1
|
Chen J, Li Z, Wu Y, Li X, Chen Z, Chen P, Ding Y, Wu C, Hu L. Identification of Pathogenic Missense Mutations of NF1 Using Computational Approaches. J Mol Neurosci 2024; 74:94. [PMID: 39373898 PMCID: PMC11458684 DOI: 10.1007/s12031-024-02271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
Neurofibromatosis type 1 (NF1) is a prevalent autosomal dominant disorder caused by mutations in the NF1 gene, leading to multisystem disorders. Given the critical role of cysteine residues in protein stability and function, we aimed to identify key NF1 mutations affecting cysteine residues that significantly contribute to neurofibromatosis pathology. To identify the most critical mutations in the NF1 gene that contribute to the pathology of neurofibromatosis, we employed a sophisticated computational pipeline specifically designed to detect significant mutations affecting the NF1 gene. Our approach involved an exhaustive search of databases such as the Human Gene Mutation Database (HGMD), UniProt, and ClinVar for information on missense mutations associated with NF1. Our search yielded a total of 204 unique cysteine missense mutations. We then employed in silico prediction tools, including PredictSNP, iStable, and Align GVGD, to assess the impact of these mutations. Among the mutations, C379R, R1000C, and C1016Y stood out due to their deleterious effects on the biophysical properties of the neurofibromin protein, significantly destabilizing its structure. These mutations were subjected to further phenotyping analysis using SNPeffect 4.0, which predicted disturbances in the protein's chaperone binding sites and overall structural stability. Furthermore, to directly visualize the impact of these mutations on protein structure, we utilized AlphaFold3 to simulate both the wild-type and mutant NF1 structures, revealing the significant effects of the R1000C mutation on the protein's conformation. In conclusion, the identification of these mutations can play a pivotal role in advancing the field of precision medicine and aid in the development of effective drugs for associated diseases.
Collapse
Affiliation(s)
- Jie Chen
- Department of Respiratory, Hangzhou Children's Hospital, Hangzhou, 310014, Zhejiang Province, China
| | - Ziqiao Li
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yiheng Wu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei Province, China
| | - Xiang Li
- Department of Nephrology, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China
| | - Zipei Chen
- Department of Nephrology, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China
| | - Pan Chen
- Department of Nephrology, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China
| | - Yuhan Ding
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chengpeng Wu
- Liangzhu Laboratory, Zhejiang University, 311121, Hangzhou, China.
| | - Lidan Hu
- Department of Nephrology, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China.
| |
Collapse
|
2
|
Lorincz KN, Gorodezki D, Schittenhelm J, Zipfel J, Tellermann J, Tatagiba M, Ebinger M, Schuhmann MU. Role of surgery in the treatment of pediatric low-grade glioma with various degrees of brain stem involvement. Childs Nerv Syst 2024; 40:3037-3050. [PMID: 39145885 PMCID: PMC11511697 DOI: 10.1007/s00381-024-06561-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024]
Abstract
OBJECTIVE Posterior fossa pediatric low-grade glioma involving the brainstem and cerebellar peduncles (BS-pLGG) are a subgroup with higher risks at surgery. We retrospectively analyzed the role of surgery in the interdisciplinary armamentarium of treatment options in our institutional series of BS-pLGG with various degrees of brainstem involvement. MATERIAL AND METHODS We analyzed data of 52 children with BS-pLGG after surgical intervention for clinical/molecular characteristics, neurological outcome, factors influencing recurrence/progression pattern, and tumor volumetric analysis of exclusively surgically treated patients to calculate tumor growth velocity (TGV). Tumors were stratified according to primary tumor origin in four groups: (1) cerebellar peduncle, (2) 4th ventricle, (3) pons, (4) medulla oblongata. RESULTS The mean FU was 6.44 years. Overall survival was 98%. The mean PFS was 34.07 months. Two patients had biopsies only. Fifty-two percent of patients underwent remission or remained in stable disease (SD) after initial surgery. Patients with progression underwent further 23 resections, 15 chemotherapies, 4 targeted treatments, and 2 proton radiations. TGV decreased after the 2nd surgery compared to TGV after the 1st surgery (p < 0.05). The resection rates were significantly higher in Groups 1 and 2 and lowest in medulla oblongata tumors (Group 4) (p < 0.05). More extended resections were achieved in tumors with KIAA1549::BRAF fusion (p = 0.021), which mostly occurred in favorable locations (Groups 1 and 2). Thirty-one patients showed postoperatively new neurological deficits. A total of 27/31 improved within 12 months. At the end of FU, 6% had moderate deficits, 52% had mild deficits not affecting activities, and 36% had none. Fifty percent of patients were free of disease or showed remission, 38% were in SD, and 10% showed progression. CONCLUSION The first surgical intervention in BS-pLGG can control disease alone in overall 50% of cases, with rates differing greatly according to location (Groups 1 > 2 > 3 > 4), with acceptable low morbidity. The second look surgery is warranted except in medullary tumors. With multimodality treatments almost 90% of patients can obtain remission or stable disease after > 5 years of follow-up. An integrated multimodal and multidisciplinary approach aiming at minimal safe residual disease, combining surgery, chemo-, targeted therapy, and, as an exception, radiation therapy, is mandatory.
