1
|
Mauriello A, Ascrizzi A, Molinari R, Falco L, Caturano A, D’Andrea A, Russo V. Pharmacogenomics of Cardiovascular Drugs for Atherothrombotic, Thromboembolic and Atherosclerotic Risk. Genes (Basel) 2023; 14:2057. [PMID: 38003001 PMCID: PMC10671139 DOI: 10.3390/genes14112057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
PURPOSE OF REVIEW Advances in pharmacogenomics have paved the way for personalized medicine. Cardiovascular diseases still represent the leading cause of mortality in the world. The aim of this review is to summarize the background, rationale, and evidence of pharmacogenomics in cardiovascular medicine, in particular, the use of antiplatelet drugs, anticoagulants, and drugs used for the treatment of dyslipidemia. RECENT FINDINGS Randomized clinical trials have supported the role of a genotype-guided approach for antiplatelet therapy in patients with coronary heart disease undergoing percutaneous coronary interventions. Numerous studies demonstrate how the risk of ineffectiveness of new oral anticoagulants and vitamin K anticoagulants is linked to various genetic polymorphisms. Furthermore, there is growing evidence to support the association of some genetic variants and poor adherence to statin therapy, for example, due to the appearance of muscular symptoms. There is evidence for resistance to some drugs for the treatment of dyslipidemia, such as anti-PCSK9. SUMMARY Pharmacogenomics has the potential to improve patient care by providing the right drug to the right patient and could guide the identification of new drug therapies for cardiovascular disease. This is very important in cardiovascular diseases, which have high morbidity and mortality. The improvement in therapy could be reflected in the reduction of healthcare costs and patient mortality.
Collapse
Affiliation(s)
- Alfredo Mauriello
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Campania”—Monaldi Hospital, 80126 Naples, Italy; (A.M.); (A.A.); (R.M.); (L.F.); (A.D.)
| | - Antonia Ascrizzi
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Campania”—Monaldi Hospital, 80126 Naples, Italy; (A.M.); (A.A.); (R.M.); (L.F.); (A.D.)
| | - Riccardo Molinari
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Campania”—Monaldi Hospital, 80126 Naples, Italy; (A.M.); (A.A.); (R.M.); (L.F.); (A.D.)
| | - Luigi Falco
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Campania”—Monaldi Hospital, 80126 Naples, Italy; (A.M.); (A.A.); (R.M.); (L.F.); (A.D.)
| | - Alfredo Caturano
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80100 Naples, Italy;
| | - Antonello D’Andrea
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Campania”—Monaldi Hospital, 80126 Naples, Italy; (A.M.); (A.A.); (R.M.); (L.F.); (A.D.)
- Unit of Cardiology, “Umberto I” Hospital, Nocera Inferiore, 84014 Salerno, Italy
| | - Vincenzo Russo
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Campania”—Monaldi Hospital, 80126 Naples, Italy; (A.M.); (A.A.); (R.M.); (L.F.); (A.D.)
| |
Collapse
|
2
|
Baiardi G, Cafaro A, Stella M, Caviglia MC, Poeta MG, Cangemi G, Mattioli F. Altered plasma levels of apixaban in major gastrointestinal tract surgery: a case report and review of the literature. Clin Biochem 2023; 118:110613. [PMID: 37451498 DOI: 10.1016/j.clinbiochem.2023.110613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Altered direct oral anticoagulant (DOAC) plasma levels can lead either to spontaneous hemorrhagic or thrombotic complications. We describe a case of suspected altered apixaban disposition in a patient with an upper gastrointestinal cancer resection treated with apixaban for non-valvular atrial fibrillation. Diagnosis of ischemic stroke for left hemiparesis was confirmed due to recent emergence of a hypodense area in the posterior capsular nucleus of ischemic reference in a context of binuclear capsular lacunar lesions. Thus, apixaban underexposure was suspected from anamnestic data and oral anticoagulation was switched to parenteral at the next scheduled dose for stroke recurrence. Before switching apixaban pharmacokinetic analysis was performed and unexpectedly showed apixaban plasma overexposure. After 3 days from the switch, the patient experienced spontaneous bleeding complications, for which the risk-benefit profile of continuing anticoagulant treatment for stroke recurrences warranted treatment discontinuation. Unexpected DOAC plasma exposure may present in special patient populations with thrombotic and bleeding complications. Though universally recognized therapeutic ranges have yet to be established for DOACs, periodic drug monitoring may aid in guiding optimization of DOAC therapy and reduce the risk of adverse events in special patient populations.
