1
|
Larson PS, Steiner AL, Bennion E, Baptist AP, O'Neill MS, Gronlund CJ. Pollen effects in a changing climate: Ragweed pollen exposure and sleepiness in immunotherapy patients of a Southeastern Michigan allergy clinic. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2143-2152. [PMID: 39141134 DOI: 10.1007/s00484-024-02737-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024]
Abstract
Allergic rhino-conjunctivitis (AR) is a globally relevant health disorder characterized by sneezing, rhinorrhea and sleep disturbance. Ragweed (Ambrosia artemisiifolia) is a plant common to North America and an important allergen. Coarse methods of measuring airborne pollen counts are used to predict seasonal allergy symptoms. This research used a longitudinal study design with a novel, model-based raster of predicted pollen counts to test associations with self-reported symptoms of AR collected from patients receiving immunotherapy for pollen allergies at an allergy clinic. Researchers visited a clinic six times over three weeks. Immunotherapy patients were asked to fill out a brief intake survey on allergic and symptomatic profiles, daytime sleepiness, housing quality, and demographics. Participants responded to a daily, emailed survey on sleepiness and asthma symptoms for 21 days. Using the date and location of responses, ragweed pollen counts were extracted from a prognostic, model based raster (25km pixels). Lag associations of pollen counts with sleepiness were tested using a logistic regression model , adjusted for housing and demographic characteristics, in a distributed lag non-linear model (DLNM) framework. 49 people participated in the study. 26 (52%) were female. The mean age was 37.9 years. Asthma/allergy symptoms were not associated with ragweed pollen but sleepiness was highest two days after exposure (Estimate: 0.33 [0.04,0.62]). Subjects traveled widely during the study period. Intense exposures to ragweed pollen may be associated with daytime sleepiness within small exposure windows. Model-based predicted pollen counts could be used to study health impacts of pollen in people with disease severe enough to receive immunotherapy. Daytime sleepiness can affect productivity and injury risk, and pollen season length and allergenicity may be increasing with climate change. Thus our results may have important implications for population health.
Collapse
Affiliation(s)
- Peter S Larson
- Institute for Social Research, Survey Research Center, University of Michigan, 426 Thompson St., Ann Arbor, 48104, MI, USA.
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, 48109, MI, USA.
| | - Allison L Steiner
- Department of Climate and Space Sciences and Engineering, School of Engineering, University of Michigan, 2455 Hayward Street, Ann Arbor, 48109-2143, MI, USA
| | - Erica Bennion
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, 48109, MI, USA
| | - Alan P Baptist
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, 48109, MI, USA
- Department of Internal Medicine, Henry Ford Health and Michigan State University, One Ford Place, Detroit, 48202, MI, USA
| | - Marie S O'Neill
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, 48109, MI, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, 48109, MI, USA
| | - Carina J Gronlund
- Institute for Social Research, Survey Research Center, University of Michigan, 426 Thompson St., Ann Arbor, 48104, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, 48109, MI, USA
| |
Collapse
|
2
|
Cao H, Xu R, Liang Y, Li Q, Jiang W, Jin Y, Wang W, Yuan J. Effects of extreme meteorological factors and high air pollutant concentrations on the incidence of hand, foot and mouth disease in Jining, China. PeerJ 2024; 12:e17163. [PMID: 38766480 PMCID: PMC11102053 DOI: 10.7717/peerj.17163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/06/2024] [Indexed: 05/22/2024] Open
Abstract
Background The evidence on the effects of extreme meteorological conditions and high air pollution levels on incidence of hand, foot and mouth disease (HFMD) is limited. Moreover, results of the available studies are inconsistent. Further investigations are imperative to elucidate the specific issue. Methods Data on the daily cases of HFMD, meteorological factors and air pollution were obtained from 2017 to 2022 in Jining City. We employed distributed lag nonlinear model (DLNM) incorporated with Poisson regression to explore the impacts of extreme meteorological conditions and air pollution on HFMD incidence. Results We found that there were nonlinear relationships between temperature, wind speed, PM2.5, SO2, O3 and HFMD. The cumulative risk of extreme high temperature was higher at the 95th percentile (P95th) than at the 90th percentile(P90th), and the RR values for both reached their maximum at 10-day lag (P95th RR = 1.880 (1.261-2.804), P90th RR = 1.787 (1.244-2.569)), the hazardous effect of extreme low temperatures on HFMD is faster than that of extreme high temperatures. The cumulative effect of extreme low wind speeds reached its maximum at 14-day lag (P95th RR = 1.702 (1.389-2.085), P90th RR = 1.498(1.283-1.750)). The cumulative effect of PM2.5 concentration at the P90th was largest at 14-day lag (RR = 1.637 (1.069-2.506)), and the cumulative effect at the P95th was largest at 10-day lag (RR = 1.569 (1.021-2.411)). High SO2 concentration at the P95th at 14-day lag was associated with higher risk for HFMD (RR: 1.425 (1.001-2.030)). Conclusion Our findings suggest that high temperature, low wind speed, and high concentrations of PM2.5 and SO2 are associated with an increased risk of HFMD. This study not only adds insights to the understanding of the impact of extreme meteorological conditions and high levels of air pollutants on HFMD incidence but also holds practical significance for the development and enhancement of an early warning system for HFMD.
Collapse
Affiliation(s)
- Haoyue Cao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Rongrong Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yongmei Liang
- Business Management Department, Jining Center For Disease Control And Prevention, Jining, Shandong, China
| | - Qinglin Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Wenguo Jiang
- Infectious Disease Prevention and Control Department, Jining Center For Disease Control And Prevention, Jining, Shandong, China
| | - Yudi Jin
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjun Wang
- Weifang Nursing Vocational College, Weifang, Shandong, China
| | - Juxiang Yuan
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| |
Collapse
|
3
|
Zhang C, Wang X, Sun D, Li Y, Feng Y, Zhang R, Zheng Y, Kou Z, Liu Y. Modification effects of long-term air pollution levels on the relationship between short-term exposure to meteorological factors and hand, foot, and mouth disease: A distributed lag non-linear model-based study in Shandong Province, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116060. [PMID: 38310825 DOI: 10.1016/j.ecoenv.2024.116060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
The occurrence of hand, foot, and mouth disease (HFMD) is closely related to meteorological factors. However, location-specific characteristics, such as persistent air pollution, may increase the complexity of the impact of meteorological factors on HFMD, and studies across different areas and populations are largely lacking. In this study, a two-stage multisite time-series analysis was conducted using data from 16 cities in Shandong Province from 2015 to 2019. In the first stage, we obtained the cumulative exposure-response curves of meteorological factors and the number of HFMD cases for each city. In the second stage, we merged the estimations from the first stage and included city-specific air pollution variables to identify significant effect modifiers and how they modified the short-term relationship between HFMD and meteorological factors. High concentrations of air pollutants may reduce the risk effects of high average temperature on HFMD and lead to a distinct peak in the cumulative exposure-response curve, while lower concentrations may increase the risk effects of high relative humidity. Furthermore, the effects of average wind speed on HFMD were different at different levels of air pollution. The differences in modification effects between subgroups were mainly manifested in the diversity and quantity of significant modifiers. The modification effects of long-term air pollution levels on the relationship between sunshine hours and HFMD may vary significantly depending on geographical location. The people in age<3 and male groups were more susceptible to long-term air pollution. These findings contribute to a deepening understanding of the relationship between meteorological factors and HFMD and provide evidence for relevant public health decision-making.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250000, China
| | - Xianjun Wang
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Dapeng Sun
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Yan Li
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Yiping Feng
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Rongguo Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250000, China
| | - Yongxiao Zheng
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250000, China
| | - Zengqiang Kou
- Shandong Center for Disease Control and Prevention, Jinan, China.
| | - Yunxia Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250000, China; Climate Change and Health Center, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
4
|
Wei Y, Ma Y, Zhang T, Luo X, Yin F, Shui T. Spatiotemporal patterns and risk mapping of provincial hand, foot, and mouth disease in mainland China, 2014-2017. Front Public Health 2024; 12:1291361. [PMID: 38344231 PMCID: PMC10853440 DOI: 10.3389/fpubh.2024.1291361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Background Hand, foot, and mouth disease (HFMD) has remained a serious public health threat since its first outbreak in China. Analyzing the province-level spatiotemporal distribution of HFMD and mapping the relative risk in mainland China will help determine high-risk provinces and periods of infection outbreaks for use in formulating new priority areas for prevention and control of this disease. Furthermore, our study examined the effect of air pollution on HFMD nationwide, which few studies have done thus far. Methods Data were collected on the number of provincial monthly HFMD infections, air pollution, meteorological variables, and socioeconomic variables from 2014 to 2017 in mainland China. We used spatial autocorrelation to determine the aggregate distribution of HFMD incidence. Spatiotemporal patterns of HFMD were analyzed, risk maps were developed using the Bayesian spatiotemporal model, and the impact of potential influencing factors on HFMD was assessed. Results In our study, from 2014 to 2017, the HFMD annual incidence rate in all provinces of mainland China ranged from 138.80 to 203.15 per 100,000 people, with an average annual incidence rate of 165.86. The temporal risk of HFMD for 31 Chinese provinces exhibited cyclical and seasonal characteristics. The southern and eastern provinces had the highest spatial relative risk (RR > 3) from 2014 to 2017. The HFMD incidence risk in provinces (Hunan, Hubei, and Chongqing) located in central China increased over time. Among the meteorological variables, except for the mean two-minute wind speed (RR 0.6878; 95% CI 0.5841, 0.8042), all other variables were risk factors for HFMD. High GDP per capita (RR 0.9922; 95% CI 0.9841, 0.9999) was a protective factor against HFMD. The higher the birth rate was (RR 1.0657; 95% CI 1.0185, 1.1150), the higher the risk of HFMD. Health workers per 1,000 people (RR 1.2010; 95% CI 1.0443, 1.3771) was positively correlated with HFMD. Conclusions From 2014 to 2017, the central provinces (Hunan, Hubei, and Chongqing) gradually became high-risk regions for HFMD. The spatiotemporal pattern of HFMD risk may be partially attributed to meteorological and socioeconomic factors. The prevalence of HFMD in the central provinces requires attention, as prevention control efforts should be strengthened there.
Collapse
Affiliation(s)
- Yuxin Wei
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yue Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Tao Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xuelian Luo
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fei Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Tiejun Shui
- Yunnan Center for Disease Control and Prevention, Kunming, China
| |
Collapse
|
5
|
Chitre SD, Crews CM, Tessema MT, Plėštytė-Būtienė I, Coffee M, Richardson ET. The impact of anthropogenic climate change on pediatric viral diseases. Pediatr Res 2024; 95:496-507. [PMID: 38057578 PMCID: PMC10872406 DOI: 10.1038/s41390-023-02929-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/12/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023]
Abstract
The adverse effects of climate change on human health are unfolding in real time. Environmental fragmentation is amplifying spillover of viruses from wildlife to humans. Increasing temperatures are expanding mosquito and tick habitats, introducing vector-borne viruses into immunologically susceptible populations. More frequent flooding is spreading water-borne viral pathogens, while prolonged droughts reduce regional capacity to prevent and respond to disease outbreaks with adequate water, sanitation, and hygiene resources. Worsening air quality and altered transmission seasons due to an increasingly volatile climate may exacerbate the impacts of respiratory viruses. Furthermore, both extreme weather events and long-term climate variation are causing the destruction of health systems and large-scale migrations, reshaping health care delivery in the face of an evolving global burden of viral disease. Because of their immunological immaturity, differences in physiology (e.g., size), dependence on caregivers, and behavioral traits, children are particularly vulnerable to climate change. This investigation into the unique pediatric viral threats posed by an increasingly inhospitable world elucidates potential avenues of targeted programming and uncovers future research questions to effect equitable, actionable change. IMPACT: A review of the effects of climate change on viral threats to pediatric health, including zoonotic, vector-borne, water-borne, and respiratory viruses, as well as distal threats related to climate-induced migration and health systems. A unique focus on viruses offers a more in-depth look at the effect of climate change on vector competence, viral particle survival, co-morbidities, and host behavior. An examination of children as a particularly vulnerable population provokes programming tailored to their unique set of vulnerabilities and encourages reflection on equitable climate adaptation frameworks.
Collapse
Affiliation(s)
- Smit D Chitre
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Cecilia M Crews
- Heilbrunn Department of Population & Family Health, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Mesfin Teklu Tessema
- Heilbrunn Department of Population & Family Health, Columbia University Mailman School of Public Health, New York, NY, USA.
- International Rescue Committee, New York, NY, USA.
| | | | - Megan Coffee
- Heilbrunn Department of Population & Family Health, Columbia University Mailman School of Public Health, New York, NY, USA
- International Rescue Committee, New York, NY, USA
- New York University Grossman School of Medicine, New York, NY, USA
| | - Eugene T Richardson
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Yang L, Liu T, Tian D, Zhao H, Xia Y, Wang J, Li T, Li Q, Qi L. Non-linear association between daily mean temperature and children's hand foot and mouth disease in Chongqing, China. Sci Rep 2023; 13:20355. [PMID: 37990138 PMCID: PMC10663521 DOI: 10.1038/s41598-023-47858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/19/2023] [Indexed: 11/23/2023] Open
Abstract
Chongqing was seriously affected by hand, foot, and mouth disease (HFMD), but the relationships between daily mean temperature and the incidence of HFMD remain unclear. This study used distributed lag nonlinear model to evaluate the effect of daily mean temperature on the incidence of HFMD in children aged < 5 years in Chongqing. Daily HFMD data from 2012 to 2019 in Chongqing were retrieved from the notifiable infectious disease surveillance system. A total of 413,476 HFMD cases aged < 5 years were reported in Chongqing from 2012 to 2019. The exposure-response curve of daily mean temperature and daily HFMD cases was wavy-shaped. The relative risks (RRs) increased as daily mean temperature below 5.66 °C or above 9.43 °C, with two peaks at 16.10 °C and 26.68 °C. The RRs reached the highest when the daily mean temperature at 26.68 °C on the current day (RR = 1.20, 95% CI 1.09-1.32), followed by the daily mean temperature at 16.10 °C at lag 5 days (RR = 1.07, 95% CI 1.05-1.08). The RRs for girls and daycare children were much higher than those for boys and scattered children, respectively. Taken together, daily mean temperature has strong effect on HFMD in children aged < 5 years old in Chongqing, particularly for girls and daycare children.
Collapse
Affiliation(s)
- Lin Yang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Tian Liu
- Jingzhou Center for Disease Control and Prevention, Hubei, 434000, China
| | - Dechao Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Han Zhao
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Yu Xia
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Ju Wang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Tingting Li
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Qin Li
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, 400042, China.
| | - Li Qi
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, 400042, China.
| |
Collapse
|
7
|
Guo Z, Wang Y, Li Y, Zhou L. Impact of meteorological factors on the incidence of hand-foot-mouth disease in Yangzhou from 2017 to 2022: a time series study. Front Public Health 2023; 11:1278516. [PMID: 37881347 PMCID: PMC10597706 DOI: 10.3389/fpubh.2023.1278516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
Background Hand, foot, and mouth disease (HFMD) is a significant public health issue in China, and numerous studies have indicated a close association between HFMD incidence and meteorological factors. This study aims to investigate the relationship between meteorological factors and HFMD in Yangzhou City, Jiangsu Province, China. Methods HFMD case reports and meteorological data from Yangzhou City between 2017 and 2022 were extracted from the National Notifiable Infectious Disease Surveillance System and the Meteorological Data Sharing Service System, respectively. A generalized additive model (GAM) was employed to assess the exposure-response relationship between meteorological factors and HFMD. Subsequently, a distributed lag nonlinear model (DLNM) was used to explore the exposure-lag-effect of meteorological factors on HFMD. Results HFMD in Yangzhou City exhibits obvious seasonality and periodicity. There is an inverted "U" shaped relationship between average temperature and the risk of HFMD, with the maximum lag effect observed at a temperature of 25°C with lag 0 day (RR = 2.07, 95% CI: 1.74-2.47). As the duration of sunshine and relative humidity increase, the risk of HFMD continuously rises, with the maximum lag effect observed at a sunshine duration of 12.4 h with a lag of 14 days (RR = 2.10, 95% CI: 1.17-3.77), and a relative humidity of 28% with a lag of 14 days (RR = 1.21, 95% CI: 1.01-1.64). There is a "U" shaped relationship between average atmospheric pressure and the risk of HFMD, with the maximum effect observed at an atmospheric pressure of 989 hPa with no lag (RR = 1.45, 95% CI: 1.25-1.69). As precipitation increases, the risk of HFMD decreases, with the maximum effect observed at a precipitation of 151 mm with a lag of 14 days (RR = 1.45, 95% CI: 1.19-2.53). Conclusion Meteorological factors including average temperature, average atmospheric pressure, relative humidity, precipitation, and sunshine duration significantly influenced the risk of HFMD in Yangzhou City. Effective prevention measures for HFMD should be implemented, taking into account the local climate conditions.
