1
|
Van Reet J, Tunnell K, Anderson K, Kim HC, Kim E, Kowsari K, Yoo SS. Evaluation of advective solute infiltration into porous media by pulsed focused ultrasound-induced acoustic streaming effects. Ultrasonography 2024; 43:35-46. [PMID: 38029736 PMCID: PMC10766883 DOI: 10.14366/usg.23037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 12/01/2023] Open
Abstract
PURPOSE Acoustic streaming induced by applying transcranial focused ultrasound (FUS) promotes localized advective solute transport in the brain and has recently garnered research interest for drug delivery and enhancement of brain waste clearance. The acoustic streaming behavior in brain tissue is difficult to model numerically and thus warrants an in vitro examination of the effects of using different sonication parameters, in terms of frequency, intensity, and pulse duration (PD). METHODS Melamine and polyvinyl alcohol (PVA) foams were used to mimic the porous brain tissue, which contains leptomeningeal fenestrations and perivascular space, while agar hydrogel was used to emulate denser neuropil. FUS was delivered to these media, which were immersed in a phosphate-buffered saline containing toluidine blue O dye, across various frequencies (400, 500, and 600 kHz; applicable to transcranial delivery) in a pulsed mode at two different spatialpeak pulse-average intensities (3 and 4 W/cm2). RESULTS Image analysis showed that the use of 400 kHz yielded the greatest dye infiltration in melamine foam, while sonication had no impact on infiltration in the agar hydrogel due to the dominance of diffusional transport. Using a fixed spatial-peak temporal-average intensity of 0.4 W/cm2 at 400 kHz, a PD of 75 ms resulted in the greatest infiltration depth in both melamine and PVA foams among the tested range (50-150 ms). CONCLUSION These findings suggest the existence of a specific frequency and PD that induce greater enhancement of solute/fluid movement, which may contribute to eventual in vivo applications in promoting waste clearance from the brain.
Collapse
Affiliation(s)
- Jared Van Reet
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kate Tunnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kara Anderson
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hyun-Chul Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Artificial Intelligence, Kyungpook National University, Daegu, Korea
| | - Evgenii Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kavin Kowsari
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Yoo SS, Kim E, Kowsari K, Van Reet J, Kim HC, Yoon K. Non-invasive enhancement of intracortical solute clearance using transcranial focused ultrasound. Sci Rep 2023; 13:12339. [PMID: 37524783 PMCID: PMC10390479 DOI: 10.1038/s41598-023-39640-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
Transport of interstitial fluid and solutes plays a critical role in clearing metabolic waste from the brain. Transcranial application of focused ultrasound (FUS) has been shown to promote localized cerebrospinal fluid solute uptake into the brain parenchyma; however, its effects on the transport and clearance of interstitial solutes remain unknown. We demonstrate that pulsed application of low-intensity FUS to the rat brain enhances the transport of intracortically injected fluorescent tracers (ovalbumin and high molecular-weight dextran), yielding greater parenchymal tracer volume distribution compared to the unsonicated control group (ovalbumin by 40.1% and dextran by 34.6%). Furthermore, FUS promoted the drainage of injected interstitial ovalbumin to both superficial and deep cervical lymph nodes (cLNs) ipsilateral to sonication, with 78.3% higher drainage observed in the superficial cLNs compared to the non-sonicated hemisphere. The application of FUS increased the level of solute transport visible from the dorsal brain surface, with ~ 43% greater area and ~ 19% higher fluorescence intensity than the unsonicated group, especially in the pial surface ipsilateral to sonication. The sonication did not elicit tissue-level neuronal excitation, measured by an electroencephalogram, nor did it alter the molecular weight of the tracers. These findings suggest that nonthermal transcranial FUS can enhance advective transport of interstitial solutes and their subsequent removal in a completely non-invasive fashion, offering its potential non-pharmacological utility in facilitating clearance of waste from the brain.