Collapse
Affiliation(s)
- Giammarco Baiardi
- Clinical Pharmacology Unit, Ente Ospedaliero Ospedali Galliera, Genoa, Italy; Pharmacology & Toxicology Unit, Department of Internal Medicine, University of Genoa, Genoa, Italy.
| | - Alessia Cafaro
- Pharmacology & Toxicology Unit, Department of Internal Medicine, University of Genoa, Genoa, Italy; Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Manuela Stella
- Clinical Pharmacology Unit, Ente Ospedaliero Ospedali Galliera, Genoa, Italy; Pharmacology & Toxicology Unit, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Michela Cameran Caviglia
- Clinical Pharmacology Unit, Ente Ospedaliero Ospedali Galliera, Genoa, Italy; Pharmacology & Toxicology Unit, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | | | - Giuliana Cangemi
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Mattioli
- Clinical Pharmacology Unit, Ente Ospedaliero Ospedali Galliera, Genoa, Italy; Pharmacology & Toxicology Unit, Department of Internal Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
3
|
Mu G, Xie Q, Liu Z, Zhang H, Meng X, Song J, Zhou S, Wang Z, Wang Z, Zhao X, Jiang J, Liao M, Bao J, Zhang F, Xiang Q, Cui Y. Identification of genetic biomarkers associated with pharmacokinetics and pharmacodynamics of apixaban in Chinese healthy volunteers. Expert Opin Drug Metab Toxicol 2023; 19:43-51. [PMID: 36867504 DOI: 10.1080/17425255.2023.2184344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
BACKGROUND Apixaban is a superior direct oral anticoagulant exihibiting interindividual variability in concentration and response in the real world. The present study aimed to identify genetic biomarkers associated with pharmacokinetics (PK) and pharmacodynamics (PD) of apixaban in healthy Chinese subjects. METHODS This multicenter study included 181 healthy Chinese adults taking a single dose of 2.5 mg or 5 mg apixaban and assessed their PK and PD parameters. Genome-wide single nucleotide polymorphism (SNP) genotyping was performed using the Affymetrix Axiom CBC_PMRA Array. Candidate gene association analysis and genome-wide association study were conducted to identify genes with a predictive value for PK and PD parameters of apixaban. RESULTS Several ABCG2 variants were associated with Cmax and AUC0-t of apixaban (p < 6.12 × 10-5) and also presented significant differences of anti-Xa3h activity and dPT3h according to different ABCG2 genotypes (p < 0.05). Besides, ABLIM2 variants were found to be associated with PK characteristics and F13A1 and C3 variants were associated with PD characteristics of apixaban (p < 9.46 × 10-8). CONCLUSION ABCG2 variants were found to be ideal genetic biomarkers for both PK and PD characteristics of apixaban. ABLIM2, F13A1 and C3 were identified as potential candidate genes associated with inter-individual variability of apixaban. This study was registered on ClinicalTrials.gov NCT03259399.
