1
|
Wen P, Jiang D, Qu F, Wang G, Zhang N, Shao Q, Huang Y, Li S, Wang L, Zeng X. PFDN5 plays a dual role in breast cancer and regulates tumor immune microenvironment: Insights from integrated bioinformatics analysis and experimental validation. Gene 2025; 933:149000. [PMID: 39396557 DOI: 10.1016/j.gene.2024.149000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Although the prognosis for patients with breast cancer has improved, breast cancer remains the leading cause of death for women worldwide. Prefoldin 5 (PFDN5), as a subunit of the prefoldin complex, plays a vital role in aiding the correct folding of newly synthesized proteins. However, the exact impact of PFDN5 on breast cancer development and its prognostic implications remain unclear. METHODS We conducted bioinformatics analysis to investigate the correlation between PFDN5 and patient survival, as well as various clinicopathological characteristics in breast cancer. Additionally, various assays were employed to validate the biological functions of PFDN5 in breast cancer. Finally, RNA sequencing (RNA-seq) was utilized to investigate the molecular mechanisms associated with PFDN5. RESULTS Compared to normal tissues, PFDN5 exhibited lower expression levels in breast cancer tissues, and lower expression of PFDN5 is associated with poorer prognosis. PFDN5 led to G2/M phase arrest in the cell cycle and reduced proliferative potential in breast cancer cells. However, PFDN5 also promoted migration and invasion of breast cancer cells. Also, RNA-seq analysis revealed an involvement of PFDN5 in the cell cycle and TGF-β signaling pathway. Furthermore, PFDN5 had a significant impact on tumor immune microenvironment by promoting macrophage polarization towards the M1 phenotype and exhibited a positive correlation with CD8+ T cell infiltration levels. CONCLUSIONS PFDN5 plays a dual role in breast cancer and serves as a key factor in tumor immune microenvironment. Therefore, PFDN5 holds promise as a valuable biomarker for predicting both metastatic and prognosis in breast cancer.
Collapse
Affiliation(s)
- Ping Wen
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China; Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Dongping Jiang
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China; Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Fanli Qu
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Guanwen Wang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Ningning Zhang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Qing Shao
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yuxin Huang
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China; Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Sisi Li
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Long Wang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Xiaohua Zeng
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China; Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China; Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing 400030, China.
| |
Collapse
|
2
|
de Bakker T, Maes A, Dragan T, Martinive P, Penninckx S, Van Gestel D. Strategies to Overcome Intrinsic and Acquired Resistance to Chemoradiotherapy in Head and Neck Cancer. Cells 2024; 14:18. [PMID: 39791719 DOI: 10.3390/cells14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
Definitive chemoradiotherapy (CRT) is a cornerstone of treatment for locoregionally advanced head and neck cancer (HNC). Research is ongoing on how to improve the tumor response to treatment and limit normal tissue toxicity. A major limitation in that regard is the growing occurrence of intrinsic or acquired treatment resistance in advanced cases. In this review, we will discuss how overexpression of efflux pumps, perturbation of apoptosis-related factors, increased expression of antioxidants, glucose metabolism, metallotheionein expression, increased DNA repair, cancer stem cells, epithelial-mesenchymal transition, non-coding RNA and the tumour microenvironment contribute towards resistance of HNC to chemotherapy and/or radiotherapy. These mechanisms have been investigated for years and been exploited for therapeutic gain in resistant patients, paving the way to the development of new promising drugs. Since in vitro studies on resistance requires a suitable model, we will also summarize published techniques and treatment schedules that have been shown to generate acquired resistance to chemo- and/or radiotherapy that most closely mimics the clinical scenario.
Collapse
Affiliation(s)
- Tycho de Bakker
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Anouk Maes
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Tatiana Dragan
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Philippe Martinive
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Sébastien Penninckx
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Dirk Van Gestel
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
3
|
Huang W, Zheng J, Wang M, Du LY, Bai L, Tang H. The potential therapeutic role of melatonin in organ fibrosis: a comprehensive review. Front Med (Lausanne) 2024; 11:1502368. [PMID: 39735699 PMCID: PMC11681627 DOI: 10.3389/fmed.2024.1502368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/30/2024] [Indexed: 12/31/2024] Open
Abstract
Organ fibrosis is a pathological process characterized by the inability of normal tissue cells to regenerate sufficiently to meet the dynamic repair demands of chronic injury, resulting in excessive extracellular matrix deposition and ultimately leading to organ dysfunction. Despite the increasing depth of research in the field of organ fibrosis and a more comprehensive understanding of its pathogenesis, effective treatments for fibrosis-related diseases are still lacking. Melatonin, a neuroendocrine hormone synthesized by the pineal gland, plays a crucial role in regulating biological rhythms, sleep, and antioxidant defenses. Recent studies have shown that melatonin may have potential in inhibiting organ fibrosis, possibly due to its functions in anti-oxidative stress, anti-inflammation, remodeling the extracellular matrix (ECM), inhibiting epithelial-mesenchymal transition (EMT), and regulating apoptosis, thereby alleviating fibrosis. This review aims to explore the therapeutic potential of melatonin in fibrosis-related human diseases using findings from various in vivo and in vitro studies. These discoveries should provide important insights for the further development of new drugs to treat fibrosis.
Collapse
Affiliation(s)
- Wei Huang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Juan Zheng
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Ming Wang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Ling-Yao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Maatouk N, Kurdi A, Marei S, Nasr R, Talhouk R. CircRNAs and miRNAs: Key Player Duo in Breast Cancer Dynamics and Biomarkers for Breast Cancer Early Detection and Prevention. Int J Mol Sci 2024; 25:13056. [PMID: 39684767 DOI: 10.3390/ijms252313056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Breast cancer (BC) remains a significant global health issue, necessitating advanced molecular approaches for early detection and prevention. This review delves into the roles of microRNAs (miRNAs) and circular RNAs (circRNAs) in BC, highlighting their potential as non-invasive biomarkers. Utilizing in silico tools and databases, we propose a novel methodology to establish mRNA/circRNA/miRNA axes possibly indicative of early detection and possible prevention. We propose that during early tumor initiation, some changes in oncogene or tumor suppressor gene expression (mRNA) are mirrored by alterations in corresponding circRNAs and reciprocal changes in sponged miRNAs affecting tumorigenesis pathways. We used two Gene Expression Omnibus (GEO) datasets and identified five mRNA/circRNA/miRNA axes as early possible tumor initiation biomarkers. We further validated the proposed axes through a Kaplan-Meier (KM) plot and enrichment analysis of miRNA expression using patient data. Evaluating coupled differential expression of circRNAs and miRNAs in body fluids or exosomes provides greater confidence than assessing either, with more axes providing even greater confidence. The proposed methodology not only improves early BC detection reliability but also has applications for other cancers, enhancing preventive measures.
Collapse
Affiliation(s)
- Nour Maatouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut 11-0236, Lebanon
| | - Abdallah Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Sarah Marei
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut 11-0236, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Rabih Talhouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut 11-0236, Lebanon
| |
Collapse
|
5
|
Quan J, Xie D, Li Z, Yu X, Liang Z, Chen Y, Wu L, Huang D, Lin L, Fan L. Luteolin alleviates airway remodeling in asthma by inhibiting the epithelial-mesenchymal transition via β-catenin regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156090. [PMID: 39393303 DOI: 10.1016/j.phymed.2024.156090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Asthma is a prevalent long-term inflammatory condition that causes airway inflammation and remodeling. Increasing evidence indicates that epithelial-mesenchymal transition (EMT) holds a prominent implication in airway reconstruction in patients with asthma. Flavonoids obtained from Chinese Materia Medica (CMM), such as Luteolin (Lut), exhibit various beneficial effects in various asthma models. Lut has been shown to mitigate various asthma symptoms, including airway inflammation, hyperresponsiveness, bronchoconstriction, excessive mucus production, pulmonary autophagy, and neutrophilic asthma. However, whether flavonoids can suppress EMT-associated airway remodeling in asthma and the fundamental mechanisms involved remain unclear, with no studies specifically addressing Lut in this context. PURPOSE To evaluate the inhibition of airway remodeling in asthma by Lut and its potential mechanisms, while examining the significance of β-catenin in this process through cellular and animal studies. METHODS A BEAS-2B cell model stimulated by lipopolysaccharide (LPS) was established in vitro. Wound closure and Transwell assays were utilized to assess the cellular migratory ability. EMT- and fibrosis-related markers in LPS-stimulated cells were evaluated using RT-qPCR and western blotting. The status of the β-catenin/E-cadherin and β-catenin destruction complexes was evaluated using western blotting, immunofluorescence (IF) staining, and co-immunoprecipitation (Co-IP) analysis. The regulatory function of Lut in β-catenin-dependent EMT was further validated by β-catenin overexpression with adenovirus transduction and siRNA-mediated knockdown of β-catenin. Moreover, the counts of different types of bronchoalveolar lavage fluid (BALF) inflammatory cells from mice with asthma induced by ovalbumin (OVA) were evaluated in vivo using Congo red staining. Hematoxylin and eosin (H&E), Masson's trichrome, and periodic acid-Schiff (PAS) staining were used to evaluate collagen deposition, mucus production, and inflammation in murine lung tissues. Western blotting and immunohistochemistry (IHC) assays were used to assess EMT- and fibrosis-related markers in the lung tissues in vivo. RESULT Six naturally derived flavonoids, including Lut, attenuated cell migration and prevented EMT in LPS-treated BEAS-2B cells. Moreover, Lut suppressed TGF-β1, MMP-9, fibronectin (FN), and α-smooth muscle actin (α-SMA) levels in LPS-stimulated BEAS-2B cells. Additionally, Lut downregulated the levels of β-catenin by modulating the β-catenin/E-cadherin and β-catenin destruction complexes, highlighting the pivotal role of β-catenin in EMT inhibition by Lut in LPS-stimulated BEAS-2B cells. Furthermore, Lut suppressed airway inflammation and attenuated EMT-associated airway remodeling through β-catenin blockade in OVA-induced asthmatic mice. The bronchial wall thickness notably reduced from 37.24 ± 4.00 μm in the asthmatic model group to 30.06 ± 4.40 μm in the Lut low-dose group and 24.69 ± 2.87 μm in the Lut high-dose group. CONCLUSION According to our current understanding, this research is the first to reveal that Lut diminishes airway remodeling in asthma by inhibiting EMT via β-catenin regulation, thereby filling a research gap concerning Lut and flavonoids. These results provide a theoretical basis for treating asthma with anti-asthmatic CMM, as well as a candidate and complementary therapeutic approach to treat asthma.
Collapse
Affiliation(s)
- Jingyu Quan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Zihong Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xuhua Yu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Ziyao Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Yuanbin Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Lei Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Donghui Huang
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, China.
| | - Lin Lin
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| | - Long Fan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| |
Collapse
|
6
|
Zhang H, Qian Y, Zhang Y, Zhou X, Shen S, Li J, Sun Z, Wang W. Multi-omics analysis deciphers intercellular communication regulating oxidative stress to promote oral squamous cell carcinoma progression. NPJ Precis Oncol 2024; 8:272. [PMID: 39572698 PMCID: PMC11582705 DOI: 10.1038/s41698-024-00764-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignant tumor in the head and neck, associated with high recurrence and poor prognosis. We performed an integrated analysis of single-cell RNA and spatial transcriptomic data from cancerous and normal tissues to create a comprehensive atlas of epithelial cells and cancer-associated fibroblasts (CAFs). Our findings show that AKR1C3+ epithelial cells, located at the tumor's stromal front, exhibit significant copy number variation and poor prognostic indicators, suggesting a role in tumor invasion. We also identified a distinct group of early-stage CAFs (named OSCC_Normal, characterized by ADH1B+, MFAP4+, and PLA2G2A+) that interact with AKR1C3+ cells, where OSCC_Normal may inhibit the FOXO1 redox switch in these epithelial cells via the IGF1/IGF1R pathway, causing oxidative stress overload. Conversely, AKR1C3+ cells use ITGA6/ITGB4 receptor to counteract the effects of OSCC_Normal, promoting cancer invasion. This study unveils complex interactions within the OSCC tumor microenvironment.
Collapse
Affiliation(s)
- Hongrong Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Yemei Qian
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Yang Zhang
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| | - Xue Zhou
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Shiying Shen
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Jingyi Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Zheyi Sun
- Yunnan Key Laboratory of Stomatology, Kunming, China.
- Department of Endodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China.
| | - Weihong Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China.
