1
|
Palmer C, Morais E, Tota J. Forecasting Disease Burden with a Dynamic Transmission Model of Human Papillomavirus and Recurrent Respiratory Papillomatosis in the United States. Viruses 2024; 16:1283. [PMID: 39205257 PMCID: PMC11359546 DOI: 10.3390/v16081283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Juvenile- and adult-onset recurrent respiratory papillomatosis (JORRP and AORRP) are rare but serious conditions that are caused by oral human papillomavirus (HPV) infections. The proliferation of wart-like growths throughout the respiratory tract can result in medical problems, including death. The current treatment scheme is surgery, though prevention of HPV infection through vaccination is available. A previously developed model for JORRP and AORRP was adapted to the United States using data on disease burden and HPV infection. The model was validated against post-vaccination reductions in disease and used to forecast the future burden of JORRP and AORRP, estimating the impact that HPV vaccination will have on these diseases. Between 2007 (the beginning of HPV vaccination in the US) and 2021, this model estimates that approximately 1393 lives, 22,867 Quality-Adjusted-Life-Years, and over USD 672 million in treatment costs have been saved by HPV vaccination. There is also a substantial reduction in JORRP and AORRP burden, with a 95% reduction in incidence by 2040. Moreover, between 2040 and 2121, the model predicts 3-11 total cases of HPV6/11-related JORRP in the US, and 36-267 total cases of HPV6/11-related AORRP. HPV vaccination in the United States has driven, and will continue to drive, substantial reductions in the public health and economic burden of HPV6/11-related JORRP and AORRP.
Collapse
Affiliation(s)
- Cody Palmer
- Biostatistics and Research Decision Sciences (BARDS), Merck & Co., Inc., Rahway, NJ 07065, USA
| | | | - Joseph Tota
- Biostatistics and Research Decision Sciences (BARDS), Merck & Co., Inc., Rahway, NJ 07065, USA
| |
Collapse
|
2
|
Crump RE, Aliee M, Sutherland SA, Huang CI, Crowley EH, Spencer SEF, Keeling MJ, Shampa C, Mwamba Miaka E, Rock KS. Modelling timelines to elimination of sleeping sickness in the Democratic Republic of Congo, accounting for possible cryptic human and animal transmission. Parasit Vectors 2024; 17:332. [PMID: 39123265 PMCID: PMC11313002 DOI: 10.1186/s13071-024-06404-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/13/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Sleeping sickness (gambiense human African trypanosomiasis, gHAT) is a vector-borne disease targeted for global elimination of transmission (EoT) by 2030. There are, however, unknowns that have the potential to hinder the achievement and measurement of this goal. These include asymptomatic gHAT infections (inclusive of the potential to self-cure or harbour skin-only infections) and whether gHAT infection in animals can contribute to the transmission cycle in humans. METHODS Using modelling, we explore how cryptic (undetected) transmission impacts the monitoring of progress towards and the achievement of the EoT goal. We have developed gHAT models that include either asymptomatic or animal transmission, and compare these to a baseline gHAT model without either of these transmission routes, to explore the potential role of cryptic infections on the EoT goal. Each model was independently calibrated to five different health zones in the Democratic Republic of the Congo (DRC) using available historical human case data for 2000-2020 (obtained from the World Health Organization's HAT Atlas). We applied a novel Bayesian sequential updating approach for the asymptomatic model to enable us to combine statistical information about this type of transmission from each health zone. RESULTS Our results suggest that, when matched to past case data, we estimated similar numbers of new human infections between model variants, although human infections were slightly higher in the models with cryptic infections. We simulated the continuation of screen-confirm-and-treat interventions, and found that forward projections from the animal and asymptomatic transmission models produced lower probabilities of EoT than the baseline model; however, cryptic infections did not prevent EoT from being achieved eventually under this approach. CONCLUSIONS This study is the first to simulate an (as-yet-to-be available) screen-and-treat strategy and found that removing a parasitological confirmation step was predicted to have a more noticeable benefit to transmission reduction under the asymptomatic model compared with the others. Our simulations suggest vector control could greatly impact all transmission routes in all models, although this resource-intensive intervention should be carefully prioritised.