Collapse
Affiliation(s)
- Zaijin Guo
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Yin Wang
- Department of Acute Infectious Disease Control and Prevention, Yangzhou Centre for Disease Control and Prevention, Yangzhou, China
| | - Yunshui Li
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Luojing Zhou
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Northern Jiangsu People’s Hospital, Yangzhou, China
| |
Collapse
|
8
|
Zhu Z, Feng Y, Gu L, Guan X, Liu N, Zhu X, Gu H, Cai J, Li X. Spatio-temporal pattern and associate factors of intestinal infectious diseases in Zhejiang Province, China, 2008-2021: a Bayesian modeling study. BMC Public Health 2023; 23:1652. [PMID: 37644452 PMCID: PMC10464402 DOI: 10.1186/s12889-023-16552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Despite significant progress in sanitation status and public health awareness, intestinal infectious diseases (IID) have caused a serious disease burden in China. Little was known about the spatio-temporal pattern of IID at the county level in Zhejiang. Therefore, a spatio-temporal modelling study to identify high-risk regions of IID incidence and potential risk factors was conducted. METHODS Reported cases of notifiable IID from 2008 to 2021 were obtained from the China Information System for Disease Control and Prevention. Moran's I index and the local indicators of spatial association (LISA) were calculated using Geoda software to identify the spatial autocorrelation and high-risk areas of IID incidence. Bayesian hierarchical model was used to explore socioeconomic and climate factors affecting IID incidence inequities from spatial and temporal perspectives. RESULTS From 2008 to 2021, a total of 101 cholera, 55,298 bacterial dysentery, 131 amoebic dysentery, 5297 typhoid, 2102 paratyphoid, 27,947 HEV, 1,695,925 hand, foot and mouth disease (HFMD), and 1,505,797 other infectious diarrhea (OID) cases were reported in Zhejiang Province. The hot spots for bacterial dysentery, OID, and HEV incidence were found mainly in Hangzhou, while high-high cluster regions for incidence of enteric fever and HFMD were mainly located in Ningbo. The Bayesian model showed that Areas with a high proportion of males had a lower risk of BD and enteric fever. People under the age of 18 may have a higher risk of IID. High urbanization rate was a protective factor against HFMD (RR = 0.91, 95% CI: 0.88, 0.94), but was a risk factor for HEV (RR = 1.06, 95% CI: 1.01-1.10). BD risk (RR = 1.14, 95% CI: 1.10-1.18) and enteric fever risk (RR = 1.18, 95% CI:1.10-1.27) seemed higher in areas with high GDP per capita. The greater the population density, the higher the risk of BD (RR = 1.29, 95% CI: 1.23-1.36), enteric fever (RR = 1.12, 95% CI: 1.00-1.25), and HEV (RR = 1.15, 95% CI: 1.09-1.21). Among climate variables, higher temperature was associated with a higher risk of BD (RR = 1.32, 95% CI: 1.23-1.41), enteric fever (RR = 1.41, 95% CI: 1.33-1.50), and HFMD (RR = 1.22, 95% CI: 1.08-1.38), and with lower risk of HEV (RR = 0.83, 95% CI: 0.78-0.89). Precipitation was positively correlated with enteric fever (RR = 1.04, 95% CI: 1.00-1.08), HFMD (RR = 1.03, 95% CI: 1.00-1.06), and HEV (RR = 1.05, 95% CI: 1.03-1.08). Higher HFMD risk was also associated with increasing relative humidity (RR = 1.20, 95% CI: 1.16-1.24) and lower wind velocity (RR = 0.88, 95% CI: 0.84-0.92). CONCLUSIONS There was significant spatial clustering of IID incidence in Zhejiang Province from 2008 to 2021. Spatio-temporal patterns of IID risk could be largely explained by socioeconomic and meteorological factors. Preventive measures and enhanced monitoring should be taken in some high-risk counties in Hangzhou city and Ningbo city.
Collapse
Affiliation(s)
- Zhixin Zhu
- Department of Big Data in Health Science, and Center for Clinical Big Data and Statistics, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yan Feng
- Department of Infectious Disease Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Lanfang Gu
- Department of Big Data in Health Science, and Center for Clinical Big Data and Statistics, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xifei Guan
- Department of Big Data in Health Science, and Center for Clinical Big Data and Statistics, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Nawen Liu
- Department of Big Data in Health Science, and Center for Clinical Big Data and Statistics, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoxia Zhu
- Department of Big Data in Health Science, and Center for Clinical Big Data and Statistics, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hua Gu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Jian Cai
- Department of Infectious Disease Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| | - Xiuyang Li
- Department of Big Data in Health Science, and Center for Clinical Big Data and Statistics, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Tan C, Li S, Li Y, Peng Z. Dynamic modeling and data fitting of climatic and environmental factors and people's behavior factors on hand, foot, and mouth disease (HFMD) in Shanghai, China. Heliyon 2023; 9:e18212. [PMID: 37576260 PMCID: PMC10412780 DOI: 10.1016/j.heliyon.2023.e18212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Background Hand, foot, and mouth disease (HFMD) appear to be a multi-wave outbreak with unknown mechanisms. We investigate the effects of climatic and environmental factors and changes in people's behavior factors that may be caused by external factors: temperature, relative humidity, and school opening and closing. Methods Distributed lag nonlinear model (DLNM) and dynamic model are used to research multi-wave outbreaks of HFMD. Climatic and environmental factors impact on transmission rate β ( t ) is modeled through DLNM and then substituted into this relationship to establish the dynamic model with reported case data to test for validity. Results Relative risk (RR) of HFMD infection increases with increasing temperature. The RR of infection first increases and then decreases with the increase of relative humidity. For the model fitting HFMD dynamic, time average basic reproduction number [ R 0 ] of Stage I (without vaccine) and Stage II (with EV71 vaccine) are 1.9362 and 1.5478, respectively. Temperature has the highest explanatory power, followed by school opening and closing, and relative humidity. Conclusion We obtain three conclusions about the prevention and control of HFMD. 1) According to the temperature, relative humidity and school start time, the outbreak peak of HFMD should be warned and targeted prevention and control measures should be taken. 2) Reduce high indoor temperature when more than 31.5 oC, and increase low relative humidity when less than 77.5% by opening the window for ventilation, adding houseplants, using air conditioners and humidifiers, reducing the incidence of HFMD and the number of infections. 3) The risk of HFMD transmission during winter vacations is higher than during summer vacations. It is necessary to strengthen the publicity of HFMD prevention knowledge before winter vacations and strengthen the disinfection control measures during winter vacations in children's hospitals, school classrooms, and other places where children gather to reduce the frequency of staff turnover during winter vacations.
Collapse
Affiliation(s)
- Changlei Tan
- School of Information and Mathematics, Yangtze University, Jingzhou, 434023, Hubei, PR China
- Information Engineering College, Hunan Applied Technology University, Changde, 415100, Hunan, PR China
| | - Shuang Li
- College of Mathematics and Information Science, Henan Normal University, Xinxiang, 453000, Henan, PR China
| | - Yong Li
- School of Information and Mathematics, Yangtze University, Jingzhou, 434023, Hubei, PR China
| | - Zhihang Peng
- School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, PR China
| |
Collapse
|
10
|
Cai W, Luo C, Geng X, Zha Y, Zhang T, Zhang H, Yang C, Yin F, Ma Y, Shui T. City-level meteorological conditions modify the relationships between exposure to multiple air pollutants and the risk of pediatric hand, foot, and mouth disease in the Sichuan Basin, China. Front Public Health 2023; 11:1140639. [PMID: 37601186 PMCID: PMC10433208 DOI: 10.3389/fpubh.2023.1140639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/26/2023] [Indexed: 08/22/2023] Open
Abstract
Background Several studies have examined the effects of city-level meteorological conditions on the associations between meteorological factors and hand, foot, and mouth disease (HFMD) risk. However, evidence that city-level meteorological conditions modify air pollutant-HFMD associations is lacking. Methods For each of the 17 cities in the Sichuan Basin, we obtained estimates of the relationship between exposures to multiple air pollutants and childhood HFMD risk by using a unified distributed lag nonlinear model (DLNM). Multivariate meta-regression models were used to identify the effects of city-level meteorological conditions as effect modifiers. Finally, we conducted subgroup analyses of age and sex to explore whether the modification effects varied in different subgroups. Results The associations between PM2.5/CO/O3 and HFMD risk showed moderate or substantial heterogeneity among cities (I 2 statistics: 48.5%, 53.1%, and 61.1%). Temperature conditions significantly modified the PM2.5-HFMD association, while relative humidity and rainfall modified the O3-HFMD association. Low temperatures enhanced the protective effect of PM2.5 exposure against HFMD risk [PM2.5 <32.7 μg/m3 or PM2.5 >100 μg/m3, at the 99th percentile: relative risk (RR) = 0.14, 95% CI: 0.03-0.60]. Low relative humidity increased the adverse effect of O3 exposure on HFMD risk (O3 >128.7 μg/m3, at the 99th percentile: RR = 2.58, 95% CI: 1.48-4.50). However, high rainfall decreased the risk of HFMD due to O3 exposure (O3: 14.1-41.4 μg/m3). In addition, the modification effects of temperature and relative humidity differed in the female and 3-5 years-old subgroups. Conclusion Our findings revealed moderate or substantial heterogeneity in multiple air pollutant-HFMD relationships. Temperature, relative humidity, and rainfall modified the relationships between PM2.5 or O3 exposure and HFMD risk.
Collapse
Affiliation(s)
- Wennian Cai
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Caiying Luo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xiaoran Geng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuanyi Zha
- Graduate School of Kunming Medical University, Kunming, China
| | - Tao Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huadong Zhang
- Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Changhong Yang
- Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Fei Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yue Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Tiejun Shui
- Yunnan Center for Disease Control and Prevention, Kunming, China
| |
Collapse
|
11
|
Zhu H, Chen S, Liang R, Feng Y, Joldosh A, Xie Z, Chen G, Li L, Chen K, Fang Y, Ou J. Study of the influence of meteorological factors on HFMD and prediction based on the LSTM algorithm in Fuzhou, China. BMC Infect Dis 2023; 23:299. [PMID: 37147566 PMCID: PMC10161995 DOI: 10.1186/s12879-023-08184-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/20/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND This study adopted complete meteorological indicators, including eight items, to explore their impact on hand, foot, and mouth disease (HFMD) in Fuzhou, and predict the incidence of HFMD through the long short-term memory (LSTM) neural network algorithm of artificial intelligence. METHOD A distributed lag nonlinear model (DLNM) was used to analyse the influence of meteorological factors on HFMD in Fuzhou from 2010 to 2021. Then, the numbers of HFMD cases in 2019, 2020 and 2021 were predicted using the LSTM model through multifactor single-step and multistep rolling methods. The root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and symmetric mean absolute percentage error (SMAPE) were used to evaluate the accuracy of the model predictions. RESULTS Overall, the effect of daily precipitation on HFMD was not significant. Low (4 hPa) and high (≥ 21 hPa) daily air pressure difference (PRSD) and low (< 7 °C) and high (> 12 °C) daily air temperature difference (TEMD) were risk factors for HFMD. The RMSE, MAE, MAPE and SMAPE of using the weekly multifactor data to predict the cases of HFMD on the following day, from 2019 to 2021, were lower than those of using the daily multifactor data to predict the cases of HFMD on the following day. In particular, the RMSE, MAE, MAPE and SMAPE of using weekly multifactor data to predict the following week's daily average cases of HFMD were much lower, and similar results were also found in urban and rural areas, which indicating that this approach was more accurate. CONCLUSION This study's LSTM models combined with meteorological factors (excluding PRE) can be used to accurately predict HFMD in Fuzhou, especially the method of predicting the daily average cases of HFMD in the following week using weekly multifactor data.
Collapse
Affiliation(s)
- Hansong Zhu
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, The Practice Base On the School of Public Health Fujian Medical University, Fuzhou, Fujian, 350012, China
| | - Si Chen
- Fujian Climate Center, Fuzhou, 350028, Fujian, China
| | - Rui Liang
- Department of Nutrition, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yulin Feng
- School of Public Health, Fujian Medical University, Fuzhou, 350108, Fujian, China
| | - Aynur Joldosh
- School of Public Health, Xiamen University, Xiamen, 361005, Fujian, China
| | - Zhonghang Xie
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, The Practice Base On the School of Public Health Fujian Medical University, Fuzhou, Fujian, 350012, China
| | - Guangmin Chen
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, The Practice Base On the School of Public Health Fujian Medical University, Fuzhou, Fujian, 350012, China
| | - Lingfang Li
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, The Practice Base On the School of Public Health Fujian Medical University, Fuzhou, Fujian, 350012, China
| | - Kaizhi Chen
- College of Computer and Data Science, Fuzhou University, Fuzhou, 350108, Fujian, China.
| | - Yuanyuan Fang
- Department of Pediatric Surgery, Fujian Children's Hospital, Fuzhou, 350001, Fujian, China.
| | - Jianming Ou
- Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, The Practice Base On the School of Public Health Fujian Medical University, Fuzhou, Fujian, 350012, China.
| |
Collapse
|
12
|
Meng L, Zhou C, Xu Y, Liu F, Zhou C, Yao M, Li X. The lagged effect and attributable risk of apparent temperature on hand, foot, and mouth disease in Changsha, China: a distributed lag non-linear model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11504-11515. [PMID: 36094702 DOI: 10.1007/s11356-022-22875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Hand, foot, and mouth disease (HFMD) is the leading Category C infectious disease affecting millions of children in China every year. In the context of global climate change, the understanding and quantification of the impact of weather factors on human health are particularly critical to the development and implementation of climate change adaptation and mitigation strategies. The aim of this study was to quantify the attributable burden of a combined bioclimatic indicator (apparent temperature) on HFMD and to identify temperature-specific sensitive populations. A total of 123,622 HFMD cases were included in the study. The non-linear relationship between apparent temperature and the incidence of HFMD was approximately M-shaped, with hot weather being more likely to be attributable than cold conditions, of which moderately hot accounting for the majority of cases (21,441, 17.34%). Taking the median apparent temperature (19.2 °C) as reference, the cold effect showed a short acute effect with the highest risk on the day of lag 0 (RR = 1.086, 95% CI: 1.024 ~ 1.152), whereas the hot effect lasted longer with the greatest risk at a lag of 7 days (RR = 1.081, 95% CI: 1.059 ~ 1.104). Subgroup analysis revealed that males, children under 3 years old, and scattered children tended to be more vulnerable to HFMD in hot weather, while females, those aged 3 ~ 5 years, and nursery children were sensitive to cold conditions. This study suggests that high temperatures have a greater impact on HFMD than low temperatures as well as lasting longer, of particular concern being moderately high temperatures rather than extreme temperatures. Early intervention takes on greater importance during cold days, while the duration of HFMD intervention must be longer during hot days.
