1
|
Jie Z, Hongkun J, Shi Y, Fengxun Y, Xin L, Yijun M, Yu L. The Influence of ESR2 Gene Polymorphisms on Susceptibility to Hepatitis B Virus-Related Chronic Hepatitis, Liver Cirrhosis, and Hepatocellular Carcinoma. Biochem Genet 2024; 62:3946-3960. [PMID: 38245888 DOI: 10.1007/s10528-023-10636-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Hepatocellular carcinoma (HCC) represents an estrogen-dependent tumor. The action of estrogen is regulated via estrogen receptor (ER). Polymorphisms in ERα gene, ESR1, are known to be related to HCC susceptibility among people carrying chronic hepatitis B (CHB). But the effect of ERβ on HCC is still largely unclear, and studies about the genetic variability of ESR2 and HCC are rare. For understanding ESR2's effect on HCC, this work tested two polymorphisms in the ESR2 gene promoter as well as the associations with CHB, HCC, and hepatitis B virus (HBV)-related liver cirrhosis (LC) among the Guangxi population. This work enrolled a total of 137 CHB, 136 LC, and 149 HBV-related HCC patients, together with 146 normal subjects. ESR2 polymorphisms rs3020449 and rs2978381 were examined using the SNaPshot genotyping technique. The AG genotype and dominant model of rs3020449 were related to the decreased CHB susceptibility. In both the overall and subgroup analyses, no associations were observed with the remaining models in all patient groups (those with CHB, HBV-related LC, and HCC), but associations were found between the dominant (TC+CC vs TT) and allele models (C vs T) of rs2978381 and increased HBV-related LC and HCC susceptibility, but not CHB. These findings suggest that rs3020449 polymorphism of ESR2 gene makes great contribution to the decreased CHB risk and that rs2978381 significantly contributed to higher risks of HBV-related LC and HCC.
Collapse
Affiliation(s)
- Zeng Jie
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liu Zhou, 545006, China
| | - Jiang Hongkun
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liu Zhou, 545006, China
| | - Yang Shi
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liu Zhou, 545006, China
| | - Yang Fengxun
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liu Zhou, 545006, China
| | - Liu Xin
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liu Zhou, 545006, China
| | - Meng Yijun
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liu Zhou, 545006, China
| | - Lu Yu
- Department of Laboratory Medicine, Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital, Liu Zhou, 545006, China.
| |
Collapse
|
2
|
Sheng L, Sun J, Huang L, Yu M, Meng X, Shan Y, Dai H, Wang F, Shi J, Sheng M. Astragalus membranaceus and its monomers treat peritoneal fibrosis and related muscle atrophy through the AR/TGF-β1 pathway. Front Pharmacol 2024; 15:1418485. [PMID: 39239655 PMCID: PMC11374727 DOI: 10.3389/fphar.2024.1418485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/16/2024] [Indexed: 09/07/2024] Open
Abstract
Background: To anticipate the potential molecular mechanism of Astragalus membranaceus (AM) and its monomer, Calycosin, against peritoneal fibrosis (PF) and related muscle atrophy using mRNA-seq, network pharmacology, and serum pharmacochemistry. Methods: Animal tissues were examined to evaluate a CKD-PF mice model construction. mRNA sequencing was performed to find differential targets. The core target genes of AM against PF were screened through network pharmacology analysis, and CKD-PF mice models were given high- and low-dose AM to verify common genes. Serum pharmacochemistry was conducted to clarify which components of AM can enter the blood circulation, and the selected monomer was further validated through cell experiments for the effect on PF and mesothelial mesenchymal transition (MMT) of peritoneal mesothelial cells (PMCs). Results: The CKD-PF mice models were successfully constructed. A total of 31,184 genes were detected in the blank and CKD-PF groups, and 228 transcription factors had significant differences between the groups. Combined with network pharmacology analysis, a total of 228 AM-PF-related targets were identified. Androgen receptor (AR) was the remarkable transcription factor involved in regulating transforming growth factor-β1 (TGF-β1). AM may be involved in regulating the AR/TGF-β1 signaling pathway and may alleviate peritoneal dialysis-related fibrosis and muscle atrophy in CKD-PF mice. In 3% peritoneal dialysis solution-stimulated HMrSV5 cells, AR expression levels were dramatically reduced, whereas TGF-β1/p-smads expression levels were considerably increased. Conclusion: AM could ameliorate PF and related muscle atrophy via the co-target AR and modulated AR/TGF-β1 pathway. Calycosin, a monomer of AM, could partially reverse PMC MMT via the AR/TGF-β1/smads pathway. This study explored the traditional Chinese medicine theory of "same treatment for different diseases," and supplied the pharmacological evidence of "AM can treat flaccidity syndrome."