Collapse
Affiliation(s)
- Katalin Nora Lorincz
- Section of Pediatric Neurosurgery, University Hospital of Tuebingen, Tuebingen, Germany.
- Department of Neurosurgery and Neurotechnology, University Hospital of Tuebingen, Hoppe-Seyler Str. 3, 72076, Tuebingen, Germany.
| | - David Gorodezki
- Department of Pediatric Oncology, University Children's Hospital of Tuebingen, Tuebingen, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Julian Zipfel
- Section of Pediatric Neurosurgery, University Hospital of Tuebingen, Tuebingen, Germany
- Department of Neurosurgery and Neurotechnology, University Hospital of Tuebingen, Hoppe-Seyler Str. 3, 72076, Tuebingen, Germany
| | - Jonas Tellermann
- Section of Pediatric Neurosurgery, University Hospital of Tuebingen, Tuebingen, Germany
- Department of Neurosurgery and Neurotechnology, University Hospital of Tuebingen, Hoppe-Seyler Str. 3, 72076, Tuebingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery and Neurotechnology, University Hospital of Tuebingen, Hoppe-Seyler Str. 3, 72076, Tuebingen, Germany
| | - Martin Ebinger
- Department of Pediatric Oncology, University Children's Hospital of Tuebingen, Tuebingen, Germany
| | - Martin Ulrich Schuhmann
- Section of Pediatric Neurosurgery, University Hospital of Tuebingen, Tuebingen, Germany
- Department of Neurosurgery and Neurotechnology, University Hospital of Tuebingen, Hoppe-Seyler Str. 3, 72076, Tuebingen, Germany
| |
Collapse
|
3
|
Fukuda M, Mukohara T, Kuwata T, Sunami K, Naito Y. Efficacy of Trametinib in Neurofibromatosis Type 1-Associated Gastrointestinal Stromal Tumors: A Case Report. JCO Precis Oncol 2024; 8:e2300649. [PMID: 39116355 PMCID: PMC11371073 DOI: 10.1200/po.23.00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/14/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Trametinib, an MEK inhibitor, may offer a new therapeutic option for patients with NF1-related GIST.
Collapse
Affiliation(s)
- Misao Fukuda
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Toru Mukohara
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Genetic Medicine and Services, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takeshi Kuwata
- Department of Genetic Medicine and Services, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kuniko Sunami
- Department of Laboratory Medicine, National Cancer Center Hospital, Tokyo, Japan
| | - Yoichi Naito
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Department of General Internal Medicine, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
4
|
Nikanjam M, Wells K, Kato S, Adashek JJ, Block S, Kurzrock R. Reverse repurposing: Potential utility of cancer drugs in nonmalignant illnesses. MED 2024; 5:689-717. [PMID: 38749442 PMCID: PMC11246816 DOI: 10.1016/j.medj.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 06/02/2024]
Abstract
Growth and immune process dysregulation can result in both cancer and nonmalignant disease (hereditary or acquired, with and without predisposition to malignancy). Moreover, perhaps unexpectedly, many nonmalignant illnesses harbor genomic alterations indistinguishable from druggable oncogenic drivers. Therefore, targeted compounds used successfully to treat cancer may have therapeutic potential for nonmalignant conditions harboring the same target. MEK, PI3K/AKT/mTOR, fibroblast growth factor receptor (FGFR), and NRG1/ERBB pathway genes have all been implicated in both cancer and noncancerous conditions, and several cognate antagonists, as well as Bruton's tyrosine kinase inhibitors, JAK inhibitors, and CD20-directed antibodies, have established or theoretical therapeutic potential to bridge cancer and benign diseases. Intriguingly, pharmacologically tractable cancer drivers characterize a wide spectrum of disorders without malignant potential, including but not limited to Alzheimer's disease and a variety of other neurodegenerative conditions, rheumatoid arthritis, achondroplastic dwarfism, and endometriosis. Expanded repositioning of oncology agents in order to benefit benign but serious medical illnesses is warranted.