Collapse
Affiliation(s)
- Ronald E Crump
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Academic Loop Road, CV4 7AL, Coventry, UK
- Mathematics Institute, University of Warwick, Academic Loop Road, Coventry, UK
| | - Maryam Aliee
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Academic Loop Road, CV4 7AL, Coventry, UK
- Mathematics Institute, University of Warwick, Academic Loop Road, Coventry, UK
| | - Samuel A Sutherland
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Academic Loop Road, CV4 7AL, Coventry, UK
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Ching-I Huang
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Academic Loop Road, CV4 7AL, Coventry, UK
- Mathematics Institute, University of Warwick, Academic Loop Road, Coventry, UK
| | - Emily H Crowley
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Academic Loop Road, CV4 7AL, Coventry, UK
- Mathematics Institute, University of Warwick, Academic Loop Road, Coventry, UK
| | - Simon E F Spencer
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Academic Loop Road, CV4 7AL, Coventry, UK
- Department of Statistics, University of Warwick, Academic Loop Road, Coventry, UK
| | - Matt J Keeling
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Academic Loop Road, CV4 7AL, Coventry, UK
- Mathematics Institute, University of Warwick, Academic Loop Road, Coventry, UK
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Chansy Shampa
- Programme National de Lutte Contre la Trypanosomiase Humaine Africaine (PNLTHA)-DRC, Kinshasa, Democratic Republic of Congo
| | - Erick Mwamba Miaka
- Programme National de Lutte Contre la Trypanosomiase Humaine Africaine (PNLTHA)-DRC, Kinshasa, Democratic Republic of Congo
| | - Kat S Rock
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Academic Loop Road, CV4 7AL, Coventry, UK.
- Mathematics Institute, University of Warwick, Academic Loop Road, Coventry, UK.
| |
Collapse
|
3
|
Minter A, Medley GF, Hollingsworth TD. Using Passive Surveillance to Maintain Elimination as a Public Health Problem for Neglected Tropical Diseases: A Model-Based Exploration. Clin Infect Dis 2024; 78:S169-S174. [PMID: 38662695 PMCID: PMC11088853 DOI: 10.1093/cid/ciae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Great progress is being made toward the goal of elimination as a public health problem for neglected tropical diseases such as leprosy, human African trypanosomiasis, Buruli ulcer, and visceral leishmaniasis, which relies on intensified disease management and case finding. However, strategies for maintaining this goal are still under discussion. Passive surveillance is a core pillar of a long-term, sustainable surveillance program. METHODS We use a generic model of disease transmission with slow epidemic growth rates and cases detected through severe symptoms and passive detection to evaluate under what circumstances passive detection alone can keep transmission under control. RESULTS Reducing the period of infectiousness due to decreasing time to treatment has a small effect on reducing transmission. Therefore, to prevent resurgence, passive surveillance needs to be very efficient. For some diseases, the treatment time and level of passive detection needed to prevent resurgence is unlikely to be obtainable. CONCLUSIONS The success of a passive surveillance program crucially depends on what proportion of cases are detected, how much of their infectious period is reduced, and the underlying reproduction number of the disease. Modeling suggests that relying on passive detection alone is unlikely to be enough to maintain elimination goals.