Collapse
Affiliation(s)
- Lijun Meng
- Department of Epidemiology and Health Statistics, Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Chunliang Zhou
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, Hunan, China
| | - Yiqing Xu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, Hunan, China
| | - Fuqiang Liu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, Hunan, China
| | - Cui Zhou
- Department of Epidemiology and Health Statistics, Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Meng Yao
- Department of Epidemiology and Health Statistics, Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Xingli Li
- Department of Epidemiology and Health Statistics, Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
13
|
Zhu H, Chen S, Lu W, Chen K, Feng Y, Xie Z, Zhang Z, Li L, Ou J, Chen G. Study on the influence of meteorological factors on influenza in different regions and predictions based on an LSTM algorithm. BMC Public Health 2022; 22:2335. [PMID: 36514013 PMCID: PMC9745690 DOI: 10.1186/s12889-022-14299-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/26/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Influenza epidemics pose a threat to human health. It has been reported that meteorological factors (MFs) are associated with influenza. This study aimed to explore the similarities and differences between the influences of more comprehensive MFs on influenza in cities with different economic, geographical and climatic characteristics in Fujian Province. Then, the information was used to predict the daily number of cases of influenza in various cities based on MFs to provide bases for early warning systems and outbreak prevention. METHOD Distributed lag nonlinear models (DLNMs) were used to analyse the influence of MFs on influenza in different regions of Fujian Province from 2010 to 2021. Long short-term memory (LSTM) was used to train and model daily cases of influenza in 2010-2018, 2010-2019, and 2010-2020 based on meteorological daily values. Daily cases of influenza in 2019, 2020 and 2021 were predicted. The root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and symmetric mean absolute percentage error (SMAPE) were used to quantify the accuracy of model predictions. RESULTS The cumulative effect of low and high values of air pressure (PRS), air temperature (TEM), air temperature difference (TEMD) and sunshine duration (SSD) on the risk of influenza was obvious. Low (< 979 hPa), medium (983 to 987 hPa) and high (> 112 hPa) PRS were associated with a higher risk of influenza in women, children aged 0 to 12 years, and rural populations. Low (< 9 °C) and high (> 23 °C) TEM were risk factors for influenza in four cities. Wind speed (WIN) had a more significant effect on the risk of influenza in the ≥ 60-year-old group. Low (< 40%) and high (> 80%) relative humidity (RHU) in Fuzhou and Xiamen had a significant effect on influenza. When PRS was between 1005-1015 hPa, RHU > 60%, PRE was low, TEM was between 10-20 °C, and WIN was low, the interaction between different MFs and influenza was most obvious. The RMSE, MAE, MAPE, and SMAPE evaluation indices of the predictions in 2019, 2020 and 2021 were low, and the prediction accuracy was high. CONCLUSION All eight MFs studied had an impact on influenza in four cities, but there were similarities and differences. The LSTM model, combined with these eight MFs, was highly accurate in predicting the daily cases of influenza. These MFs and prediction models could be incorporated into the influenza early warning and prediction system of each city and used as a reference to formulate prevention strategies for relevant departments.
Collapse
Affiliation(s)
- Hansong Zhu
- Emergency Response and Epidemic Management Institute, Fujian Center for Disease Control and Prevention, Fuzhou, 350012, Fujian, China.
- Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350012, Fujian, China.
- The practice base on the school of public health Fujian Medical University, Fuzhou, 350012, Fujian, China.
| | - Si Chen
- Climate Assessment Office of Fujian Climate Center, Fuzhou, 350007, Fujian, China
| | - Wen Lu
- Shengli Clinical Medical College of Fujian Medical University, Department of Health Management of Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Kaizhi Chen
- College of Computer and Data Science, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Yulin Feng
- School of Public Health, Fujian Medical University, Fujian, 350108, Fuzhou, China
| | - Zhonghang Xie
- Emergency Response and Epidemic Management Institute, Fujian Center for Disease Control and Prevention, Fuzhou, 350012, Fujian, China
- Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350012, Fujian, China
- The practice base on the school of public health Fujian Medical University, Fuzhou, 350012, Fujian, China
| | - Zhifang Zhang
- Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350012, Fujian, China
- Science and Technology Information and Management, Fujian Center for Disease Control and Prevention, Fuzhou, 350012, Fujian, China
| | - Lingfang Li
- Emergency Response and Epidemic Management Institute, Fujian Center for Disease Control and Prevention, Fuzhou, 350012, Fujian, China
- Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350012, Fujian, China
| | - Jianming Ou
- Emergency Response and Epidemic Management Institute, Fujian Center for Disease Control and Prevention, Fuzhou, 350012, Fujian, China.
- Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350012, Fujian, China.
- The practice base on the school of public health Fujian Medical University, Fuzhou, 350012, Fujian, China.
| | - Guangmin Chen
- Emergency Response and Epidemic Management Institute, Fujian Center for Disease Control and Prevention, Fuzhou, 350012, Fujian, China.
- Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350012, Fujian, China.
- The practice base on the school of public health Fujian Medical University, Fuzhou, 350012, Fujian, China.
| |
Collapse
|
14
|
Luo C, Qian J, Liu Y, Lv Q, Ma Y, Yin F. Long-term air pollution levels modify the relationships between short-term exposure to meteorological factors, air pollution and the incidence of hand, foot and mouth disease in children: a DLNM-based multicity time series study in Sichuan Province, China. BMC Public Health 2022; 22:1484. [PMID: 35927638 PMCID: PMC9351082 DOI: 10.1186/s12889-022-13890-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epidemiological studies have investigated the short-term effects of meteorological factors and air pollution on the incidence of hand, foot, and mouth disease (HFMD). Several meteorological indicators, such as relative humidity and the diurnal temperature range (DTR), significantly modify the relationship between short-term exposure to temperature and HFMD incidence. However, it remains unclear whether (and how) long-term air pollution levels modify the short-term relationships of HFMD incidence with meteorological factors and air pollution. METHODS We obtained daily data on meteorological factors, air pollutants, and HFMD counts in children from 21 prefecture-level cities in Sichuan Province in Southwest China from 2015 to 2017. First, we constructed a distributed lag nonlinear model (DLNM) at each prefecture-level site to evaluate the short-term impacts of meteorological variables and air pollutants on HFMD incidence. Then, we assessed the pooled effects of the exposures and incorporated long-term city-specific air pollutant indicators as meta-predictors to examine their potential modification effects by performing multivariate meta-regression models. RESULTS We found that long-term SO2 and CO concentrations significantly modified the short-term relationships between climatic variables and HFMD incidence. Specifically, high concentrations of CO (P = 0.027) and SO2 (P = 0.039) reduced the risk of HFMD at low temperatures. The relationship between relative humidity and HFMD incidence was weakened at high SO2 concentrations (P = 0.024), especially when the relative humidity was below the median level. When the minimum relative humidity (32%) was compared to the median relative humidity (77%), the risk ratio (RR) was 0.77 (95% CI: 0.51-1.17) in the 90th percentile of SO2 (19.6 μg/m3) and 0.41 (95% CI: 0.27-0.64) in the 10th percentile of SO2 (10.6 μg/m3). CONCLUSION Our results indicated that long-term SO2 and CO levels modified the short-term associations between HFMD incidence in children and meteorological variables. These findings may inform health authorities to optimize targeted public health policies including reducing ambient air pollution and reinforcing self-protective actions to weaken the adverse health impacts of environmental factors on HFMD incidence.
Collapse
Affiliation(s)
- Caiying Luo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Jian Qian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Yaqiong Liu
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Qiang Lv
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Yue Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, Chengdu, China.
| | - Fei Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Sichuan, Chengdu, China.
| |
Collapse
|
15
|
Li P, Rui J, Niu Y, Xie F, Wang Y, Li Z, Liu C, Yu S, Huang J, Luo L, Deng B, Liu W, Yang T, Li Q, Chen T. Analysis of HFMD Transmissibility Among the Whole Population and Age Groups in a Large City of China. Front Public Health 2022; 10:850369. [PMID: 35480581 PMCID: PMC9035867 DOI: 10.3389/fpubh.2022.850369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022] Open
Abstract
Background Hand-Foot-and-Mouth-Disease (HFMD) has been widely spread in Asia, and has result in a high disease burden for children in many countries. However, the dissemination characteristics intergroup and between different age groups are still not clear. In this study, we aim to analyze the differences in the transmissibility of HFMD, in the whole population and among age groups in Shenzhen city, by utilizing mathematical models. Methods A database that reports HFMD cases in Shenzhen city from January 2010 to December 2017 was collected. In the first stage, a Susceptive-Infected-Recovered (SIR) model was built to fit data of Shenzhen city and its districts, and Reff was used to assess transmissibility in each district. In the second stage, a cross-age groups SIR model was constructed to calculate the difference in transmissibility of reported cases among three age groups of EV71 virus: 0–3 years, 3–5 years, and over 5 years which was denoted as age group 1, 2, and 3, respectively. Results From 2010 to 2017, 345,807 cases of HFMD were reported in Shenzhen city, with peak incidence in spring and autumn in Shenzhen city and most of its districts each year. Analysis of the EV71 incidence data by age group revealed that age Group 1 have the highest incidence (3.13 ×10−7–2.31 ×10−4) while age group 3 had the lowest incidence (0–3.54 ×10−5). The differences in weekly incidence of EV71 between age groups were statistically significant (t12 = 7.563, P < 0.0001; t23 = 12.420, P < 0.0001; t13 = 16.996, P < 0.0001). The R2 of the SIR model Shenzhen city population-wide HFMD fit for each region was >0.5, and P < 0.001. Reff values were >1 for the vast majority of time and regions, indicating that the HFMD virus has the ability to spread in Shenzhen city over the long-term. Differences in Reff values between regions were judged by using analysis of variance (ANOVA) (F = 0.541, P = 0.744). SiIiRi-SjIjRj models between age groups had R2 over 0.7 for all age groups and P <0.001. The Reff values between groups show that the 0–2 years old group had the strongest transmissibility (median: 2.881, range: 0.017–9.897), followed by the over 5 years old group (median: 1.758, range: 1.005–5.279), while the 3–5 years old group (median: 1.300, range: 0.005–1.005) had the weakest transmissibility of the three groups. Intra-group transmissibility was strongest in the 0–2 years age group (median: 1.787, range: 0–9.146), followed by Group 1 to Group 2 (median: 0.287, range: 0–1.988) and finally Group 1 to Group 3 (median: 0.287, range: 0–1.988). Conclusion The incidence rate of HFMD is high in Shenzhen city. In the data on the incidence of EV71 in each age group, the highest incidence was in the 0–2 years age group, and the lowest incidence was in the over 5 years age group. The differences in weekly incidence rate of EV71 among age groups were statistically significant. Children with the age of 0–2 years had the highest transmissibility.
Collapse
Affiliation(s)
- Peihua Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Jia Rui
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yan Niu
- Chinese Center for Disease Control and Prevention, Public Health Emergency Center, Beijing, China
| | - Fang Xie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yifang Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Zhuoyang Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Chan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Shanshan Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Jiefeng Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Li Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Bin Deng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Weikang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Tianlong Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Qun Li
- Chinese Center for Disease Control and Prevention, Public Health Emergency Center, Beijing, China
- Qun Li
| | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- *Correspondence: Tianmu Chen ;
| |
Collapse
|
16
|
Larson PS, Espira L, Glenn BE, Larson MC, Crowe CS, Jang S, O’Neill MS. Long-Term PM 2.5 Exposure Is Associated with Symptoms of Acute Respiratory Infections among Children under Five Years of Age in Kenya, 2014. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052525. [PMID: 35270217 PMCID: PMC8909525 DOI: 10.3390/ijerph19052525] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 02/06/2023]
Abstract
Introduction: Short-term exposures to air pollutants such as particulate matter (PM) have been associated with increased risk for symptoms of acute respiratory infections (ARIs). Less well understood is how long-term exposures to fine PM (PM2.5) might increase risk of ARIs and their symptoms. This research uses georeferenced Demographic Health Survey (DHS) data from Kenya (2014) along with a remote sensing based raster of PM2.5 concentrations to test associations between PM2.5 exposure and ARI symptoms in children for up to 12 monthly lags. Methods: Predicted PM2.5 concentrations were extracted from raster of monthly averages for latitude/longitude locations of survey clusters. These data and other environmental and demographic data were used in a logistic regression model of ARI symptoms within a distributed lag nonlinear modeling framework (DLNM) to test lag associations of PM2.5 exposure with binary presence/absence of ARI symptoms in the previous two weeks. Results: Out of 7036 children under five for whom data were available, 46.8% reported ARI symptoms in the previous two weeks. Exposure to PM2.5 within the same month and as an average for the previous 12 months was 18.31 and 22.1 µg/m3, respectively, far in excess of guidelines set by the World Health Organization. One-year average PM2.5 exposure was higher for children who experienced ARI symptoms compared with children who did not (22.4 vs. 21.8 µg/m3, p < 0.0001.) Logistic regression models using the DLNM framework indicated that while PM exposure was not significantly associated with ARI symptoms for early lags, exposure to high concentrations of PM2.5 (90th percentile) was associated with elevated odds for ARI symptoms along a gradient of lag exposure time even when controlling for age, sex, types of cooking fuels, and precipitation. Conclusions: Long-term exposure to high concentrations of PM2.5 may increase risk for acute respiratory problems in small children. However, more work should be carried out to increase capacity to accurately measure air pollutants in emerging economies such as Kenya.
Collapse
Affiliation(s)
- Peter S. Larson
- Social Environment and Health Program, Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48105, USA; (C.S.C.); (M.S.O.)
- Correspondence: (P.S.L.); (L.E.); Tel.: +1-734-730-2372 (P.S.L.)
| | - Leon Espira
- Center for Global Health Equity, University of Michigan, Ann Arbor, MI 48105, USA
- Correspondence: (P.S.L.); (L.E.); Tel.: +1-734-730-2372 (P.S.L.)
| | - Bailey E. Glenn
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA;
| | | | - Christopher S. Crowe
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48105, USA; (C.S.C.); (M.S.O.)
| | - Seoyeon Jang
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Marie S. O’Neill
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48105, USA; (C.S.C.); (M.S.O.)
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48105, USA;
| |
Collapse
|
17
|
Liu R, Cai J, Guo W, Guo W, Wang W, Yan L, Ma N, Zhang X, Zhang S. Effects of temperature and PM 2.5 on the incidence of hand, foot, and mouth in a heavily polluted area, Shijiazhuang, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11801-11814. [PMID: 34550518 DOI: 10.1007/s11356-021-16397-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The influence of weather and air pollution factors on hand, foot, and mouth disease (HFMD) has received widespread attention. However, most of the existing studies came from lightly polluted areas and the results were inconsistent. There was a lack of relevant evidence of heavily polluted areas. This study aims to quantify the relationship between weather factors and air pollution with HFMD in heavily polluted areas. We collected the daily number of hand, foot, and mouth disease in Shijiazhuang, China from 2014 to 2018, as well as meteorological and air pollutant data over the same period. The generalized linear model combined with the distributed lag model was used to study the effect of meteorological factors and air pollutants on the daily cases of HFMD and its hysteresis effect. We found that the dose-response relationship between temperature, PM2.5, and the risk of hand-foot-mouth disease was non-linear. Both low temperature and high temperature increased the risk of hand-foot-mouth disease. The cumulative effect of high temperature reached the maximum at 0-10 lag days, and the cumulative effect of low temperature reached the maximum at 0-3 lag days. The concentration of PM2.5 between 76 and 200 μg/m3 has a certain risk of the onset of hand, foot, and mouth disease, but the extreme PM2.5 concentration has a certain protective effect. In addition, low humidity, low wind speed, and low-O3 can increase the risk of HFMD. Risks of humidity and low concentration of O3 increased as lag days extended. In conclusion, our study found that climate factors and air pollutants exert varying degrees of impact on HFMD. Our research provided the scientific basis for establishing an early warning system so that medical staff and parents can take corresponding measures to prevent HFMD.