Collapse
Affiliation(s)
- Mina Nikanjam
- Division of Hematology-Oncology, University of California, San Diego, La Jolla, CA, USA.
| | - Kaitlyn Wells
- Department of Pharmacy, University of California, San Diego, La Jolla, CA, USA
| | - Shumei Kato
- Division of Hematology-Oncology, University of California, San Diego, La Jolla, CA, USA
| | - Jacob J Adashek
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Shanna Block
- Department of Pharmacy, University of California, San Diego, La Jolla, CA, USA
| | - Razelle Kurzrock
- Division of Hematology-Oncology, Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA; WIN Consortium, Chevilly-Larue, France.
| |
Collapse
|
5
|
Miyagishima KJ, Qiao F, Stasheff SF, Nadal-Nicolás FM. Visual Deficits and Diagnostic and Therapeutic Strategies for Neurofibromatosis Type 1: Bridging Science and Patient-Centered Care. Vision (Basel) 2024; 8:31. [PMID: 38804352 PMCID: PMC11130890 DOI: 10.3390/vision8020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is an inherited autosomal dominant disorder primarily affecting children and adolescents characterized by multisystemic clinical manifestations. Mutations in neurofibromin, the protein encoded by the Nf1 tumor suppressor gene, result in dysregulation of the RAS/MAPK pathway leading to uncontrolled cell growth and migration. Neurofibromin is highly expressed in several cell lineages including melanocytes, glial cells, neurons, and Schwann cells. Individuals with NF1 possess a genetic predisposition to central nervous system neoplasms, particularly gliomas affecting the visual pathway, known as optic pathway gliomas (OPGs). While OPGs are typically asymptomatic and benign, they can induce visual impairment in some patients. This review provides insight into the spectrum and visual outcomes of NF1, current diagnostic techniques and therapeutic interventions, and explores the influence of NF1-OPGS on visual abnormalities. We focus on recent advancements in preclinical animal models to elucidate the underlying mechanisms of NF1 pathology and therapies targeting NF1-OPGs. Overall, our review highlights the involvement of retinal ganglion cell dysfunction and degeneration in NF1 disease, and the need for further research to transform scientific laboratory discoveries to improved patient outcomes.
Collapse
Affiliation(s)
- Kiyoharu J. Miyagishima
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.J.M.); (F.Q.); (S.F.S.)
| | - Fengyu Qiao
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.J.M.); (F.Q.); (S.F.S.)
| | - Steven F. Stasheff
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.J.M.); (F.Q.); (S.F.S.)
- Center for Neuroscience and Behavioral Medicine, Gilbert Neurofibromatosis Institute, Children’s National Health System, Washington, DC 20010, USA
- Neurology Department, George Washington University School of Medicine, Washington, DC 20037, USA
| | - Francisco M. Nadal-Nicolás
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.J.M.); (F.Q.); (S.F.S.)