- Yunnan Key Laboratory of Stomatology, Kunming, China.
| |
Collapse
|
7
|
Ning X, Du N, Zhang X, Wang S, Zhi Y, Li Z, Ren Z, Ku T, Li G, Sang N. Metastatic effects of hydroxy-polycyclic aromatic hydrocarbons on liver cancer cells mediated by estrogen receptor α. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175878. [PMID: 39222821 DOI: 10.1016/j.scitotenv.2024.175878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Hydroxy-polycyclic aromatic hydrocarbons (OH-PAHs) are a growing worldwide concern because of their persistence, ubiquity, and toxicity. Nonetheless, research on the toxicological mechanisms of OH-PAHs remains sparse, particularly concerning the risk of liver cancer. This study evaluated the effects of OH-PAHs on disrupting estrogen receptor α (ERα) and subsequently facilitating hepatocellular invasion and metastasis. Results revealed that all six OH-PAHs exhibited ERα agonistic activities at noncytotoxic levels, which were partially validated using molecular docking (MD) and molecular dynamics simulations (MDS). Furthermore, OH-PAHs with ERα agonistic properties stimulated a concentration-dependent increase in the migration and invasion of HepG2 cells. In addition, they disturbed the expression of target genes associated with epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM), and the invasion effects were significantly reversed by adding an ERα antagonist. Our results suggest an essential role of ERα in the metastasis of liver cancer cells induced by OH-PAHs and emphasize their potential ecological and health hazards.
Collapse
Affiliation(s)
- Xia Ning
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Du
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaofeng Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Shuo Wang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yan Zhi
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Zhaoli Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Zhihua Ren
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
8
|
Kang YH, Wang JH, Lee JS, Hwang SJ, Lee NH, Son CG. Berberine inhibits colorectal liver metastasis via modulation of TGF-β in a cecum transplant mouse model. Eur J Med Res 2024; 29:552. [PMID: 39558413 PMCID: PMC11575064 DOI: 10.1186/s40001-024-02122-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Hepatic metastasis is the primary cause of colorectal cancer (CRC)-induced death. Our previous results showed the anti-metastatic effects of Coptidis rhizoma using in vitro model. AIM The present study aimed to investigate whether berberine, the main active compound of C. rhizoma, inhibits colon-liver metastasis in an animal model, and to elucidate the underlying mechanisms. METHODS Murine colon carcinoma (CT26) tumor tissue was implanted into the cecum of balb/c mice with/without oral administration of berberine (100 mg/kg) for 21 days, after which liver metastasis was evaluated. In addition, the pharmacological actions of berberine were explored using 5-fluorouracil-resistant human colon cancer cells (HCT116/R). RESULT The administration of berberine significantly decreased the number of tumor nodules in the liver, while significant activation of E-cadherin (an epithelial marker), and suppression of vimentin, Snail and TGF-β (mesenchymal markers) were observed in primary colon tumor tissues. Berberine treatment also notably lowered the levels of inflammatory cytokines (TGF-β, TNF- α, IL-6 and IL-1β) in the blood. In HCT116/R cells, berberine significantly inhibited migration and invasion and modulated the expression of TGF-β and representative molecules related to its pathway. The results obtained with a TGF-β inhibitor (SB431542) and a TGF-β siRNA, strongly suggest that the mechanism of action of berberine is linked to TGF-β signaling. CONCLUSION In conclusion, berberine evidently possess an anti-colon-liver metastatic effect, and its underlying mechanisms involve the inhibition of epithelial-mesenchymal transition (EMT) through the TGF-β signaling pathway. Thus, we cautiously propose the pharmacological potential of berberine in drug research studies targeting hepatic metastasis from CRC.
Collapse
Affiliation(s)
- Yong-Hwi Kang
- East-West Cancer Center of Daejeon University, 176 Split 75 Daedeokdae-Ro Seo-Gu, Daejeon, 35235, Korea
| | - Jing-Hua Wang
- East-West Cancer Center of Daejeon University, 176 Split 75 Daedeokdae-Ro Seo-Gu, Daejeon, 35235, Korea
| | - Jin-Seok Lee
- East-West Cancer Center of Daejeon University, 176 Split 75 Daedeokdae-Ro Seo-Gu, Daejeon, 35235, Korea
| | - Seung-Ju Hwang
- East-West Cancer Center of Daejeon University, 176 Split 75 Daedeokdae-Ro Seo-Gu, Daejeon, 35235, Korea
| | - Nam-Hun Lee
- East-West Cancer Center of Daejeon University, 176 Split 75 Daedeokdae-Ro Seo-Gu, Daejeon, 35235, Korea.
- East-West Cancer Center, Cheonan Oriental Hospital of Daejeon University, 4, Notaesan-Ro, Seobuk-Gu, Cheonan-Si, 31099, Korea.
| | - Chang-Gue Son
- East-West Cancer Center of Daejeon University, 176 Split 75 Daedeokdae-Ro Seo-Gu, Daejeon, 35235, Korea.
| |
Collapse
|
9
|
Maghsoudloo M, Mokhtari K, Jamali B, Gholamzad A, Entezari M, Hashemi M, Fu J. Multifaceted role of TRIM28 in health and disease. MedComm (Beijing) 2024; 5:e790. [PMID: 39534556 PMCID: PMC11554878 DOI: 10.1002/mco2.790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 11/16/2024] Open
Abstract
The TRIM (tripartite motif) family, with TRIM28 as a key member, plays a vital role in regulating health and disease. TRIM28 contains various functional domains essential for transcriptional regulation, primarily through its interaction with KRAB-ZNF proteins, which influence chromatin remodeling and gene expression. Despite extensive research, the precise mechanisms by which TRIM28 impacts health and disease remain elusive. This review delves into TRIM28's multifaceted roles in maintaining health, contributing to a variety of diseases, and influencing cancer progression. In cancers, TRIM28 exhibits a dual nature, functioning as both a tumor promoter and suppressor depending on the cellular context and cancer type. The review also explores its critical involvement in processes such as DNA repair, cell cycle regulation, epithelial-to-mesenchymal transition, and the maintenance of stem cell properties. By uncovering TRIM28's complex roles across different cancers and other diseases, this review underscores its potential as a therapeutic target. The significance of TRIM28 as a versatile regulator opens the door to innovative therapeutic strategies, particularly in cancer treatment and the management of other diseases. Ongoing research into TRIM28 may yield key insights into disease progression and novel treatment options.
Collapse
Affiliation(s)
- Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncologythe Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Behdokht Jamali
- Department of Microbiology and GeneticKherad Institute of Higher EducationBusheherIran
| | - Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncologythe Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
10
|
Wang S, Zeng Y, Zhu L, Zhang M, Zhou L, Yang W, Luo W, Wang L, Liu Y, Zhu H, Xu X, Su P, Zhang X, Ahmed M, Chen W, Chen M, Chen S, Slobodyanyuk M, Xie Z, Guan J, Zhang W, Khan AA, Sakashita S, Liu N, Pham NA, Boutros PC, Ke Z, Moran MF, Cai Z, Cheng C, Yu J, Tsao MS, He HH. The N6-methyladenosine Epitranscriptomic Landscape of Lung Adenocarcinoma. Cancer Discov 2024; 14:2279-2299. [PMID: 38922581 PMCID: PMC11528209 DOI: 10.1158/2159-8290.cd-23-1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/25/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Comprehensive N6-methyladenosine (m6A) epitranscriptomic profiling of primary tumors remains largely uncharted. Here, we profiled the m6A epitranscriptome of 10 nonneoplastic lung tissues and 51 lung adenocarcinoma (LUAD) tumors, integrating the corresponding transcriptomic, proteomic, and extensive clinical annotations. We identified distinct clusters and genes that were exclusively linked to disease progression through m6A modifications. In comparison with nonneoplastic lung tissues, we identified 430 transcripts to be hypo-methylated and 222 to be hyper-methylated in tumors. Among these genes, EML4 emerged as a novel metastatic driver, displaying significant hypermethylation in tumors. m6A modification promoted the translation of EML4, leading to its widespread overexpression in primary tumors. Functionally, EML4 modulated cytoskeleton dynamics by interacting with ARPC1A, enhancing lamellipodia formation, cellular motility, local invasion, and metastasis. Clinically, high EML4 protein abundance correlated with features of metastasis. METTL3 small-molecule inhibitor markedly diminished both EML4 m6A and protein abundance and efficiently suppressed lung metastases in vivo. Significance: Our study reveals a dynamic and functional epitranscriptomic landscape in LUAD, offering a valuable resource for further research in the field. We identified EML4 hypermethylation as a key driver of tumor metastasis, highlighting a novel therapeutic strategy of targeting EML4 to prevent LUAD metastasis.
Collapse
Affiliation(s)
- Shiyan Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yong Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Min Zhang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Zhou
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weixiong Yang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weishan Luo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lina Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanming Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Helen Zhu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Vector Institute, Toronto, Canada
| | - Xin Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Peiran Su
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Xinyue Zhang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Musaddeque Ahmed
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Wei Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Moliang Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Sujun Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Mykhaylo Slobodyanyuk
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Ontario Institute of Cancer Research, Toronto, Canada
| | - Zhongpeng Xie
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiansheng Guan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- College of Electrical Engineering and Automation, Xiamen University of Technology, Xiamen, China
| | - Wen Zhang
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | - Shingo Sakashita
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ni Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Paul C. Boutros
- Department of Human Genetics, University of California, Los Angeles, California
- Department of Urology, University of California, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, California
| | - Zunfu Ke
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Michael F. Moran
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Chao Cheng
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming S. Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Housheng H. He
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Haynes NM, Chadwick TB, Parker BS. The complexity of immune evasion mechanisms throughout the metastatic cascade. Nat Immunol 2024; 25:1793-1808. [PMID: 39285252 DOI: 10.1038/s41590-024-01960-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/12/2024] [Indexed: 09/29/2024]
Abstract
Metastasis, the spread of cancer from a primary site to distant organs, is an important challenge in oncology. This Review explores the complexities of immune escape mechanisms used throughout the metastatic cascade to promote tumor cell dissemination and affect organotropism. Specifically, we focus on adaptive plasticity of disseminated epithelial tumor cells to understand how they undergo phenotypic transitions to survive microenvironmental conditions encountered during metastasis. The interaction of tumor cells and their microenvironment is analyzed, highlighting the local and systemic effects that innate and adaptive immune systems have in shaping an immunosuppressive milieu to foster aggressive metastatic tumors. Effectively managing metastatic disease demands a multipronged approach to target the parallel and sequential mechanisms that suppress anti-tumor immunity. This management necessitates a deep understanding of the complex interplay between tumor cells, their microenvironment and immune responses that we provide with this Review.
Collapse
Affiliation(s)
- Nicole M Haynes
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas B Chadwick
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Belinda S Parker
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
12
|
Zhang X, Zhang X, Li M, Jiao S, Zhang Y. Monitoring Partial EMT Dynamics through Cell Mechanics Using Scanning Ion Conductance Microscopy. Anal Chem 2024; 96:14835-14842. [PMID: 39238086 DOI: 10.1021/acs.analchem.4c02612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Tumor cells undergo an epithelial-mesenchymal transition (EMT) accompanied by a reduction in elasticity to initiate metastasis. However, in vivo, tumor cells typically exhibit partial EMT rather than fully EMT. Whether cell mechanics can accurately identify the status of partial EMT, especially the dynamic process, remains unclear. To elucidate the relationship between cell mechanics and partial EMT, we employed scanning ion conductance microscopy (SICM) to analyze the dynamic changes in cell mechanics during the TGFβ-induced partial EMT of HCT116 colon cancer cells. Cells undergoing partial EMT, characterized by increased expression of EMT transcription factors, Snai1 and Zeb1, and EMT-related genes, Fn1 and MMP9, while retaining the expression of the epithelial markers E-cadherin (E-cad) and EpCAM, did not exhibit significant changes in cell morphology, suggesting that morphological changes alone were inadequate for identifying partial EMT status. However, cell elasticity markedly decreased in partial EMT cells, and this reduction was reversed with the reversible transition of partial EMT. These findings suggest a strong correlation between cell mechanics and the dynamic process of partial EMT, indicating that cell mechanics could serve as a valuable label-free marker for identifying the status of partial EMT while preserving the physiological characteristics of tumor cells.
Collapse
Affiliation(s)
- Xufang Zhang
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Xueqia Zhang
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Mingkun Li
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Shuopei Jiao
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Yanjun Zhang
- WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa 920-1192, Japan
- Department of Medicine, Imperial College London, London W12 0NN, U.K
| |
Collapse
|
13
|
Tomecka P, Kunachowicz D, Górczyńska J, Gebuza M, Kuźnicki J, Skinderowicz K, Choromańska A. Factors Determining Epithelial-Mesenchymal Transition in Cancer Progression. Int J Mol Sci 2024; 25:8972. [PMID: 39201656 PMCID: PMC11354349 DOI: 10.3390/ijms25168972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which an epithelial cell undergoes multiple modifications, acquiring both morphological and functional characteristics of a mesenchymal cell. This dynamic process is initiated by various inducing signals that activate numerous signaling pathways, leading to the stimulation of transcription factors. EMT plays a significant role in cancer progression, such as metastasis and tumor heterogeneity, as well as in drug resistance. In this article, we studied molecular mechanisms, epigenetic regulation, and cellular plasticity of EMT, as well as microenvironmental factors influencing this process. We included both in vivo and in vitro models in EMT investigation and clinical implications of EMT, such as the use of EMT in curing oncological patients and targeting its use in therapies. Additionally, this review concludes with future directions and challenges in the wide field of EMT.