Collapse
Affiliation(s)
- Ran Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, 361 Zhongshan East Road, Shijiazhuang, 050017, China
| | - Jianning Cai
- The Department of Epidemic Treating and Preventing, Center for Disease Prevention and Control of Shijiazhuang City, Likang Road 3#, Shijiazhuang, 050011, China
| | - Weiheng Guo
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, 361 Zhongshan East Road, Shijiazhuang, 050017, China
| | - Wei Guo
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, 361 Zhongshan East Road, Shijiazhuang, 050017, China
| | - Wenjuan Wang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, 361 Zhongshan East Road, Shijiazhuang, 050017, China
| | - Lina Yan
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, 361 Zhongshan East Road, Shijiazhuang, 050017, China
| | - Ning Ma
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, 361 Zhongshan East Road, Shijiazhuang, 050017, China
| | - Xiaolin Zhang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, 361 Zhongshan East Road, Shijiazhuang, 050017, China.
| | - Shiyong Zhang
- The Department of Epidemic Treating and Preventing, Center for Disease Prevention and Control of Shijiazhuang City, Likang Road 3#, Shijiazhuang, 050011, China.
| |
Collapse
|
18
|
Zhao Z, Zheng C, Qi H, Chen Y, Ward MP, Liu F, Hong J, Su Q, Huang J, Chen X, Le J, Liu X, Ren M, Ba J, Zhang Z, Chang Z, Li Z. Impact of the coronavirus disease 2019 interventions on the incidence of hand, foot, and mouth disease in mainland China. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2022; 20:100362. [PMID: 35005671 PMCID: PMC8720138 DOI: 10.1016/j.lanwpc.2021.100362] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Background In early 2020, non-pharmaceutical interventions (NPIs) were implemented in China to reduce and contain the coronavirus disease 2019 (COVID-19) transmission. These NPIs might have also reduced the incidence of hand, foot, and mouth disease (HFMD). Methods The weekly numbers of HFMD cases and meteorological factors in 31 provincial capital cities and municipalities in mainland China were obtained from Chinese Center for Disease Control and Prevention (CCDC) and National Meteorological Information Center of China from 2016 to 2020. The NPI data were collected from local CDCs. The incidence rate ratios (IRRs) were calculated for the entire year of 2020, and for January-July 2020 and August-December 2020. The expected case numbers were estimated using seasonal autoregressive integrated moving average models. The relationships between kindergarten closures and incidence of HFMD were quantified using a generalized additive model. The estimated associations from all cities were pooled using a multivariate meta-regression model. Findings Stringent NPIs were widely implemented for COVID-19 control from January to July 2020, and the IRRs for HFMD were less than 1 in all 31 cities, and less than 0·1 for 23 cities. Overall, the proportion of HFMD cases reduced by 52·9% (95% CI: 49·3-55·5%) after the implementation of kindergarten closures in 2020, and this effect was generally consistent across subgroups. Interpretation The decrease in HFMD incidence was strongly associated with the NPIs for COVID-19. HFMD epidemic peaks were either absent or delayed, and the final epidemic size was reduced. Kindergarten closure is an intervention to prevent HFMD outbreaks. Funding This research was supported by the National Natural Science Foundation of China (81973102 & 81773487), Public Health Talents Training Program of Shanghai Municipality (GWV-10.2-XD21), the Shanghai New Three-year Action Plan for Public Health (GWV-10.1-XK16), the Major Project of Scientific and Technical Winter Olympics from National Key Research and Development Program of China (2021YFF0306000), 13th Five-Year National Science and Technology Major Project for Infectious Diseases (2018ZX10725-509) and Key projects of the PLA logistics Scientific research Program (BHJ17J013).
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Epidemiology and Health Statistics, Fudan University, Shanghai, China
| | - Canjun Zheng
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongchao Qi
- Department of Biostatistics, Erasmus University Medical Center, The Netherlands
| | - Yue Chen
- Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Rd, Ottawa, ON, Canada
| | - Michael P Ward
- Sydney School of Veterinary Science, The University of Sydney, Camden NSW, Australia
| | - Fengfeng Liu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Hong
- Department of Epidemiology and Health Statistics, Fudan University, Shanghai, China
| | - Qing Su
- Department of Epidemiology and Health Statistics, Fudan University, Shanghai, China
| | - Jiaqi Huang
- Department of Epidemiology and Health Statistics, Fudan University, Shanghai, China
| | - Xi Chen
- Department of Epidemiology and Health Statistics, Fudan University, Shanghai, China
| | - Jiaxu Le
- Department of Epidemiology and Health Statistics, Fudan University, Shanghai, China
| | - Xiuliang Liu
- Department of Epidemiology and Health Statistics, Fudan University, Shanghai, China
| | - Minrui Ren
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianbo Ba
- Naval Medical Center of PLA, 880 Xiangyin Road, Yangpu District, Shanghai, China
| | - Zhijie Zhang
- Department of Epidemiology and Health Statistics, Fudan University, Shanghai, China
| | - Zhaorui Chang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhongjie Li
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China.,National Health Commission of China
| |
Collapse
|
19
|
Comparison of different predictive models on HFMD based on weather factors in Zibo city, Shandong Province, China. Epidemiol Infect 2021. [PMCID: PMC8753480 DOI: 10.1017/s0950268821002508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The early identification and prediction of hand-foot-and-mouth disease (HFMD) play an important role in the disease prevention and control. However, suitable models are different in regions due to the differences in geography, social economy factors. We collected data associated with daily reported HFMD cases and weather factors of Zibo city in 2010~2019 and used the generalised additive model (GAM) to evaluate the effects of weather factors on HFMD cases. Then, GAM, support vectors regression (SVR) and random forest regression (RFR) models are used to compare predictive results. The annual average incidence was 129.72/100 000 from 2010 to 2019. Its distribution showed a unimodal trend, with incidence increasing from March, peaking from May to September. Our study revealed the nonlinear relationship between temperature, rainfall and relative humidity and HFMD cases and based on the predictive result, the performances of three models constructed ranked in descending order are: SVR > GAM> RFR, and SVR has the smallest prediction errors. These findings provide quantitative evidence for the prediction of HFMD for special high-risk regions and can help public health agencies implement prevention and control measures in advance.
Collapse
|
20
|
Abdul Wahid NA, Suhaila J, Rahman HA. Effect of climate factors on the incidence of hand, foot, and mouth disease in Malaysia: A generalized additive mixed model. Infect Dis Model 2021; 6:997-1008. [PMID: 34466760 PMCID: PMC8379622 DOI: 10.1016/j.idm.2021.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/15/2021] [Accepted: 08/08/2021] [Indexed: 12/09/2022] Open
Abstract
Climate change is one of the critical determinants affecting life cycles and transmission of most infectious agents, including malaria, cholera, dengue fever, hand, foot, and mouth disease (HFMD), and the recent Corona-virus pandemic. HFMD has been associated with a growing number of outbreaks resulting in fatal complications since the late 1990s. The outbreaks may result from a combination of rapid population growth, climate change, socioeconomic changes, and other lifestyle changes. However, the modeling of climate variability and HFMD remains unclear, particularly in statistical theory development. The statistical relationship between HFMD and climate factors has been widely studied using generalized linear and additive modeling. When dealing with time-series data with clustered variables such as HFMD with clustered states, the independence principle of both modeling approaches may be violated. Thus, a Generalized Additive Mixed Model (GAMM) is used to investigate the relationship between HFMD and climate factors in Malaysia. The model is improved by using a first-order autoregressive term and treating all Malaysian states as a random effect. This method is preferred as it allows states to be modeled as random effects and accounts for time series data autocorrelation. The findings indicate that climate variables such as rainfall and wind speed affect HFMD cases in Malaysia. The risk of HFMD increased in the subsequent two weeks with rainfall below 60 mm and decreased with rainfall exceeding 60 mm. Besides, a two-week lag in wind speeds between 2 and 5 m/s reduced HFMD's chances. The results also show that HFMD cases rose in Malaysia during the inter-monsoon and southwest monsoon seasons but fell during the northeast monsoon. The study's outcomes can be used by public health officials and the general public to raise awareness, and thus, implement effective preventive measures.
Collapse
Affiliation(s)
- Nurmarni Athirah Abdul Wahid
- Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Jamaludin Suhaila
- Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.,UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Haliza Abd Rahman
- Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| |
Collapse
|
21
|
Xiao S, Qi H, Ward MP, Wang W, Zhang J, Chen Y, Bergquist R, Tu W, Shi R, Hong J, Su Q, Zhao Z, Ba J, Qin Y, Zhang Z. Meteorological conditions are heterogeneous factors for COVID-19 risk in China. ENVIRONMENTAL RESEARCH 2021; 198:111182. [PMID: 33872647 PMCID: PMC8050398 DOI: 10.1016/j.envres.2021.111182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/09/2021] [Accepted: 04/10/2021] [Indexed: 05/19/2023]
Abstract
Whether meteorological factors influence COVID-19 transmission is an issue of major public health concern, but available evidence remains unclear and limited for several reasons, including the use of report date which can lag date of symptom onset by a considerable period. We aimed to generate reliable and robust evidence of this relationship based on date of onset of symptoms. We evaluated important meteorological factors associated with daily COVID-19 counts and effective reproduction number (Rt) in China using a two-stage approach with overdispersed generalized additive models and random-effects meta-analysis. Spatial heterogeneity and stratified analyses by sex and age groups were quantified and potential effect modification was analyzed. Nationwide, there was no evidence that temperature and relative humidity affected COVID-19 incidence and Rt. However, there were heterogeneous impacts on COVID-19 risk across different regions. Importantly, there was a negative association between relative humidity and COVID-19 incidence in Central China: a 1% increase in relative humidity was associated with a 3.92% (95% CI, 1.98%-5.82%) decrease in daily counts. Older population appeared to be more sensitive to meteorological conditions, but there was no obvious difference between sexes. Linear relationships were found between meteorological variables and COVID-19 incidence. Sensitivity analysis confirmed the robustness of the association and the results based on report date were biased. Meteorological factors play heterogenous roles on COVID-19 transmission, increasing the possibility of seasonality and suggesting the epidemic is far from over. Considering potential climatic associations, we should maintain, not ease, current control measures and surveillance.
Collapse
Affiliation(s)
- Shuang Xiao
- Department of Epidemiology and Health Statistics, Fudan University, China
| | - Hongchao Qi
- Department of Biostatistics, Erasmus University Medical Center, the Netherlands
| | - Michael P Ward
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - Wenge Wang
- Department of Epidemiology and Health Statistics, Fudan University, China
| | - Jun Zhang
- Department of Epidemiology and Health Statistics, Fudan University, China
| | - Yue Chen
- Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Rd, Ottawa, ON, Canada
| | | | - Wei Tu
- Department of Geology and Geography, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Runye Shi
- Department of Epidemiology and Health Statistics, Fudan University, China
| | - Jie Hong
- Department of Epidemiology and Health Statistics, Fudan University, China
| | - Qing Su
- Department of Epidemiology and Health Statistics, Fudan University, China
| | - Zheng Zhao
- Department of Epidemiology and Health Statistics, Fudan University, China
| | - Jianbo Ba
- Naval Medical Center of PLA, 880 Xiangyin Road, Yangpu District, Shanghai, China
| | - Ying Qin
- Division of Infectious Disease, Chinese Center for Disease Control and Prevention, No. 155 Changbai Rd., Changping District, Beijing, 102206, China.
| | - Zhijie Zhang
- Department of Epidemiology and Health Statistics, Fudan University, China.
| |
Collapse
|
22
|
Zhang R, Guo Z, Meng Y, Wang S, Li S, Niu R, Wang Y, Guo Q, Li Y. Comparison of ARIMA and LSTM in Forecasting the Incidence of HFMD Combined and Uncombined with Exogenous Meteorological Variables in Ningbo, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18116174. [PMID: 34200378 PMCID: PMC8201362 DOI: 10.3390/ijerph18116174] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022]
Abstract
Background: This study intends to identify the best model for predicting the incidence of hand, foot and mouth disease (HFMD) in Ningbo by comparing Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory Neural Network (LSTM) models combined and uncombined with exogenous meteorological variables. Methods: The data of daily HFMD incidence in Ningbo from January 2014 to November 2017 were set as the training set, and the data of December 2017 were set as the test set. ARIMA and LSTM models combined and uncombined with exogenous meteorological variables were adopted to fit the daily incidence of HFMD by using the data of the training set. The forecasting performances of the four fitted models were verified by using the data of the test set. Root mean square error (RMSE) was selected as the main measure to evaluate the performance of the models. Results: The RMSE for multivariate LSTM, univariate LSTM, ARIMA and ARIMAX (Autoregressive Integrated Moving Average Model with Exogenous Input Variables) was 10.78, 11.20, 12.43 and 14.73, respectively. The LSTM model with exogenous meteorological variables has the best performance among the four models and meteorological variables can increase the prediction accuracy of LSTM model. For the ARIMA model, exogenous meteorological variables did not increase the prediction accuracy but became the interference factor of the model. Conclusions: Multivariate LSTM is the best among the four models to fit the daily incidence of HFMD in Ningbo. It can provide a scientific method to build the HFMD early warning system and the methodology can also be applied to other communicable diseases.
Collapse
Affiliation(s)
- Rui Zhang
- Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.Z.); (Y.M.); (S.W.); (S.L.)
| | - Zhen Guo
- Institute of Medical Information and Library, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100020, China;
| | - Yujie Meng
- Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.Z.); (Y.M.); (S.W.); (S.L.)
| | - Songwang Wang
- Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.Z.); (Y.M.); (S.W.); (S.L.)
| | - Shaoqiong Li
- Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.Z.); (Y.M.); (S.W.); (S.L.)
| | - Ran Niu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China;
| | - Yu Wang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China;
| | - Qing Guo
- Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.Z.); (Y.M.); (S.W.); (S.L.)
- Correspondence: (Q.G.); (Y.L.); Tel.: +86-10-5890-0410 (Q.G.); Fax: +86-10-5890-0445 (Q.G.)
| | - Yonghong Li
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China;
- Correspondence: (Q.G.); (Y.L.); Tel.: +86-10-5890-0410 (Q.G.); Fax: +86-10-5890-0445 (Q.G.)
| |
Collapse
|
23
|
Thammasonthijarern N, Kosoltanapiwat N, Nuprasert W, Sittikul P, Sriburin P, Pan-Ngum W, Maneekan P, Hataiyusuk S, Hattasingh W, Thaipadungpanit J, Chatchen S. Molecular Epidemiological Study of Hand, Foot, and Mouth Disease in a Kindergarten-Based Setting in Bangkok, Thailand. Pathogens 2021; 10:pathogens10050576. [PMID: 34068676 PMCID: PMC8150733 DOI: 10.3390/pathogens10050576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/22/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a contagious childhood illness and annually affects millions of children aged less than 5 years across the Asia–Pacific region. HFMD transmission mainly occurs through direct contact (person-to-person) and indirect contact with contaminated surfaces and objects. Therefore, public health measures to reduce the spread of HFMD in kindergartens and daycare centers are essential. Based on the guidelines by the Department of Disease Control, a school closure policy for HFMD outbreaks wherein every school in Thailand must close when several HFMD classrooms (more than two cases in each classroom) are encountered within a week, was implemented, although without strong supporting evidence. We therefore conducted a prospective cohort study of children attending five kindergartens during 2019 and 2020. We used molecular genetic techniques to investigate the characteristics of the spreading patterns of HFMD in a school-based setting in Bangkok, Thailand. These analyses identified 22 index cases of HFMD (symptomatic infections) and 25 cases of enterovirus-positive asymptomatic contacts (24 students and one teacher). Enterovirus (EV) A71 was the most common enterovirus detected, and most of the infected persons (8/12) developed symptoms. Other enteroviruses included coxsackieviruses (CVs) A4, CV-A6, CV-A9, and CV-A10 as well as echovirus. The pattern of the spread of HFMD showed that 45% of the subsequent enteroviruses detected in each outbreak possessed the same serotype as the first index case. Moreover, we found a phylogenetic relationship among enteroviruses detected among contact and index cases in the same kindergarten. These findings confirm the benefit of molecular genetic assays to acquire accurate data to support school closure policies designed to control HFMD infections.