Collapse
Affiliation(s)
- Li Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
- Medical Experimental Research Center, First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinyi Sun
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liyan Huang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Manshu Yu
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaohui Meng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Shan
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huibo Dai
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Funing Wang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Shi
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meixiao Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Lipowicz JM, Malińska A, Nowicki M, Rawłuszko-Wieczorek AA. Genes Co-Expressed with ESR2 Influence Clinical Outcomes in Cancer Patients: TCGA Data Analysis. Int J Mol Sci 2024; 25:8707. [PMID: 39201394 PMCID: PMC11354723 DOI: 10.3390/ijms25168707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
ERβ has been assigned a tumor suppressor role in many cancer types. However, as conflicting findings emerge, ERβ's tissue-specific expression and functional role have remained elusive. There remains a notable gap in compact and comprehensive analyses of ESR2 mRNA expression levels across diverse tumor types coupled with an exploration of its potential gene network. In this study, we aim to address these gaps by presenting a comprehensive analysis of ESR2 transcriptomic data. We distinguished cancer types with significant changes in ESR2 expression levels compared to corresponding healthy tissue and concluded that ESR2 influences patient survival. Gene Set Enrichment Analysis (GSEA) distinguished molecular pathways affected by ESR2, including oxidative phosphorylation and epithelial-mesenchymal transition. Finally, we investigated genes displaying similar expression patterns as ESR2 in tumor tissues, identifying potential co-expressed genes that may exert a synergistic effect on clinical outcomes, with significant results, including the expression of ACIN1, SYNE2, TNFRSF13C, and MDM4. Collectively, our results highlight the significant influence of ESR2 mRNA expression on the transcriptomic landscape and the overall metabolism of cancerous cells across various tumor types.
Collapse
Affiliation(s)
- Julia Maria Lipowicz
- Department of Histology and Embryology, Doctoral School, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781 Poznań, Poland;
| | - Agnieszka Malińska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781 Poznań, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781 Poznań, Poland
| | | |
Collapse
|
4
|
Zhu M, Yi Y, Jiang K, Liang Y, Li L, Zhang F, Zheng X, Yin H. Single-cell combined with transcriptome sequencing to explore the molecular mechanism of cell communication in idiopathic pulmonary fibrosis. J Cell Mol Med 2024; 28:e18499. [PMID: 38887981 PMCID: PMC11184282 DOI: 10.1111/jcmm.18499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/14/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a common, chronic, and progressive lung disease that severely impacts human health and survival. However, the intricate molecular underpinnings of IPF remains elusive. This study aims to delve into the nuanced molecular interplay of cellular interactions in IPF, thereby laying the groundwork for innovative therapeutic approaches in the clinical field of IPF. Sophisticated bioinformatics methods were employed to identify crucial biomarkers essential for the progression of IPF. The GSE122960 single-cell dataset was obtained from the Gene Expression Omnibus (GEO) compendium, and intercellular communication potentialities were scrutinized via CellChat. The random survival forest paradigm was established using the GSE70866 dataset. Quintessential genes were selected through Kaplan-Meier (KM) curves, while immune infiltration examinations, functional enrichment critiques and nomogram paradigms were inaugurated. Analysis of intercellular communication revealed an intimate potential connections between macrophages and various cell types, pinpointing five cardinal genes influencing the trajectory and prognosis of IPF. The nomogram paradigm, sculpted from these seminal genes, exhibits superior predictive prowess. Our research meticulously identified five critical genes, confirming their intimate association with the prognosis, immune infiltration and transcriptional governance of IPF. Interestingly, we discerned these genes' engagement with the EPITHELIAL_MESENCHYMAL_TRANSITION signalling pathway, which may enhance our understanding of the molecular complexity of IPF.