Collapse
Affiliation(s)
- Amanda Minter
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford
| | - Graham F Medley
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, United Kingdom
| | - T Déirdre Hollingsworth
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford
| |
Collapse
|
4
|
Rock KS, Chapman LAC, Dobson AP, Adams ER, Hollingsworth TD. The Hidden Hand of Asymptomatic Infection Hinders Control of Neglected Tropical Diseases: A Modeling Analysis. Clin Infect Dis 2024; 78:S175-S182. [PMID: 38662705 PMCID: PMC11045017 DOI: 10.1093/cid/ciae096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Neglected tropical diseases are responsible for considerable morbidity and mortality in low-income populations. International efforts have reduced their global burden, but transmission is persistent and case-finding-based interventions rarely target asymptomatic individuals. METHODS We develop a generic mathematical modeling framework for analyzing the dynamics of visceral leishmaniasis in the Indian sub-continent (VL), gambiense sleeping sickness (gHAT), and Chagas disease and use it to assess the possible contribution of asymptomatics who later develop disease (pre-symptomatics) and those who do not (non-symptomatics) to the maintenance of infection. Plausible interventions, including active screening, vector control, and reduced time to detection, are simulated for the three diseases. RESULTS We found that the high asymptomatic contribution to transmission for Chagas and gHAT and the apparently high basic reproductive number of VL may undermine long-term control. However, the ability to treat some asymptomatics for Chagas and gHAT should make them more controllable, albeit over relatively long time periods due to the slow dynamics of these diseases. For VL, the toxicity of available therapeutics means the asymptomatic population cannot currently be treated, but combining treatment of symptomatics and vector control could yield a quick reduction in transmission. CONCLUSIONS Despite the uncertainty in natural history, it appears there is already a relatively good toolbox of interventions to eliminate gHAT, and it is likely that Chagas will need improvements to diagnostics and their use to better target pre-symptomatics. The situation for VL is less clear, and model predictions could be improved by additional empirical data. However, interventions may have to improve to successfully eliminate this disease.
Collapse
Affiliation(s)
- Kat S Rock
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, United Kingdom
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - Lloyd A C Chapman
- Department of Mathematics and Statistics, Lancaster University, Lancaster, United Kingdom
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Andrew P Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Emily R Adams
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - T Déirdre Hollingsworth
- Nuffield Department of Medicine, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Davis CN, Crump RE, Sutherland SA, Spencer SEF, Corbella A, Chansy S, Lebuki J, Miaka EM, Rock KS. Comparison of stochastic and deterministic models for gambiense sleeping sickness at different spatial scales: A health area analysis in the DRC. PLoS Comput Biol 2024; 20:e1011993. [PMID: 38557869 PMCID: PMC11008881 DOI: 10.1371/journal.pcbi.1011993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/11/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
The intensification of intervention activities against the fatal vector-borne disease gambiense human African trypanosomiasis (gHAT, sleeping sickness) in the last two decades has led to a large decline in the number of annually reported cases. However, while we move closer to achieving the ambitious target of elimination of transmission (EoT) to humans, pockets of infection remain, and it becomes increasingly important to quantitatively assess if different regions are on track for elimination, and where intervention efforts should be focused. We present a previously developed stochastic mathematical model for gHAT in the Democratic Republic of Congo (DRC) and show that this same formulation is able to capture the dynamics of gHAT observed at the health area level (approximately 10,000 people). This analysis was the first time any stochastic gHAT model has been fitted directly to case data and allows us to better quantify the uncertainty in our results. The analysis focuses on utilising a particle filter Markov chain Monte Carlo (MCMC) methodology to fit the model to the data from 16 health areas of Mosango health zone in Kwilu province as a case study. The spatial heterogeneity in cases is reflected in modelling results, where we predict that under the current intervention strategies, the health area of Kinzamba II, which has approximately one third of the health zone's cases, will have the latest expected year for EoT. We find that fitting the analogous deterministic version of the gHAT model using MCMC has substantially faster computation times than fitting the stochastic model using pMCMC, but produces virtually indistinguishable posterior parameterisation. This suggests that expanding health area fitting, to cover more of the DRC, should be done with deterministic fits for efficiency, but with stochastic projections used to capture both the parameter and stochastic variation in case reporting and elimination year estimations.