Collapse
Affiliation(s)
- Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, MA, 02115, Boston, USA.
| | - Evgenii Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, MA, 02115, Boston, USA
| | - Kavin Kowsari
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, MA, 02115, Boston, USA
| | - Jared Van Reet
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, MA, 02115, Boston, USA
| | - Hyun-Chul Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, MA, 02115, Boston, USA
- Department of Artificial Intelligence, Kyungpook National University, Daegu, Republic of Korea
| | - Kyungho Yoon
- School of Computational Science and Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Honari A, Sirsi SR. The Evolution and Recent Trends in Acoustic Targeting of Encapsulated Drugs to Solid Tumors: Strategies beyond Sonoporation. Pharmaceutics 2023; 15:1705. [PMID: 37376152 DOI: 10.3390/pharmaceutics15061705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Despite recent advancements in ultrasound-mediated drug delivery and the remarkable success observed in pre-clinical studies, no delivery platform utilizing ultrasound contrast agents has yet received FDA approval. The sonoporation effect was a game-changing discovery with a promising future in clinical settings. Various clinical trials are underway to assess sonoporation's efficacy in treating solid tumors; however, there are disagreements on its applicability to the broader population due to long-term safety issues. In this review, we first discuss how acoustic targeting of drugs gained importance in cancer pharmaceutics. Then, we discuss ultrasound-targeting strategies that have been less explored yet hold a promising future. We aim to shed light on recent innovations in ultrasound-based drug delivery including newer designs of ultrasound-sensitive particles specifically tailored for pharmaceutical usage.
Collapse
Affiliation(s)
- Arvin Honari
- Department of Bioengineering, Erik Johnson School of Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Shashank R Sirsi
- Department of Bioengineering, Erik Johnson School of Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
4
|
Numerical and experimental evaluation of ultrasound-assisted convection enhanced delivery to transfer drugs into brain tumors. Sci Rep 2022; 12:19299. [PMID: 36369259 PMCID: PMC9652304 DOI: 10.1038/s41598-022-23429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Central Nervous System (CNS) malignant tumors are a leading cause of death worldwide with a high mortality rate. While numerous strategies have been proposed to treat CNS tumors, the treatment efficacy is still low mainly due to the existence of the Blood-Brain Barrier (BBB). BBB is a natural cellular layer between the circulatory system and brain extracellular fluid, limiting the transfer of drug particles and confining the routine treatment strategies in which drugs are released in the blood. Consequently, direct drug delivery methods have been devised to bypass the BBB. However, the efficiency of these methods is not enough to treat deep and large brain tumors. In the study at hand, the effect of focused ultrasound (FUS) waves on enhancing drug delivery to brain tumors, through ultrasound-assisted convection-enhanced delivery (UCED), has been investigated. First, brain mimicking gels were synthesized to mimic the CNS microenvironment, and the drug solution was injected into them. Second, FUS waves with the resonance frequency of 1.1 MHz were applied to the drug injected zone. Next, a finite element (FE) model was developed to evaluate the pre-existing equation in the literature for describing the drug delivery via acoustic streaming in brain tissue. Experimental results showed that the FUS transducer was able to enhance the drug volume distribution up to 500% relative to convection-enhanced delivery alone (CED). Numerical analysis showed that the FE model could replicate the experimental penetration depths with a mean difference value of less than 21%, and acoustic streaming plays a significant role in UCED. Therefore, the results of this study could open a new way to develop FE models of the brain to better evaluate the UCED and reduce the costs of conducting clinical and animal studies.