Collapse
Affiliation(s)
- Minggao Zhu
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Yuhu Yi
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Kui Jiang
- Department of NephrologyThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Yongzhi Liang
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Lijun Li
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Feng Zhang
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Xinglong Zheng
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Haiyan Yin
- Intensive Care UnitThe First Affiliated Hospital of Jinan UniversityGuangzhouGuangdongChina
| |
Collapse
|
5
|
Eisa MA, Mansour AM, Salama SA, Elsadek BEM, Ashour AA, Abdelghany TM. Estrogen/estrogen receptor activation protects against DEN-induced liver fibrosis in female rats via modulating TLR-4/NF-kβ signaling. Eur J Pharmacol 2023; 960:176165. [PMID: 38059444 DOI: 10.1016/j.ejphar.2023.176165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/08/2023]
Abstract
AIM Men are more susceptible to liver fibrosis (LF) than women. However, the underlying molecular mechanism, especially the role of estrogen/estrogen receptor (ER) activation in this sexual dimorphism is unclear. Therefore, the aim of the current study was to investigate the impact and the underlying molecular mechanisms of estrogen/ER activation on diethyl nitrosamine (DEN)-induced LF. MAIN METHODS Thirty ovariectomized (OVX) female rats were randomly allocated into five groups (n = 6), and received no treatment, diethyl nitrosamine (DEN), DEN/fulvestrant, DEN/silymarin or DEN/estradiol benzoate (EB). In addition, three sham groups received no treatment, DEN or DEN/fulvestrant, and one control group that neither ovariectomized nor treated. Directly after treatment, liver injury biomarkers were measured. In addition, hepatic tissue hydroxyproline, TNF- α, TGF- β, and IL-10 were evaluated. Expression of NF-kβ, CD68 (a marker for macrophage infiltration), ER-β and TLR-4 were measured. Finally, liver tissue histopathology was assessed. KEY FINDINGS Ovariectomy aggravates DEN-induced LF, as it significantly elevated all liver tissue injury biomarkers. This effect has become even worse after blocking ER by fulvestrant, indicating a protective role of estrogen/ER activation against DEN-induced LF. Inhibition of TLR-4/NF-kβ signaling pathway contributed to this protective effect, as estrogen deprivation or blocking of ER significantly activates this pathway during the onset of LF. While administration of EB or silymarin (selective ER-β activator) improved LF indices and deactivated this pathway. SIGNIFICANCE These results provide new insight into the pivotal role of estrogen/ER activation via modulation of TLR-4/NF-kβ, in the alleviation of LF pathogenesis.
Collapse
Affiliation(s)
- Mahmoud A Eisa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11651, Egypt.
| | - Ahmed M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11651, Egypt.
| | - Salama A Salama
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11651, Egypt.
| | - Bakheet E M Elsadek
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Ahmed A Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11651, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, 41636, Egypt.
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11651, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy Heliopolis University, Cairo, 11785, Egypt.
| |
Collapse
|
6
|
Li JZ, Chen N, Ma N, Li MR. Mechanism and Progress of Natural Products in the Treatment of NAFLD-Related Fibrosis. Molecules 2023; 28:7936. [PMID: 38067665 PMCID: PMC10707854 DOI: 10.3390/molecules28237936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the most prevalent chronic liver disorder worldwide, with liver fibrosis (LF) serving as a pivotal juncture in NAFLD progression. Natural products have demonstrated substantial antifibrotic properties, ushering in novel avenues for NAFLD treatment. This study provides a comprehensive review of the potential of natural products as antifibrotic agents, including flavonoids, polyphenol compounds, and terpenoids, with specific emphasis on the role of Baicalin in NAFLD-associated fibrosis. Mechanistically, these natural products have exhibited the capacity to target a multitude of signaling pathways, including Hedgehog, Wnt/β-catenin, TGF-β1, and NF-κB. Moreover, they can augment the activities of antioxidant enzymes, inhibit pro-fibrotic factors, and diminish fibrosis markers. In conclusion, this review underscores the considerable potential of natural products in addressing NAFLD-related liver fibrosis through multifaceted mechanisms. Nonetheless, it underscores the imperative need for further clinical investigation to authenticate their effectiveness, offering invaluable insights for future therapeutic advancements in this domain.