Collapse
Affiliation(s)
- Nipa Thammasonthijarern
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Warisa Nuprasert
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pichamon Sittikul
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pimolpachr Sriburin
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Wirichada Pan-Ngum
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pannamas Maneekan
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Somboon Hataiyusuk
- Department of Psychiatry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Weerawan Hattasingh
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Janjira Thaipadungpanit
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Supawat Chatchen
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
24
|
Spatial and Temporal Characteristics of Hand-Foot-and-Mouth Disease and Their Influencing Factors in Urumqi, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094919. [PMID: 34063073 PMCID: PMC8124546 DOI: 10.3390/ijerph18094919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/23/2022]
Abstract
Hand, foot, and mouth disease (HFMD) remains a serious health threat to young children. Urumqi is one of the most severely affected cities in northwestern China. This study aims to identify the spatiotemporal distribution characteristics of HFMD, and explore the relationships between driving factors and HFMD in Urumqi, Xinjiang. METHODS HFMD surveillance data from 2014 to 2018 were obtained from the China Center for Disease Control and Prevention. The center of gravity and geographical detector model were used to analyze the spatiotemporal distribution characteristics of HFMD and identify the association between these characteristics and socioeconomic and meteorological factors. RESULTS A total of 10,725 HFMD cases were reported in Urumqi during the study period. Spatially, the morbidity number of HFMD differed regionally and the density was higher in urban districts than in rural districts. Overall, the development of HFMD in Urumqi expanded toward the southeast. Temporally, we observed that the risk of HFMD peaked from June to July. Furthermore, socioeconomic and meteorological factors, including population density, road density, GDP, temperature and precipitation were significantly associated with the occurrence of HFMD. CONCLUSIONS HFMD cases occurred in spatiotemporal clusters. Our findings showed strong associations between HFMD and socioeconomic and meteorological factors. We comprehensively considered the spatiotemporal distribution characteristics and influencing factors of HFMD, and proposed some intervention strategies that may assist in predicting the morbidity number of HFMD.
Collapse
|
25
|
Bhopdhornangkul B, Meeyai AC, Wongwit W, Limpanont Y, Iamsirithaworn S, Laosiritaworn Y, Tantrakarnapa K. Non-linear effect of different humidity types on scrub typhus occurrence in endemic provinces, Thailand. Heliyon 2021; 7:e06095. [PMID: 33665401 PMCID: PMC7905364 DOI: 10.1016/j.heliyon.2021.e06095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/15/2019] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Abstract
Background Reported monthly scrub typhus (ST) cases in Thailand has an increase in the number of cases during 2009–2014. Humidity is a crucial climatic factor for the survival of chiggers, which is the disease vectors. The present study was to determine the role of humidity in ST occurrence in Thailand and its delayed effect. Methods We obtained the climate data from the Department of Meteorology, the disease data from Ministry of Public Health. Negative binomial regression combined with a distributed lag non-linear model (NB-DLNM) was employed to determine the non-linear effects of different types of humidity on the disease. This model controlled overdispersion and confounder, including seasonality, minimum temperature, and cumulative total rainwater. Results The occurrence of the disease in the 6-year period showed the number of cases gradually increased summer season (Mid-February – Mid-May) and then reached a plateau during the rainy season (Mid-May – Mid-October) and then steep fall after the cold season (Mid-October – Mid-February). The high level (at 70%) of minimum relative humidity (RHmin) was associated with a 33% (RR 1.33, 95% CI 1.13–1.57) significant increase in the number of the disease; a high level (at 14 g/m3) of minimum absolute humidity (AHmin) was associated with a 30% (RR 1.30, 95% CI 1.14–1.48); a high level (at 1.4 g/kg) of minimum specific humidity (SHmin) was associated with a 28% (RR 1.28, 95% CI 1.04–1.57). The significant effects of these types of humidity occurred within the past month. Conclusion Humidity played a significant role in enhancing ST cases in Thailand, particularly at a high level and usually occurred within the past month. NB-DLNM had good controlled for the overdispersion and provided the precise estimated relative risk of non-linear associations. Results from this study contributed the evidence to support the Ministry of Public Health on warning system which might be useful for public health intervention and preparation in Thailand.
Collapse
Affiliation(s)
- Bhophkrit Bhopdhornangkul
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Aronrag Cooper Meeyai
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Waranya Wongwit
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Sopon Iamsirithaworn
- Bureau of Communicable Disease, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Yongjua Laosiritaworn
- Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Kraichat Tantrakarnapa
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| |
Collapse
|
26
|
Yi S, Wang H, Yang S, Xie L, Gao Y, Ma C. Spatial and Temporal Characteristics of Hand-Foot-and-Mouth Disease and Its Response to Climate Factors in the Ili River Valley Region of China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041954. [PMID: 33671423 PMCID: PMC7923010 DOI: 10.3390/ijerph18041954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/07/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Background: As the global climate changes, the number of cases of hand-foot-and-mouth disease (HFMD) is increasing year by year. This study comprehensively considers the association of time and space by analyzing the temporal and spatial distribution changes of HFMD in the Ili River Valley in terms of what climate factors could affect HFMD and in what way. Methods: HFMD cases were obtained from the National Public Health Science Data Center from 2013 to 2018. Monthly climate data, including average temperature (MAT), average relative humidity (MARH), average wind speed (MAWS), cumulative precipitation (MCP), and average air pressure (MAAP), were obtained from the National Meteorological Information Center. The temporal and spatial distribution characteristics of HFMD from 2013 to 2018 were obtained using kernel density estimation (KDE) and spatiotemporal scan statistics. A regression model of the incidence of HFMD and climate factors was established based on a geographically and temporally weighted regression (GTWR) model and a generalized additive model (GAM). Results: The KDE results show that the highest density was from north to south of the central region, gradually spreading to the whole region throughout the study period. Spatiotemporal cluster analysis revealed that clusters were distributed along the Ili and Gongnaisi river basins. The fitted curves of MAT and MARH were an inverted V-shape from February to August, and the fitted curves of MAAP and MAWS showed a U-shaped change and negative correlation from February to May. Among the individual climate factors, MCP coefficient values varied the most while MAWS values varied less from place to place. There was a partial similarity in the spatial distribution of coefficients for MARH and MAT, as evidenced by a significant degree of fit performance in the whole region. MCP showed a significant positive correlation in the range of 15–35 mm, and MAAP showed a positive correlation in the range of 925–945 hPa. HFMD incidence increased with MAT in the range of 15–23 °C, and the effective value of MAWS was in the range of 1.3–1.7 m/s, which was positively correlated with incidences of HFMD. Conclusions: HFMD incidence and climate factors were found to be spatiotemporally associated, and climate factors are mostly non-linearly associated with HFMD incidence.
Collapse
Affiliation(s)
- Suyan Yi
- College of Resources and Environmental Sciences, Xinjiang University, Urumqi 830046, China; (S.Y.); (L.X.); (Y.G.); (C.M.)
| | - Hongwei Wang
- College of Resources and Environmental Sciences, Xinjiang University, Urumqi 830046, China; (S.Y.); (L.X.); (Y.G.); (C.M.)
- Correspondence: ; Tel.: +86-135-7920-8666
| | - Shengtian Yang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China;
| | - Ling Xie
- College of Resources and Environmental Sciences, Xinjiang University, Urumqi 830046, China; (S.Y.); (L.X.); (Y.G.); (C.M.)
| | - Yibo Gao
- College of Resources and Environmental Sciences, Xinjiang University, Urumqi 830046, China; (S.Y.); (L.X.); (Y.G.); (C.M.)
| | - Chen Ma
- College of Resources and Environmental Sciences, Xinjiang University, Urumqi 830046, China; (S.Y.); (L.X.); (Y.G.); (C.M.)
| |
Collapse
|
27
|
Xu J, Yang M, Zhao Z, Wang M, Guo Z, Zhu Y, Rui J, Wang Y, Liu X, Lin S, Luo L, Su Y, Zhao B, Zhou Y, Frutos R, Chen T. Meteorological Factors and the Transmissibility of Hand, Foot, and Mouth Disease in Xiamen City, China. Front Med (Lausanne) 2021; 7:597375. [PMID: 33553200 PMCID: PMC7862718 DOI: 10.3389/fmed.2020.597375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/30/2020] [Indexed: 11/18/2022] Open
Abstract
Background: As an emerging infectious disease, the prevention and control of hand, foot, and mouth disease (HFMD) poses a significant challenge to the development of public health in China. In this study, we aimed to explore the mechanism of the seasonal transmission characteristics of HFMD and to reveal the correlation and potential path between key meteorological factors and the transmissibility of HFMD. Methods: Combined with daily meteorological data such as average temperature, average relative humidity, average wind velocity, amount of precipitation, average air pressure, evaporation capacity, and sunshine duration, a database of HFMD incidence and meteorological factors was established. Spearman rank correlation was used to calculate the correlation between the various meteorological factors and the incidence of HFMD. The effective reproduction number (R eff ) of HFMD was used as an intermediate variable to further quantify the dynamic relationship between the average temperature and R eff . Results: A total of 43,659 cases of HFMD were reported in Xiamen from 2014 to 2018. There was a significantly positive correlation between the average temperature and the incidence of HFMD (r = 0.596, p < 0.001), and a significantly negative correlation between the average air pressure and the incidence of HFMD (r = -0.511, p < 0.001). There was no correlation between the average wind velocity (r = 0.045, p > 0.05) or amount of precipitation (r = 0.043, p > 0.05) and incidence. There was a temperature threshold for HFMD's transmissibility. Owing to the seasonal transmission characteristics of HFMD in Xiamen, the temperature threshold of HFMD's transmissibility was 13.4-18.4°C and 14.5-29.3°C in spring and summer and in autumn and winter, respectively. Conclusions: HFMD's transmissibility may be affected by the average temperature; the temperature threshold range of transmissibility in autumn and winter is slightly wider than that in spring and summer. Based on our findings, we suggest that the relevant epidemic prevention departments should pay close attention to temperature changes in Xiamen to formulate timely prevention strategies before the arrival of the high-risk period.
Collapse
Affiliation(s)
- Jingwen Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, China
| | - Meng Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, China
| | - Zeyu Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, China
| | - Mingzhai Wang
- Xiamen Center for Disease Control and Prevention, Xiamen City, China
| | - Zhinan Guo
- Xiamen Center for Disease Control and Prevention, Xiamen City, China
| | - Yuanzhao Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, China
| | - Jia Rui
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, China
| | - Yao Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, China
| | - Xingchun Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, China
| | - Shengnan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, China
| | - Li Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, China
| | - Yanhua Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, China
| | - Benhua Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, China
| | - Yulin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen City, China
| | - Roger Frutos
- Agricultural Research Centre for International Development, Intertryp, Montpellier, France
- Institut d'Electronique et des Systèmes, Université de Montpellier-Centre National de la Recherche Scientifique, Montpellier, France
| | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City, China
| |
Collapse
|
28
|
Laor P, Apidechkul T, Khunthason S, Keawdounglek V, Sudsandee S, Fakkaew K, Siriratruengsuk W. Association of environmental factors and high HFMD occurrence in northern Thailand. BMC Public Health 2020; 20:1829. [PMID: 33256665 PMCID: PMC7706220 DOI: 10.1186/s12889-020-09905-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/17/2020] [Indexed: 02/02/2023] Open
Abstract
Background The major population vulnerable to hand, foot and mouth disease (HFMD) is children aged less than 5 years, particularly those who are cared for at day care centers (DCCs). This study aimed to assess the associations of environmental and sanitation factors with high HFMD occurrence rates in DCCs of northern Thailand. Methods A case-control study was used to gather information from caregivers and local government administrative officers. DCCs in areas with high and low HFMD occurrence rates were the settings for this study. A validated questionnaire was used to collect environmental and sanitation information from the DCCs. In-depth interviews were used to collect information from selected participants who were working at DCCs and from local government administrative officers on the HFMD capacity and prevention and control strategies in DCCs. Logistic regression analysis was used to determine the associations between many environmental factors and HFMD at the α = 0.05 significance level while the content analysis was used to extract information from the interviews. Results Two variables were found to be associated with a high rate of HFMD occurrence: the number of sinks available in restrooms and the DCC size. Children attending DCCs that did not meet the standard in terms of the number of sinks in restrooms had a greater chance of contracting HFMD than children who were attending DCCs that met the standard (AOR = 4.21; 95% CI = 1.13–15.04). Children who were attending a large-sized DCC had a greater chance of contracting HFMD than those attending a small-sized DCC (AOR = 3.28; 95% CI = 1.21–5.18). The yearly budget allocation and the strategies for HFMD control and prevention, including collaborations among stakeholders for HFMD control and prevention in DCCs, were associated with the effectiveness of HFMD control and prevention. Conclusions The number of sinks in restrooms and DCC size are major concerns for HFMD outbreaks. Sufficient budget allocation and good collaboration contribute to effective strategies for preventing and controlling HFMD in DCCs.
Collapse
Affiliation(s)
- Pussadee Laor
- School of Health Science, Mae Fah Luang University, Chiang Rai, Thailand.
| | - Tawatchai Apidechkul
- School of Health Science, Mae Fah Luang University, Chiang Rai, Thailand. .,Center of Excellence for the Hill tribe Health Research, Mae Fah Luang University, Muang Chiang Rai, Thailand.
| | - Siriyaporn Khunthason
- School of Health Science, Mae Fah Luang University, Chiang Rai, Thailand.,Center of Excellence for the Hill tribe Health Research, Mae Fah Luang University, Muang Chiang Rai, Thailand
| | - Vivat Keawdounglek
- School of Health Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Suntorn Sudsandee
- School of Health Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Krailak Fakkaew
- School of Health Science, Mae Fah Luang University, Chiang Rai, Thailand
| | | |
Collapse
|
29
|
Abstract
To examine the effects of temperature on the daily cases of hand, foot, and mouth disease (HFMD).Data on the daily cases of HFMD in Lanzhou from 2008 to 2015 were obtained, and meteorological data from the same period were collected. A distributed lag nonlinear model was fitted to reveal the relationship between the daily mean temperature and the daily cases of HFMD.From 2008 to 2015, 25,644 cases were reported, of which children under 5 years of age accounted for 78.68% of cases. The highest peak of HFMD cases was usually reported between April to July each year. An inverse V-shaped relationship was observed between daily mean temperature and HFMD cases; a temperature of 18°C was associated with a maximum risk of HFMD. The relative risk (RR) was 1.57 (95% confidence interval: 1.23-1.23), and boys and children aged 3 to 5 years were populations with the highest risk. The cumulative risks of high temperature (20.2°C and 25.2°C) in the total, age-specific, and gender-specific groups peaked on lag 14 days; RR was higher in girls than in boys and in children aged 1 to 2 years than in other age groups. However, the effects of low temperature (-5.3°C, 2.0°C, and 12.8°C) were not significant for both gender-specific and age-specific patients.High temperature may increase the risk of HFMD, and boys and children aged 3 to 5 years were at higher risks on lag 0 day; however, the cumulative risks in girls and children aged 1 to 2 years increased with the increasing number of lag days.
Collapse
Affiliation(s)
- Jinyu Wang
- School of Basic Medical Science, Lanzhou University
| | - Sheng Li
- The First People's Hospital of Lanzhou City, Lanzhou, PR China
| |
Collapse
|
30
|
Association of Short-Term Exposure to Meteorological Factors and Risk of Hand, Foot, and Mouth Disease: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17218017. [PMID: 33143315 PMCID: PMC7663009 DOI: 10.3390/ijerph17218017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
(1) Background: Inconsistencies were observed in studies on the relationship between short-term exposure to meteorological factors and the risk of hand, foot, and mouth disease (HFMD). This systematic review and meta-analysis was aimed to assess the overall effects of meteorological factors on the incidence of HFMD to help clarify these inconsistencies and serve as a piece of evidence for policy makers to determine relevant risk factors. (2) Methods: Articles published as of 24 October 2020, were searched in the four databases, namely, PubMed, Web of Science, Embase, and MEDLINE. We applied a meta-analysis to assess the impact of ambient temperature, relative humidity, rainfall, wind speed, and sunshine duration on the incidence of HFMD. We conducted subgroup analyses by exposure metrics, exposure time resolution, regional climate, national income level, gender, and age as a way to seek the source of heterogeneity. (3) Results: Screening by the given inclusion and exclusion criteria, a total of 28 studies were included in the analysis. We observed that the incidence of HFMD based on the single-day lag model is significantly associated with ambient temperature, relative humidity, rainfall, and wind speed. In the cumulative lag model, ambient temperature and relative humidity significantly increased the incidence of HFMD as well. Subgroup analysis showed that extremely high temperature and relative humidity significantly increased the risk of HFMD. Temperate regions, high-income countries, and children under five years old are major risk factors for HFMD. (4) Conclusions: Our results suggest that various meteorological factors can increase the incidence of HFMD. Therefore, the general public, especially susceptible populations, should pay close attention to weather changes and take protective measures in advance.