Collapse
|
5
|
Yuan B. Interstitial fluid streaming in deep tissue induced by ultrasound momentum transfer for accelerating nanoagent transport and controlling its distribution. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac88b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/10/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. This study aims to theoretically investigate the dynamics of ultrasound-induced interstitial fluid streaming and tissue recovery after ultrasound exposure for potentially accelerating nanoagent transport and controlling its distribution in tissue. Approach. Starting from fundamental equations, the dynamics of ultrasound-induced interstitial fluid streaming and tissue relaxation after an ultrasound exposure were modeled, derived and simulated. Also, both ultrasound-induced mechanical and thermal effects were considered in the models. Main results. The proposed new mechanism was named squeezing interstitial fluid via transfer of ultrasound momentum (SIF-TUM). It means that an ultrasound beam can squeeze the tissue in a small focal volume from all the directions, and generate a macroscopic streaming of interstitial fluid and a compression of tissue solid matrix. After the ultrasound is turned off, the solid matrix will recover and can generate a backflow. Rather than the ultrasound pressure itself or intensity, the streaming velocity is determined by the dot product of the ultrasound pressure gradient and its conjugate. Tissue and nanoagent properties also affect the streaming and recovery velocities. Significance. The mobility of therapeutic or diagnostic agents, such as drugs, drug carriers, or imaging contrast agents, in the interstitial space of many diseased tissues, such as tumors, is usually extremely low because of the inefficiency of the natural transport mechanisms. Therefore, the interstitial space is one of the major barriers hindering agent deliveries. The ability to externally accelerate agent transport and control its distribution is highly desirable. Potentially, SIF-TUM can be a powerful technology to accelerate agent transport in deep tissue and control the distribution if appropriate parameters are selected.
Collapse
|
6
|
Yoo SS, Kim HC, Kim J, Kim E, Kowsari K, Van Reet J, Yoon K. Enhancement of cerebrospinal fluid tracer movement by the application of pulsed transcranial focused ultrasound. Sci Rep 2022; 12:12940. [PMID: 35902724 PMCID: PMC9334279 DOI: 10.1038/s41598-022-17314-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Efficient transport of solutes in the cerebrospinal fluid (CSF) plays a critical role in their clearance from the brain. Convective bulk flow of solutes in the CSF in the perivascular space (PVS) is considered one of the important mechanisms behind solute movement in the brain, before their ultimate drainage to the systemic lymphatic system. Acoustic pressure waves can impose radiation force on a medium in its path, inducing localized and directional fluidic flow, known as acoustic streaming. We transcranially applied low-intensity focused ultrasound (FUS) to rats that received an intracisternal injection of fluorescent CSF tracers (dextran and ovalbumin, having two different molecular weights-Mw). The sonication pulsing parameter was determined on the set that propelled the aqueous solution of toluidine blue O dye into a porous media (melamine foam) at the highest level of infiltration. Fluorescence imaging of the brain showed that application of FUS increased the uptake of ovalbumin at the sonicated plane, particularly around the ventricles, whereas the uptake of high-Mw dextran was unaffected. Numerical simulation showed that the effects of sonication were non-thermal. Sonication did not alter the animals' behavior or disrupt the blood-brain barrier (BBB) while yielding normal brain histology. The results suggest that FUS may serve as a new non-invasive means to promote interstitial CSF solute transport in a region-specific manner without disrupting the BBB, providing potential for enhanced clearance of waste products from the brain.
Collapse
Affiliation(s)
- Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| | - Hyun-Chul Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
- Department of Artificial Intelligence, Kyungpook National University, Daegu, Republic of Korea
| | - Jaeho Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Evgenii Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Kavin Kowsari
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA, USA
| | - Jared Van Reet
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Kyungho Yoon
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Shamloo A, Boroumand A, Ebrahimi S, Kalantarnia F, Maleki S, Moradi H. Modeling of an Ultrasound System in Targeted Drug Delivery to Abdominal Aortic Aneurysm: A Patient-Specific in Silico Study Based on Ligand-Receptor Binding. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:967-974. [PMID: 34958631 DOI: 10.1109/tuffc.2021.3138868] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Targeted drug delivery methods have shown a significant impact on enhancing drug delivery efficiency and reducing drug side effects. While various stimuli have been used to promote the drug delivery process, applying ultrasound (US) waves to control drug particles through the human body, noninvasively, has drawn the scientist's attention. However, microcarriers delivery reaches the aneurysmal artery by US waves that exert volumetric forces on blood, and drug carriers, which can therefore affect blood flow patterns and movement pathways of drug carriers, have not yet been studied. In this study, we developed a 3-D patient-specific model of abdominal aortic aneurysm (AAA) to evaluate the effect of US waves in enhancing the drug-containing microbubbles (MBs) adhered on the AAA lumen through ligand-receptor binding. Thus, a focused US (FUS) transducer with a resonance frequency of ~1.1 MHz was added to the geometry. Then, the surface density of MBs (SDM) adhered on the AAA lumen was calculated at peak acoustic pressure of ~1.1, ~2.2, and ~4.3 MPa. Results indicated that increasing the US pressure had a significant impact on improving the MBs adhered to the intended wall, whereby US waves with the maximum pressure of ~4.3 MPa could enhance ~1- [Formula: see text] MBs adhesion ~98% relative to not using the waves. While US waves have the advantage of more SDM adhered to the whole artery wall, they adversely affect the SDM adhered on the critical wall of the abdominal aorta. Furthermore, when the US strength goes up, a reduction occurs in the SDM adhered. This reduction is higher for smaller MBs, which is the mentioned MBs' size and US strength reduced SDM adhesion by about ~50% relative to systemic injection. Therefore, it can be concluded that drug delivery using the US field increases the SDM adhered to the whole AAA wall and decreases the SDM adhered to the critical wall of AAA.
