1
|
Phelps DS, Chinchilli VM, Zhang X, Shearer D, Weisz J, Floros J. Comparison of the Toponomes of Alveolar Macrophages From Wild Type and Surfactant Protein A Knockout Mice and Their Response to Infection. Front Immunol 2022; 13:853611. [PMID: 35572576 PMCID: PMC9094576 DOI: 10.3389/fimmu.2022.853611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background Surfactant protein-A (SP-A) plays a critical role in lung innate immunity by regulating alveolar macrophages (AM), expression of inflammatory mediators, and other host defense proteins. The toponome imaging system (TIS), a serial immunostainer, was used to study the AM toponome because it characterizes the localization of multiple markers and identifies marker combinations in each pixel as combinatorial molecular phenotypes (CMPs). We used TIS to study the AM toponome from wild type (WT) and SP-A knockout (KO) mice and changes following Klebsiella pneumoniae exposure. Methods WT or KO mice received intratracheal K. pneumoniae or vehicle and AM were obtained by bronchoalveolar lavage after one hour. AM were attached to slides and underwent TIS analysis. Images were analyzed to characterize all pixels. AM CMPs from WT vehicle (n=3) and infected (n=3) mice were compared to each other and to AM from KO (n=3 vehicle; n=3 infected). Histograms provided us with a tool to summarize the representation of each marker in a set of CMPs. Results Using the histograms and other tools we identified markers of interest and observed that: 1) Both comparisons had conserved (present in all group members) CMPs, only in vehicle AM and only in infected AM, or common to both vehicle and infected AM, (i.e., unaffected by the condition). 2) the CMP number decreased with infection in WT and KO versus vehicle controls. 3) More infection-specific CMPs in WT vs KO AM. 4) When AM from WT and KO vehicle or infected were compared, there were more unique CMPs exclusive to the KO AM. 5) All comparisons showed CMPs shared by both groups. Conclusions The decrease of CMPs exclusive to infected AM in KO mice may underlie the observed susceptibility of KO mice to infection. However, both KO groups had more exclusive CMPs than the corresponding WT groups, perhaps indicating a vigorous effort by KO to overcome deficits in certain proteins and CMPs that are dysregulated by the absence of SP-A. Moreover, the presence of shared CMPs in the compared groups indicates that regulation of these CMPs is not dependent on either infection or the presence or absence of SP-A.
Collapse
Affiliation(s)
- David S Phelps
- Penn State Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Vernon M Chinchilli
- Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Xuesheng Zhang
- Penn State Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Debra Shearer
- Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Judith Weisz
- Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Joanna Floros
- Penn State Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
2
|
Phelps DS, Chinchilli VM, Yang L, Shearer D, Weisz J, Zhang X, Floros J. The alveolar macrophage toponome of female SP-A knockout mice differs from that of males before and after SP-A1 rescue. Sci Rep 2022; 12:5039. [PMID: 35322074 PMCID: PMC8943067 DOI: 10.1038/s41598-022-08114-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/16/2022] [Indexed: 01/05/2023] Open
Abstract
Using the Toponome Imaging System (TIS), a serial immunostainer, we studied the patterns of expression of multiple markers in alveolar macrophages (AM) from female mice lacking surfactant protein A (SP-A knockouts; KO) after "rescue" with exogenous SP-A1. We also used a 7-marker subset to compare with AM from males. AM were harvested 18 h after intrapharyngeal SP-A1 or vehicle, attached to slides, and subjected to serial immunostaining for 12 markers. Expression of the markers in each pixel of the image was analyzed both in the whole image and in individual selected cells. The marker combination in each pixel is referred to as a combinatorial molecular phenotype (CMP). A subset of antibodies was used to compare AM from male mice to the females. We found: (a) extensive AM heterogeneity in females by CMP analysis and by clustering analysis of CMPs in single cells; (b) AM from female KO mice respond to exogenous SP-A1 by increasing CMP phenotypic diversity and perhaps enhancing their potential innate immune capabilities; and (c) comparison of male and female AM responses to SP-A1 revealed that males respond more vigorously than females and clustering analysis was more effective in distinguishing males from females rather than treated from control.
Collapse
Affiliation(s)
- David S. Phelps
- grid.29857.310000 0001 2097 4281Penn State Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Vernon M. Chinchilli
- grid.29857.310000 0001 2097 4281Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Lili Yang
- grid.29857.310000 0001 2097 4281Penn State Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Debra Shearer
- grid.29857.310000 0001 2097 4281Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Judith Weisz
- grid.29857.310000 0001 2097 4281Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Xuesheng Zhang
- grid.29857.310000 0001 2097 4281Penn State Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Joanna Floros
- grid.29857.310000 0001 2097 4281Penn State Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| |
Collapse
|
3
|
Floros J, Thorenoor N, Tsotakos N, Phelps DS. Human Surfactant Protein SP-A1 and SP-A2 Variants Differentially Affect the Alveolar Microenvironment, Surfactant Structure, Regulation and Function of the Alveolar Macrophage, and Animal and Human Survival Under Various Conditions. Front Immunol 2021; 12:681639. [PMID: 34484180 PMCID: PMC8415824 DOI: 10.3389/fimmu.2021.681639] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
The human innate host defense molecules, SP-A1 and SP-A2 variants, differentially affect survival after infection in mice and in lung transplant patients. SP-A interacts with the sentinel innate immune cell in the alveolus, the alveolar macrophage (AM), and modulates its function and regulation. SP-A also plays a role in pulmonary surfactant-related aspects, including surfactant structure and reorganization. For most (if not all) pulmonary diseases there is a dysregulation of host defense and inflammatory processes and/or surfactant dysfunction or deficiency. Because SP-A plays a role in both of these general processes where one or both may become aberrant in pulmonary disease, SP-A stands to be an important molecule in health and disease. In humans (unlike in rodents) SP-A is encoded by two genes (SFTPA1 and SFTPA2) and each has been identified with extensive genetic and epigenetic complexity. In this review, we focus on functional, structural, and regulatory differences between the two SP-A gene-specific products, SP-A1 and SP-A2, and among their corresponding variants. We discuss the differential impact of these variants on the surfactant structure, the alveolar microenvironment, the regulation of epithelial type II miRNome, the regulation and function of the AM, the overall survival of the organism after infection, and others. Although there have been a number of reviews on SP-A, this is the first review that provides such a comprehensive account of the differences between human SP-A1 and SP-A2.