Collapse
|
31
|
Fan C, Liu F, Zhao X, Ma Y, Yang F, Chang Z, Xiao X. An alternative comprehensive index to quantify the interactive effect of temperature and relative humidity on hand, foot and mouth disease: A two-stage time series study including 143 cities in mainland China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140106. [PMID: 32927545 DOI: 10.1016/j.scitotenv.2020.140106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Comprehensive indices have been used to quantify the interactive effect of temperature and humidity on hand, foot and mouth disease (HFMD). The majority of them reflect how weather feels to humans. In this study, we propose an alternative index aiming to reflect the impacts of weather on HFMD and compare its performance with that of previous indices. METHODS We proposed an index defined as the product of temperature and a weight parameter raised to the rescaled relative humidity, denoted by THIa. We then compared its model fit and heterogeneity with those of previous indices (including the humidex, heat index and temperature) by a multicity two-stage time series analysis. We first built a common distributed lag nonlinear model to estimate the associations between different indices and HFMD for each city separately. We then pooled the city-specific estimates and compared the average model fit (measured by the QAIC) and heterogeneity (measured by I2) among the different indices. RESULTS We included the time series of HFMD and meteorological variables from 143 cities in mainland China from 2009 to 2014. By varying the weight parameter of THIa, the results suggested that 100% relative humidity can amplify the effects of temperature on HFMD 1.6-fold compared to 50% relative humidity. By comparing different candidate indices, THIa performed the best in terms of the average of the model fits (QAIC = 9449.37), followed by humidex, heat index and temperature. In addition, the estimated exposure-response curves between THIa and HFMD were consistent across climate regions with minimum heterogeneity (I2 = 65.90), whereas the others varied across climate regions. CONCLUSIONS This study proposed an alternative comprehensive index to characterize the interactive effects of temperature and humidity on HFMD. In addition, the results also imply that previous human-based indices might not be sufficient to reflect the complicated associations between weather and HFMD.
Collapse
Affiliation(s)
- Chaonan Fan
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Fengfeng Liu
- Division of Infectious Disease & Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Xing Zhao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yue Ma
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Fan Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zhaorui Chang
- Division of Infectious Disease & Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China.
| | - Xiong Xiao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
32
|
Deng J, Gao X, Xiao C, Xu S, Ma Y, Yang J, Wu M, Pan F. Association between diurnal temperature range and outpatient visits for hand, foot, and mouth disease in Hefei, China: a distributed lag nonlinear analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35618-35625. [PMID: 32613503 DOI: 10.1007/s11356-020-09878-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
We aimed to quantify the relationship between the outpatient visits of hand, foot, and mouth disease (HFMD) and diurnal temperature range (DTR). The data of daily HFMD outpatient visits and meteorological parameters were obtained. A distributed lag nonlinear model combined with generalized linear model was used to estimate simultaneously nonlinear and delayed effects between DTR and daily HFMD outpatient visits after controlling confounding factors. A total of 15,275 HFMD visits were enrolled. DTR was significantly associated with HFMD outpatient visits in children. High DTR (P75: 11.4 °C) and extreme DTR (P95: 15.3 °C) were compared with 8.5 °C, and HFMD visits increased by a maximum of 3.93% (95% CI: 1.82 to 6.07%) and 4.47% (95% CI: 0.45 to 8.65%) in single-day lag effect, respectively. Furthermore, the extreme DTR effect decreased with the lag time and lasted for 10 days. Cumulative lag effects with markedly increasing percent of visits are over 64.88%. Furthermore, the effects were most pronounced among female children and children aged 0-2 years. Our study suggested that DTR changes were associated with HFMD outpatient visits, and populations of female and aged 0-2 years were more sensitive.
Collapse
Affiliation(s)
- Jixiang Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Changchun Xiao
- Hefei Center for Disease Control and Prevention, 86 Luan Road, Hefei, 230032, Anhui Province, China
| | - Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Jiajia Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Meng Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
33
|
Zhu J, Shi P, Zhou W, Chen X, Zhang X, Huang C, Zhang Q, Zhu X, Xu Q, Gao Y, Ding X, Chen E. Assessment of Temperature-Hand, Foot, and Mouth Disease Association and Its Variability across Urban and Rural Populations in Wuxi, China: A Distributed Lag Nonlinear Analysis. Am J Trop Med Hyg 2020; 103:2091-2099. [PMID: 32748774 DOI: 10.4269/ajtmh.20-0329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) has brought millions of attacks and a substantial burden in the Asia-Pacific region. Previous studies assessed disease risks around the world, which demonstrated great heterogeneity, and few determined the modification effect of social factors on temperature-disease relationship. We conducted a time-series study to evaluate the temperature-associated HFMD morbidity risk using daily data (from 2011 to 2017) and to identify potential modifiers relating to urban-rural status and aggregation mode of children. By applying a distributed lag nonlinear model (DLNM) and controlling for time-varying factors and other meteorological factors, we found that the relationship between daily mean temperature and the cumulative risk of HFMD was an approximately M-shaped curve. The effects of higher temperature appeared to be greater and more persistent than those of lower temperature. With the reference of -6°C, the cumulative relative risk (RR) values of high temperature (95 percentile) and low temperature (5 percentile) were 3.74 (95% CI: 2.50-5.61) and 1.72 (95% CI: 1.24-2.37) at lag 4-7, respectively. Temperature-associated HFMD morbidity risks were more pronounced among rural children and those attending kindergartens or schools at specific lags and temperatures. Relative risk values for temperature-disease association was highest among the 3- to 6-year group, whereas no gender difference was observed. Studying effect estimates and their modifications using the DLNM on a daily scale helps to identify susceptible groups and guide policy-making and resource allocation according to specific local conditions.
Collapse
Affiliation(s)
- Jingying Zhu
- Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Ping Shi
- Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Weijie Zhou
- Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Xiaoxiao Chen
- Wuxi Municipal Meteorological Monitoring Center, Wuxi, China
| | - Xuhui Zhang
- Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Chunhua Huang
- Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Qi Zhang
- Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Xun Zhu
- Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Qiujin Xu
- Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yumeng Gao
- Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Xinliang Ding
- Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Enpin Chen
- Wuxi Center for Disease Control and Prevention, Wuxi, China
| |
Collapse
|
34
|
Qi H, Li Y, Zhang J, Chen Y, Guo Y, Xiao S, Hu J, Wang W, Zhang W, Hu Y, Li Z, Zhang Z. Quantifying the risk of hand, foot, and mouth disease (HFMD) attributable to meteorological factors in East China: A time series modelling study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138548. [PMID: 32361359 DOI: 10.1016/j.scitotenv.2020.138548] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/21/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) is a widespread infectious disease in China. Associated meteorological factors have been widely studied, but their attributable risks have not been well quantified. OBJECTIVES The study aimed to quantify the HFMD burden attributable to temperature and other meteorological factors. METHODS The daily counts of HFMD and meteorological factors in all 574 counties of East China were obtained for the period from 2009 to 2015. The exposure-lag-response relationships between meteorological factors and HFMD were quantified by using a distributed lag non-linear model for each county and the estimates from all the counties were then pooled using a multivariate mete-regression model. Attributable risks were estimated for meteorological variables according to the exposure-lag-response relationships obtained before. RESULTS The study included 4,058,702 HFMD cases. Non-optimal values of meteorological factors were attributable to approximately one third of all HFMD cases, and the attributable numbers of non-optimal ambient temperature, relative humidity, wind speed and sunshine hours were 815,942 (95% CI: 796,361-835,888), 291,759 (95% CI: 226,183-358,494), 92,060 (95% CI: 59,655-124,738) and 62,948 (95% CI: 20,621-105,773), respectively. The exposure-response relationship between temperature and HFMD was non-linear with an approximate "M" shape. High temperature had a greater influence on HFMD than low temperature did. There was a geographical heterogeneity related to water body, and more cases occurred in days with moderate high and low temperatures than in days with extreme temperature. The effects of meteorological factors on HFMD were generally consistent across subgroups. CONCLUSIONS Non-optimal temperature is the leading risk factor of HFMD in East China, and moderate hot and moderate cold days had the highest risk. Developing subgroup-targeted and region-specific programs may minimize the adverse consequences of non-optimum weather on HFMD risk.
Collapse
Affiliation(s)
- Hongchao Qi
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, 138 Yixueyuan Rd, Xuhui District, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, 138 Yixueyuan Rd, Xuhui District, Shanghai, China; Department of Biostatistics, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, Netherlands
| | - Yu Li
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Changping District, Beijing, China
| | - Jun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, 138 Yixueyuan Rd, Xuhui District, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, 138 Yixueyuan Rd, Xuhui District, Shanghai, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, 75 Laurier Ave E, Ottawa, ON K1N 6N5, Canada
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, 27 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Shuang Xiao
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, 138 Yixueyuan Rd, Xuhui District, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, 138 Yixueyuan Rd, Xuhui District, Shanghai, China
| | - Jian Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, 138 Yixueyuan Rd, Xuhui District, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, 138 Yixueyuan Rd, Xuhui District, Shanghai, China
| | - Wenge Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, 138 Yixueyuan Rd, Xuhui District, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, 138 Yixueyuan Rd, Xuhui District, Shanghai, China
| | - Wenyi Zhang
- Chinese PLA Center for Disease Control and Prevention, Academy of Military Medical Sciences, 27 Taiping Rd, Haidian District, Beijing, China
| | - Yi Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, 138 Yixueyuan Rd, Xuhui District, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, 138 Yixueyuan Rd, Xuhui District, Shanghai, China
| | - Zhongjie Li
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Changping District, Beijing, China.
| | - Zhijie Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Fudan University, 138 Yixueyuan Rd, Xuhui District, Shanghai, China; Key Laboratory of Public Health Safety, Ministry of Education, 138 Yixueyuan Rd, Xuhui District, Shanghai, China.
| |
Collapse
|
35
|
Wang Y, Cao Z, Zeng D, Wang X, Wang Q. Using deep learning to predict the hand-foot-and-mouth disease of enterovirus A71 subtype in Beijing from 2011 to 2018. Sci Rep 2020; 10:12201. [PMID: 32699245 PMCID: PMC7376109 DOI: 10.1038/s41598-020-68840-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Hand-foot-and-month disease (HFMD), especially the enterovirus A71 (EV-A71) subtype, is a major health problem in Beijing, China. Previous studies mainly used regressive models to forecast the prevalence of HFMD, ignoring its intrinsic age groups. This study aims to predict HFMD of EV-A71 subtype in three age groups (0–3, 3–6 and > 6 years old) from 2011 to 2018 using residual-convolutional-recurrent neural network (CNNRNN-Res), convolutional-recurrent neural network (CNNRNN) and recurrent neural network (RNN). They were compared with auto-regressio, global auto-regression and vector auto-regression on both short-term and long-term prediction. Results showed that CNNRNN-Res and RNN had higher accuracies on point forecast tasks, as well as robust performances in long-term prediction. Three deep learning models also had better skills in peak intensity forecast, and CNNRNN-Res achieved the best results in the peak month forecast. We also found that three age groups had consistent outbreak trends and similar patterns of prediction errors. These results highlight the superior performance of deep learning models in HFMD prediction and can assist the decision-makers to refine the HFMD control measures according to age groups.
Collapse
Affiliation(s)
- Yuejiao Wang
- The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhidong Cao
- The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Daniel Zeng
- The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaoli Wang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Quanyi Wang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| |
Collapse
|
36
|
Guo T, Liu J, Chen J, Bai Y, Long Y, Chen B, Song S, Shao Z, Liu K. Seasonal Distribution and Meteorological Factors Associated with Hand, Foot, and Mouth Disease among Children in Xi'an, Northwestern China. Am J Trop Med Hyg 2020; 102:1253-1262. [PMID: 32157992 PMCID: PMC7253124 DOI: 10.4269/ajtmh.19-0916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/01/2020] [Indexed: 01/22/2023] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common infectious disease in the Asia-Pacific region that primarily affects children younger than 5 years. Previous studies have confirmed that the seasonal transmission of this disease is strongly related to meteorological factors, but the results are not consistent. In addition, the associations between weather conditions and HFMD in northwestern China have not been investigated. Therefore, we aimed to examine this issue in Xi'an, the largest city of northwestern China that has been suffering from serious HFMD epidemics. In the current study, data for HFMD and six meteorological factors were collected from 2009 to 2018. Using cross-correlation analysis, the Granger causality test, and the distributed lag nonlinear model, we estimated the quantitative relationships and exposure-lag-response effects between weekly meteorological factors and HFMD incidence among children. We found that the seasonal distribution of HFMD in Xi'an has two peaks each year and is significantly impacted by the weekly temperature, precipitation, and evaporation over an 8-week period. Higher values of temperature and evaporation had positive associations with disease transmission, whereas the association between precipitation and HFMD showed an inverted-U shape. The maximum relative risks (RRs) of HFMD for the weekly mean temperature (approximately 31.1°C), weekly cumulative evaporation (57.9 mm), and weekly cumulative precipitation (30.0 mm) were 1.56 (95% CI: 1.35-1.81), 1.40 (95% CI: 1.05-1.88), and 1.16 (95% CI: 1.11-1.70), respectively. The identified risk determinants and lag effects could provide important information for early interventions to reduce the local disease burden.
Collapse
Affiliation(s)
- Tianci Guo
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, P. R. China
| | - Jifeng Liu
- Department of Infectious Disease Control and Prevention, Xi’an Center for Disease Prevention and Control, Xi’an, P. R. China
| | - Junjiang Chen
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, P. R. China
| | - Yao Bai
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, P. R. China
- Department of Infectious Disease Control and Prevention, Xi’an Center for Disease Prevention and Control, Xi’an, P. R. China
| | - Yong Long
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, P. R. China
| | - Baozhong Chen
- Department of Infectious Disease Control and Prevention, Xi’an Center for Disease Prevention and Control, Xi’an, P. R. China
| | - Shuxuan Song
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, P. R. China
| | - Zhongjun Shao
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, P. R. China
| | - Kun Liu
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, P. R. China
| |
Collapse
|
37
|
He S, Huang Y, Zhao Y, Pang B, Wang L, Sun L, Yu H, Wang J, Li J, Song X, Li H. A Reverse Transcription-Polymerase Spiral Reaction (RT-PSR)-Based Rapid Coxsackievirus A16 Detection Method and Its Application in the Clinical Diagnosis of Hand, Foot, and Mouth Disease. Front Microbiol 2020; 11:734. [PMID: 32477283 PMCID: PMC7236501 DOI: 10.3389/fmicb.2020.00734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common viral illness affecting infants and children that is usually caused by Coxsackievirus A16 (CVA-16). To diagnose HFMD, we developed a method for rapid detection of CVA-16 based on reverse transcription-polymerase spiral reaction (RT-PSR). We used two pairs of primers that specifically recognize the conserved sequences of VP1 coding region of CVA-16, and template RNA was reverse transcribed and amplified in a single tube under isothermal conditions, total reaction time could be reduced to less than 40 min. The detection limit of this method was between 2.4 × 102 and 2.4 × 101 copies/μl with excellent specificity. To test the clinical applicability of the method, 40 clinical stool samples were analyzed using RT-PSR and quantitative reverse transcription-polymerase chain reaction, and comparison showed that the coincidence rate was 100%. Compared with other similar detection methods, RT-PSR requires less time, simpler operation, and lower cost. These results prove that our novel, simple, and reliable isothermal nucleic acid testing assay has potential application for clinical detection of CVA-16.