Collapse
Affiliation(s)
- Paulina Tomecka
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Julia Górczyńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Michał Gebuza
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Jacek Kuźnicki
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Katarzyna Skinderowicz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| |
Collapse
|
14
|
Tabei Y, Nakajima Y. IL-1β-activated PI3K/AKT and MEK/ERK pathways coordinately promote induction of partial epithelial-mesenchymal transition. Cell Commun Signal 2024; 22:392. [PMID: 39118068 PMCID: PMC11308217 DOI: 10.1186/s12964-024-01775-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular process in embryonic development, wound healing, organ fibrosis, and cancer metastasis. Previously, we and others have reported that proinflammatory cytokine interleukin-1β (IL-1β) induces EMT. However, the exact mechanisms, especially the signal transduction pathways, underlying IL-1β-mediated EMT are not yet completely understood. Here, we found that IL-1β stimulation leads to the partial EMT-like phenotype in human lung epithelial A549 cells, including the gain of mesenchymal marker (vimentin) and high migratory potential, without the complete loss of epithelial marker (E-cadherin). IL-1β-mediated partial EMT induction was repressed by PI3K inhibitor LY294002, indicating that the PI3K/AKT pathway plays a significant role in the induction. In addition, ERK1/2 inhibitor FR180204 markedly inhibited the IL-1β-mediated partial EMT induction, demonstrating that the MEK/ERK pathway was also involved in the induction. Furthermore, we found that the activation of the PI3K/AKT and MEK/ERK pathways occurred downstream of the epidermal growth factor receptor (EGFR) pathway and the IL-1 receptor (IL-1R) pathway, respectively. Our findings suggest that the PI3K/AKT and MEK/ERK pathways coordinately promote the IL-1β-mediated partial EMT induction. The inhibition of not one but both pathways is expected yield clinical benefits by preventing partial EMT-related disorders such as organ fibrosis and cancer metastasis.
Collapse
Affiliation(s)
- Yosuke Tabei
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-Cho, Takamatsu, Kagawa, 761-0395, Japan.
| | - Yoshihiro Nakajima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-Cho, Takamatsu, Kagawa, 761-0395, Japan
| |
Collapse
|
15
|
Wang S, Guo Y, Wang X, Zhang X, Yang T, Wang JH. Multiplex Sensing of Biomarkers on the Cancer Cell Surface by an Epithelial-Mesenchymal Transition (EMT) Sensing Panel Enables Precise Differentiating of Cancer Cells at Various EMT Stages. Anal Chem 2024. [PMID: 39093913 DOI: 10.1021/acs.analchem.4c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a complex process that plays a critical role in tumor progression. In this study, we present an EMT sensing panel for the classification of cancer cells at different EMT stages. This sensing panel consists of three types of fluorescent probes based on boronic acid-functionalized carbon-nitride nanosheet (BCN) derivatives. The selective response toward different EMT-associated biomarkers, namely, EpCAM, N-cadherin, and sialic acid (SA), was achieved by conjugating the corresponding antibodies to each BCN derivative, whereas the rare-earth-doping ensures simultaneous sensing of the three biomarkers with fluorescent emission of the three probes at different wavelengths. Sensitive sensing of the three biomarkers was achieved at the protein level with LODs reaching 1.35 ng mL-1 for EpCAM, 1.62 ng mL-1 for N-cadherin, and 1.54 ng mL-1 for SA. The selective response of these biomarkers on the cell surface also facilitated sensitive detection of MCF-7 cells and MDA-MB-231 cells with LODs of 2 cells/mL and 2 cells/mL, respectively. Based on the simultaneous sensing of the three biomarkers on cancer cells that underwent different extents of EMT, precise discrimination and classification of cells at various EMT stages were also achieved with an accuracy of 93.3%. This EMT sensing panel provided a versatile tool for monitoring the EMT evolution process and has the potential to be used for the evaluation of the EMT-targeting therapy and metastasis prediction.
Collapse
Affiliation(s)
- Siyi Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yushuang Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xin Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xuan Zhang
- Institute of Medical Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
16
|
Liu X, Gao X, Yang Y, Yang D, Guo Q, Li L, Liu S, Cong W, Lu S, Hou L, Wang B, Li N. EVA1A reverses lenvatinib resistance in hepatocellular carcinoma through regulating PI3K/AKT/p53 signaling axis. Apoptosis 2024; 29:1161-1184. [PMID: 38743191 DOI: 10.1007/s10495-024-01967-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
Lenvatinib is a commonly used first-line drug for the treatment of advanced hepatocellular carcinoma (HCC). However, its clinical efficacy is limited due to the drug resistance. EVA1A was a newly identified tumor suppressor, nevertheless, the impact of EVA1A on resistance to lenvatinib treatment in HCC and the potential molecular mechanisms remain unknown. In this study, the expression of EVA1A in HCC lenvatinib-resistant cells is decreased and its low expression was associated with a poor prognosis of HCC. Overexpression of EVA1A reversed lenvatinib resistance in vitro and in vivo, as demonstrated by its ability to promote cell apoptosis and inhibit cell proliferation, invasion, migration, EMT, and tumor growth. Silencing EVA1A in lenvatinib-sensitive parental HCC cells exerted the opposite effect and induced resistance to lenvatinib. Mechanistically, upregulated EVA1A inhibited the PI3K/AKT/MDM2 signaling pathway, resulting in a reduced interaction between MDM2 and p53, thereby stabilizing p53 and enhancing its antitumor activity. In addition, upregulated EVA1A suppressed the PI3K/AKT/mTOR signaling pathway and promoted autophagy, leading to the degradation of mutant p53 and attenuating its oncogenic impact. On the contrary, loss of EVA1A activated the PI3K/AKT/MDM2 signaling pathway and inhibited autophagy, promoting p53 proteasomal degradation and mutant p53 accumulation respectively. These findings establish a crucial role of EVA1A loss in driving lenvatinib resistance involving a mechanism of modulating PI3K/AKT/p53 signaling axis and suggest that upregulating EVA1A is a promising therapeutic strategy for alleviating resistance to lenvatinib, thereby improving the efficacy of HCC treatment.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Quinolines/pharmacology
- Quinolines/therapeutic use
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Phenylurea Compounds/pharmacology
- Phenylurea Compounds/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphatidylinositol 3-Kinases/genetics
- Signal Transduction/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Animals
- Cell Line, Tumor
- Mice
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Mice, Nude
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Gene Expression Regulation, Neoplastic/drug effects
- Male
- Xenograft Model Antitumor Assays
- Mice, Inbred BALB C
- Proto-Oncogene Proteins c-mdm2/metabolism
- Proto-Oncogene Proteins c-mdm2/genetics
- Female
Collapse
Affiliation(s)
- Xiaokun Liu
- School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China
| | - Xiao Gao
- School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China
| | - Yuling Yang
- Department of Infectious Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Di Yang
- School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China
| | - Qingming Guo
- Clinical Laboratory, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Lianhui Li
- School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China
| | - Shunlong Liu
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wanxin Cong
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Sen Lu
- Department of Medical Laboratory, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Lin Hou
- School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China
| | - Bin Wang
- School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China
| | - Ning Li
- School of Basic Medicine, College of Electronic Information, Micro-Nano Technology College, Qingdao University, Qingdao, China.
| |
Collapse
|
17
|
Sinha K, Parwez S, Mv S, Yadav A, Siddiqi MI, Banerjee D. Machine learning and biological evaluation-based identification of a potential MMP-9 inhibitor, effective against ovarian cancer cells SKOV3. J Biomol Struct Dyn 2024; 42:6823-6841. [PMID: 37504963 DOI: 10.1080/07391102.2023.2240416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023]
Abstract
MMP-9, also known as gelatinase B, is a zinc-metalloproteinase family protein that plays a key role in the degradation of the extracellular matrix (ECM). The normal function of MMP-9 includes the breakdown of ECM, a process that aids in normal physiological processes such as embryonic development, angiogenesis, etc. Interruptions in these processes due to the over-expression or downregulation of MMP-9 are reported to cause some pathological conditions like neurodegenerative diseases and cancer. In the present study, an integrated approach for ML-based virtual screening of the Maybridge library was carried out and their biological activity was tested in an attempt to identify novel small molecule scaffolds that can inhibit the activity of MMP-9. The top hits were identified and selected for target-based activity against MMP-9 protein using the kit (Biovision K844). Further, MTT assay was performed in various cancer cell lines such as breast (MCF-7, MDA-MB-231), colorectal (HCT119, DL-D-1), cervical (HeLa), lung (A549) and ovarian cancer (SKOV3). Interestingly, one compound viz., RJF02215 exhibited anti-cancer activity selectively in SKOV3. Wound healing assay and colony formation assay performed on SKOV3 cell line in the presence of RJF02215 confirmed that the compound had a significant inhibitory effect on this cell line. Thus, we have identified a novel molecule that can inhibit MMP-9 activity in vitro and inhibits the proliferation of SKOV3 cells. Novel molecules based on the structure of RJF02215 may become a good value addition for the treatment of ovarian cancer by exhibiting selective MMP-9 activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Khushboo Sinha
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shahid Parwez
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shahana Mv
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ananya Yadav
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dibyendu Banerjee
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
18
|
Kamra M, Chen YI, Delgado P, Seeley E, Seidlits S, Yeh HC, Brock A, Parekh SH. Ketomimetic Nutrients Trigger a Dual Metabolic Defense in Breast Cancer Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601966. [PMID: 39005423 PMCID: PMC11244981 DOI: 10.1101/2024.07.03.601966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
While the triggers for the metastatic transformation of breast cancer (BC) cells remain unknown, recent evidence suggests that intrinsic cellular metabolism could be a crucial driver of migratory disposition and chemoresistance. Aiming to decode the molecular mechanisms involved in BC cell metabolic maneuvering, we study how a ketomimetic (ketone body rich, low glucose) medium affects Doxorubicin (DOX) susceptibility and invasive disposition of BC cells. We quantified glycocalyx sialylation and found an inverse correlation with DOX-induced cytotoxicity and DOX internalization. These measurements were coupled with single-cell metabolic imaging, bulk migration studies, along with transcriptomic and metabolomic analyses. Our findings revealed that a ketomimetic medium enhances chemoresistance and invasive disposition of BC cells via two main oncogenic pathways: hypersialylation and lipid synthesis. We propose that the crosstalk between these pathways, juxtaposed at the synthesis of the glycan precursor UDP-GlcNAc, furthers advancement of a metastatic phenotype in BC cells under ketomimetic conditions.
Collapse
|
19
|
Rondeau JD, Van de Velde JA, Bouidida Y, Sonveaux P. Subclinical dose irradiation triggers human breast cancer migration via mitochondrial reactive oxygen species. Cancer Metab 2024; 12:20. [PMID: 38978126 PMCID: PMC11229245 DOI: 10.1186/s40170-024-00347-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Despite technological advances in radiotherapy, cancer cells at the tumor margin and in diffusive infiltrates can receive subcytotoxic doses of photons. Even if only a minority of cancer cells are concerned, phenotypic consequences could be important considering that mitochondrial DNA (mtDNA) is a primary target of radiation and that damage to mtDNA can persist. In turn, mitochondrial dysfunction associated with enhanced mitochondrial ROS (mtROS) production could promote cancer cell migration out of the irradiation field in a natural attempt to escape therapy. In this study, using MCF7 and MDA-MB-231 human breast cancer cells as models, we aimed to elucidate the molecular mechanisms supporting a mitochondrial contribution to cancer cell migration induced by subclinical doses of irradiation (< 2 Gy). METHODS Mitochondrial dysfunction was tested using mtDNA multiplex PCR, oximetry, and ROS-sensitive fluorescent reporters. Migration was tested in transwells 48 h after irradiation in the presence or absence of inhibitors targeting specific ROS or downstream effectors. Among tested inhibitors, we designed a mitochondria-targeted version of human catalase (mtCAT) to selectively inactivate mitochondrial H2O2. RESULTS Photon irradiation at subclinical doses (0.5 Gy for MCF7 and 0.125 Gy for MDA-MB-231 cells) sequentially affected mtDNA levels and/or integrity, increased mtROS production, increased MAP2K1/MEK1 gene expression, activated ROS-sensitive transcription factors NF-κB and AP1 and stimulated breast cancer cell migration. Targeting mtROS pharmacologically by MitoQ or genetically by mtCAT expression mitigated migration induced by a subclinical dose of irradiation. CONCLUSION Subclinical doses of photon irradiation promote human breast cancer migration, which can be countered by selectively targeting mtROS.
Collapse
Affiliation(s)
- Justin D Rondeau
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, 1200, Belgium
| | - Justine A Van de Velde
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, 1200, Belgium
| | - Yasmine Bouidida
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, 1200, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, 1200, Belgium.