Collapse
Affiliation(s)
- Christopher N. Davis
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| | - Ronald E. Crump
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| | - Samuel A. Sutherland
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Simon E. F. Spencer
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Department of Statistics, The University of Warwick, Coventry, United Kingdom
| | - Alice Corbella
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Department of Statistics, The University of Warwick, Coventry, United Kingdom
| | - Shampa Chansy
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, Democratic Republic of the Congo
| | - Junior Lebuki
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, Democratic Republic of the Congo
| | - Erick Mwamba Miaka
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, Democratic Republic of the Congo
| | - Kat S. Rock
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
6
|
GUIHINI MOLLO B, ALDJIBERT M, DARNAS J, YONI W, SANOGO L, BARRY I, SIGNABOUBO D, KALKI R, HAIWANG D, BIÉLER S, ABDEL AZIZ AI, CECCHI G, COURTIN F, SOLANO P. [Updating the northern tsetse distribution limit in Chad in the context of global change]. MEDECINE TROPICALE ET SANTE INTERNATIONALE 2024; 4:mtsi.v4i1.2024.392. [PMID: 38846117 PMCID: PMC11151911 DOI: 10.48327/mtsi.v4i1.2024.392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/29/2024] [Indexed: 06/09/2024]
Abstract
Background - Rationale Tsetse flies (Diptera: Glossinidae) are obligate bloodfeeders that occur exclusively in Sub-Saharan Africa, where they are the vectors of trypanosomes causing HAT (human African trypanosomiasis) and AAT (African animal trypanosomiasis). In Chad, tsetse flies occur only in the most southern part of the country because of its favorable bioclimatic conditions. However, despite the importance of HAT and AAT in this country, very little is known about the current tsetse distribution, in particular its northern limit, which is of key importance for the surveillance of these diseases. Material and methods - Results A total of 217 biconical traps were deployed in 2021 and 2022 from the West to the East around the formerly known northern limit, resulting in 1,024 tsetse caught belonging to three different taxa: Glossina morsitans submorsitans (57%), G. tachinoides (39%) and G. fuscipes fuscipes (4%). In addition to the information gathered on the presence/absence of each tsetse taxon, we show a strong North-South shift of the northen tsetse distribution limit as compared to the previous works from 1966 to 1996, and a growing spatial fragmentation in more and more discrete pockets of tsetse presence. Discussion - Conclusion This North-South shift of the northern tsetse distribution limit in Chad is the likely consequence of the combined effect of severe draughts that affected the country, and increasing human pressure on land. This update of the tsetse northern limit will be of help to the national programmes in charge of HAT and AAT.
Collapse
Affiliation(s)
| | - Moukhtar ALDJIBERT
- Institut de recherche en élevage pour le développement (IRED), Ndjaména, Tchad
| | - Juste DARNAS
- Programme national de lutte contre la trypanosomiase humaine africaine (PNLTHA), Moundou, Tchad
| | - Wilfrid YONI
- Centre international de recherche-développement sur lélevage en zone subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
| | - Lassina SANOGO
- Centre international de recherche-développement sur lélevage en zone subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
| | - Issiaka BARRY
- Centre international de recherche-développement sur lélevage en zone subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
| | - Djouk SIGNABOUBO
- Institut de recherche en élevage pour le développement (IRED), Ndjaména, Tchad
| | | | - Djaklessam HAIWANG
- Institut de recherche en élevage pour le développement (IRED), Ndjaména, Tchad
| | - Sylvain BIÉLER
- Foundation for innovative new diagnostics (FIND), Genève, Suisse
| | | | - Giuliano CECCHI
- Organisation des Nations unies pour l'alimentation et l'agriculture (FAO), Division de la production et de la santé animales, Rome, Italie
| | - Fabrice COURTIN
- Institut de recherche pour le développement (IRD), UMR Intertryp IRD-CIRAD, Représentation IRD à Ouagadougou, Burkina Faso
| | - Philippe SOLANO
- Institut de recherche pour le développement (IRD), UMR Intertryp IRD-CIRAD, Université de Montpellier, France
| |
Collapse
|
7
|
