1
|
Feng X, Yu JL, Sun YF, Du CY, Shen Y, Zhang L, Kong WZ, Han S, Cheng Y. Plasmodium yoelii surface-related antigen (PySRA) modulates the host pro-inflammatory responses via binding to CD68 on macrophage membrane. Infect Immun 2024; 92:e0011324. [PMID: 38624215 PMCID: PMC11075460 DOI: 10.1128/iai.00113-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/17/2024] Open
Abstract
Malaria, one of the major infectious diseases in the world, is caused by the Plasmodium parasite. Plasmodium antigens could modulate the inflammatory response by binding to macrophage membrane receptors. As an export protein on the infected erythrocyte membrane, Plasmodium surface-related antigen (SRA) participates in the erythrocyte invasion and regulates the immune response of the host. This study found that the F2 segment of P. yoelii SRA activated downstream MAPK and NF-κB signaling pathways by binding to CD68 on the surface of the macrophage membrane and regulating the inflammatory response. The anti-PySRA-F2 antibody can protect mice against P. yoelii, and the pro-inflammatory responses such as IL-1β, TNF-α, and IL-6 after infection with P. yoelii are attenuated. These findings will be helpful for understanding the involvement of the pathogenic mechanism of malaria with the exported protein SRA.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Protozoan/immunology
- Antigens, Protozoan/metabolism
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Cell Membrane/metabolism
- Cell Membrane/immunology
- Inflammation/immunology
- Inflammation/metabolism
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/parasitology
- Malaria/immunology
- Malaria/parasitology
- NF-kappa B/metabolism
- NF-kappa B/immunology
- Plasmodium yoelii/immunology
- Protein Binding
- Signal Transduction
Collapse
Affiliation(s)
- Xin Feng
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jia-Li Yu
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yi-Fan Sun
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Chen-Yan Du
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yao Shen
- Department of Food Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lu Zhang
- Department of General Practice, Rongxiang Street Community Health Service Center, Binhu District, Wuxi, China
| | - Wei-Zhong Kong
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Su Han
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yang Cheng
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Owoloye A, Olufemi M, Idowu ET, Oyebola KM. Prevalence of potential mediators of artemisinin resistance in African isolates of Plasmodium falciparum. Malar J 2021; 20:451. [PMID: 34856982 PMCID: PMC8638531 DOI: 10.1186/s12936-021-03987-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
Background The devastating public health impact of malaria has prompted the need for effective interventions. Malaria control gained traction after the introduction of artemisinin-based combination therapy (ACT). However, the emergence of artemisinin (ART) partial resistance in Southeast Asia and emerging reports of delayed parasite sensitivity to ACT in African parasites signal a gradual trend towards treatment failure. Monitoring the prevalence of mutations associated with artemisinin resistance in African populations is necessary to stop resistance in its tracks. Mutations in Plasmodium falciparum genes pfk13, pfcoronin and pfatpase6 have been linked with ART partial resistance. Methods Findings from published research articles on the prevalence of pfk13, pfcoronin and pfatpase6 polymorphisms in Africa were collated. PubMed, Embase and Google Scholar were searched for relevant articles reporting polymorphisms in these genes across Africa from 2014 to August 2021, for pfk13 and pfcoronin. For pfatpase6, relevant articles between 2003 and August 2021 were retrieved. Results Eighty-seven studies passed the inclusion criteria for this analysis and reported 742 single nucleotide polymorphisms in 37,864 P. falciparum isolates from 29 African countries. Five validated-pfk13 partial resistance markers were identified in Africa: R561H in Rwanda and Tanzania, M476I in Tanzania, F446I in Mali, C580Y in Ghana, and P553L in an Angolan isolate. In Tanzania, three (L263E, E431K, S769N) of the four mutations (L263E, E431K, A623E, S769N) in pfatpase6 gene associated with high in vitro IC50 were reported. pfcoronin polymorphisms were reported in Senegal, Gabon, Ghana, Kenya, and Congo, with P76S being the most prevalent mutation. Conclusions This meta-analysis provides an overview of the prevalence and widespread distribution of pfk13, pfcoronin and pfatpase6 mutations in Africa. Understanding the phenotypic consequences of these mutations can provide information on the efficacy status of artemisinin-based treatment of malaria across the continent. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03987-6.