Collapse
|
8
|
Faraji AH, Rajendran S, Jaquins-Gerstl AS, Hayes HJ, Richardson RM. Convection-Enhanced Delivery and Principles of Extracellular Transport in the Brain. World Neurosurg 2021; 151:163-171. [PMID: 34044166 DOI: 10.1016/j.wneu.2021.05.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022]
Abstract
Stereotactic neurosurgery involves a targeted intervention based on congruence of image guidance to a reference fiducial system. This discipline has widespread applications in radiosurgery, tumor therapy, drug delivery, functional lesioning, and neuromodulation. In this article, we focused on convection-enhanced delivery to deliver therapeutic agents to the brain addressing areas of research and clinical development. We performed a robust literature review of all relevant articles highlighting current efforts and challenges of making this delivery technique more widely understood. We further described key biophysical properties of molecular transport in the extracellular space that may impact the efficacy and control of drug delivery using stereotactic methods. Understanding these principles is critical for further refinement of predictive models that can inform advances in stereotactic techniques for convection-enhanced delivery of therapeutic agents to the brain.
Collapse
Affiliation(s)
- Amir H Faraji
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, Texas, USA; Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas, USA; Center for Translational Neural Prosthetics and Interfaces, Houston Methodist Research Institute, Houston, Texas, USA.
| | - Sibi Rajendran
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, Texas, USA
| | | | - Hunter J Hayes
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - R Mark Richardson
- Department of Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Lovmo MK, Yemane PT, Bjorkoy A, Hansen R, Cleveland RO, Angelsen BA, de Lange Davies C. Effect of Acoustic Radiation Force on Displacement of Nanoparticles in Collagen Gels. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:416-431. [PMID: 32746200 DOI: 10.1109/tuffc.2020.3006762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Penetration of nanoscale therapeutic agents into the extracellular matrix (ECM) of a tumor is a limiting factor for the sufficient delivery of drugs in tumors. Ultrasound (US) in combination with microbubbles causing cavitation is reported to improve delivery of nanoparticles (NPs) and drugs to tumors. Acoustic radiation force (ARF) could also enhance the penetration of NPs in tumor ECM. In this work, a collagen gel was used as a model for tumor ECM to study the effects of ARF on the penetration of NPs as well as the deformation of collagen gels applying different US parameters (varying pressure and duty cycle). The collagen gel was characterized, and the diffusion of water and NPs was measured. The penetration of NPs into the gel was measured by confocal laser scanning microscopy and numerical simulations were performed to determine the ARF and to estimate the penetration distance and extent of deformation. ARF had no effect on the penetration of NPs into the collagen gels for the US parameters and gel used, whereas a substantial deformation was observed. The width of the deformation on the collagen gel surface corresponded to the US beam. Comparing ARF caused by attenuation within the gel and Langevin pressure caused by reflection at the gel-water surface, ARF was the prevalent mechanism for the gel deformation. The experimental and theoretical results were consistent both with respect to the NP penetration and the gel deformation.