Kaba D, Koffi M, Kouakou L, N’Gouan EK, Djohan V, Courtin F, N’Djetchi MK, Coulibaly B, Adingra GP, Berté D, Ta BTD, Koné M, Traoré BM, Sutherland SA, Crump RE, Huang CI, Madan J, Bessell PR, Barreaux A, Solano P, Crowley EH, Rock KS, Jamonneau V. Towards the sustainable elimination of gambiense human African trypanosomiasis in Côte d'Ivoire using an integrated approach. PLoS Negl Trop Dis 2023; 17:e0011514. [PMID: 37523361 PMCID: PMC10443840 DOI: 10.1371/journal.pntd.0011514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/22/2023] [Accepted: 07/07/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Human African trypanosomiasis is a parasitic disease caused by trypanosomes among which Trypanosoma brucei gambiense is responsible for a chronic form (gHAT) in West and Central Africa. Its elimination as a public health problem (EPHP) was targeted for 2020. Côte d'Ivoire was one of the first countries to be validated by WHO in 2020 and this was particularly challenging as the country still reported around a hundred cases a year in the early 2000s. This article describes the strategies implemented including a mathematical model to evaluate the reporting results and infer progress towards sustainable elimination. METHODS The control methods used combined both exhaustive and targeted medical screening strategies including the follow-up of seropositive subjects- considered as potential asymptomatic carriers to diagnose and treat cases- as well as vector control to reduce the risk of transmission in the most at-risk areas. A mechanistic model was used to estimate the number of underlying infections and the probability of elimination of transmission (EoT) was met between 2000-2021 in two endemic and two hypo-endemic health districts. RESULTS Between 2015 and 2019, nine gHAT cases were detected in the two endemic health districts of Bouaflé and Sinfra in which the number of cases/10,000 inhabitants was far below 1, a necessary condition for validating EPHP. Modelling estimated a slow but steady decline in transmission across the health districts, bolstered in the two endemic health districts by the introduction of vector control. The decrease in underlying transmission in all health districts corresponds to a high probability that EoT has already occurred in Côte d'Ivoire. CONCLUSION This success was achieved through a multi-stakeholder and multidisciplinary one health approach where research has played a major role in adapting tools and strategies to this large epidemiological transition to a very low prevalence. This integrated approach will need to continue to reach the verification of EoT in Côte d'Ivoire targeted by 2025.
Collapse
Affiliation(s)
- Dramane Kaba
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Mathurin Koffi
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, UFR Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire
| | - Lingué Kouakou
- Programme National d’Élimination de la Trypanosomiase Humaine Africaine, Abidjan, Côte d’Ivoire
| | | | - Vincent Djohan
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Fabrice Courtin
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, France
| | - Martial Kassi N’Djetchi
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, UFR Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire
| | - Bamoro Coulibaly
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Guy Pacôme Adingra
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Djakaridja Berté
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Bi Tra Dieudonné Ta
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Minayégninrin Koné
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, UFR Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire
| | - Barkissa Mélika Traoré
- Laboratoire de Biodiversité et Gestion des Ecosystèmes Tropicaux, Unité de Recherche en Génétique et Epidémiologie Moléculaire, UFR Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire
| | - Samuel A. Sutherland
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, Mathematical Sciences Building, The University of Warwick, Coventry, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Ronald E. Crump
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, Mathematical Sciences Building, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, Zeeman Building, The University of Warwick, Coventry, United Kingdom
| | - Ching-I Huang
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, Mathematical Sciences Building, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, Zeeman Building, The University of Warwick, Coventry, United Kingdom
| | - Jason Madan
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, Mathematical Sciences Building, The University of Warwick, Coventry, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | | - Antoine Barreaux
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, France
| | - Philippe Solano
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, France
| | - Emily H. Crowley
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, Mathematical Sciences Building, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, Zeeman Building, The University of Warwick, Coventry, United Kingdom
| | - Kat S. Rock
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, Mathematical Sciences Building, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, Zeeman Building, The University of Warwick, Coventry, United Kingdom
| | - Vincent Jamonneau
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, France
| |
Collapse
|
8
|