Collapse
Affiliation(s)
- Afolabi Owoloye
- Genomic Research in Biomedicine Laboratory, Biochemistry and Nutrition Department, Nigerian Institute of Medical Research, Lagos, Nigeria.,Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Michael Olufemi
- Genomic Research in Biomedicine Laboratory, Biochemistry and Nutrition Department, Nigerian Institute of Medical Research, Lagos, Nigeria.,Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Emmanuel T Idowu
- Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Kolapo M Oyebola
- Genomic Research in Biomedicine Laboratory, Biochemistry and Nutrition Department, Nigerian Institute of Medical Research, Lagos, Nigeria. .,Parasitology and Bioinformatics Unit, Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria. .,Sickle Cell Branch, National Heart Lung and Blood Institute, US National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Chulasiri P, Ranaweera P, Sudarshan P, Jayasinghe M, Harishchandra J, Gunasekera K, Vitharana H, Silva P, Ringwald P, Fernandopulle R, Mendis K, Fernando D. Transfusion-induced Plasmodium falciparum malaria in a beta thalassaemia patient during the prevention of re-establishment phase in Sri Lanka. Malar J 2021; 20:352. [PMID: 34445999 PMCID: PMC8390059 DOI: 10.1186/s12936-021-03881-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria was eliminated from Sri Lanka in 2012, and since then 50-60 imported malaria cases have been reported yearly. The country has remained malaria-free since, except for a single case of indigenous malaria in 2018. Blood donors are routinely screened for malaria, and transfusion malaria has not been reported in the country since 1966. CASE PRESENTATION A 17-year-old splenectomized beta thalassaemia patient developed a transfusion-induced Plasmodium falciparum malaria infection following a blood transfusion 18 days earlier. The blood donor was an armed forces personnel who returned from South Sudan following a United Nations peace-keeping mission. The blood recipient's malaria infection took a complicated clinical course with elevated liver enzymes, lowered blood pressure and a prolonged parasite clearance time of 7 days but he recovered fully after two courses of artemether-lumefantrine interrupted by a course of intravenous artesunate. The prolonged parasite clearance is likely due to lack of splenic clearance of dead or damaged intra-erythrocytic parasites (due to a splenectomy) rather than to the parasite strain being resistant to artemisinin or the partner drug. This is corroborated by the fact that the blood donor's infection responded to artemether-lumefantrine with parasites being cleared on day 3. The blood donor who had not displayed signs or symptoms of malaria, had been screened for malaria on arrival in Sri Lanka and was negative on both microscopy and RDT. At the point of blood donation a blood smear examined microscopically was also reported negative for malaria, but retrospectively, the preserved smear of the donor's blood was found to contain P. falciparum parasites at a very low density. The donor when tested after the transfusion-induced case was diagnosed, also tested positive for malaria and was treated. CONCLUSIONS After malaria elimination, transfusion-induced malaria from blood donors returning from malaria endemic countries poses a threat to preventing the re-establishment of the disease. Improved surveillance of arrivals in Sri Lanka from malaria endemic countries using more sensitive methods for screening than microscopy may be required to reduce this risk. More stringent criteria for selecting blood donors, and more effective methods of screening donors for malaria than microscopy may also be necessary.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pascal Ringwald
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Rohini Fernandopulle
- Faculty of Medicine, General Sir John Kotelawala Defense University, Ratmalana, Sri Lanka
| | - Kamini Mendis
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Deepika Fernando
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| |
Collapse
|
4
|
Ghosh D, Stumhofer JS. The spleen: "epicenter" in malaria infection and immunity. J Leukoc Biol 2021; 110:753-769. [PMID: 33464668 PMCID: PMC8518401 DOI: 10.1002/jlb.4ri1020-713r] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
The spleen is a complex secondary lymphoid organ that plays a crucial role in controlling blood‐stage infection with Plasmodium parasites. It is tasked with sensing and removing parasitized RBCs, erythropoiesis, the activation and differentiation of adaptive immune cells, and the development of protective immunity, all in the face of an intense inflammatory environment. This paper describes how these processes are regulated following infection and recognizes the gaps in our current knowledge, highlighting recent insights from human infections and mouse models.