Collapse
Affiliation(s)
- Guangyan Mu
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Qiufen Xie
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Zhiyan Liu
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Hanxu Zhang
- Department of Pharmacy, Peking University First Hospital, Beijing, China.,School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Xianmin Meng
- Department of Pharmacy, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jinfang Song
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Shuang Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Zhe Wang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Zining Wang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Xia Zhao
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Jie Jiang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Maoxing Liao
- Department of Pharmacy, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiachun Bao
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Fan Zhang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, China.,School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China.,Institute of Clinical Pharmacology, Peking University, Beijing, China
| |
Collapse
|
4
|
Nakagawa J, Kinjo T, Aiuchi N, Ueno K, Tomita H, Niioka T. Impacts of pregnane X receptor and cytochrome P450 oxidoreductase gene polymorphisms on trough concentrations of apixaban in patients with non-valvular atrial fibrillation. Eur J Clin Pharmacol 2023; 79:127-135. [PMID: 36399204 DOI: 10.1007/s00228-022-03424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE We examined the impact of polymorphisms in genes encoding cytochrome P450 (CYP) 3A5 (gene code CYP3A5), P-glycoprotein (ABCB1), breast cancer resistance protein (ABCG2), cytochrome P450 oxidoreductase (POR), and pregnane X receptor (PXR; NR1I2) on the daily dose-adjusted steady-state trough concentrations (C0h/D) of apixaban. METHODS The analyses included 104 patients with non-valvular atrial fibrillation (NVAF) undergoing AF catheter ablation. The CYP3A5*3; ABCG2 421C > A; ABCB1 1236C > T, 2677G > A/T, 3435C > T, and 2482-2236G > A; NR1I2 11156A > C, 11193T > C, and 8055C > T; and POR*28 genotypes were determined. The combination of the noted NR1I2 genotypes determined the PXR*1B haplotype. RESULTS Multiple linear regression analyses demonstrated that decreased creatinine clearance (Ccr) and the PXR*1B/*1B haplotype correlated with increased C0h/D of apixaban, while the presence of the POR*28 allele correlated with decreased C0h/D of apixaban (partial R2 = 0.168, 0.029, and 0.044, all P < 0.05). The mean (95% CI) of estimated marginal means of apixaban C0h/D calculated using Ccr as a covariate was the highest in POR*28 noncarriers with PXR*1B/*1B (23.5 [21.0-25.9] ng/mL/[mg/day]) and lowest in POR*28 carriers with other haplotypes (16.6 [15.5-17.7] ng/mL/[mg/day]). CONCLUSION The PXR*1B haplotype and POR*28 genotype statuses, which involve genes that impact the expression of multiple drug-metabolizing enzymes and drug-transporters, may have modest effects on the C0h/D of apixaban, but these effects were found to be small.
Collapse
Affiliation(s)
- Junichi Nakagawa
- Department of Pharmacy, Hirosaki University Hospital, 53 Hon-Cho, Hirosaki, Aomori, 036-8563, Japan
| | - Takahiko Kinjo
- Department of Cardiology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Naoya Aiuchi
- Department of Pharmacy, Hirosaki University Hospital, 53 Hon-Cho, Hirosaki, Aomori, 036-8563, Japan
| | - Kayo Ueno
- Department of Pharmacy, Hirosaki University Hospital, 53 Hon-Cho, Hirosaki, Aomori, 036-8563, Japan
| | - Hirofumi Tomita
- Department of Cardiology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Takenori Niioka
- Department of Pharmacy, Hirosaki University Hospital, 53 Hon-Cho, Hirosaki, Aomori, 036-8563, Japan. .,Department of Pharmaceutical Science, Hirosaki University Graduate School of Medicine, Aomori, Japan.