Collapse
Affiliation(s)
- Jin-Zhong Li
- Division of Infectious Disease, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Ning Chen
- General Medicine, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Nan Ma
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Min-Ran Li
- Division of Infectious Disease, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
Cooper KM, Delk M, Devuni D, Sarkar M. Sex differences in chronic liver disease and benign liver lesions. JHEP Rep 2023; 5:100870. [PMID: 37791378 PMCID: PMC10542645 DOI: 10.1016/j.jhepr.2023.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 10/05/2023] Open
Abstract
The epidemiology, natural history, and therapeutic responses of chronic liver diseases and liver lesions often vary by sex. In this review, we summarize available clinical and translational data on these aspects of the most common liver conditions encountered in clinical practice, including the potential contributions of sex hormones to the underlying pathophysiology of observed differences. We also highlight areas of notable knowledge gaps and discuss sex disparities in access to liver transplant and potential strategies to address these barriers. Given established sex differences in immune response, drug metabolism, and response to liver-related therapies, emerging clinical trials and epidemiological studies should prioritize dedicated analyses by sex to inform sex-specific approaches to liver-related care.
Collapse
Affiliation(s)
- Katherine M. Cooper
- UMass Chan Medical School, Department of Medicine, Division of Gastroenterology/Hepatology, Worcester, MA, United States
| | - Molly Delk
- University of California San Francisco, Department of Medicine, Division of Gastroenterology/Hepatology, San Francisco, CA, United States
| | - Deepika Devuni
- UMass Chan Medical School, Department of Medicine, Division of Gastroenterology/Hepatology, Worcester, MA, United States
| | - Monika Sarkar
- University of California San Francisco, Department of Medicine, Division of Gastroenterology/Hepatology, San Francisco, CA, United States
| |
Collapse
|
8
|
Zhou J, Qi X, Pan N, Li W, Fang H, Wang J, Wang S. A novel UPLC-ESI-MS assay for fifteen portal estrogens and metabolites detection and application in hepatic fibrosis. Anal Biochem 2023; 671:115158. [PMID: 37062458 DOI: 10.1016/j.ab.2023.115158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Estrogens and their metabolites (EMs) are involved in chronic liver disease and gut microbiota regulates estrogen metabolism, whereas the role of enterogenous EMs in liver disease is still elusive. Because of the extremely low level of EMs in portal serum and the EMs contain multiple pairs of isomers, an accurate determination of portal serum EMs is urgently needed. This study established a quantitative detection method for portal serum EMs and applied to non-alcoholic fatty liver disease (NAFLD) related hepatic fibrosis mice model. The serum was derived with a novel derivatization reagent 4-acetyl aminobenzene sulfonyl chloride, and a UPLC-ESI-MS system was used for quantification of 15 EMs in 120 min. Compared with normal group, the concentrations of E1, E2 in model group were significantly decreased by 4-8 times, all the C2 and C4 substitution products (2-OHE1, 2-OHE2, 2-MeOE1, 4-OHE1, 4-MeOE1, 4-OHE2, 4-MeOE2, 2-MeOE2) were significantly decreased by 2-22 times. However, the C16 and C17 substitution products (E3, 16-epiE3, 17-epiE3, 16-ketoE2) levels were increased by 3-5 times (P < 0.01). This study elucidated the changes of enterogenous EMs which entered the liver via portal vein in NAFLD - related hepatic fibrosis and provided methodological platform for other related studies on estrogen metabolism.
Collapse
Affiliation(s)
- Jiahui Zhou
- Department of Pharmacology, School of Basic Medical Sciences of Anhui, Medical University, NO.81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Xueping Qi
- Department of Pharmacology, School of Basic Medical Sciences of Anhui, Medical University, NO.81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Na Pan
- Department of Pharmacology, School of Basic Medical Sciences of Anhui, Medical University, NO.81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Wanli Li
- Department of Pharmacology, School of Basic Medical Sciences of Anhui, Medical University, NO.81 Meishan Road, Hefei, 230032, Anhui Province, China
| | - Haiming Fang
- Department of Gastroenterology, The Second Hospital of Anhui Medical University, NO.678 Furong Road, Hefei, 230601, Anhui Province, China.
| | - Jiajia Wang
- Department of Pharmacology, School of Basic Medical Sciences of Anhui, Medical University, NO.81 Meishan Road, Hefei, 230032, Anhui Province, China.
| | - Sheng Wang
- Center for Scientific Research, Anhui Medical University, NO.81 Meishan Road, Hefei, 230032, Anhui Province, China.
| |
Collapse
|