- WELBIO Department, WEL Research Institute, Wavre, 1300, Belgium.
| |
Collapse
|
20
|
Wei C, Wang W, Hu Z, Huang Z, Lu Y, Zhou W, Liu X, Jin X, Yin J, Li G. Predicting prognosis and immunotherapy response in colorectal cancer by pericytes insights from single-cell RNA sequencing. Hum Mol Genet 2024; 33:1215-1228. [PMID: 38652261 DOI: 10.1093/hmg/ddae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/28/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Immunotherapy has revolutionized the treatment of tumors, but there are still a large number of patients who do not benefit from immunotherapy. Pericytes play an important role in remodeling the immune microenvironment. However, how pericytes affect the prognosis and treatment resistance of tumors is still unknown. This study jointly analyzed single-cell RNA sequencing (scRNA-seq) data and bulk RNA sequencing data of multiple cancers to reveal pericyte function in the colorectal cancer microenvironment. Analyzing over 800 000 cells, it was found that colorectal cancer had more pericyte enrichment in tumor tissues than other cancers. We then combined the TCGA database with multiple public datasets and enrolled more than 1000 samples, finding that pericyte may be closely related to poor prognosis due to the higher epithelial-mesenchymal transition (EMT) and hypoxic characteristics. At the same time, patients with more pericytes have higher immune checkpoint molecule expressions and lower immune cell infiltration. Finally, the contributions of pericyte in poor treatment response have been demonstrated in multiple immunotherapy datasets (n = 453). All of these observations suggest that pericyte can be used as a potential biomarker to predict patient disease progression and immunotherapy response.
Collapse
Affiliation(s)
- Chen Wei
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100049, China
- BGI Research, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Weikai Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100049, China
- BGI Research, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Zhihao Hu
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100049, China
- BGI Research, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Zhuoli Huang
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100049, China
- BGI Research, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Ye Lu
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Wenwen Zhou
- BGI Research, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Xiaoying Liu
- BGI Research, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Xin Jin
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100049, China
- BGI Research, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Jianhua Yin
- BGI Research, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Guibo Li
- BGI Research, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| |
Collapse
|
21
|
Falahi F, Akbari-Birgani S, Mortazavi Y, Johari B. Caspase-9 suppresses metastatic behavior of MDA-MB-231 cells in an adaptive organoid model. Sci Rep 2024; 14:15116. [PMID: 38956424 PMCID: PMC11219723 DOI: 10.1038/s41598-024-65711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Caspase-9, a cysteine-aspartate protease traditionally associated with intrinsic apoptosis, has recently emerged as having non-apoptotic roles, including influencing cell migration-an aspect that has received limited attention in existing studies. In our investigation, we aimed to explore the impact of caspase-9 on the migration and invasion behaviors of MDA-MB-231, a triple-negative breast cancer (TNBC) cell line known for its metastatic properties. We established a stable cell line expressing an inducible caspase-9 (iC9) in MDA-MB-231 and assessed their metastatic behavior using both monolayer and the 3D organotypic model in co-culture with human Foreskin fibroblasts (HFF). Our findings revealed that caspase-9 had an inhibitory effect on migration and invasion in both models. In monolayer culture, caspase-9 effectively suppressed the migration and invasion of MDA-MB-231 cells, comparable to the anti-metastatic agent panitumumab (Pan). Notably, the combination of caspase-9 and Pan exhibited a significant additional effect in reducing metastatic behavior. Interestingly, caspase-9 demonstrated superior efficacy compared to Pan in the organotypic model. Molecular analysis showed down regulation of epithelial-mesenchymal transition and migratory markers, in caspase-9 activated cells. Additionally, flow cytometry analysis indicated a cell cycle arrest. Moreover, pre-treatment with activated caspase-9 sensitized cells to the chemotherapy of doxorubicin, thereby enhancing its effectiveness. In conclusion, the anti-metastatic potential of caspase-9 presents avenues for the development of novel therapeutic approaches for TNBC/metastatic breast cancer. Although more studies need to figure out the exact involving mechanisms behind this behavior.
Collapse
Affiliation(s)
- Farzaneh Falahi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Shiva Akbari-Birgani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
- Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Yousef Mortazavi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Behrooz Johari
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
22
|
Cianciosi D, Forbes-Hernandez T, Armas Diaz Y, Elexpuru-Zabaleta M, Quiles JL, Battino M, Giampieri F. Manuka honey's anti-metastatic impact on colon cancer stem-like cells: unveiling its effects on epithelial-mesenchymal transition, angiogenesis and telomere length. Food Funct 2024; 15:7200-7213. [PMID: 38896046 DOI: 10.1039/d4fo00943f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Colorectal cancer often leads to metastasis, with cancer stem cells (CSCs) playing a pivotal role in this process. Two closely linked mechanisms, epithelial-mesenchymal transition and angiogenesis, contribute to metastasis and recent research has also highlighted the impact of telomere replication on this harmful tumor progression. Standard chemotherapy alone can inadvertently promote drug-resistant CSCs, posing a challenge. Combining chemotherapy with other compounds, including natural ones, shows promise in enhancing effectiveness while minimizing side effects. This study investigated the anti-metastatic potential of Manuka honey, both alone and in combination with 5-fluorouracil, using a 3D model of colonospheres enriched with CSC-like cells. In summary, it was observed that the treatment reduced migration ability by downregulating the transcription factors Slug, Snail, and Twist, which are key players in epithelial-mesenchymal transition. Additionally, Manuka honey downregulated pro-angiogenic factors and shortened CSC telomeres by downregulating c-Myc - demonstrating an effective anti-metastatic potential. This study suggests new research opportunities for studying the impact of natural compounds when combined with pharmaceuticals, with the potential to enhance effectiveness and reduce side effects.
Collapse
Affiliation(s)
- Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, Via Pietro Ranieri 65, Ancona, 60131, Italy.
| | - Tamara Forbes-Hernandez
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, Armilla, 18016, Spain
| | - Yasmany Armas Diaz
- Department of Clinical Sciences, Polytechnic University of Marche, Via Pietro Ranieri 65, Ancona, 60131, Italy.
| | - Maria Elexpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, Santander, 39011, Spain
- Joint Laboratory on Food Science, Nutrition, and Intelligent Processing of Foods, Polytechnic University of Marche, Italy, Universidad Europea del Atlántico Spain and Jiangsu University, China
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, University of Granada, Armilla, 18016, Spain
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Via Pietro Ranieri 65, Ancona, 60131, Italy.
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, Santander, 39011, Spain
- Joint Laboratory on Food Science, Nutrition, and Intelligent Processing of Foods, Polytechnic University of Marche, Italy, Universidad Europea del Atlántico Spain and Jiangsu University, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang, 212013, China
| | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, Via Pietro Ranieri 65, Ancona, 60131, Italy.
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, Santander, 39011, Spain
- Joint Laboratory on Food Science, Nutrition, and Intelligent Processing of Foods, Polytechnic University of Marche, Italy, Universidad Europea del Atlántico Spain and Jiangsu University, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
23
|
Coelho LL, Vianna MM, da Silva DM, Gonzaga BMDS, Ferreira RR, Monteiro AC, Bonomo AC, Manso PPDA, de Carvalho MA, Vargas FR, Garzoni LR. Spheroid Model of Mammary Tumor Cells: Epithelial-Mesenchymal Transition and Doxorubicin Response. BIOLOGY 2024; 13:463. [PMID: 39056658 PMCID: PMC11273983 DOI: 10.3390/biology13070463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 07/28/2024]
Abstract
Breast cancer is the most prevalent cancer among women worldwide. Therapeutic strategies to control tumors and metastasis are still challenging. Three-dimensional (3D) spheroid-type systems more accurately replicate the features of tumors in vivo, working as a better platform for performing therapeutic response analysis. This work aimed to characterize the epithelial-mesenchymal transition and doxorubicin (dox) response in a mammary tumor spheroid (MTS) model. We evaluated the doxorubicin treatment effect on MCF-7 spheroid diameter, cell viability, death, migration and proteins involved in the epithelial-mesenchymal transition (EMT) process. Spheroids were also produced from tumors formed from 4T1 and 67NR cell lines. MTSs mimicked avascular tumor characteristics, exhibited adherens junction proteins and independently produced their own extracellular matrix. Our spheroid model supports the 3D culturing of cells isolated from mice mammary tumors. Through the migration assay, we verified a reduction in E-cadherin expression and an increase in vimentin expression as the cells became more distant from spheroids. Dox promoted cytotoxicity in MTSs and inhibited cell migration and the EMT process. These results suggest, for the first time, that this model reproduces aspects of the EMT process and describes the potential of dox in inhibiting the metastatic process, which can be further explored.
Collapse
Affiliation(s)
- Laura Lacerda Coelho
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (L.L.C.); (M.M.V.); (D.M.d.S.); (B.M.d.S.G.); (R.R.F.)
| | - Matheus Menezes Vianna
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (L.L.C.); (M.M.V.); (D.M.d.S.); (B.M.d.S.G.); (R.R.F.)
| | - Debora Moraes da Silva
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (L.L.C.); (M.M.V.); (D.M.d.S.); (B.M.d.S.G.); (R.R.F.)
| | - Beatriz Matheus de Souza Gonzaga
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (L.L.C.); (M.M.V.); (D.M.d.S.); (B.M.d.S.G.); (R.R.F.)
| | - Roberto Rodrigues Ferreira
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (L.L.C.); (M.M.V.); (D.M.d.S.); (B.M.d.S.G.); (R.R.F.)
| | - Ana Carolina Monteiro
- Laboratory of Osteo and Tumor Immunology, Department of Immunobiology, Fluminense Federal University (UFF), Rio de Janeiro 24020-150, Brazil;
- Thymus Research Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil;
| | - Adriana Cesar Bonomo
- Thymus Research Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil;
| | - Pedro Paulo de Abreu Manso
- Laboratory of Pathology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil;
| | | | - Fernando Regla Vargas
- Laboratory of Epidemiology of Congenital Malformations, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil;
| | - Luciana Ribeiro Garzoni
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil; (L.L.C.); (M.M.V.); (D.M.d.S.); (B.M.d.S.G.); (R.R.F.)
| |
Collapse
|
24
|
Wang S, Zhang Y, Zhang D, Meng J, Che N, Zhao X, Liu T. PTGER3 knockdown inhibits the vulnerability of triple-negative breast cancer to ferroptosis. Cancer Sci 2024; 115:2067-2081. [PMID: 38566528 PMCID: PMC11145128 DOI: 10.1111/cas.16169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Prostaglandin E receptor 3 (PTGER3) is involved in a variety of biological processes in the human body and is closely associated with the development and progression of a variety of cancer types. However, the role of PTGER3 in triple-negative breast cancer (TNBC) remains unclear. In the present study, low PTGER3 expression was found to be associated with poor prognosis in TNBC patients. PTGER3 plays a crucial role in regulating TNBC cell invasion, migration, and proliferation. Upregulation of PTGER3 weakens the epithelial-mesenchymal phenotype in TNBC and promotes ferroptosis both in vitro and in vivo by repressing glutathione peroxidase 4 (GPX4) expression. On the other hand, downregulation of PTGER3 inhibits ferroptosis by increasing GPX4 expression and activating the PI3K-AKT pathway. Upregulation of PTGER3 also enhances the sensitivity of TNBC cells to paclitaxel. Overall, this study has elucidated critical pathways in which low PTGER3 expression protects TNBC cells from undergoing ferroptosis, thereby promoting its progression. PTGER3 may thus serve as a novel and promising biomarker and therapeutic target for TNBC.
Collapse
Affiliation(s)
- Song Wang
- Department of PathologyTianjin Medical UniversityTianjinChina
| | - Yueyao Zhang
- Department of PathologyTianjin Medical UniversityTianjinChina
| | - Dan Zhang
- Department of PathologyTianjin Medical UniversityTianjinChina
| | - Jie Meng
- Department of PathologyTianjin Medical UniversityTianjinChina
| | - Na Che
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyTianjin Medical University General HospitalTianjinChina
| | - Xiulan Zhao
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyTianjin Medical University General HospitalTianjinChina
| | - Tieju Liu
- Department of PathologyTianjin Medical UniversityTianjinChina
- Department of PathologyTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
25
|
Jian H, Zhang J, Liu Z, Zhang Z, Zeng P. Amentoflavone reverses epithelial-mesenchymal transition in hepatocellular carcinoma cells by targeting p53 signalling pathway axis. J Cell Mol Med 2024; 28:e18442. [PMID: 38842135 PMCID: PMC11154840 DOI: 10.1111/jcmm.18442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 06/07/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) and its reversal process are important potential mechanisms in the development of HCC. Selaginella doederleinii Hieron is widely used in Traditional Chinese Medicine for the treatment of various tumours and Amentoflavone is its main active ingredient. This study investigates the mechanism of action of Amentoflavone on EMT in hepatocellular carcinoma from the perspective of bioinformatics and network pharmacology. Bioinformatics was used to screen Amentoflavone-regulated EMT genes that are closely related to the prognosis of HCC, and a molecular prediction model was established to assess the prognosis of HCC. The network pharmacology was used to predict the pathway axis regulated by Amentoflavone. Molecular docking of Amentoflavone with corresponding targets was performed. Detection and evaluation of the effects of Amentoflavone on cell proliferation, migration, invasion and apoptosis by CCK-8 kit, wound healing assay, Transwell assay and annexin V-FITC/propidium iodide staining. Eventually three core genes were screened, inculding NR1I2, CDK1 and CHEK1. A total of 590 GO enrichment entries were obtained, and five enrichment results were obtained by KEGG pathway analysis. Genes were mainly enriched in the p53 signalling pathway. The outcomes derived from both the wound healing assay and Transwell assay demonstrated significant inhibition of migration and invasion in HCC cells upon exposure to different concentrations of Amentoflavone. The results of Annexin V-FITC/PI staining assay showed that different concentrations of Amentoflavone induces apoptosis in HCC cells. This study revealed that the mechanism of Amentoflavone reverses EMT in hepatocellular carcinoma, possibly by inhibiting the expression of core genes and blocking the p53 signalling pathway axis to inhibit the migration and invasion of HCC cells.