| |
Collapse
|
5
|
Gulikers J, Slikkerveer M, Winckers K, Hendriks L, Dursun S, Croes S, van Geel R. Case report: Drug-drug interaction between alectinib and apixaban in NSCLC. CURRENT PROBLEMS IN CANCER: CASE REPORTS 2022. [DOI: 10.1016/j.cpccr.2022.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
6
|
Lenoir C, Terrier J, Gloor Y, Gosselin P, Daali Y, Combescure C, Desmeules JA, Samer CF, Reny JL, Rollason V. Impact of the Genotype and Phenotype of CYP3A and P-gp on the Apixaban and Rivaroxaban Exposure in a Real-World Setting. J Pers Med 2022; 12:jpm12040526. [PMID: 35455642 PMCID: PMC9028714 DOI: 10.3390/jpm12040526] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Apixaban and rivaroxaban are the two most prescribed direct factor Xa inhibitors. With the increased use of DOACs in real-world settings, safety and efficacy concerns have emerged, particularly regarding their concomitant use with other drugs. Increasing evidence highlights drug−drug interactions with CYP3A/P-gp modulators leading to adverse events. However, current recommendations for dose adjustment do not consider CYP3A/P-gp genotype and phenotype. We aimed to determine their impact on apixaban and rivaroxaban blood exposure. Three-hundred hospitalized patients were included. CYP3A and P-gp phenotypic activities were assessed by the metabolic ratio of midazolam and AUC0−6h of fexofenadine, respectively. Relevant CYP3A and ABCB1 genetic polymorphisms were also tested. Capillary blood samples collected at four time-points after apixaban or rivaroxaban administration allowed the calculation of pharmacokinetic parameters. According to the developed multivariable linear regression models, P-gp activity (p < 0.001) and creatinine clearance (CrCl) (p = 0.01) significantly affected apixaban AUC0−6h. P-gp activity (p < 0.001) also significantly impacted rivaroxaban AUC0−6h. The phenotypic switch (from normal to poor metabolizer) of P-gp led to an increase of apixaban and rivaroxaban AUC0−6h by 16% and 25%, respectively, equivalent to a decrease of 38 mL/min in CrCl according to the apixaban model. CYP3A phenotype and tested SNPs of CYP3A/P-gp had no significant impact. In conclusion, P-gp phenotypic activity, rather than known CYP3A/P-gp polymorphisms, could be relevant for dose adjustment.
Collapse
Affiliation(s)
- Camille Lenoir
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.L.); (J.T.); (Y.G.); (Y.D.); (J.A.D.); (C.F.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
| | - Jean Terrier
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.L.); (J.T.); (Y.G.); (Y.D.); (J.A.D.); (C.F.S.)
- Department of Medicine, Division of General Internal Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (P.G.); (J.-L.R.)
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Yvonne Gloor
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.L.); (J.T.); (Y.G.); (Y.D.); (J.A.D.); (C.F.S.)
| | - Pauline Gosselin
- Department of Medicine, Division of General Internal Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (P.G.); (J.-L.R.)
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Youssef Daali
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.L.); (J.T.); (Y.G.); (Y.D.); (J.A.D.); (C.F.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Christophe Combescure
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
- Department of Health and Community Medicine, Division of Clinical Epidemiology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Jules Alexandre Desmeules
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.L.); (J.T.); (Y.G.); (Y.D.); (J.A.D.); (C.F.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Caroline Flora Samer
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.L.); (J.T.); (Y.G.); (Y.D.); (J.A.D.); (C.F.S.)
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Jean-Luc Reny
- Department of Medicine, Division of General Internal Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (P.G.); (J.-L.R.)
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Victoria Rollason
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.L.); (J.T.); (Y.G.); (Y.D.); (J.A.D.); (C.F.S.)
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
- Correspondence:
| |
Collapse
|
7
|
Hanigan S, Park JM. Evaluating pharmacokinetic drug-drug interactions of direct oral anticoagulants in patients with renal dysfunction. Expert Opin Drug Metab Toxicol 2022; 18:189-202. [PMID: 35543017 DOI: 10.1080/17425255.2022.2074397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Drug transporters, metabolic enzymes, and renal clearance play significant roles in the pharmacokinetics of direct oral anticoagulants (DOACs). Recommendations for DOAC drug-drug interactions (DDIs) by the product labeling are limited to selected CYP3A4 and P-glycoprotein inhibitors and lack considerations for concomitant renal dysfunction. AREAS COVERED This review focuses on: 1) current recommendations for the management of pharmacokinetic DOAC DDIs and the evidence used to support them; 2) alterations in DOAC exposure in the setting of concomitant DDIs and mild, moderate, and severe renal impairment; 3) clinical outcomes associated with this combination; and 4) expert recommendations for the management of pharmacokinetic DOAC DDIs. English-language, full-text articles on apixaban, dabigatran, rivaroxaban, and edoxaban with a publication date up to 30 September 2021 were retrieved from PubMed. EXPERT OPINION Given the lack of supporting clinical data, empiric dose adjustments based on pharmacokinetic data alone should be avoided. When a considerable increase in a DOAC exposure is anticipated, it may be advisable to use an alternative DOAC or anticoagulant from a different class. Future research on identification of DOAC therapeutic ranges and target patient populations is needed to inform clinical utility of DOAC level monitoring to guide the management of DDIs.