Collapse
|
10
|
Determinants of Intraparenchymal Infusion Distributions: Modeling and Analyses of Human Glioblastoma Trials. Pharmaceutics 2020; 12:pharmaceutics12090895. [PMID: 32967184 PMCID: PMC7559135 DOI: 10.3390/pharmaceutics12090895] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/01/2023] Open
Abstract
Intra-parenchymal injection and delivery of therapeutic agents have been used in clinical trials for brain cancer and other neurodegenerative diseases. The complexity of transport pathways in tissue makes it difficult to envision therapeutic agent distribution from clinical MR images. Computer-assisted planning has been proposed to mitigate risk for inadequate delivery through quantitative understanding of infusion characteristics. We present results from human studies and simulations of intratumoral infusions of immunotoxins in glioblastoma patients. Gd-DTPA and 124I-labeled human serum albumin (124I-HSA) were co-infused with the therapeutic, and their distributions measured in MRI and PET. Simulations were created by modeling tissue fluid mechanics and physiology and suggested that reduced distribution of tracer molecules within tumor is primarily related to elevated loss rates computed from DCE. PET-tracer on the other hand shows that the larger albumin molecule had longer but heterogeneous residence times within the tumor. We found over two orders of magnitude variation in distribution volumes for the same infusion volumes, with relative error ~20%, allowing understanding of even anomalous infusions. Modeling and measurement revealed that key determinants of flow include infusion-induced expansion and loss through compromised BBB. Opportunities are described to improve computer-assisted CED through iterative feedback between simulations and imaging.
Collapse
|
11
|
Muller MA, Xie A, Qi Y, Zhao Y, Ozawa K, Noble-Vranish M, Lindner JR. Regional and Conducted Vascular Effects of Endovascular Ultrasound Catheters. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2361-2369. [PMID: 32522456 PMCID: PMC7720779 DOI: 10.1016/j.ultrasmedbio.2020.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 06/03/2023]
Abstract
Intra-vascular ultrasound catheters are used clinically to facilitate clot lysis. We hypothesized that these devices could also directly lower microvascular resistance and increase tissue perfusion through established shear-dependent pathways. In mice, either the proximal hind-limb muscles or the upstream femoral artery alone was exposed to an endovascular ultrasound catheter (2.3 MHz, 0.5-1.1 MPa) for 10 min. Quantitative microvascular perfusion imaging in the hind limbs exposed to the endovascular ultrasound system exhibited a more-than-twofold increase in flow (p < 0.01) compared with the contralateral control limb after exposure of either the muscle or the femoral artery alone. Using an in vivo optical imaging reporting system, an eight- to ninefold increase in tissue adenosine triphosphate (ATP) was detected in the region of insonification (p = 0.006). Ultrasound was found to produce an immediate release of ATP from ex vivo erythrocytes (p = 0.03). In situ electrochemical sensing revealed an immediate increase in nitric oxide with initiation of ultrasound which returned to baseline within 5 min of termination, as well as ultrasound-triggered nitric oxide (NO) release from erythrocytes. These data indicate that non-cavitating ultrasound produced by endovascular catheters can reduce vascular resistance and increase flow through recognized shear-dependent vasodilator pathways involving purinergic signaling and NO.
Collapse
Affiliation(s)
- Matthew A Muller
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Aris Xie
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Yue Qi
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Yan Zhao
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Koya Ozawa
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA; Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
12
|
Abstract
Despite an overall improvement in survival rates for cancer, certain resistant forms of the disease still impose a significant burden on patients and healthcare systems. Standard chemotherapy in these cases is often ineffective and/or gives rise to severe side effects. Targeted delivery of chemotherapeutics could improve both tumour response and patient experience. Hence, there is an urgent need to develop effective methods for this. Ultrasound is an established technique in both diagnosis and therapy. Its use in conjunction with microbubbles is being actively researched for the targeted delivery of small-molecule drugs. In this review, we cover the methods by which ultrasound and microbubbles can be used to overcome tumour barriers to cancer therapy.
Collapse
|