Huang CI, Crump RE, Crowley EH, Hope A, Bessell PR, Shampa C, Mwamba Miaka E, Rock KS. A modelling assessment of short- and medium-term risks of programme interruptions for gambiense human African trypanosomiasis in the DRC. PLoS Negl Trop Dis 2023; 17:e0011299. [PMID: 37115809 PMCID: PMC10171604 DOI: 10.1371/journal.pntd.0011299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 05/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Gambiense human African trypanosomiasis (gHAT) is a deadly vector-borne, neglected tropical disease found in West and Central Africa targeted for elimination of transmission (EoT) by 2030. The recent pandemic has illustrated how it can be important to quantify the impact that unplanned disruption to programme activities may have in achieving EoT. We used a previously developed model of gHAT fitted to data from the Democratic Republic of the Congo, the country with the highest global case burden, to explore how interruptions to intervention activities, due to e.g. COVID-19, Ebola or political instability, could impact progress towards EoT and gHAT burden. We simulated transmission and reporting dynamics in 38 regions within Kwilu, Mai Ndombe and Kwango provinces under six interruption scenarios lasting for nine or twenty-one months. Included in the interruption scenarios are the cessation of active screening in all scenarios and a reduction in passive detection rates and a delay or suspension of vector control deployments in some scenarios. Our results indicate that, even under the most extreme 21-month interruption scenario, EoT is not predicted to be delayed by more than one additional year compared to the length of the interruption. If existing vector control deployments continue, we predict no delay in achieving EoT even when both active and passive screening activities are interrupted. If passive screening remains as functional as in 2019, we expect a marginal negative impact on transmission, however this depends on the strength of passive screening in each health zone. We predict a pronounced increase in additional gHAT disease burden (morbidity and mortality) in many health zones if both active and passive screening were interrupted compared to the interruption of active screening alone. The ability to continue existing vector control during medical activity interruption is also predicted to avert a moderate proportion of disease burden.
Collapse
Affiliation(s)
- Ching-I Huang
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| | - Ronald E. Crump
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| | - Emily H. Crowley
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| | - Andrew Hope
- Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
| | | | - Chansy Shampa
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, Democratic Republic of the Congo
| | - Erick Mwamba Miaka
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, Democratic Republic of the Congo
| | - Kat S. Rock
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
9
|
Solano P, Courtin F, Kaba D, Camara, Kagbadouno M, Rayaisse JB, Jamonneau V, Bucheton B, Bart JM, Thevenon S, Lejon V. [Towards elimination of human African trypanosomiasis]. MEDECINE TROPICALE ET SANTE INTERNATIONALE 2023; 3:mtsi.v3i1.2023.317. [PMID: 37525637 PMCID: PMC10387296 DOI: 10.48327/mtsi.v3i1.2023.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 08/02/2023]
Abstract
Human African Trypanosomiasis (HAT) is caused by Trypanosoma brucei which is transmitted by the tsetse fly insect vector (Glossina spp). It is one of the 20 Neglected Tropical Diseases (NTD) listed by the WHO. These diseases affect the poorest and most vulnerable communities, for which the WHO has established a dedicated 2021-2030 roadmap. At the time of Alphonse Laveran, HAT devastated the African continent. In the 1960s, the disease was nearly under control, but it strongly re-emerged in the 1990s. A coordinated effort of all stakeholders, with national control programs as the main actors, a strong contribution of research and important donations by the private sector, allowed to decrease the HAT burden significantly. Since 2018, less than 1000 cases are detected annually. We here review new diagnostics, treatments and vector control tools that have been implemented jointly and successfully in several endemic countries.The next key challenge will be to sustain the gains. Newly emerging research questions include long-term carriage of trypanosomes and adaptation of tools to low prevalence contexts. Challenges out of the research area comprise the continued need of funding, maintenance of dedicated human resources, and the key question of access. Sustainable elimination as "interruption of transmission", which is the 2030 NTD roadmap target, can be reached, if these challenges are solved. We stress the importance of continuing to combine the efforts in the fight against the disease, because sustainable elimination of HAT is the best long-term prevention strategy against re-emergence. As such, HAT elimination can serve as an example for other infectious diseases.