Collapse
Affiliation(s)
- Sarah Hanigan
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Jeong M Park
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Abd Alridha A, Al-Gburi K, Abbood S. A review of pharmacogenetics of anticoagulant therapy: Heparins, rivaroxaban, apixaban, and dabigatran. MEDICAL JOURNAL OF BABYLON 2022. [DOI: 10.4103/mjbl.mjbl_71_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Lähteenmäki J, Vuorinen AL, Pajula J, Harno K, Lehto M, Niemi M, van Gils M. Pharmacogenetics of Bleeding and Thromboembolic Events in Direct Oral Anticoagulant Users. Clin Pharmacol Ther 2021; 110:768-776. [PMID: 34043814 DOI: 10.1002/cpt.2316] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022]
Abstract
This study aimed to analyze associations between genetic variants and the occurrence of clinical outcomes in dabigatran, apixaban, and rivaroxaban users. This was a retrospective real-world study linking genotype data of three Finnish biobanks with national register data on drug dispensations and healthcare encounters. We investigated several single-nucleotide variants (SNVs) in the ABCG2, ABCB1, CES1, and CYP3A5 genes potentially associated with bleeding or thromboembolic events in direct oral anticoagulant (DOAC) users based on earlier research. We used Cox regression models to compare the incidence of clinical outcomes between carriers and noncarriers of the SNVs or haplotypes. In total, 1,806 patients on apixaban, dabigatran, or rivaroxaban were studied. The ABCB1 c.3435C>T (p.Ile1145=, rs1045642) SNV (hazard ratio (HR) 0.42, 95% confidence interval (CI), 0.18-0.98, P = 0.044) and 1236T-2677T-3435T (rs1128503-rs2032582-rs1045642) haplotype (HR 0.44, 95% CI, 0.20-0.95, P = 0.036) were associated with a reduced risk for thromboembolic outcomes, and the 1236C-2677G-3435C (HR 2.55, 95% CI, 1.03-6.36, P = 0.044) and 1236T-2677G-3435C (HR 5.88, 95% CI, 2.35-14.72, P < 0.001) haplotypes with an increased risk for thromboembolic outcomes in rivaroxaban users. The ABCB1 c.2482-2236G>A (rs4148738) SNV associated with a lower risk for bleeding events (HR 0.37, 95% CI, 0.16-0.89, P = 0.025) in apixaban users. ABCB1 variants are potential factors affecting thromboembolic events in rivaroxaban users and bleeding events in apixaban users. Studies with larger numbers of patients are warranted for comprehensive assessment of the pharmacogenetic associations of DOACs and their relevance for clinical practice.
Collapse
Affiliation(s)
| | | | - Juha Pajula
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Kari Harno
- Department of Health and Social Management, University of Eastern Finland, Kuopio, Finland
| | - Mika Lehto
- Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland.,University of Helsinki, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland.,Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Mark van Gils
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland.,Tampere University, Tampere, Finland
| |
Collapse
|
10
|
Heidemann J, Tanislav C, Kostev K. (Absence of) Association Between Non-Vitamin K Antagonist Oral Anticoagulant Therapy and Urinary Tract Infection in Patients With Atrial Fibrillation. J Cardiovasc Pharmacol 2021; 77:830-834. [PMID: 34016840 DOI: 10.1097/fjc.0000000000001020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/13/2021] [Indexed: 12/26/2022]
Abstract
ABSTRACT The aim of the present study is to identify a potential association of urinary tract infections (UTI) in a large population of patients receiving oral anticoagulation therapy treated in general practices in Germany. This study contains patients diagnosed with atrial fibrillation who received at least one prescription of either non-vitamin K antagonist oral anticoagulation (NOAC) or vitamin K antagonists (VKA) within January 2015 and December 2018. The incidence of UTI was examined cumulatively on the basis of Kaplan-Meier methods and was complemented by incidence rates measured in cases per 1000 patient years. Sex-stratified Cox regressions were conducted to examine possible associations in specific sex groups. The study comprised 26,934 patients receiving NOAC therapy and 8121 patients treated with VKA agents. Within a period of 5 years, slightly more NOAC than VKA users were diagnosed with UTI (20.3% vs. 19.3%), whereas the incidence rate was slightly higher in patients receiving NOAC therapy than in those under VKA treatment (50.8 cases vs. 50.5 cases in 1000 patient years). There was no significant association between direct oral anticoagulants versus vitamin K antagonists and infections of the urinary tract. Our study did not identify any significant association between therapy with direct oral anticoagulants versus vitamin K anticoagulants and UTI in patients diagnosed with atrial fibrillation in general practices in Germany. Because current findings regarding the risk of UTI in patients receiving oral anticoagulation therapy remain limited and contradictory, further investigations including a broad patient population are necessary to determine patients at risk for UTI and reconcile conflicting evidence.