Collapse
Affiliation(s)
- Shiyu He
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, China
| | - Yanzhi Huang
- Research Laboratory, Changchun Children's Hospital, Changchun, China
| | - Yanling Zhao
- Research Laboratory, Changchun Children's Hospital, Changchun, China
| | - Bo Pang
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, China
| | - Lixue Wang
- Research Laboratory, Changchun Children's Hospital, Changchun, China
| | - Liwei Sun
- Research Laboratory, Changchun Children's Hospital, Changchun, China
| | - Haoyan Yu
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, China
| | - Juan Wang
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, China
| | - Juan Li
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, China
| | - Xiuling Song
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, China
| | - Hui Li
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
38
|
Peng L, Zhao X, Tao Y, Mi S, Huang J, Zhang Q. The effects of air pollution and meteorological factors on measles cases in Lanzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13524-13533. [PMID: 32030582 DOI: 10.1007/s11356-020-07903-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/27/2020] [Indexed: 04/16/2023]
Abstract
By collecting daily data on measles cases, air pollutants, and meteorological data from 2005 to 2009 in Chengguan District of Lanzhou City, semi-parametric generalized additive model (GAM) was used to quantitatively study the impact of air pollutants and meteorological factors on daily measles cases. The results showed that air pollutants and meteorological factors had effect on the number of daily measles cases, and there was a certain lag effect. Except for SO2 and relative humidity, other factors showed statistically significant associations with daily measles cases: NO2 lag 6 days, PM10 and maximum temperature lag 5 days, minimum temperature and average temperature and average air pressure lag 4 days, visibility, and wind speed lag 3 days had the greatest impact on the number of daily measles cases. Under the optimum lag conditions, the number of daily measles cases increased by 15.1%, 17.6%, 7.0%, 116.6%, 98.6%, 85.7%, and 14.4% with the increase of 1 IQR in SO2, NO2, PM10, maximum temperature, minimum temperature, average temperature, and wind speed; with the increase of 1 IQR in average pressure, relative humidity, visibility, and daily measles cases decreased by 12.8%, 9.7%, and 13.1%, respectively. And different factors showed different seasonal effects. The effects of SO2 and temperature factors on daily measles cases were greater in spring and winter, but PM10 in summer.
Collapse
Affiliation(s)
- Lu Peng
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Xiuge Zhao
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, 730000, Gansu Province, People's Republic of China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yan Tao
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, 730000, Gansu Province, People's Republic of China.
| | - Shengquan Mi
- College of Biochemical Engineering, Beijing Union University, 97 North Fourth Ring East Road, Chaoyang District, Beijing, 100023, China.
| | - Ju Huang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Chengguan District, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Qinkai Zhang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environmental of PRC, Guangzhou, 510655, China
| |
Collapse
|
39
|
Xu Z, Hu W, Jiao K, Ren C, Jiang B, Ma W. The effect of temperature on childhood hand, foot and mouth disease in Guangdong Province, China, 2010-2013: a multicity study. BMC Infect Dis 2019; 19:969. [PMID: 31718560 PMCID: PMC6852944 DOI: 10.1186/s12879-019-4594-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/24/2019] [Indexed: 12/30/2022] Open
Abstract
Background Hand, foot and mouth disease (HFMD) is a serious infectious disease, which has become a public health problem. Previous studies have shown that temperature may influence the incidence of HFMD, but most only focus on single city and the results are highly heterogeneous. Therefore, a multicity study was conducted to explore the association between temperature and HFMD in different cities and search for modifiers that influence the heterogeneity. Methods We collected daily cases of childhood HFMD (aged 0–5 years) and meteorological factors of 21 cities in Guangdong Province in the period of 2010–2013. Distributed lag non-linear model (DLNM) with quasi-Poisson was adopted to quantify the effects of temperature on HFMD in 21 cities. Then the effects of each city were pooled by multivariate meta-analysis to obtain the heterogeneity among 21 cities. Potential city-level factors were included in meta-regression to explore effect modifiers. Results A total of 1,048,574 childhood cases were included in this study. There was a great correlation between daily childhood HFMD cases and temperature in each city, which was non-linear and lagged. High heterogeneity was showed in the associations between temperature and HFMD in 21 cities. The pooled temperature-HFMD association was peaking at the 79th percentile of temperature with relative risk (RR) of 2.474(95% CI: 2.065–2.965) as compared to the median temperature. Latitude was the main modifier for reducing the heterogeneity to 69.28% revealed by meta-analysis. Conclusions There was a strong non-linear and lagged correlation between temperature and HFMD. Latitude was strongly associated with the relationship between temperature and HFMD. Meanwhile, it had an effect on modifying the relationship. These findings can conducive to local governments developing corresponding preventive measures.
Collapse
Affiliation(s)
- Zece Xu
- Department of Epidemiology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, People's Republic of China
| | - Wenqi Hu
- Qianfoshan Hospital of Shandong Province, 16766 Jingshi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Kedi Jiao
- Department of Epidemiology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, People's Republic of China
| | - Ci Ren
- Department of Epidemiology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, People's Republic of China
| | - Baofa Jiang
- Department of Epidemiology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, People's Republic of China.,Shandong University Climate Change and Health Center, 44 West Wenhua Road, Jinan, Shandong, 250012, People's Republic of China
| | - Wei Ma
- Department of Epidemiology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, People's Republic of China. .,Shandong University Climate Change and Health Center, 44 West Wenhua Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
40
|
Liu W, Bao C, Zhou Y, Ji H, Wu Y, Shi Y, Shen W, Bao J, Li J, Hu J, Huo X. Forecasting incidence of hand, foot and mouth disease using BP neural networks in Jiangsu province, China. BMC Infect Dis 2019; 19:828. [PMID: 31590636 PMCID: PMC6781406 DOI: 10.1186/s12879-019-4457-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 09/10/2019] [Indexed: 08/22/2023] Open
Abstract
Background Hand, foot and mouth disease (HFMD) is a rising public health problem and has attracted considerable attention worldwide. The purpose of this study was to develop an optimal model with meteorological factors to predict the epidemic of HFMD. Methods Two types of methods, back propagation neural networks (BP) and auto-regressive integrated moving average (ARIMA), were employed to develop forecasting models, based on the monthly HFMD incidences and meteorological factors during 2009–2016 in Jiangsu province, China. Root mean square error (RMSE) and mean absolute percentage error (MAPE) were employed to select model and evaluate the performance of the models. Results Four models were constructed. The multivariate BP model was constructed using the HFMD incidences lagged from 1 to 4 months, mean temperature, rainfall and their one order lagged terms as inputs. The other BP model was fitted just using the lagged HFMD incidences as inputs. The univariate ARIMA model was specified as ARIMA (1,0,1)(1,1,0)12 (AIC = 1132.12, BIC = 1440.43). And the multivariate ARIMAX with one order lagged temperature as external predictor was fitted based on this ARIMA model (AIC = 1132.37, BIC = 1142.76). The multivariate BP model performed the best in both model fitting stage and prospective forecasting stage, with a MAPE no more than 20%. The performance of the multivariate ARIMAX model was similar to that of the univariate ARIMA model. Both performed much worse than the two BP models, with a high MAPE near to 40%. Conclusion The multivariate BP model effectively integrated the autocorrelation of the HFMD incidence series. Meanwhile, it also comprehensively combined the climatic variables and their hysteresis effects. The introduction of the climate terms significantly improved the prediction accuracy of the BP model. This model could be an ideal method to predict the epidemic level of HFMD, which is of great importance for the public health authorities.
Collapse
Affiliation(s)
- Wendong Liu
- Jiangsu Province Center for Diseases Control and Prevention, Nanjing, China.
| | - Changjun Bao
- Jiangsu Province Center for Diseases Control and Prevention, Nanjing, China
| | - Yuping Zhou
- Jiangsu Province Center for Diseases Control and Prevention, Nanjing, China
| | - Hong Ji
- Jiangsu Province Center for Diseases Control and Prevention, Nanjing, China
| | - Ying Wu
- Jiangsu Province Center for Diseases Control and Prevention, Nanjing, China
| | - Yingying Shi
- Jiangsu Province Center for Diseases Control and Prevention, Nanjing, China
| | - Wenqi Shen
- Jiangsu Province Center for Diseases Control and Prevention, Nanjing, China
| | - Jing Bao
- Jiangsu Meteorological Service Center, Nanjing, China
| | - Juan Li
- Jiangsu Meteorological Service Center, Nanjing, China
| | - Jianli Hu
- Jiangsu Province Center for Diseases Control and Prevention, Nanjing, China
| | - Xiang Huo
- Jiangsu Province Center for Diseases Control and Prevention, Nanjing, China
| |
Collapse
|
41
|
Yan S, Wei L, Duan Y, Li H, Liao Y, Lv Q, Zhu F, Wang Z, Lu W, Yin P, Cheng J, Jiang H. Short-Term Effects of Meteorological Factors and Air Pollutants on Hand, Foot and Mouth Disease among Children in Shenzhen, China, 2009-2017. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16193639. [PMID: 31569796 PMCID: PMC6801881 DOI: 10.3390/ijerph16193639] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND A few studies have explored the association between meteorological factors and hand, foot, and mouth disease (HFMD) with inconsistent results. Besides, studies about the effects of air pollutants on HFMD are very limited. METHODS Daily HFMD cases among children aged 0-14 years in Shenzhen were collected from 2009 to 2017. A distributed lag nonlinear model (DLNM) model was fitted to simultaneously assess the nonlinear and lagged effects of meteorological factors and air pollutants on HFMD incidence, and to further examine the differences of the effect across different subgroups stratified by gender, age and childcare patterns. RESULTS The cumulative relative risk (cRR) (median as reference) of HFMD rose with the increase of daily temperature and leveled off at about 30 °C (cRR: 1.40, 95%CI: 1.29, 1.51). There was a facilitating effect on HFMD when relative humidity was 46.0% to 88.8% (cRR at 95th percentile: 1.18, 95%CI: 1.11, 1.27). Short daily sunshine duration (5th vs. 50th) promoted HFMD (cRR: 1.07, 95%CI: 1.02, 1.11). The positive correlation between rainfall and HFMD reversed when it exceeded 78.3 mm (cRR: 1.41, 95% CI: 1.22, 1.63). Ozone suppressed HFMD when it exceeded 104 µg /m3 (cRR at 99th percentile: 0.85, 95%CI: 0.76, 0.94). NO2 promoted HFMD among infants and the cRR peaked at lag 9 day (cRR: 1.47, 95%CI: 1.02, 2.13) (99th vs. 50th). Besides, children aged below one year, males and scattered children were more vulnerable to high temperature, high relative humidity, and short sunshine duration. CONCLUSIONS Temperature, relative humidity, sunshine duration, rainfall, ozone and NO2 were significantly associated with HFMD, and such effects varied with gender age and childcare patterns. These findings highlight the need for more prevention effort to the vulnerable populations and may be helpful for developing an early environment-based warning system for HFMD.
Collapse
Affiliation(s)
- Siyu Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, China.
| | - Lan Wei
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen 518055, China.
| | - Yanran Duan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, China.
| | - Hongyan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, China.
| | - Yi Liao
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen 518055, China.
| | - Qiuying Lv
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen 518055, China.
| | - Fang Zhu
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen 518055, China.
| | - Zhihui Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, China.
| | - Wanrong Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, China.
| | - Ping Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, China.
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen 518055, China.
| | - Hongwei Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, China.
| |
Collapse
|
42
|
Merzel Šabović EK, Točkova O, Uršič T, Žgavec B, Dolenc-Voljč M. Atypical hand, foot, and mouth disease in an adult patient: a case report and literature review. ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2019. [DOI: 10.15570/actaapa.2019.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Yi L, Xu X, Ge W, Xue H, Li J, Li D, Wang C, Wu H, Liu X, Zheng D, Chen Z, Liu Q, Bi P, Li J. The impact of climate variability on infectious disease transmission in China: Current knowledge and further directions. ENVIRONMENTAL RESEARCH 2019; 173:255-261. [PMID: 30928856 DOI: 10.1016/j.envres.2019.03.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/20/2019] [Accepted: 03/17/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Climate change may lead to emerging and re-emerging infectious diseases and pose public health challenges to human health and the already overloaded healthcare system. It is therefore important to review current knowledge and identify further directions in China, the largest developing country in the world. METHODS A comprehensive literature review was conducted to examine the relationship between climate variability and infectious disease transmission in China in the new millennium. Literature was identified using the following MeSH terms and keywords: climatic variables [temperature, precipitation, rainfall, humidity, etc.] and infectious disease [viral, bacterial and parasitic diseases]. RESULTS Fifty-eight articles published from January 1, 2000 to May 30, 2018 were included in the final analysis, including bacterial diarrhea, dengue, malaria, Japanese encephalitis, HFRS, HFMD, Schistosomiasis. Each 1 °C rise may lead to 3.6%-14.8% increase in the incidence of bacillary dysentery disease in south China. A 1 °C rise was corresponded to an increase of 1.8%-5.9% in the weekly notified HFMD cases in west China. Each 1 °C rise of temperature, 1% rise in relative humidity and one hour rise in sunshine led to an increase of 0.90%, 3.99% and 0.68% in the monthly malaria cases, respectively. Climate change with the increased temperature and irregular patterns of rainfall may affect the pathogen reproduction rate, their spread and geographical distribution, change human behavior and influence the ecology of vectors, and increase the rate of disease transmission in different regions of China. CONCLUSION Exploring relevant adaptation strategies and the health burden of climate change will assist public health authorities to develop an early warning system and protect China's population health, especially in the new 1.5 °C scenario of the newly released IPCC special report.
Collapse
Affiliation(s)
- Liping Yi
- Division of Environmental Health, School of Public Health and Management, Weifang Medical University, Weifang, 261053, Shandong Province, PR China
| | - Xin Xu
- Department of Dentistry, Affiliated Hospital, Weifang Medical University, Weifang, 261053, Shandong Province, PR China
| | - Wenxin Ge
- Division of Environmental Health, School of Public Health and Management, Weifang Medical University, Weifang, 261053, Shandong Province, PR China
| | - Haibin Xue
- Clinical Laboratory, Weifang People's Hospital, Weifang, 261000. Shandong Province, PR China
| | - Jin Li
- Department of Dentistry, Weifang People's Hospital, Weifang, 261000, Shandong Province, PR China
| | - Daoyuan Li
- Department of Emergency, Weifang No.2 People's Hospital, Weifang, 261041, Shandong Province, PR China
| | - Chunping Wang
- Division of Environmental Health, School of Public Health and Management, Weifang Medical University, Weifang, 261053, Shandong Province, PR China
| | - Haixia Wu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, PR China
| | - Xiaobo Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, PR China
| | - Dashan Zheng
- Division of Environmental Health, School of Public Health and Management, Weifang Medical University, Weifang, 261053, Shandong Province, PR China
| | - Zhe Chen
- Division of Environmental Health, School of Public Health and Management, Weifang Medical University, Weifang, 261053, Shandong Province, PR China
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, PR China
| | - Peng Bi
- School of Public Health, The University of Adelaide, Adelaide, SA 5005, Australia; School of Public Health, Anhui Medical University, Hefei, 230032, Anhui Province, PR China.
| | - Jing Li
- Division of Environmental Health, School of Public Health and Management, Weifang Medical University, Weifang, 261053, Shandong Province, PR China; "Health Shandong" Major Social Risk Prediction and Governance Collaborative Innovation Center, Weifang, 261053, Shandong Province, PR China.
| |
Collapse
|
44
|
Jiao K, Hu W, Ren C, Xu Z, Ma W. Impacts of tropical cyclones and accompanying precipitation and wind velocity on childhood hand, foot and mouth disease in Guangdong Province, China. ENVIRONMENTAL RESEARCH 2019; 173:262-269. [PMID: 30928857 DOI: 10.1016/j.envres.2019.03.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/20/2019] [Accepted: 03/17/2019] [Indexed: 05/04/2023]
Abstract
OBJECTIVE Guangdong province is one of the provinces most frequently hit by tropical cyclones in China. Hand, foot and mouth disease (HFMD) continues to severely affect public health across the world. Our study aimed to evaluate the impacts of different grades of tropical cyclones and accompanying precipitation and wind velocity on HFMD among children younger than 6 years old in Guangdong province from 2009 to 2013. METHODS A time-stratified case-crossover design was used to examine the association between tropical cyclones and childhood HFMD. Principal component analysis (PCA) was first used to eliminate multicollinearity among meteorological variables. Conditional Poisson regression was then applied to calculate odds ratios (ORs) and the 95% confidence intervals (CIs). RESULTS Tropical storms increased the risk of HFMD among children below 6 years of age on lag 4 days (OR = 1.55, 95%CI: 1.28-1.88). Tropical storms were also a risk factor for boys below 3 years of age, boys between 3 and 6 and girls below 3 years of age with the largest OR = 1.52 (95%CI:1.15-2.00), OR = 1.81 (95%CI = 1.21-2.71) and OR = 1.51 (95%CI = 1.04-2.19), respectively. Precipitation during tropical cyclones had an adverse effect on childhood HFMD when reaching 25-49.9 mm or above 100 mm with OR = 1.20 (95%CI = 1.00-1.43) on lag 0 day and OR = 1.25 (95%CI = 1.04-1.49) on lag 7 days, respectively. For extreme wind velocity during tropical cyclones, the impact on childhood HFMD was largest on the day tropical cyclones landed (OR = 1.25, 95%CI: 1.06-1.48) with winds up to 13.9-24.4 m/s. CONCLUSIONS Tropical storms can increase the risk of HFMD among children younger than 3 years old, especially boys between 3 and 6 years old. Precipitation during tropical cyclones is a risk factor for childhood HFMD when it is between 25 and 49.9 mm or above 100 mm. As extreme wind velocity reaches 13.9-24.4 m/s, it has an adverse effect on children's health. Children below 3 years old and boys between 3 and 6 should be given more consideration during tropical storms.