Collapse
Affiliation(s)
| | | | - Zhuo Liu
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western, Cancer Research Institute of Hunan Academy of Traditional Chinese MedicineHunan Academy of Chinese MedicineHunanChina
| | - Zhen Zhang
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western, Cancer Research Institute of Hunan Academy of Traditional Chinese MedicineHunan Academy of Chinese MedicineHunanChina
| | - Pu‐Hua Zeng
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western, Cancer Research Institute of Hunan Academy of Traditional Chinese MedicineHunan Academy of Chinese MedicineHunanChina
| |
Collapse
|
26
|
Wang J, Wang X, Liu Z, Li S, Yin W. IGFBP7 promotes gastric cancer by facilitating epithelial-mesenchymal transition of gastric cells. Heliyon 2024; 10:e30986. [PMID: 38778944 PMCID: PMC11108983 DOI: 10.1016/j.heliyon.2024.e30986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Gastric cancer (GC) with high morbidity and mortality is one major cause of tumor-related death. Mechanisms underlying GC invasion and metastasis remain unclear. IGFBP7 exerted variable effects in different cancers and its role in GC is controversial. Here, IGFBP7 was found to be upregulated and elevated IGFBP7 expression represented a poorer overall survival in GC using bioinformatics analysis. Moreover, IGFBP7 was up-regulated in human GC specimens and promoted tumor growth in xenograft tumor animals. For GC cell lines, we found that IGFBP7 was also upregulated and facilitated the cell malignant behavior and EMT of GC cells, which may involve NF-κB and ERK signaling pathways. This research may provide new avenues for GC therapy.
Collapse
Affiliation(s)
- Jinqing Wang
- Department of Gastrointestinal Surgery, The Second Hospital of Shandong University, Jinan, China
| | - Xinxin Wang
- Department of Gastrointestinal Surgery, The Second Hospital of Shandong University, Jinan, China
| | - Zhaorui Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Shandong University, Jinan, China
| | - Sheng Li
- Shandong University Cancer Center, Jinan, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenbin Yin
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
27
|
Xu J, Zhang J, Chen W, Ni X. The tumor-associated fibrotic reactions in microenvironment aggravate glioma chemoresistance. Front Oncol 2024; 14:1388700. [PMID: 38863628 PMCID: PMC11165034 DOI: 10.3389/fonc.2024.1388700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
Malignant gliomas are one of the most common and lethal brain tumors with poor prognosis. Most patients with glioblastoma (GBM) die within 2 years of diagnosis, even after receiving standard treatments including surgery combined with concomitant radiotherapy and chemotherapy. Temozolomide (TMZ) is the first-line chemotherapeutic agent for gliomas, but the frequent acquisition of chemoresistance generally leads to its treatment failure. Thus, it's urgent to investigate the strategies for overcoming glioma chemoresistance. Currently, many studies have elucidated that cancer chemoresistance is not only associated with the high expression of drug-resistance genes in glioma cells but also can be induced by the alterations of the tumor microenvironment (TME). Numerous studies have explored the use of antifibrosis drugs to sensitize chemotherapy in solid tumors, and surprisingly, these preclinical and clinical attempts have exhibited promising efficacy in treating certain types of cancer. However, it remains unclear how tumor-associated fibrotic alterations in the glioma microenvironment (GME) mediate chemoresistance. Furthermore, the possible mechanisms behind this phenomenon are yet to be determined. In this review, we have summarized the molecular mechanisms by which tumor-associated fibrotic reactions drive glioma transformation from a chemosensitive to a chemoresistant state. Additionally, we have outlined antitumor drugs with antifibrosis functions, suggesting that antifibrosis strategies may be effective in overcoming glioma chemoresistance through TME normalization.
Collapse
Affiliation(s)
- Jiaqi Xu
- The Second Clinical Medical School, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ji Zhang
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wubing Chen
- Department of Radiology, Wuxi Fifth People’s Hospital, Jiangnan University, Wuxi, China
| | - Xiangrong Ni
- The Second Clinical Medical School, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Plastic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Liu F, Yang T, Chang X, Chen L, Cheng C, Peng X, Liu H, Zhang Y, Chen X. Intelligent gold nanocluster for effective treatment of malignant tumor via tumor-specific photothermal-chemodynamic therapy with AIE guidance. Natl Sci Rev 2024; 11:nwae113. [PMID: 38698903 PMCID: PMC11065357 DOI: 10.1093/nsr/nwae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 05/05/2024] Open
Abstract
Precise and efficient therapy of malignant tumors is always a challenge. Herein, gold nanoclusters co-modified by aggregation-induced-emission (AIE) molecules, copper ion chelator (acylthiourea) and tumor-targeting agent (folic acid) were fabricated to perform AIE-guided and tumor-specific synergistic therapy with great spatio-temporal controllability for the targeted elimination and metastasis inhibition of malignant tumors. During therapy, the functional gold nanoclusters (AuNTF) would rapidly accumulate in the tumor tissue due to the enhanced permeability and retention effect as well as folic acid-mediated tumor targeting, which was followed by endocytosis by tumor cells. After that, the overexpressed copper ions in the tumor cells would trigger the aggregation of these intracellular AuNTF via a chelation process that not only generated the photothermal agent in situ to perform the tumor-specific photothermal therapy damaging the primary tumor, but also led to the copper deficiency of tumor cells to inhibit its metastasis. Moreover, the copper ions were reduced to cuprous ions along with the chelation, which further catalysed the excess H2O2 in the tumor cells to produce cytotoxic reactive oxygen species, resulting in additional chemodynamic therapy for enhanced antitumor efficiency. The aggregation of AuNTF also activated the AIE molecules to present fluorescence, which not only imaged the therapeutic area for real-time monitoring of this tumor-specific synergistic therapy, but also allowed us to perform near-infrared radiation at the correct time point and location to achieve optimal photothermal therapy. Both in vitro and in vivo results revealed the strong tumor elimination, effective metastasis inhibition and high survival rate of tumor-bearing mice after treatment using the AuNTF nanoclusters, indicating that this AIE-guided and tumor-specific synergistic strategy could offer a promising approach for tumor therapy.
Collapse
Affiliation(s)
- Feng Liu
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaowei Chang
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Cheng Cheng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiuhong Peng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Haihu Liu
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
29
|
Hu J, Wang J, Guo X, Fan Q, Li X, Li K, Wang Z, Liang S, Amin B, Zhang N, Chen C, Zhu B. MSLN induced EMT, cancer stem cell traits and chemotherapy resistance of pancreatic cancer cells. Heliyon 2024; 10:e29210. [PMID: 38628720 PMCID: PMC11019237 DOI: 10.1016/j.heliyon.2024.e29210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Chemoresistance is one of the main reasons for poor prognosis of pancreatic cancer. The effects of mesothelin (MSLN) on chemoresistance in pancreatic cancer are still unclear. We aim to investigate potential roles of MSLN in chemoresistance and its relationship with proliferation, epithelial-mesenchymal transition (EMT) and cancer stemness of pancreatic cancer cells. Human pancreatic cancer cell lines ASPC-1 and Mia PaCa-2 with high and low expression of MSLN, respectively, were selected. The ASPC-1 with MSLN knockout (KO) and Mia PaCa-2 of MSLN overexpression (OE) were generated. The effects of MSLN on cell phenotypes, expression of EMT-related markers, clone formation, tumor sphere formation, and pathologic role of MSLN in tumorigenesis were detected. Sensitivity of tumor cells to gemcitabine was evaluated. The results showed that adhesion, proliferation, migration and invasion were decreased significantly in ASPC-1 with MSLN KO, whereas increased significantly in Mia PaCa-2 with MSLN OE. The size and the number of clones and tumor spheres were decreased in ASPC-1 with MSLN KO, and increased in Mia PaCa-2 with MSLN OE. In xenograft model, tumor volume was decreased (tumor grew slower) in MSLN KO group compared to control group, while increased in MSLN OE group. Mia PaCa-2 with MSLN OE had a higher IC50 of gemcitabine, while ASPC-1 with MSLN KO had a lower IC50. We concluded that MSLN could induce chemoresistance by enhancing migration, invasion, EMT and cancer stem cell traits of pancreatic cancer cells. Targeting MSLN could represent a promising therapeutic strategy for reversing EMT and chemoresistance in pancreatic cancer cells.
Collapse
Affiliation(s)
- Jili Hu
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, China
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations In Medical Science & NHC Key Laboratory of Birth Defects Prevention, China
| | - Jia Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of General Surgery, Third Hospital, Peking University, Beijing, 100871, China
| | - Xu Guo
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Qing Fan
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xinming Li
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Kai Li
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Zhuoyin Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Shuntao Liang
- Center for Biomedical Innovation, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Buhe Amin
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Nengwei Zhang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Chaowen Chen
- Department of General Surgery, Third Hospital, Peking University, Beijing, 100871, China
| | - Bin Zhu
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of General Surgery, Beijing Shijitan Hospital, Peking University Ninth School of Clinical Medicine, Beijing, China
| |
Collapse
|
30
|
Böpple K, Oren Y, Henry WS, Dong M, Weller S, Thiel J, Kleih M, Gaißler A, Zipperer D, Kopp HG, Aylon Y, Oren M, Essmann F, Liang C, Aulitzky WE. ATF3 characterizes aggressive drug-tolerant persister cells in HGSOC. Cell Death Dis 2024; 15:290. [PMID: 38658567 PMCID: PMC11043376 DOI: 10.1038/s41419-024-06674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
High-grade serous ovarian cancer (HGSOC) represents the most common and lethal subtype of ovarian cancer. Despite initial response to platinum-based standard therapy, patients commonly suffer from relapse that likely originates from drug-tolerant persister (DTP) cells. We generated isogenic clones of treatment-naïve and cisplatin-tolerant persister HGSOC cells. In addition, single-cell RNA sequencing of barcoded cells was performed in a xenograft model with HGSOC cell lines after platinum-based therapy. Published single-cell RNA-sequencing data from neo-adjuvant and non-treated HGSOC patients and patient data from TCGA were analyzed. DTP-derived cells exhibited morphological alterations and upregulation of epithelial-mesenchymal transition (EMT) markers. An aggressive subpopulation of DTP-derived cells showed high expression of the stress marker ATF3. Knockdown of ATF3 enhanced the sensitivity of aggressive DTP-derived cells to cisplatin-induced cell death, implying a role for ATF3 stress response in promoting a drug tolerant persister cell state. Furthermore, single cell lineage tracing to detect transcriptional changes in a HGSOC cell line-derived xenograft relapse model showed that cells derived from relapsed solid tumors express increased levels of EMT and multiple endoplasmic reticulum (ER) stress markers, including ATF3. Single cell RNA sequencing of epithelial cells from four HGSOC patients also identified a small cell population resembling DTP cells in all samples. Moreover, analysis of TCGA data from 259 HGSOC patients revealed a significant progression-free survival advantage for patients with low expression of the ATF3-associated partial EMT genes. These findings suggest that increased ATF3 expression together with partial EMT promote the development of aggressive DTP, and thereby relapse in HGSOC patients.
Collapse
Affiliation(s)
- Kathrin Böpple
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376, Stuttgart, Germany.
| | - Yaara Oren
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Whitney S Henry
- Whitehead Institute for Biomedical Research, 455 Main St., Cambridge, MA, 02142, USA
| | - Meng Dong
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376, Stuttgart, Germany
| | - Sandra Weller
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376, Stuttgart, Germany
- Robert Bosch Center for Tumor Diseases (RBCT), Auerbachstr. 110, 70376, Stuttgart, Germany
| | - Julia Thiel
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376, Stuttgart, Germany
| | - Markus Kleih
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376, Stuttgart, Germany
| | - Andrea Gaißler
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376, Stuttgart, Germany
| | - Damaris Zipperer
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376, Stuttgart, Germany
| | - Hans-Georg Kopp
- Robert Bosch Hospital, Auerbachstr. 110, 70376, Stuttgart, Germany
- Robert Bosch Center for Tumor Diseases (RBCT), Auerbachstr. 110, 70376, Stuttgart, Germany
| | - Yael Aylon
- Weizmann Institute of Science, 234 Herzl St, Rehovot, Israel
| | - Moshe Oren
- Weizmann Institute of Science, 234 Herzl St, Rehovot, Israel
| | - Frank Essmann
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology and University of Tuebingen, Auerbachstr. 112, 70376, Stuttgart, Germany
- Robert Bosch Center for Tumor Diseases (RBCT), Auerbachstr. 110, 70376, Stuttgart, Germany
| | - Chunguang Liang
- Department of Bioinformatics, Biocenter Am Hubland, University of Wuerzburg, 97074, Wuerzburg, Germany.