Collapse
Affiliation(s)
- Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Obstetrics & Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Nithyananda Thorenoor
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Biochemistry & Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Nikolaos Tsotakos
- School of Science, Engineering, and Technology, The Pennsylvania State University, Harrisburg, PA, United States
| | - David S Phelps
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
4
|
Phelps DS, Chinchilli VM, Weisz J, Yang L, Shearer D, Zhang X, Floros J. Differences in the alveolar macrophage toponome in humanized SP-A1 and SP-A2 transgenic mice. JCI Insight 2020; 5:141410. [PMID: 33141765 PMCID: PMC7819750 DOI: 10.1172/jci.insight.141410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Alveolar macrophages (AMs) are differentially regulated by human surfactant protein-A1 (SP-A1) or SP-A2. However, AMs are very heterogeneous and differences are difficult to characterize in intact cells. Using the Toponome Imaging System (TIS), an imaging technique that uses sequential immunostaining to identify patterns of biomarker expression or combinatorial molecular phenotypes (CMPs), we studied individual single cells and identified subgroups of AMs (n = 168) from SP-A–KO mice and mice expressing either SP-A1 or SP-A2. The effects, as shown by CMPs, of SP-A1 and SP-A2 on AMs were significant and differed. SP-A1 AMs were the most diverse and shared the fewest CMPs with KO and SP-A2. Clustering analysis of each group showed 3 clusters where the CMP-based phenotype was distinct in each cluster. Moreover, a clustering analysis of all 168 AMs revealed 10 clusters, many dominated by 1 group. Some CMP overlap among groups was observed with SP-A2 AMs sharing the most CMPs and SP-A1 AMs the fewest. The CMP-based patterns identified here provide a basis for understanding not only AMs’ diversity, but also most importantly, the molecular basis for the diversity of functional differences in mouse models where the impact of genetics of innate immune molecules on AMs has been studied.
Collapse
Affiliation(s)
- David S Phelps
- Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics
| | | | - Judith Weisz
- Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Lili Yang
- Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics
| | - Debra Shearer
- Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Xuesheng Zhang
- Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics
| | - Joanna Floros
- Penn State Center for Host defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics.,Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
5
|
Thorenoor N, Phelps DS, Floros J. Differential Sex-Dependent Regulation of the Alveolar Macrophage miRNome of SP-A2 and co-ex (SP-A1/SP-A2) and Sex Differences Attenuation after 18 h of Ozone Exposure. Antioxidants (Basel) 2020; 9:antiox9121190. [PMID: 33260937 PMCID: PMC7768498 DOI: 10.3390/antiox9121190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Human SP-A1 and SP-A2, encoded by SFTPA1 and SFTPA2, and their genetic variants differentially impact alveolar macrophage (AM) functions and regulation, including the miRNome. We investigated whether miRNome differences previously observed between AM from SP-A2 and SP-A1/SP-A2 mice are due to continued qualitative differences or a delayed response of mice carrying a single gene. Methods: Human transgenic (hTG) mice, carrying SP-A2 or both SP-A genes, and SP-A-KO mice were exposed to filtered air (FA) or ozone (O3). AM miRNA levels, target gene expression, and pathways determined 18 h after O3 exposure. RESULTS: We found (a) differences in miRNome due to sex, SP-A genotype, and exposure; (b) miRNome of both sexes was largely downregulated by O3, and co-ex had fewer changed (≥2-fold) miRNAs than either group; (c) the number and direction of the expression of genes with significant changes in males and females in co-ex are almost the opposite of those in SP-A2; (d) the same pathways were found in the studied groups; and (e) O3 exposure attenuated sex differences with a higher number of genotype-dependent and genotype-independent miRNAs common in both sexes after O3 exposure. Conclusion: Qualitative differences between SP-A2 and co-ex persist 18 h post-O3, and O3 attenuates sex differences.
Collapse
Affiliation(s)
- Nithyananda Thorenoor
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA; (N.T.); (D.S.P.)
- Department of Biochemistry & Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - David S. Phelps
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA; (N.T.); (D.S.P.)
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA; (N.T.); (D.S.P.)
- Department of Obstetrics & Gynecology, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
- Correspondence:
| |
Collapse
|