Collapse
Affiliation(s)
| | - Christian Tanislav
- Department of Geriatrics and Neurology, Diakonie Hospital Jung Stilling Siegen, Germany
| | - Karel Kostev
- Epidemiology, IQVIA, Frankfurt am Main, Germany ; and
| |
Collapse
|
11
|
Bruckmueller H, Cascorbi I. ABCB1, ABCG2, ABCC1, ABCC2, and ABCC3 drug transporter polymorphisms and their impact on drug bioavailability: what is our current understanding? Expert Opin Drug Metab Toxicol 2021; 17:369-396. [PMID: 33459081 DOI: 10.1080/17425255.2021.1876661] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Interindividual differences in drug response are a frequent clinical challenge partly due to variation in pharmacokinetics. ATP-binding cassette (ABC) transporters are crucial determinants of drug disposition. They are subject of gene regulation and drug-interaction; however, it is still under debate to which extend genetic variants in these transporters contribute to interindividual variability of a wide range of drugs. AREAS COVERED This review discusses the current literature on the impact of genetic variants in ABCB1, ABCG2 as well as ABCC1, ABCC2, and ABCC3 on pharmacokinetics and drug response. The aim was to evaluate if results from recent studies would increase the evidence for potential clinically relevant pharmacogenetic effects. EXPERT OPINION Although enormous efforts have been made to investigate effects of ABC transporter genotypes on drug pharmacokinetics and response, the majority of studies showed only weak if any associations. Despite few unique results, studies mostly failed to confirm earlier findings or still remained inconsistent. The impact of genetic variants on drug bioavailability is only minor and other factors regulating the transporter expression and function seem to be more critical. In our opinion, the findings on the so far investigated genetic variants in ABC efflux transporters are not suitable as predictive biomarkers.
Collapse
Affiliation(s)
- Henrike Bruckmueller
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
12
|
Pharmacogenetics of Direct Oral Anticoagulants: A Systematic Review. J Pers Med 2021; 11:jpm11010037. [PMID: 33440670 PMCID: PMC7826504 DOI: 10.3390/jpm11010037] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Dabigatran, rivaroxaban, apixaban, edoxaban, and betrixaban are direct oral anticoagulants (DOACs). Their inter-individual variability in pharmacodynamics and pharmacokinetics (transport and metabolism) is high, and could result from genetic polymorphisms. As recommended by the French Network of Pharmacogenetics (RNPGx), the management of some treatments in cardiovascular diseases (as antiplatelet agents, oral vitamin K antagonists, and statins) can rely on genetic testing in order to improve healthcare by reducing therapeutic resistance or toxicity. This paper is a review of association studies between single nucleotide polymorphisms (SNPs) and systemic exposure variation of DOACs. Most of the results presented here have a lot to do with some SNPs of CES1 (rs2244613, rs8192935, and rs71647871) and ABCB1 (rs1128503, rs2032582, rs1045642, and rs4148738) genes, and dabigatran, rivaroxaban, and apixaban. Regarding edoxaban and betrixaban, as well as SNPs in the CYP3A4 and CYP3A5 genes, literature is scarce, and further studies are needed.
Collapse
|