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University, Leutragraben 3, 07743, Jena, Germany.
| | | |
Collapse
|
31
|
Zhao G, Forn-Cuní G, Scheers M, Lindenbergh PP, Yin J, van Loosen Q, Passarini L, Chen L, Snaar-Jagalska BE. Simultaneous targeting of AMPK and mTOR is a novel therapeutic strategy against prostate cancer. Cancer Lett 2024; 587:216657. [PMID: 38336289 DOI: 10.1016/j.canlet.2024.216657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024]
Abstract
Metastatic colonization by circulating cancer cells is a highly inefficient process. To colonize distant organs, disseminating cancer cells must overcome many obstacles in foreign microenvironments, and only a small fraction of them survives this process. How these disseminating cancer cells cope with stress and initiate metastatic process is not fully understood. In this study, we report that the metastatic onset of prostate cancer cells is associated with the dynamic conversion of metabolism signaling pathways governed by the energy sensors AMPK and mTOR. While in circulation in blood flow, the disseminating cancer cells display decreased mTOR and increased AMPK activities that protect them from stress-induced death. However, after metastatic onset, the mTOR-AMPK activities are reversed, enabling mTOR-dependent tumor growth. Suppression of this dynamic conversion by co-targeting of AMPK and mTOR signaling significantly suppresses prostate cancer cell and tumor organoid growth in vitro and experimental metastasis in vivo, suggesting that this can be a therapeutic approach against metastasizing prostate cancer.
Collapse
Affiliation(s)
- Gangyin Zhao
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Gabriel Forn-Cuní
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Marvin Scheers
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | | | - Jie Yin
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Quint van Loosen
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Leonardo Passarini
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Lanpeng Chen
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands; Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - B Ewa Snaar-Jagalska
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands.
| |
Collapse
|
32
|
Yang HW, Chun-Yu Ho D, Liao HY, Liao YW, Fang CY, Ng MY, Yu CC, Lin FC. Resveratrol inhibits arecoline-induced fibrotic properties of buccal mucosal fibroblasts via miR-200a activation. J Dent Sci 2024; 19:1028-1035. [PMID: 38618058 PMCID: PMC11010603 DOI: 10.1016/j.jds.2023.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Indexed: 04/16/2024] Open
Abstract
Background/purpose Oral submucous fibrosis (OSF) is a precancerous lesion in the oral cavity, commonly results from the Areca nut chewing habit. Arecoline, the main component of Areca nut, is known to stimulate the activation of myofibroblasts, which can lead to abnormal collagen I deposition. Meanwhile, Resveratrol is a non-flavonoid phenolic substance that can be naturally obtained from various berries and foods. Given that resveratrol has significant anti-fibrosis traits in other organs, but little is known about its effect on OSF, this study aimed to investigate the therapeutic impact of resveratrol on OSF and its underlying mechanism. Materials and methods The cytotoxicity of resveratrol was tested using normal buccal mucosal fibroblasts (BMFs). Myofibroblast phenotypes such as collagen contractile, enhanced migration, and wound healing capacities in dose-dependently resveratrol-treated fBMFs were examined. Results Current results showed that arecoline induced cell migration and contractile activity in BMFs as well as upregulated the expressions of α-SMA, type I collagen, and ZEB1 markers. Resveratrol intervention, on the other hand, was shown to inhibit arecoline-induced myofibroblast activation and reduce myofibroblast hallmarks and EMT markers. Additionally, resveratrol was also demonstrated to restore the downregulated miR-200a in the arecoline-stimulated cells. Conclusion In a nutshell, these findings implicate that resveratrol may have an inhibitory influence on arecoline-induced fibrosis via the regulation of miR-200a. Hence, resveratrol may be used as a therapeutic strategy for OSF intervention.
Collapse
Affiliation(s)
- Hui-Wen Yang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Dennis Chun-Yu Ho
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Heng-Yi Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Yuan Fang
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Min Yee Ng
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Fu-Chen Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
33
|
Takeda T, Tsubaki M, Genno S, Tomita K, Nishida S. RANK/RANKL axis promotes migration, invasion, and metastasis of osteosarcoma via activating NF-κB pathway. Exp Cell Res 2024; 436:113978. [PMID: 38382805 DOI: 10.1016/j.yexcr.2024.113978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Osteosarcoma (OS) is one of the most prevalent primary bone tumors with a high degree of metastasis and poor prognosis. Epithelial-to-mesenchymal transition (EMT) is a cellular mechanism that contributes to the invasion and metastasis of cancer cells, and OS cells have been reported to exhibit EMT-like characteristics. Our previous studies have shown that the interaction between tumor necrosis factor superfamily member 11 (TNFRSF11A; also known as RANK) and its ligand TNFSF11 (also known as RANKL) promotes the EMT process in breast cancer cells. However, whether the interaction between RANK and RANKL enhances aggressive behavior by inducing EMT in OS cells has not yet been elucidated. In this study, we showed that the interaction between RANK and RANKL increased the migration, invasion, and metastasis of OS cells by promoting EMT. Importantly, we clarified that the RANK/RANKL axis induces EMT by activating the nuclear factor-kappa B (NF-κB) pathway. Furthermore, the NF-κB inhibitor dimethyl fumarate (DMF) suppressed migration, invasion, and EMT in OS cells. Our results suggest that the RANK/RANKL axis may serve as a potential tumor marker and promising therapeutic target for OS metastasis. Furthermore, DMF may have clinical applications in the treatment of lung metastasis in patients with OS.
Collapse
Affiliation(s)
- Tomoya Takeda
- Division of Pharmacotherapy, Kindai University School of Pharmacy, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Masanobu Tsubaki
- Division of Pharmacotherapy, Kindai University School of Pharmacy, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Shuji Genno
- Division of Pharmacotherapy, Kindai University School of Pharmacy, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Kana Tomita
- Division of Pharmacotherapy, Kindai University School of Pharmacy, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kindai University School of Pharmacy, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| |
Collapse
|
34
|
Ju G, Xing T, Xu M, Zhang X, Sun Y, Mu Z, Sun D, Miao S, Li L, Liang J, Lin Y. AEBP1 promotes papillary thyroid cancer progression by activating BMP4 signaling. Neoplasia 2024; 49:100972. [PMID: 38237535 PMCID: PMC10828808 DOI: 10.1016/j.neo.2024.100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Papillary thyroid cancer (PTC) is the most prevalent endocrine cancer worldwide. Approximately 30 % of PTC patients will progress into the advanced or metastatic stage and have a relatively poor prognosis. It is well known that epithelial-mesenchymal transition (EMT) plays a pivotal role in thyroid cancer metastasis, resistance to therapy, and recurrence. Clarifying the molecular mechanisms of EMT in PTC progression will help develop the targeted therapy of PTC. The aberrant expression of some transcription factors (TFs) participated in many pathological processes of cancers including EMT. In this study, by performing bioinformatics analysis, adipocyte enhancer-binding protein 1 (AEBP1) was screened as a pivotal TF that promoted EMT and tumor progression in PTC. In vitro experiments indicated that knockout of AEBP1 can inhibit the growth and invasion of PTC cells and reduce the expression of EMT markers including N-cadherin, TWIST1, and ZEB2. In the xenograft model, knockout of AEBP1 inhibited the growth and lung metastasis of PTC cells. By performing RNA-sequencing, dual-luciferase reporter assay, and chromatin immunoprecipitation assay, Bone morphogenetic protein 4 (BMP4) was identified as a downstream target of AEBP1. Over-expression of BMP4 can rescue the inhibitory effects of AEBP1 knockout on the growth, invasion, and EMT phenotype of PTC cells. In conclusion, these findings demonstrated that AEBP1 plays a critical role in PTC progression by regulating BMP4 expression and the AEBP1-BMP4 axis may present novel therapeutic targets for PTC treatment.
Collapse
Affiliation(s)
- Gaoda Ju
- Department of Medical Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China; Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing 100730, China; Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing 100730, China
| | - Tao Xing
- Department of Medical Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Miaomiao Xu
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Xin Zhang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing 100730, China; Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing 100730, China
| | - Yuqing Sun
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing 100730, China; Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing 100730, China
| | - Zhuanzhuan Mu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing 100730, China; Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing 100730, China
| | - Di Sun
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing 100730, China; Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing 100730, China
| | - Sen Miao
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Li Li
- Department of Oncology, Peking University International Hospital, Peking University, Beijing 102206, China
| | - Jun Liang
- Department of Medical Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China; Department of Oncology, Peking University International Hospital, Peking University, Beijing 102206, China.
| | - Yansong Lin
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing 100730, China; Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing 100730, China.
| |
Collapse
|
35
|
Dhanyamraju PK. Drug resistance mechanisms in cancers: Execution of pro-survival strategies. J Biomed Res 2024; 38:95-121. [PMID: 38413011 PMCID: PMC11001593 DOI: 10.7555/jbr.37.20230248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 02/29/2024] Open
Abstract
One of the quintessential challenges in cancer treatment is drug resistance. Several mechanisms of drug resistance have been described to date, and new modes of drug resistance continue to be discovered. The phenomenon of cancer drug resistance is now widespread, with approximately 90% of cancer-related deaths associated with drug resistance. Despite significant advances in the drug discovery process, the emergence of innate and acquired mechanisms of drug resistance has impeded the progress in cancer therapy. Therefore, understanding the mechanisms of drug resistance and the various pathways involved is integral to treatment modalities. In the present review, I discuss the different mechanisms of drug resistance in cancer cells, including DNA damage repair, epithelial to mesenchymal transition, inhibition of cell death, alteration of drug targets, inactivation of drugs, deregulation of cellular energetics, immune evasion, tumor-promoting inflammation, genome instability, and other contributing epigenetic factors. Furthermore, I highlight available treatment options and conclude with future directions.
Collapse
Affiliation(s)
- Pavan Kumar Dhanyamraju
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
36
|
Strippoli R, Niayesh-Mehr R, Adelipour M, Khosravi A, Cordani M, Zarrabi A, Allameh A. Contribution of Autophagy to Epithelial Mesenchymal Transition Induction during Cancer Progression. Cancers (Basel) 2024; 16:807. [PMID: 38398197 PMCID: PMC10886827 DOI: 10.3390/cancers16040807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial Mesenchymal Transition (EMT) is a dedifferentiation process implicated in many physio-pathological conditions including tumor transformation. EMT is regulated by several extracellular mediators and under certain conditions it can be reversible. Autophagy is a conserved catabolic process in which intracellular components such as protein/DNA aggregates and abnormal organelles are degraded in specific lysosomes. In cancer, autophagy plays a controversial role, acting in different conditions as both a tumor suppressor and a tumor-promoting mechanism. Experimental evidence shows that deep interrelations exist between EMT and autophagy-related pathways. Although this interplay has already been analyzed in previous studies, understanding mechanisms and the translational implications of autophagy/EMT need further study. The role of autophagy in EMT is not limited to morphological changes, but activation of autophagy could be important to DNA repair/damage system, cell adhesion molecules, and cell proliferation and differentiation processes. Based on this, both autophagy and EMT and related pathways are now considered as targets for cancer therapy. In this review article, the contribution of autophagy to EMT and progression of cancer is discussed. This article also describes the multiple connections between EMT and autophagy and their implication in cancer treatment.
Collapse
Affiliation(s)
- Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- National Institute for Infectious Diseases “Lazzaro Spallanzani”, I.R.C.C.S., 00149 Rome, Italy
| | - Reyhaneh Niayesh-Mehr
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran P.O. Box 14115-331, Iran;
| | - Maryam Adelipour
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran;
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain;
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran P.O. Box 14115-331, Iran;
| |
Collapse
|
37
|
Zarezadeh SM, Sharafi AM, Erabi G, Tabashiri A, Teymouri N, Mehrabi H, Golzan SA, Faridzadeh A, Abdollahifar Z, Sami N, Arabpour J, Rahimi Z, Ansari A, Abbasi MR, Azizi N, Tamimi A, Poudineh M, Deravi N. Natural STAT3 Inhibitors for Cancer Treatment: A Comprehensive Literature Review. Recent Pat Anticancer Drug Discov 2024; 19:403-502. [PMID: 37534488 DOI: 10.2174/1574892818666230803100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 08/04/2023]
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide, affecting millions of people physically and financially every year. Over time, many anticancer treatments have been proposed and studied, including synthetic compound consumption, surgical procedures, or grueling chemotherapy. Although these treatments have improved the daily life quality of patients and increased their survival rate and life expectancy, they have also shown significant drawbacks, including staggering costs, multiple side effects, and difficulty in compliance and adherence to treatment. Therefore, natural compounds have been considered a possible key to overcoming these problems in recent years, and thorough research has been done to assess their effectiveness. In these studies, scientists have discovered a meaningful interaction between several natural materials and signal transducer and activator of transcription 3 molecules. STAT3 is a transcriptional protein that is vital for cell growth and survival. Mechanistic studies have established that activated STAT3 can increase cancer cell proliferation and invasion while reducing anticancer immunity. Thus, inhibiting STAT3 signaling by natural compounds has become one of the favorite research topics and an attractive target for developing novel cancer treatments. In the present article, we intend to comprehensively review the latest knowledge about the effects of various organic compounds on inhibiting the STAT3 signaling pathway to cure different cancer diseases.