Collapse
Affiliation(s)
- Philippe Solano
- Université Montpellier, Institut de recherche pour le développement (IRD), Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR Intertryp Montpellier, France
| | | | - Dramane Kaba
- Institut Pierre Richet Bouaké, Institut national de santé publique, Côte d'Ivoire
| | - Camara
- Programme national de lutte contre les maladies tropicales négligées – Prise en charge des cas (PNLMTN-PCC), Ministère de la Santé, Conakry, Guinée
| | - Moïse Kagbadouno
- Programme national de lutte contre les maladies tropicales négligées – Prise en charge des cas (PNLMTN-PCC), Ministère de la Santé, Conakry, Guinée
| | - Jean-Baptiste Rayaisse
- Centre international de recherche-développement sur l’élevage (CIRDES), Bobo-Dioulasso, Burkina Faso
| | - Vincent Jamonneau
- Université Montpellier, Institut de recherche pour le développement (IRD), Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR Intertryp Montpellier, France
- Institut Pierre Richet Bouaké, Institut national de santé publique, Côte d'Ivoire
| | - Bruno Bucheton
- Université Montpellier, Institut de recherche pour le développement (IRD), Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR Intertryp Montpellier, France
- Programme national de lutte contre les maladies tropicales négligées – Prise en charge des cas (PNLMTN-PCC), Ministère de la Santé, Conakry, Guinée
| | - Jean-Mathieu Bart
- Université Montpellier, Institut de recherche pour le développement (IRD), Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR Intertryp Montpellier, France
- Programme national de lutte contre les maladies tropicales négligées – Prise en charge des cas (PNLMTN-PCC), Ministère de la Santé, Conakry, Guinée
| | - Sophie Thevenon
- Université Montpellier, Institut de recherche pour le développement (IRD), Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR Intertryp Montpellier, France
| | - Veerle Lejon
- Université Montpellier, Institut de recherche pour le développement (IRD), Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR Intertryp Montpellier, France
| |
Collapse
|
10
|
Vourchakbé J, Tiofack AAZ, Kante ST, Barka PA, Simo G. Prevalence of pathogenic trypanosome species in naturally infected cattle of three sleeping sickness foci of the south of Chad. PLoS One 2022; 17:e0279730. [PMID: 36584086 PMCID: PMC9803169 DOI: 10.1371/journal.pone.0279730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Although a diversity of trypanosome species have been detected in various animal taxa from human African trypanosomosis (HAT) foci, cattle trypanosomosis has not been addressed in HAT foci of west and central African countries including Chad. This study aimed to determine the prevalence of pathogenic trypanosome species in cattle from three HAT foci of the south of Chad. Blood samples were collected from 1466 randomly selected cattle from HAT foci of Mandoul, Maro, and Moïssala in the south of Chad. For each animal, the sex, age and body condition were recorded. Rapid diagnostic test (RDT) was used to search Trypanosoma brucei gambiense antibodies while the capillary tube centrifugation (CTC) test and PCR-based methods enabled to detect and identify trypanosome species. From the 1466 cattle, 45 (3.1%) were positive to RDT. The prevalence of trypanosome infections revealed by CTC and PCR-based method were respectively 2.7% and 11.1%. Trypanosomes of the subgenus Trypanozoon were dominant (6.5%) followed by T. congolense savannah (2.9%), T. congolense forest (2.5%) and T. vivax (0.8%). No animal was found with DNA of human infective trypanosome (T. b. gambiense). The overall prevalence of trypanosome infections was significantly higher in animal from the Maro HAT focus (13.8%) than those from Mandoul (11.1%) and Moïssala HAT foci (8.0%). This prevalence was also significantly higher in animal having poor body condition (77.5%) than those with medium (11.2%) and good (0.5%) body condition. The overall prevalence of single and mixed infections were respectively 9.4% and 1.6%. This study revealed natural infections of several pathogenic trypanosome species in cattle from different HAT foci of Chad. It showed similar transmission patterns of these trypanosome species and highlighted the need of developing control strategies for animal African trypanosomosis (AAT) with the overarching goal of improving animal health and the economy of smallholder farmers.