| |
Collapse
|
6
|
Farncombe KM, Wong D, Norman ML, Oldfield LE, Sobotka JA, Basik M, Bombard Y, Carile V, Dawson L, Foulkes WD, Malkin D, Karsan A, Parkin P, Penney LS, Pollett A, Schrader KA, Pugh TJ, Kim RH. Current and new frontiers in hereditary cancer surveillance: Opportunities for liquid biopsy. Am J Hum Genet 2023; 110:1616-1627. [PMID: 37802042 PMCID: PMC10577078 DOI: 10.1016/j.ajhg.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/08/2023] Open
Abstract
At least 5% of cancer diagnoses are attributed to a causal pathogenic or likely pathogenic germline genetic variant (hereditary cancer syndrome-HCS). These individuals are burdened with lifelong surveillance monitoring organs for a wide spectrum of cancers. This is associated with substantial uncertainty and anxiety in the time between screening tests and while the individuals are awaiting results. Cell-free DNA (cfDNA) sequencing has recently shown potential as a non-invasive strategy for monitoring cancer. There is an opportunity for high-yield cancer early detection in HCS. To assess clinical validity of cfDNA in individuals with HCS, representatives from eight genetics centers from across Canada founded the CHARM (cfDNA in Hereditary and High-Risk Malignancies) Consortium in 2017. In this perspective, we discuss operationalization of this consortium and early data emerging from the most common and well-characterized HCSs: hereditary breast and ovarian cancer, Lynch syndrome, Li-Fraumeni syndrome, and Neurofibromatosis type 1. We identify opportunities for the incorporation of cfDNA sequencing into surveillance protocols; these opportunities are backed by examples of earlier cancer detection efficacy in HCSs from the CHARM Consortium. We seek to establish a paradigm shift in early cancer surveillance in individuals with HCSs, away from highly centralized, regimented medical screening visits and toward more accessible, frequent, and proactive care for these high-risk individuals.
Collapse
Affiliation(s)
- Kirsten M Farncombe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Derek Wong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Maia L Norman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Leslie E Oldfield
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Julia A Sobotka
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mark Basik
- Department of Surgery, McGill University Medical School, Montreal, QC, Canada; Department of Oncology, McGill University Medical School, Montreal, QC, Canada
| | - Yvonne Bombard
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada; Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Victoria Carile
- Jewish General Hospital Stroll Cancer Prevention Centre, Montreal, QC, Canada
| | - Lesa Dawson
- Memorial University, St. John's, NL, Canada; Eastern Health Authority, St. John's, NL, Canada
| | - William D Foulkes
- Jewish General Hospital Stroll Cancer Prevention Centre, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - David Malkin
- Division of Hematology-Oncology, Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | - Patricia Parkin
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada; Division of Pediatric Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | | - Kasmintan A Schrader
- BC Cancer, Vancouver, BC, Canada; University of British Columbia, Vancouver, BC, Canada
| | - Trevor J Pugh
- Ontario Institute for Cancer Research, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Raymond H Kim
- Ontario Institute for Cancer Research, Toronto, ON, Canada; Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Sinai Health System, Toronto, ON, Canada; Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Pillay-Smiley N, Fletcher JS, de Blank P, Ratner N. Shedding New Light: Novel Therapies for Common Disorders in Children with Neurofibromatosis Type I. Pediatr Clin North Am 2023; 70:937-950. [PMID: 37704352 DOI: 10.1016/j.pcl.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Neurofibromatosis type I (NF1) is a common dominantly inherited disorder, and one of the most common of the RASopathies. Most individuals with NF1 develop plexiform neurofibromas and cutaneous neurofibromas, nerve tumors caused by NF1 loss of function in Schwann cells. Cell culture models and mouse models of NF1 are being used to test drug efficacy in preclinical trials, which led to Food and Drug Administration approval for use of MEK inhibitors to shrink most inoperable plexiform neurofibromas. This article details methods used for testing in preclinical models, and outlines newer models that may identify additional, curative, strategies.