Collapse
Affiliation(s)
- Seyed Mahdi Zarezadeh
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Sharafi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arefeh Tabashiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Teymouri
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hoda Mehrabi
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Seyyed Amirhossein Golzan
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Abdollahifar
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Nafiseh Sami
- Student Research Committee, Tehran Medical Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of New Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Zahra Rahimi
- School of Medicine, Zanjan University of Medical Sciences Zanjan, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Nima Azizi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Younes M, Loubnane G, Sleiman C, Rizk S. Tocotrienol isoforms: The molecular mechanisms underlying their effects in cancer therapy and their implementation in clinical trials. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:1-11. [PMID: 38336507 DOI: 10.1016/j.joim.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 07/19/2023] [Indexed: 02/12/2024]
Abstract
Tocotrienols are found in a variety of natural sources, like rice bran, annatto seeds and palm oil, and have been shown to have several health-promoting properties, particularly against chronic diseases such as cancer. The incidence of cancer is rapidly increasing around the world, not only a result of continued aging and population growth, but also due to the adoption of aspects of the Western lifestyle, such as high-fat diets and low-physical activity. The literature provides strong evidence that tocotrienols are able to inhibit the growth of various cancers, including breast, lung, ovarian, prostate, liver, brain, colon, myeloma and pancreatic cancers. These findings, along with the reported safety profile of tocotrienols in healthy human volunteers, encourage further research into these compounds' potential use in cancer prevention and treatment. The current review provided detailed information about the molecular mechanisms of action of different tocotrienol isoforms in various cancer models and evaluated the potential therapeutic effects of different vitamin E analogues on important cancer hallmarks, such as cellular proliferation, apoptosis, angiogenesis and metastasis. MEDLINE/PubMed and Scopus databases were used to identify recently published articles that investigated the anticancer effects of vitamin E derivatives in various types of cancer in vitro and in vivo along with clinical evidence of adjuvant chemopreventive benefits. Following an overview of pre-clinical studies, we describe several completed and ongoing clinical trials that are paving the way for the successful implementation of tocotrienols in cancer chemotherapy.
Collapse
Affiliation(s)
- Maria Younes
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Ghady Loubnane
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Christopher Sleiman
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
39
|
Sturgeon R, Goel P, Singh RK. Tumor-associated neutrophils in pancreatic cancer progression and metastasis. Am J Cancer Res 2023; 13:6176-6189. [PMID: 38187037 PMCID: PMC10767342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024] Open
Abstract
Pancreatic cancer (PC) remains a challenge to modern-day cancer therapeutics, with a dismal five-year survival rate of 12%. Due to the pancreas's location and desmoplasia surrounding it, patients receive late diagnoses and fail to respond to chemotherapy regimens. Tumor-promoting inflammation, one of the emerging hallmarks of cancer, contributes to tumor cells' survival and proliferation. This inflammation often results from infiltrating leukocytes and pro-inflammatory cytokines released into the tumor microenvironment (TME). Neutrophils, one of our body's most prominent immune cells, are essential in sustaining the inflammation observed in the TME. Recent reports demonstrate that neutrophils are complicit in cancer progression and metastasis. Additionally, abundant data suggest that tumor-associated neutrophils (TANs) could be considered as one of the emerging targets for multiple cancer types, including PC. This review will focus on the most recent updates regarding neutrophil recruitments and functions in the cancer microenvironment and the potential development of neutrophils-targeted putative therapeutic strategies in PC.
Collapse
Affiliation(s)
- Reegan Sturgeon
- Department of Pathology and Microbiology, The University of Nebraska Medical Center985845 UNMC, Omaha, NE 68198-5845, USA
| | - Paran Goel
- The University of AlabamaBirmingham, AL 35294-1210, USA
| | - Rakesh K Singh
- Department of Pathology and Microbiology, The University of Nebraska Medical Center985845 UNMC, Omaha, NE 68198-5845, USA
- Department of Pathology and Microbiology, The University of Nebraska Medical Center, 985900 Nebraska Medical CenterOmaha, NE 68198-5900, USA
| |
Collapse
|
40
|
Sarkar S, Deyoung T, Ressler H, Chandler W. Brain Tumors: Development, Drug Resistance, and Sensitization - An Epigenetic Approach. Epigenetics 2023; 18:2237761. [PMID: 37499114 PMCID: PMC10376921 DOI: 10.1080/15592294.2023.2237761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
In this article, we describe contrasting developmental aspects of paediatric and adult brain tumours. We hypothesize that the formation of cancer progenitor cells, for both paediatric and adult, could be due to epigenetic events. However, the progression of adult brain tumours selectively involves more mutations compared to paediatric tumours. We further discuss epigenetic switches, comprising both histone modifications and DNA methylation, and how they can differentially regulate transcription and expression of oncogenes and tumour suppressor genes. Next, we summarize the currently available therapies for both types of brain tumours, explaining the merits and failures leading to drug resistance. We analyse different mechanisms of drug resistance and the role of epigenetics in this process. We then provide a rationale for combination therapy, which includes epigenetic drugs. In the end, we postulate a concept which describes how a combination therapy could be initiated. The timing, doses, and order of individual drug regimens will depend on the individual case. This type of combination therapy will be part of a personalized medicine which will differ from patient to patient.
Collapse
Affiliation(s)
- Sibaji Sarkar
- Division of Biotechnology, Quincy College, Quincy, MA, USA
- Division of Biology, STEM, MBC College, Wellesley, MA, USA
- Division of Biology, STEM, RC College Boston, Boston, MA, USA
| | - Tara Deyoung
- Division of Biotechnology, Quincy College, Quincy, MA, USA
| | - Hope Ressler
- Division of Biology, STEM, MBC College, Wellesley, MA, USA
| | | |
Collapse
|
41
|
Gulia S, Chandra P, Das A. The Prognosis of Cancer Depends on the Interplay of Autophagy, Apoptosis, and Anoikis within the Tumor Microenvironment. Cell Biochem Biophys 2023; 81:621-658. [PMID: 37787970 DOI: 10.1007/s12013-023-01179-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Within the tumor microenvironment, the fight between the immune system and cancer influences tumor transformation. Metastasis formation is an important stage in the progression of cancer. This process is aided by cellular detachment and resistance to anoikis, which are achieved by altering intercellular signaling. Autophagy, specifically pro-survival autophagy, aids cancer cells in developing treatment resistance. Numerous studies have shown that autophagy promotes tumor growth and resistance to anoikis. To regulate protective autophagy, cancer-related genes phosphorylate both pro- and anti-apoptotic proteins. Apoptosis, a type of controlled cell death, eliminates damaged or unwanted cells. Anoikis is a type of programmed cell death in which cells lose contact with the extracellular matrix. The dysregulation of these cellular pathways promotes tumor growth and spread. Apoptosis, anoikis, and autophagy interact meticulously and differently depending on the cellular circumstances. For instance, autophagy can protect cancer cells from apoptosis by removing cellular components that are damaged and might otherwise trigger apoptotic pathways. Similarly, anoikis dysregulation can trigger autophagy by causing cellular harm and metabolic stress. In order to prevent or treat metastatic disease, specifically, targeting these cellular mechanisms may present a promising prospect for cancer therapy. This review discourses the state of our understanding of the molecular and cellular mechanisms underlying tumor transformation and the establishment of metastatic tumors. To enhance the prognosis for cancer, we highlight and discuss potential therapeutic approaches that target these processes and genes involved in them.
Collapse
Affiliation(s)
- Shweta Gulia
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| |
Collapse
|
42
|
Jun L, Xuhong L, Hui L. Circ_SIPA1L1 Promotes Osteosarcoma Progression Via miR-379-5p/MAP3K9 Axis. Cancer Biother Radiopharm 2023; 38:604-618. [PMID: 32897735 DOI: 10.1089/cbr.2020.3891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background: Osteosarcoma (OS) is a common malignant bone tumor. Circular RNAs (circRNAs) exert important roles in the pathogenesis of human cancers, including OS. In this study, the authors focused on the role and mechanism of circRNA signal-induced proliferation-associated 1 like 1 (circ_SIPA1L1) in OS. Methods: The enrichment of SIPA1L1, circ_SIPA1L1, microRNA-379-5p (miR-379-5p), and mitogen-activated protein kinase kinase kinase 9 (MAP3K9) was assessed by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The colony formation capacity was assessed through colony formation assay. Transwell assays were used to detect the migration and invasion abilities. Western blot assay was used to measure the expression of metastasis-related proteins and MAP3K9. The target interactions between the genes in circ_SIPA1L1/miR-379-5p/MAP3K9 axis were predicted by StarBase and confirmed by dual-luciferase reporter assay. The in vivo role of circ_SIPA1L1 was verified by murine xenograft assay. Results: Circ_SIPA1L1 abundance was aberrantly elevated in OS tissues and cell lines. Circ_SIPA1L1 accelerated the proliferation and metastasis abilities of OS cells. Circ_SIPA1L1 promoted the malignant behaviors of OS cells through elevating MAP3K9 level. MiR-379-5p directly bound to circ_SIPA1L1 and MAP3K9. MiR-379-5p interference rescued the abilities of proliferation and metastasis in OS cells, which were suppressed by the silencing of circ_SIPA1L1. Circ_SIPA1L1 promoted the development of OS via miR-379-5p/MAP3K9 in vivo. Conclusion: Circ_SIPA1L1 promoted the progression of OS via miR-379-5p/MAP3K9 axis.
Collapse
Affiliation(s)
- Liu Jun
- Department of Traumatic Orthopedics II Ward and Weifang People's Hospital, Weifang, China
| | - Li Xuhong
- Department of Pharmacy Intravenous Admixture Service, Weifang People's Hospital, Weifang, China
| | - Liu Hui
- Department of Pharmacy Intravenous Admixture Service, Weifang People's Hospital, Weifang, China
| |
Collapse
|
43
|
Chen H, Li Y, Liu Y, Zhao Y, Xu F, Yang S, Yu M, Zou M, Zhang J. Epinodosin suppresses the proliferation, invasion, and migration of esophageal squamous cell carcinoma by mediating miRNA-143-3p/Bcl-2 axis. Phytother Res 2023; 37:5378-5393. [PMID: 37589332 DOI: 10.1002/ptr.7978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/28/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
Epinodosin has shown antibacterial and antitumor biological characteristics in the documents. We found that Epinodosin has an effective inhibitory effect on esophageal squamous cell carcinoma (ESCC). However, the potential roles and mechanisms of Epinodosin in ESCC remain unclear. We performed many experiments to clarify the effect and mechanism of Epinodosin on ESCC. In this study, cell viability, invasion, migration, and apoptosis were determined by 3-(4,5-dimethyl-2-thiazolyl)-2,-diphenytetrazoliumromide (MTT), Transwell, and flow cytometry. The differentially expressed miRNAs were screened through RNA transcriptome sequencing. The expression levels of miRNA-143-3p and some proteins were measured by real-time polymerase chain reaction (PCR) and Western blot. The anticancer effects of Epinodosin in vivo were determined by a nude mouse model. Epinodosin suppressed cell proliferation/invasion/migration and induced ESCC cell apoptosis. Epinodosin remarkably affected the protein expression of mitogen-activated protein kinase (MAPK) signaling pathway. The animal experiments demonstrated that Epinodosin could attenuate the growth of ESCC tumors in nude mice. The expression of p53, Bim, and Bax was upregulated, while that of Bcl-2 was downregulated in tumor tissues. In conclusion, Epinodosin suppresses cell viability/invasion/migration, while induces ESCC cell apoptosis by mediating miRNA-143-3p and Bcl-2, and can markedly attenuate the growth of ESCC tumors in nude mice.