Collapse
Affiliation(s)
- Joël Vourchakbé
- Department of Biological Science, Faculty of Science and Technology, University of Doba, Doba, Chad
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Arnol Auvaker Zebaze Tiofack
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Sartrien Tagueu Kante
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Padja Abdoul Barka
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| |
Collapse
|
11
|
Crump RE, Huang CI, Spencer SEF, Brown PE, Shampa C, Mwamba Miaka E, Rock KS. Modelling to infer the role of animals in gambiense human African trypanosomiasis transmission and elimination in the DRC. PLoS Negl Trop Dis 2022; 16:e0010599. [PMID: 35816487 PMCID: PMC9302778 DOI: 10.1371/journal.pntd.0010599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/21/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
Gambiense human African trypanosomiasis (gHAT) has been targeted for elimination of transmission (EoT) to humans by 2030. Whilst this ambitious goal is rapidly approaching, there remain fundamental questions about the presence of non-human animal transmission cycles and their potential role in slowing progress towards, or even preventing, EoT. In this study we focus on the country with the most gHAT disease burden, the Democratic Republic of Congo (DRC), and use mathematical modelling to assess whether animals may contribute to transmission in specific regions, and if so, how their presence could impact the likelihood and timing of EoT. By fitting two model variants-one with, and one without animal transmission-to the human case data from 2000-2016 we estimate model parameters for 158 endemic health zones of the DRC. We evaluate the statistical support for each model variant in each health zone and infer the contribution of animals to overall transmission and how this could impact predicted time to EoT. We conclude that there are 24/158 health zones where there is substantial to decisive statistical support for some animal transmission. However-even in these regions-we estimate that animals would be extremely unlikely to maintain transmission on their own. Animal transmission could hamper progress towards EoT in some settings, with projections under continuing interventions indicating that the number of health zones expected to achieve EoT by 2030 reduces from 68/158 to 61/158 if animal transmission is included in the model. With supplementary vector control (at a modest 60% tsetse reduction) added to medical screening and treatment interventions, the predicted number of health zones meeting the goal increases to 147/158 for the model including animal transmission. This is due to the impact of vector reduction on transmission to and from all hosts.
Collapse
Affiliation(s)
- Ronald E. Crump
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| | - Ching-I Huang
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| | - Simon E. F. Spencer
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- The Department of Statistics, The University of Warwick, Coventry, United Kingdom
| | - Paul E. Brown
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| | - Chansy Shampa
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, Democratic Republic of the Congo
| | - Erick Mwamba Miaka
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, Democratic Republic of the Congo
| | - Kat S. Rock
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
12
|
Huang CI, Crump RE, Brown PE, Spencer SEF, Miaka EM, Shampa C, Keeling MJ, Rock KS. Identifying regions for enhanced control of gambiense sleeping sickness in the Democratic Republic of Congo. Nat Commun 2022; 13:1448. [PMID: 35304479 PMCID: PMC8933483 DOI: 10.1038/s41467-022-29192-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Gambiense human African trypanosomiasis (sleeping sickness, gHAT) is a disease targeted for elimination of transmission by 2030. While annual new cases are at a historical minimum, the likelihood of achieving the target is unknown. We utilised modelling to study the impacts of four strategies using currently available interventions, including active and passive screening and vector control, on disease burden and transmission across 168 endemic health zones in the Democratic Republic of the Congo. Median projected years of elimination of transmission show only 98 health zones are on track despite significant reduction in disease burden under medical-only strategies (64 health zones if > 90% certainty required). Blanket coverage with vector control is impractical, but is predicted to reach the target in all heath zones. Utilising projected disease burden under the uniform medical-only strategy, we provide a priority list of health zones for consideration for supplementary vector control alongside medical interventions.
Collapse
Affiliation(s)
- Ching-I Huang
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, UK.
- Mathematics Institute, The University of Warwick, Coventry, UK.
| | - Ronald E Crump
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, UK
- Mathematics Institute, The University of Warwick, Coventry, UK
- The School of Life Sciences, The University of Warwick, Coventry, UK
| | - Paul E Brown
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, UK
- Mathematics Institute, The University of Warwick, Coventry, UK
| | - Simon E F Spencer
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, UK
- The Department of Statistics, The University of Warwick, Coventry, UK
| | - Erick Mwamba Miaka
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, Democratic Republic of the Congo
| | - Chansy Shampa
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, Democratic Republic of the Congo
| | - Matt J Keeling
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, UK
- Mathematics Institute, The University of Warwick, Coventry, UK
- The School of Life Sciences, The University of Warwick, Coventry, UK
| | - Kat S Rock
- Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, UK
- Mathematics Institute, The University of Warwick, Coventry, UK
| |
Collapse
|