Collapse
Affiliation(s)
- Natasha Pillay-Smiley
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-0731, USA; Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jonathan S Fletcher
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-0731, USA; Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Current Address: Division of Hematology-Oncology, University of Texas Southwestern, Dallas, TX, USA
| | - Peter de Blank
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-0731, USA; Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-0731, USA; Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
8
|
Andrianova EP, Marmion RA, Shvartsman SY, Zhulin IB. Evolutionary history of MEK1 illuminates the nature of deleterious mutations. Proc Natl Acad Sci U S A 2023; 120:e2304184120. [PMID: 37579140 PMCID: PMC10450672 DOI: 10.1073/pnas.2304184120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/24/2023] [Indexed: 08/16/2023] Open
Abstract
Mutations in signal transduction pathways lead to various diseases including cancers. MEK1 kinase, encoded by the human MAP2K1 gene, is one of the central components of the MAPK pathway and more than a hundred somatic mutations in the MAP2K1 gene were identified in various tumors. Germline mutations deregulating MEK1 also lead to congenital abnormalities, such as the cardiofaciocutaneous syndrome and arteriovenous malformation. Evaluating variants associated with a disease is a challenge, and computational genomic approaches aid in this process. Establishing evolutionary history of a gene improves computational prediction of disease-causing mutations; however, the evolutionary history of MEK1 is not well understood. Here, by revealing a precise evolutionary history of MEK1, we construct a well-defined dataset of MEK1 metazoan orthologs, which provides sufficient depth to distinguish between conserved and variable amino acid positions. We matched known and predicted disease-causing and benign mutations to evolutionary changes observed in corresponding amino acid positions and found that all known and many suspected disease-causing mutations are evolutionarily intolerable. We selected several variants that cannot be unambiguously assessed by automated prediction tools but that are confidently identified as "damaging" by our approach, for experimental validation in Drosophila. In all cases, evolutionary intolerant variants caused increased mortality and severe defects in fruit fly embryos confirming their damaging nature. We anticipate that our analysis will serve as a blueprint to help evaluate known and novel missense variants in MEK1 and that our approach will contribute to improving automated tools for disease-associated variant interpretation.
Collapse
Affiliation(s)
- Ekaterina P. Andrianova
- Department of Microbiology, The Ohio State University, Columbus, OH43210
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH43210
| | - Robert A. Marmion
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
| | - Stanislav Y. Shvartsman
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
- Flatiron Institute, Simons Foundation, New York, NY10010
| | - Igor B. Zhulin
- Department of Microbiology, The Ohio State University, Columbus, OH43210
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH43210
| |
Collapse
|
9
|
Giraud JS, Bièche I, Pasmant É, Tlemsani C. NF1 alterations in cancers: therapeutic implications in precision medicine. Expert Opin Investig Drugs 2023; 32:941-957. [PMID: 37747491 DOI: 10.1080/13543784.2023.2263836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/24/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION NF1 is a tumor suppressor gene encoding neurofibromin, an inhibitor of the RAS/MAPK and PI3K-AKT-mTOR signaling pathways. NF1 germline pathogenic variants cause the tumor predisposition syndrome neurofibromatosis type 1. Targeted therapies (MEK inhibitors) have been approved for benign nerve sheath tumors in neurofibromatosis type 1 patients. NF1 somatic alterations are present in ~5% of all human sporadic cancers. In melanomas, acute myeloid leukemias and lung adenocarcinomas, the NF1 somatic alteration frequency is higher (~15%). However, to date, the therapeutic impact of NF1 somatic alterations is poorly investigated. AREAS COVERED This review presents a comprehensive overview of targeted therapies and immunotherapies currently developed and evaluated in vitro and in vivo for NF1-altered cancer treatment. A PubMed database literature review was performed to select relevant original articles. Active clinical trials were researched in ClinicalTrials.gov database in August 2022. TCGA and HGMD® databases were consulted. EXPERT OPINION This review highlights the need to better understand the molecular mechanisms of NF1-altered tumors and the development of innovative strategies to effectively target NF1-loss in human cancers. One of the current major challenges in cancer management is the targeting of tumor suppressor genes such as NF1 gene. Currently, most studies are focusing on inhibitors of the RAS/MAPK and PI3K-AKT-mTOR pathways and immunotherapies.