Collapse
Affiliation(s)
- Debopam Ghosh
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
5
|
Peterson MS, Joyner CJ, Cordy RJ, Salinas JL, Machiah D, Lapp SA, Meyer EVS, Gumber S, Galinski MR. Plasmodium vivax Parasite Load Is Associated With Histopathology in Saimiri boliviensis With Findings Comparable to P vivax Pathogenesis in Humans. Open Forum Infect Dis 2019; 6:ofz021. [PMID: 30937329 PMCID: PMC6436601 DOI: 10.1093/ofid/ofz021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 02/03/2023] Open
Abstract
Background Plasmodium vivax can cause severe malaria with multisystem organ dysfunction and death. Clinical reports suggest that parasite accumulation in tissues may contribute to pathogenesis and disease severity, but direct evidence is scarce. Methods We present quantitative parasitological and histopathological analyses of tissue sections from a cohort of naive, mostly splenectomized Saimiri boliviensis infected with P vivax to define the relationship of tissue parasite load and histopathology. Results The lung, liver, and kidney showed the most tissue injury, with pathological presentations similar to observations reported from autopsies. Parasite loads correlated with the degree of histopathologic changes in the lung and liver tissues. In contrast, kidney damage was not associated directly with parasite load but with the presence of hemozoin, an inflammatory parasite byproduct. Conclusions This analysis supports the use of the S boliviensis infection model for performing detailed histopathological studies to better understand and potentially design interventions to treat serious clinical manifestations caused by P vivax.
Collapse
Affiliation(s)
| | | | - Regina J Cordy
- Emory Vaccine Center, Yerkes National Primate Research Center
| | - Jorge L Salinas
- Emory Vaccine Center, Yerkes National Primate Research Center.,Division of Infectious Diseases, Department of Medicine, School of Medicine
| | - Deepa Machiah
- Division of Pathology, Yerkes National Primate Research Center
| | - Stacey A Lapp
- Emory Vaccine Center, Yerkes National Primate Research Center
| | | | | | - Sanjeev Gumber
- Division of Pathology, Yerkes National Primate Research Center.,Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Mary R Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center.,Division of Infectious Diseases, Department of Medicine, School of Medicine
| |
Collapse
|
6
|
Kho S, Andries B, Poespoprodjo JR, Commons RJ, Shanti PAI, Kenangalem E, Douglas NM, Simpson JA, Sugiarto P, Anstey NM, Price RN. High Risk of Plasmodium vivax Malaria Following Splenectomy in Papua, Indonesia. Clin Infect Dis 2019; 68:51-60. [PMID: 29771281 PMCID: PMC6128403 DOI: 10.1093/cid/ciy403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/07/2018] [Indexed: 01/12/2023] Open
Abstract
Background Splenectomy increases the risk of severe and fatal infections; however, the risk of Plasmodium vivax malaria is unknown. We quantified the Plasmodium species-specific risks of malaria and other outcomes following splenectomy in patients attending a hospital in Papua, Indonesia. Methods Records of all patients attending Mitra-Masyarakat Hospital 2004-2013 were reviewed, identifying those who underwent splenectomy. Subsequent risks of specific clinical outcomes within 12 months for splenectomized patients were compared to nonsplenectomized patients from their first recorded hospital admission. In addition, patients splenectomized for trauma 2015-2016 were followed prospectively for 14 months. Results Of the 10774 patients hospitalized during 2004-2013, 67 underwent splenectomy. Compared to nonsplenectomized inpatients, patients undergoing splenectomy had a 5-fold higher rate of malaria presentation within 12 months (adjusted hazard ratio [AHR] = 5.0 [95% confidence interval (CI): 3.4-7.3], P < .001). The AHR was 7.8 (95% CI: 5.0-12.3) for P. vivax and 3.0 (95% CI: 1.7-5.4) for P. falciparum (both P < .001). Splenectomized patients had greater risk of being hospitalized for any cause (AHR = 1.8 [95% CI: 1.0-3.0], P = .037) and diarrheal (AHR = 3.5 [95% CI: 1.3-9.6], P = .016). In the 14-month prospective cohort, 12 episodes of P. vivax and 6 episodes of P. falciparum were observed in 11 splenectomised patients. Conclusions Splenectomy is associated with a high risk of malaria, greater for P. vivax than P. falciparum. Eradication of P. vivax hypnozoites using primaquine (radical cure) and subsequent malaria prophylaxis is warranted following splenectomy in malaria-endemic areas.
Collapse
Affiliation(s)
- Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Benediktus Andries
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua
| | - Jeanne R Poespoprodjo
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua,Rumah Sakit Umum Daerah Kabupaten Mimika, Timika, Papua,Pediatric Research Office, Department of Pediatrics, University of Gadjah Mada, Yogyakarta, Indonesia
| | - Robert J Commons
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | | | - Enny Kenangalem
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua,Rumah Sakit Umum Daerah Kabupaten Mimika, Timika, Papua
| | - Nicholas M Douglas
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | | | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia,Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom,Correspondence: R. N. Price, Global and Tropical Health Division, Menzies School of Health Research, PO Box 41096, Casuarina, Darwin 0811, Northern Territory, Australia ()
| |
Collapse
|