Collapse
Affiliation(s)
- Kedi Jiao
- Department of Epidemiology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, PR China.
| | - Wenqi Hu
- Department of Epidemiology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, PR China.
| | - Ci Ren
- Department of Epidemiology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, PR China.
| | - Zece Xu
- Department of Epidemiology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, PR China.
| | - Wei Ma
- Department of Epidemiology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, PR China; Shandong University Climate Change and Health Center, 44 West Wenhua Road, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
45
|
Zhang Q, Zhou M, Yang Y, You E, Wu J, Zhang W, Jin J, Huang F. Short-term effects of extreme meteorological factors on childhood hand, foot, and mouth disease reinfection in Hefei, China: A distributed lag non-linear analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:839-848. [PMID: 30759610 DOI: 10.1016/j.scitotenv.2018.10.349] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/04/2018] [Accepted: 10/26/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) is a major public health issue in China with a high burden of reinfection. Previous studies presented evidence of the relationship between meteorological factors and HFMD incidence, but no study examined the effects of extreme meteorological factors on HFMD reinfection. METHODS Daily HFMD reinfection counts and meteorological data of Hefei city were collected from 2011 to 2016. A distributed lag non-linear model was used to quantify the effects of extreme weather (wind speed, sunshine duration, and precipitation) on HFMD reinfection. All effects were presented as relative risk (RR), with 90th or 10th percentiles of meteorological variables compare with their median values. Confounding factors, such as mean temperature, relative humidity, day of week, and long-term trend were controlled. RESULTS A total of 4873 HFMD reinfection cases aged 0-11 years were reported. Extremely high precipitation, low wind speed, and low sunshine duration increased HFMD reinfection risk. The effect of extremely high precipitation was greatest at 8 days lag (RR = 1.01, 95%CI: 1.00-1.02). Extremely low wind speed and low sunshine increased 19% (RR = 1.19, 95%CI: 1.09-1.32) and 12% (RR = 1.12, 95%CI: 1.00-1.26) risk at lag 0-12 days, respectively. By contrast, extremely high wind speed and high sunshine duration exerted certain protective effects on HFMD reinfection at lag 0-12 days (RR = 0.76, 95%CI: 0.66-0.88; RR = 0.88, 95%CI: 0.79-0.99, respectively). Subgroup analyses showed that nursery children were the most sensitive people to the extreme wind speed and sunshine duration. Children aged 4-11 years appeared to be more susceptible to extreme sunshine duration than children aged <3 years. CONCLUSION The present study provides evidence that extreme meteorological factors exert delayed effects on HFMD reinfection. Developing an early warning system is necessary for the protection of children from harm due to extreme meteorological factors.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, Anhui 230032, China
| | - Mengmeng Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, Anhui 230032, China
| | - Yuwei Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, Anhui 230032, China
| | - Enqing You
- Hefei Center for Disease Control and Prevention, 86 Luan Road, Luyang District, Hefei, Anhui 230061, China
| | - Jinju Wu
- Hefei Center for Disease Control and Prevention, 86 Luan Road, Luyang District, Hefei, Anhui 230061, China
| | - Wenyan Zhang
- Hefei Center for Disease Control and Prevention, 86 Luan Road, Luyang District, Hefei, Anhui 230061, China
| | - Jing Jin
- Hefei Center for Disease Control and Prevention, 86 Luan Road, Luyang District, Hefei, Anhui 230061, China
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, Anhui 230032, China; Central Laboratory of Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, Anhui 230032, China; Laboratory for environmental Toxicology, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, Anhui 230032, China.
| |
Collapse
|
46
|
Yu G, Li Y, Cai J, Yu D, Tang J, Zhai W, Wei Y, Chen S, Chen Q, Qin J. Short-term effects of meteorological factors and air pollution on childhood hand-foot-mouth disease in Guilin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:460-470. [PMID: 30056233 DOI: 10.1016/j.scitotenv.2018.07.329] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/14/2018] [Accepted: 07/23/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Previous studies have always focused on the impact of various meteorological factors on Hand-foot-mouth disease (HFMD). However, only few studies have investigated the simultaneous effects of climate and air pollution on HFMD incidence. METHODS Daily HFMD counts among children aged 0-14 years in Guilin city were collected from 2014 to 2016. Distributed lag nonlinear models (DLNM) were used to assess the effects of extreme meteorological factors and air pollution indicators, as well as the effects of different lag days on HFMD incidence. Furthermore, this study explored the variability across gender and age groups. RESULTS Extreme temperatures, high precipitation and low-O3 concentration increased the risk of HFMD. Hot effect was stronger and longer lasting than cold effect. Risks of rainy effect and low-O3 effect continued to increase as lag days extended, with the maximum RR values: 1.60 (1.38, 1.86) (90th vs median) and 1.48 (1.16, 1.89) (1th vs median) at 0-14 lag days, respectively. By contrast, extremely high wind speed, low precipitation, low PM2.5 and high O3 exerted a certain protective effect on HFMD incidence. The corresponding minimum RR values were: 0.85 (0.74, 0.98) (90th vs median) at 0-14 lag days, 0.98 (0.97, 0.99) (10th vs median) at 0-14 lag days, 0.73 (0.61, 0.88) (1th vs median) at 0-14 lag days and 0.81 (0.73, 0.90) (99th vs median) at 0-7 lag days, respectively. Male children and children aged 0-1 years (followed by 1-3 years) were the most susceptible subgroups to extreme climatic effects and air pollution. CONCLUSIONS Our results indicated that daily meteorological factors and air pollution exert non-linear and delayed effects on pediatric HFMD, and such effects vary depending on gender and age. These findings may serve as a reference for the development of an early warning system and for the adoption of specific interventions for vulnerable groups.
Collapse
Affiliation(s)
- Guoqi Yu
- Department of Environmental and Occupational Health, Guangxi Medical University, Shuangyong Road, 22, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yonghong Li
- Guangxi Center for Disease Control and Prevention, Acute Infectious Disease Prevention and Control Institute, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiansheng Cai
- Department of Environmental and Occupational Health, Guangxi Medical University, Shuangyong Road, 22, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Dongmei Yu
- Department of Environmental and Occupational Health, Guangxi Medical University, Shuangyong Road, 22, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiexia Tang
- Department of Environmental and Occupational Health, Guangxi Medical University, Shuangyong Road, 22, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Wenwen Zhai
- Department of Health Related Social and Behavioral Science, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Yi Wei
- Department of Environmental and Occupational Health, Guangxi Medical University, Shuangyong Road, 22, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shiyi Chen
- Department of Environmental and Occupational Health, Guangxi Medical University, Shuangyong Road, 22, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Quanhui Chen
- Department of Environmental and Occupational Health, Guangxi Medical University, Shuangyong Road, 22, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jian Qin
- Department of Environmental and Occupational Health, Guangxi Medical University, Shuangyong Road, 22, Nanning, Guangxi Zhuang Autonomous Region, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
47
|
Upala P, Apidechkul T, Suttana W, Kullawong N, Tamornpark R, Inta C. Molecular epidemiology and clinical features of hand, foot and mouth disease in northern Thailand in 2016: a prospective cohort study. BMC Infect Dis 2018; 18:630. [PMID: 30522440 PMCID: PMC6282397 DOI: 10.1186/s12879-018-3560-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/26/2018] [Indexed: 11/10/2022] Open
Abstract
Background Hand, foot and mouth disease (HFMD) is a major communicable disease in children ≤6 years old, particularly in several countries in the Asia-Pacific Region, including Thailand. HFMD impacts public health and the economy, especially in northern Thailand. Methods A prospective cohort study was conducted to estimate the incidence rate and to identify the serotype and clinical features of HFMD among children in northern Thailand. A validated questionnaire and throat swab were used for data collection. Polymerase chain reaction (PCR) was used to detect human enterovirus and identify its serotypes. Participants were recruited from 14 hospitals in two provinces in northern Thailand, specifically, Chiang Rai and Pha Yao Province, between January 1, 2016, and December 31, 2016. Chi-square or Fisher’s exact test was used to detect the associations of signs and symptoms with HFMD serotype. Logistic regression was used to detect the associations of variables with a positive enterovirus at alpha = 0.05. Result In total, 612 children aged ≤6 years from Chiang Rai and Pha Yao Province who were diagnosed with HFMD by a throat swab were recruited for the analysis. Approximately half of the cohort was male (57.2%), 57.5% was aged < 2 years, and 57.5% lived in rural areas. The incidence rate was 279.72/100,000 person-years in Chiang Rai Province and 321.24 per 100,000 person-years in Pha Yao Province. Additionally, 42.5% of children were positive for human enterovirus; among these children, 56.1% were positive for enterovirus-A (EV-A), 17.7% were positive for coxsackievirus (CV), and 26.2% were positive for other human RNA enteroviruses. During the study period, 21 distinct outbreaks of HFMD were recognized. Four to five patients (total 92 patients) were selected from each outbreak for identifying its serotype; enterovirus-A71 (EV-A71) was detected in 34.8% of HFMD cases, coxsackievirus-A16 (CV-A16) in 26.1%, coxsackivirus-A6 (CV-A6) in 15.2%, coxsackievirus-A10 (CV-A10) in 10.9%, coxsackievirus-A4 (CV-A4) in 2.2%, coxsackievirus-B2 (CV-B2) in 2.2%, human rhinovirus in 2.2%, and unknown serotype in 6.4%. Multivariable analysis demonstrated that a history of breastfeeding for ≤6 months was associated with a higher chance of enterovirus infection than a history of breastfeeding > 6 months, and children who had mother who worked as farmers, daily wage employees, and unprofessional skilled jobs had a greater chance of enterovirus infection than those who had unemployed mothers. Coxsackievirus-infected children had a higher rate of rashes on the buttocks, knee, and elbow and fever but a lower rate of lethargy and malaise than EV-A71-infected children. Conclusions EV-A71 is a major cause of HFMD in children < 6 years old in northern Thailand, but rash, fever, and mouth ulcers are mostly found in participants with coxsackievirus infection. Breastfeeding should be promoted during early childhood for at least 6 months to prevent HFMD particularly those mother who are working in unprofessional skill jobs. Electronic supplementary material The online version of this article (10.1186/s12879-018-3560-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Panupong Upala
- Center of Excellence for the Hill-tribe Health Research, Mae Fah Luang University, 333 Mo.1 Tasud Subdistrict, Muang District, Chiang Rai, Chiang Rai Province, 57100, Thailand.,School of Health Science Research, Mae Fah Luang University, 333 Mo.1 Tasud Subdistrict, Muang District, Chiang Rai, Chiang Rai Province, 57100, Thailand
| | - Tawatchai Apidechkul
- Center of Excellence for the Hill-tribe Health Research, Mae Fah Luang University, 333 Mo.1 Tasud Subdistrict, Muang District, Chiang Rai, Chiang Rai Province, 57100, Thailand. .,School of Health Science Research, Mae Fah Luang University, 333 Mo.1 Tasud Subdistrict, Muang District, Chiang Rai, Chiang Rai Province, 57100, Thailand.
| | - Wipob Suttana
- Center of Excellence for the Hill-tribe Health Research, Mae Fah Luang University, 333 Mo.1 Tasud Subdistrict, Muang District, Chiang Rai, Chiang Rai Province, 57100, Thailand.,School of Health Science Research, Mae Fah Luang University, 333 Mo.1 Tasud Subdistrict, Muang District, Chiang Rai, Chiang Rai Province, 57100, Thailand
| | - Niwed Kullawong
- Center of Excellence for the Hill-tribe Health Research, Mae Fah Luang University, 333 Mo.1 Tasud Subdistrict, Muang District, Chiang Rai, Chiang Rai Province, 57100, Thailand.,School of Health Science Research, Mae Fah Luang University, 333 Mo.1 Tasud Subdistrict, Muang District, Chiang Rai, Chiang Rai Province, 57100, Thailand
| | - Ratipark Tamornpark
- Center of Excellence for the Hill-tribe Health Research, Mae Fah Luang University, 333 Mo.1 Tasud Subdistrict, Muang District, Chiang Rai, Chiang Rai Province, 57100, Thailand.,School of Health Science Research, Mae Fah Luang University, 333 Mo.1 Tasud Subdistrict, Muang District, Chiang Rai, Chiang Rai Province, 57100, Thailand
| | - Chadaporn Inta
- School of Health Science Research, Mae Fah Luang University, 333 Mo.1 Tasud Subdistrict, Muang District, Chiang Rai, Chiang Rai Province, 57100, Thailand
| |
Collapse
|
48
|
Xia D, Guo X, Hu T, Li L, Teng PY, Yin QQ, Luo L, Xie T, Wei YH, Yang Q, Li SK, Wang YJ, Xie Y, Li YJ, Wang CM, Yang ZC, Chen XG, Zhou XH. Photoperiodic diapause in a subtropical population of Aedes albopictus in Guangzhou, China: optimized field-laboratory-based study and statistical models for comprehensive characterization. Infect Dis Poverty 2018; 7:89. [PMID: 30107859 PMCID: PMC6092856 DOI: 10.1186/s40249-018-0466-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/18/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aedes albopictus is among the 100 most invasive species worldwide and poses a major risk to public health. Photoperiodic diapause provides a crucial ecological basis for the adaptation of this species to adverse environments. Ae. albopictus is the vital vector transmitting dengue virus in Guangzhou, but its diapause activities herein remain obscure. METHODS In the laboratory, yeast powder and food slurry were compared for a proper diapause determination method, and the critical photoperiod (CPP) was tested at illumination times of 11, 11.5, 12, 12.5, 13, and 13.5 h. A 4-parameter logistic (4PL) regression model was selected to estimate the CPP. In the field, the seasonal dynamics of the Ae. albopictus population, egg diapause, and hatching of overwintering eggs were investigated monthly, weekly, and daily, respectively. A distributed lag non-linear model (DLNM) was used to assess the associations of diapause with meteorological factors. RESULTS In the laboratory, both the wild population and the Foshan strain of Ae. albopictus were induced to diapause at an incidence greater than 80%, and no significant difference (P > 0.1) was observed between the two methods for identifying diapause. The CPP of this population was estimated to be 12.312 h of light. In the field, all of the indexes of the wild population were at the lowest levels from December to February, and the Route Index was the first to increase in March. Diapause incidence displayed pronounced seasonal dynamics. It was estimated that the day lengths of 12.111 h at week2016, 43 and 12.373 h at week2017, 41 contributed to diapause in 50% of the eggs. Day length was estimated to be the main meteorological factor related to diapause. CONCLUSIONS Photoperiodic diapause of Ae. albopictus in Guangzhou of China was confirmed and comprehensively elucidated in both the laboratory and the field. Diapause eggs are the main form for overwintering and begin to hatch in large quantities in March in Guangzhou. Furthermore, this study also established an optimized investigation system and statistical models for the study of Ae. albopictus diapause. These findings will contribute to the prevention and control of Ae. albopictus and mosquito-borne diseases.
Collapse
Affiliation(s)
- Dan Xia
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiang Guo
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Tian Hu
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Li Li
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Ping-Ying Teng
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qing-Qing Yin
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lei Luo
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510515, China
| | - Tian Xie
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yue-Hong Wei
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510515, China
| | - Qian Yang
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shu-Kai Li
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yu-Ji Wang
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yu Xie
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yi-Ji Li
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Chun-Mei Wang
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhi-Cong Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510515, China
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Xiao-Hong Zhou
- Department of Pathogen Biology, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|