Collapse
Affiliation(s)
- Jean-Stéphane Giraud
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
| | - Ivan Bièche
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
- Genetic Department, Curie Institute, Paris, France
| | - Éric Pasmant
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
- Genetic Department, Hôpital Cochin, AP-HP.Centre-Université Paris Cité, Paris, France
| | - Camille Tlemsani
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Cité, CARPEM, Paris, France
- Oncology Department, Hôpital Cochin, AP-HP.Centre-Université Paris Cité, Paris, France
| |
Collapse
|
10
|
Pasupuleti SK, Chao K, Ramdas B, Kanumuri R, Palam LR, Liu S, Wan J, Annesley C, Loh ML, Stieglitz E, Burke MJ, Kapur R. Potential clinical use of azacitidine and MEK inhibitor combination therapy in PTPN11-mutated juvenile myelomonocytic leukemia. Mol Ther 2023; 31:986-1001. [PMID: 36739480 PMCID: PMC10124140 DOI: 10.1016/j.ymthe.2023.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare myeloproliferative neoplasm of childhood. The molecular hallmark of JMML is hyperactivation of the Ras/MAPK pathway with the most common cause being mutations in the gene PTPN11, encoding the protein tyrosine phosphatase SHP2. Current strategies for treating JMML include using the hypomethylating agent, 5-azacitidine (5-Aza) or MEK inhibitors trametinib and PD0325901 (PD-901), but none of these are curative as monotherapy. Utilizing an Shp2E76K/+ murine model of JMML, we show that the combination of 5-Aza and PD-901 modulates several hematologic abnormalities often seen in JMML patients, in part by reducing the burden of leukemic hematopoietic stem and progenitor cells (HSC/Ps). The reduced JMML features in drug-treated mice were associated with a decrease in p-MEK and p-ERK levels in Shp2E76K/+ mice treated with the combination of 5-Aza and PD-901. RNA-sequencing analysis revealed a reduction in several RAS and MAPK signaling-related genes. Additionally, a decrease in the expression of genes associated with inflammation and myeloid leukemia was also observed in Shp2E76K/+ mice treated with the combination of the two drugs. Finally, we report two patients with JMML and PTPN11 mutations treated with 5-Aza, trametinib, and chemotherapy who experienced a clinical response because of the combination treatment.
Collapse
Affiliation(s)
- Santhosh Kumar Pasupuleti
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA
| | - Karen Chao
- Department of Pediatrics, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Stanford University School of Medicine, Lucile Packard Children's Hospital, Palo Alto, CA, USA
| | - Baskar Ramdas
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA
| | - Rahul Kanumuri
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA
| | - Lakshmi Reddy Palam
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospital, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Michael J Burke
- Department of Pediatrics, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Reuben Kapur
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA; Department of Microbiology & Immunology, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA.
| |
Collapse
|
11
|
Characterization of Cardiac Function by Echocardiographic Global Longitudinal Strain in a Cohort of Children with Neurofibromatosis Type 1 Treated with Selumetinib. Paediatr Drugs 2023; 25:217-224. [PMID: 36529809 DOI: 10.1007/s40272-022-00551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Plexiform neurofibromas are benign neoplasms that develop in 20-50% children with neurofibromatosis type 1 (NF1). Selumetinib was approved as treatment for symptomatic and inoperable plexiform neurofibromas. Subclinical left ventricular ejection fraction reduction is a less common effect of selumetinib. OBJECTIVE We aimed to investigate the contractile function of the heart in a cohort of children with NF1 treated with selumetinib. METHODS We designed a cross-sectional study including 17 patients with NF1 who received selumetinib. Echocardiographic parameters were compared with a cohort of 17 healthy children matched by sex and age and another group of 17 children with untreated NF1. RESULTS Compared with healthy controls, patients with NF1 treated with selumetinib had lower mean values of global longitudinal strain (- 22.9 ± 2% vs -25.5 ± 2%; p = 0.001), fractional shortening (36 ± 4% vs 43 ± 8%; p = 0.02) and tricuspid annular plane systolic excursion (19 ± 3 mm vs 23 ± 2 mm; p = 0.001); no difference was found in left ventricular ejection fraction (63 ± 4% vs 65 ± 3%; p = 0.2 respectively). Median treatment time with selumetinib at the time of the echocardiographic evaluation was 22 ± 16 months. CONCLUSIONS Patients with NF1 treated with selumetinib may experience subtle changes in systolic function identified by global longitudinal strain and not revealed by left ventricular ejection fraction. Global longitudinal strain might be useful to monitor cardiac function in this cohort of patients for the duration of therapy.