Collapse
Affiliation(s)
- Huiping Chen
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yamei Li
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yixian Liu
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Zhao
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Xu
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | | | - Mengdan Yu
- School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Min Zou
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jintao Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
44
|
Bogut A, Stojanovic B, Jovanovic M, Dimitrijevic Stojanovic M, Gajovic N, Stojanovic BS, Balovic G, Jovanovic M, Lazovic A, Mirovic M, Jurisevic M, Jovanovic I, Mladenovic V. Galectin-1 in Pancreatic Ductal Adenocarcinoma: Bridging Tumor Biology, Immune Evasion, and Therapeutic Opportunities. Int J Mol Sci 2023; 24:15500. [PMID: 37958483 PMCID: PMC10650903 DOI: 10.3390/ijms242115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) remains one of the most challenging malignancies to treat, with a complex interplay of molecular pathways contributing to its aggressive nature. Galectin-1 (Gal-1), a member of the galectin family, has emerged as a pivotal player in the PDAC microenvironment, influencing various aspects from tumor growth and angiogenesis to immune modulation. This review provides a comprehensive overview of the multifaceted role of Galectin-1 in PDAC. We delve into its contributions to tumor stroma remodeling, angiogenesis, metabolic reprogramming, and potential implications for therapeutic interventions. The challenges associated with targeting Gal-1 are discussed, given its pleiotropic functions and complexities in different cellular conditions. Additionally, the promising prospects of Gal-1 inhibition, including the utilization of nanotechnology and theranostics, are highlighted. By integrating recent findings and shedding light on the intricacies of Gal-1's involvement in PDAC, this review aims to provide insights that could guide future research and therapeutic strategies.
Collapse
Affiliation(s)
- Ana Bogut
- City Medical Emergency Department, 11000 Belgrade, Serbia;
| | - Bojan Stojanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.); (G.B.)
- Department of General Surgery, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia;
| | - Marina Jovanovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.J.); (V.M.)
| | | | - Nevena Gajovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Bojana S. Stojanovic
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Goran Balovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.); (G.B.)
| | - Milan Jovanovic
- Department of Abdominal Surgery, Military Medical Academy, 11000 Belgrade, Serbia;
| | - Aleksandar Lazovic
- Department of General Surgery, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia;
| | - Milos Mirovic
- Department of Surgery, General Hospital of Kotor, 85330 Kotor, Montenegro;
| | - Milena Jurisevic
- Department of Clinical Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Violeta Mladenovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.J.); (V.M.)
| |
Collapse
|
45
|
Galal MA, Alouch SS, Alsultan BS, Dahman H, Alyabis NA, Alammar SA, Aljada A. Insulin Receptor Isoforms and Insulin Growth Factor-like Receptors: Implications in Cell Signaling, Carcinogenesis, and Chemoresistance. Int J Mol Sci 2023; 24:15006. [PMID: 37834454 PMCID: PMC10573852 DOI: 10.3390/ijms241915006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
This comprehensive review thoroughly explores the intricate involvement of insulin receptor (IR) isoforms and insulin-like growth factor receptors (IGFRs) in the context of the insulin and insulin-like growth factor (IGF) signaling (IIS) pathway. This elaborate system encompasses ligands, receptors, and binding proteins, giving rise to a wide array of functions, including aspects such as carcinogenesis and chemoresistance. Detailed genetic analysis of IR and IGFR structures highlights their distinct isoforms, which arise from alternative splicing and exhibit diverse affinities for ligands. Notably, the overexpression of the IR-A isoform is linked to cancer stemness, tumor development, and resistance to targeted therapies. Similarly, elevated IGFR expression accelerates tumor progression and fosters chemoresistance. The review underscores the intricate interplay between IRs and IGFRs, contributing to resistance against anti-IGFR drugs. Consequently, the dual targeting of both receptors could present a more effective strategy for surmounting chemoresistance. To conclude, this review brings to light the pivotal roles played by IRs and IGFRs in cellular signaling, carcinogenesis, and therapy resistance. By precisely modulating these receptors and their complex signaling pathways, the potential emerges for developing enhanced anti-cancer interventions, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Samhar Samer Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Buthainah Saad Alsultan
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Nouf Abdullah Alyabis
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Sarah Ammar Alammar
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
46
|
Zhao Z, Li T, Sun L, Yuan Y, Zhu Y. Potential mechanisms of cancer-associated fibroblasts in therapeutic resistance. Biomed Pharmacother 2023; 166:115425. [PMID: 37660643 DOI: 10.1016/j.biopha.2023.115425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
Despite continuous improvements in research and new cancer therapeutics, the goal of eradicating cancer remains elusive because of drug resistance. For a long time, drug resistance research has been focused on tumor cells themselves; however, recent studies have found that the tumor microenvironment also plays an important role in inducing drug resistance. Cancer-associated fibroblasts (CAFs) are a main component of the tumor microenvironment. They cross-talk with cancer cells to support their survival in the presence of anticancer drugs. This review summarizes the current knowledge of the role of CAFs in tumor drug resistance. An in-depth understanding of the mechanisms underlying the cross-talk between CAFs and cancer cells and insight into the importance of CAFs in drug resistance can guide the development of new anticancer strategies.
Collapse
Affiliation(s)
- Zehua Zhao
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Tianming Li
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
| | - Yanmei Zhu
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China.
| |
Collapse
|
47
|
Tung CH, Wu JE, Huang MF, Wang WL, Wu YY, Tsai YT, Hsu XR, Lin SH, Chen YL, Hong TM. Ubiquitin-specific peptidase 5 facilitates cancer stem cell-like properties in lung cancer by deubiquitinating β-catenin. Cancer Cell Int 2023; 23:207. [PMID: 37726816 PMCID: PMC10510149 DOI: 10.1186/s12935-023-03059-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Lung cancer has the highest mortality rate in the world, and mounting evidence suggests that cancer stem cells (CSCs) are associated with poor prognosis, recurrence, and metastasis of lung cancer. It is urgent to identify new biomarkers and therapeutic targets for targeting lung CSCs. METHODS We computed the single-sample gene set enrichment analysis (ssGSEA) of 1554 Reactome gene sets to identify the mRNA expression-based stemness index (mRNAsi)-associated pathways using the genome-wide RNA sequencing data of 509 patients from The Cancer Genome Atlas (TCGA) cohort of lung adenocarcinoma (LUAD). Phenotypic effects of ubiquitin-specific peptidase 5 (USP5) on the CSC-like properties and metastasis were examined by in vitro sphere formation assay, migration assay, invasion assay, and in vivo xenografted animal models. Cycloheximide chase assay, co-immunoprecipitation assay, and deubiquitination assay were performed to confirm the effect of USP5 on the deubiquitination of β-catenin. RESULTS We demonstrated that USP5 expression were positively correlated with the stemness-associated signatures and poor outcomes in lung cancer specimens. Silencing of endogenous USP5 reduced CSC-like characteristics, epithelial-mesenchymal transition (EMT), and metastasis in vitro and in vivo. Furthermore, USP5 interacted with β-catenin, which resulted in deubiquitination, stabilization of β-catenin, and activation of Wnt/β-catenin pathway. Accordingly, expression of USP5 was positively correlated with the enrichment score of the Wnt/TCF pathway signature in human lung cancer. Silencing of β-catenin expression suppressed USP5-enhancing sphere formation. Targeting USP5 with the small molecule WP1130 promoted the degradation of β-catenin, and showed great inhibitory effects on sphere formation, migration, and invasion. Finally, we identified a poor-prognosis subset of tumors characterized by high levels of USP5, Wnt signaling score, and Stemness score in both TCGA-LUAD and Rousseaux_2013 datasets. CONCLUSIONS These findings reveal a clinical evidence for USP5-enhanced Wnt/β-catenin signaling in promoting lung cancer stemness and metastasis, implying that targeting USP5 could provide beneficial effects to improve lung cancer therapeutics.
Collapse
Affiliation(s)
- Chia-Hao Tung
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 70101, Taiwan
| | - Jia-En Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 70101, Taiwan
| | - Meng-Fan Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 70101, Taiwan
| | - Wen-Lung Wang
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ying Wu
- Clinical Medicine Research Center, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Yao-Tsung Tsai
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Xiu-Rui Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 70101, Taiwan
| | - Sheng-Hsiang Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 70101, Taiwan
- Biostatistics Consulting Center, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Yuh-Ling Chen
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Tse-Ming Hong
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 70101, Taiwan.
- Clinical Medicine Research Center, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
48
|
Torres-Alamilla P, Castillo-Sanchez R, Cortes-Reynosa P, Gomez R, Perez Salazar E. Bisphenol A increases the size of primary mammary tumors and promotes metastasis in a murine model of breast cancer. Mol Cell Endocrinol 2023; 575:111998. [PMID: 37414130 DOI: 10.1016/j.mce.2023.111998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast tumor characterized for the absence of estrogen and progesterone receptors expression and low HER2/neu expression. Bisphenol A (BPA) is an endocrine disrupting chemical with estrogenic activity that has been associated with increasing rates of breast cancer. Moreover, BPA is a solid organic synthetic chemical employed in the manufacture of many consumer products, epoxy resins and polycarbonate plastics including baby bottles, containers for food and beverages, and the lining of beverage cans. The G-protein-coupled estrogen receptor (GPER) is activated by endogenous hormones and synthetic ligands, such as BPA. GPER is expressed in TNBC cells and its expression is associated with larger tumor size, metastasis and worse survival prognosis. In breast cancer cells, BPA induces activation of signal transduction pathways that mediates migration and invasion via GPER in human TNBC MDA-MB-231 cells. In this study, we demonstrate that BPA induces an increase of GPER expression and its translocation from cytosol to cytoplasmic membrane, metalloproteinase (MMP)-2 and MMP-9 secretion, migration and invasion in murine TNBC 4T1 cells. In a murine TNBC model "in vivo" using 4T1 cells, BPA induces the formation of mammary tumors with more weight and volume, and an increase in the number of mice with metastasis to lung and nodules in lung compared with tumors and metastasis to lung of untreated Balb/cJ mice. In conclusion, our findings demonstrate that BPA mediates the growth of mammary primary tumors and metastasis to lung in a murine model of breast cancer.
Collapse
Affiliation(s)
| | | | | | - Rocio Gomez
- Departamento de Toxicologia, Cinvestav-IPN, Ciudad de Mexico, Mexico
| | | |
Collapse
|
49
|
McDonald B, Barth K, Schmidt MHH. The origin of brain malignancies at the blood-brain barrier. Cell Mol Life Sci 2023; 80:282. [PMID: 37688612 PMCID: PMC10492883 DOI: 10.1007/s00018-023-04934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
Despite improvements in extracranial therapy, survival rate for patients suffering from brain metastases remains very poor. This is coupled with the incidence of brain metastases continuing to rise. In this review, we focus on core contributions of the blood-brain barrier to the origin of brain metastases. We first provide an overview of the structure and function of the blood-brain barrier under physiological conditions. Next, we discuss the emerging idea of a pre-metastatic niche, namely that secreted factors and extracellular vesicles from a primary tumor site are able to travel through the circulation and prime the neurovasculature for metastatic invasion. We then consider the neurotropic mechanisms that circulating tumor cells possess or develop that facilitate disruption of the blood-brain barrier and survival in the brain's parenchyma. Finally, we compare and contrast brain metastases at the blood-brain barrier to the primary brain tumor, glioma, examining the process of vessel co-option that favors the survival and outgrowth of brain malignancies.
Collapse
Affiliation(s)
- Brennan McDonald
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany.
| | - Kathrin Barth
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| |
Collapse
|
50
|
Pourjafar M, Saidijam M, Miehe M, Najafi R, Soleimani M, Spillner E. Surfaceome Profiling Suggests Potential of Anti-MUC1×EGFR Bispecific Antibody for Breast Cancer Targeted Therapy. J Immunother 2023; 46:245-261. [PMID: 37493044 DOI: 10.1097/cji.0000000000000482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023]
Abstract
Breast cancer (BC) treatment has traditionally been challenging due to tumor heterogeneity. Bispecific antibodies (bsAbs) offer a promising approach for overcoming these challenges by targeting multiple specific epitopes. In the current study, we designed a new bsAb against the most common BC cell surface proteins (SPs). To achieve this, we analyzed RNA-sequencing data to identify differentially expressed genes, which were further evaluated using Gene Ontology enrichment, Hidden Markov Models, clinical trial data, and survival analysis to identify druggable gene-encoding cell SPs. Based on these analyses, we constructed and expressed a bsAb targeting the mucin 1 (MUC1) and epidermal growth factor receptor (EGFR) proteins, which are the dominant druggable gene-encoding cell SPs in BC. The recombinant anti-MUC1×EGFR bsAb demonstrated efficient production and high specificity for MUC1 and EGFR + cell lines and BC tissue. Furthermore, the bsAb significantly reduced the proliferation and migration of BC cells. Our results suggested that simultaneous targeting with bsAbs could be a promising targeted therapy for improving the overall efficacy of BC treatment.
Collapse
Affiliation(s)
- Mona Pourjafar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences
- Department of Biological and Chemical Engineering, Immunological Biotechnology, Aarhus University, Aarhus, Denmark
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences
| | - Michaela Miehe
- Department of Biological and Chemical Engineering, Immunological Biotechnology, Aarhus University, Aarhus, Denmark
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Edzard Spillner
- Department of Biological and Chemical Engineering, Immunological Biotechnology, Aarhus University, Aarhus, Denmark
| |
Collapse
|