09/2023] Open
Abstract
Studies on the microbiota of ticks have promoted hypotheses about the combined effects of the bacterial community, its functional contributions to the tick's physiology or probable competition effects with some tick-borne pathogens. However, knowledge on the origin of the microbiota of newly hatched larvae is missing. This study aimed to elucidate the source(s) of the microbiota in unfed tick larvae, addressing the composition of the "core microbiota" and the best ways to decontaminate eggs for microbiota studies. We applied laboratory degree bleach washes and/or ultraviolet light treatments on engorged Rhipicephalus australis females and/or their eggs. No significant effects of these treatments on the reproductive parameters of females and the hatching rates of eggs were observed. However, the different treatments did show striking effects on the composition of the microbiota. The results indicated that bleach washes disrupted the internal tick microbiota in females, implying that bleach may have entered the tick and subsequently affected the microbiota. Furthermore, the analyses of results demonstrated that the ovary is a main source of tick microbiota, while the contribution of Gené's organ (a part of the female reproductive system that secretes a protective wax coat onto tick eggs) or the male's spermatophore requires further investigation. Further studies are needed to identify best practice protocols for the decontamination of ticks for microbiota studies.
Collapse
Affiliation(s)
- Natalia Fernández-Ruiz
- Faculty of Veterinary Medicine, University of Zaragoza, 50013, Zaragoza, Spain.
- Group of Research on Emerging Zoonoses, Instituto Agroalimentario de Aragón (IA2), 50013, Zaragoza, Spain.
| | - Sophia Pinecki-Socias
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Agustín Estrada-Peña
- Faculty of Veterinary Medicine, University of Zaragoza, 50013, Zaragoza, Spain
- Group of Research on Emerging Zoonoses, Instituto Agroalimentario de Aragón (IA2), 50013, Zaragoza, Spain
| | - Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Apolline Maitre
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Ignacio de Blas
- Faculty of Veterinary Medicine, University of Zaragoza, 50013, Zaragoza, Spain
| | - Ard M Nijhof
- Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, 14163, Berlin, Germany
| |
Collapse
|