Collapse
|
12
|
Ortiz-Rivera J, Nuñez R, Kucheryavykh Y, Kucheryavykh L. The PYK2 inhibitor PF-562271 enhances the effect of temozolomide on tumor growth in a C57Bl/6-Gl261 mouse glioma model. J Neurooncol 2023; 161:593-604. [PMID: 36790653 PMCID: PMC9992029 DOI: 10.1007/s11060-023-04260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND The development of resistance to temozolomide (TMZ), a standard chemotherapeutic, limits the effective treatment of glioblastoma (GBM). Focal adhesion kinase (FAK) and proline rich tyrosine kinase 2 (Pyk2) regulate proliferation and invasion of GBM cells. We found that TMZ activates FAK and Pyk2 signaling in GBM. We hypothesized that pharmacological inhibitors of Pyk2/FAK together with TMZ can enhance the inhibitory effect of TMZ on tumor growth and dispersal and improve the treatment outcome. METHODS Primary human GBM cell cultures and a C57Bl/6-GL261 mouse glioma implantation model were used. Pyk2 (Tyr579/580) and FAK (Tyr925) phosphorylation was analyzed by western blotting. Viability, cell cycle, migration, invasion and invadopodia formation were investigated in vitro. Animal survival, tumor size and invasion, TUNEL apoptotic cell death and the Ki67 proliferation index were evaluated in vivo upon treatment with TMZ (50 mg/kg, once/day, orally) and the Pyk2/FAK inhibitor PF-562271 (once/daily, 50 mg/kg, orally) vs. TMZ monotherapy. RESULTS In vitro studies revealed significantly reduced viability, cell cycle progression, invasion and invadopodia with TMZ (100 µM) + PF-562271 (16 nM) compared with TMZ alone. In vivo studies demonstrated that combinatorial treatment led to prominent reductions in tumor size and invasive margins, extensive signs of apoptosis and a reduced proliferation index, together with a 15% increase in the survival rate in animals, compared with TMZ monotherapy. CONCLUSION TMZ + PF-562271 eliminates TMZ-related Pyk2/FAK activation in GBM and improves the treatment efficacy.
Collapse
Affiliation(s)
- Jescelica Ortiz-Rivera
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956 USA
| | - Rebeca Nuñez
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956 USA
| | - Yuriy Kucheryavykh
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956 USA
| | - Lilia Kucheryavykh
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956 USA
| |
Collapse
|
13
|
Bouffet E, Geoerger B, Moertel C, Whitlock JA, Aerts I, Hargrave D, Osterloh L, Tan E, Choi J, Russo M, Fox E. Efficacy and Safety of Trametinib Monotherapy or in Combination With Dabrafenib in Pediatric BRAF V600-Mutant Low-Grade Glioma. J Clin Oncol 2023; 41:664-674. [PMID: 36375115 PMCID: PMC9870224 DOI: 10.1200/jco.22.01000] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
PURPOSE BRAF V600 mutations occur in many childhood cancers, including approximately 20% of low-grade gliomas (LGGs). Here, we describe a phase I/II study establishing pediatric dosing and pharmacokinetics of trametinib with or without dabrafenib, as well as efficacy and safety in a disease-specific cohort with BRAF V600-mutant LGG; other cohorts will be reported elsewhere. METHODS This is a four-part, phase I/II study (ClinicalTrials.gov identifier: NCT02124772) in patients age < 18 years with relapsed/refractory malignancies: trametinib monotherapy dose finding (part A) and disease-specific expansion (part B), and dabrafenib + trametinib dose finding (part C) and disease-specific expansion (part D). The primary objective assessed in all patients in parts A and C was to determine pediatric dosing on the basis of steady-state pharmacokinetics. Disease-specific efficacy and safety (across parts A-D) were secondary objectives. RESULTS Overall, 139 patients received trametinib (n = 91) or dabrafenib + trametinib (n = 48). Trametinib dose-limiting toxicities in > 1 patient (part A) included mucosal inflammation (n = 3) and hyponatremia (n = 2). There were no dose-limiting toxicities with combination therapy (part C). The recommended phase II dose of trametinib, with or without dabrafenib, was 0.032 mg/kg once daily for patients age < 6 years and 0.025 mg/kg once daily for patients age ≥ 6 years; dabrafenib dosing in the combination was as previously identified for monotherapy. In 49 patients with BRAF V600-mutant glioma (LGG, n = 47) across all four study parts, independently assessed objective response rates were 15% (95% CI, 1.9 to 45.4) for monotherapy (n = 13) and 25% (95% CI, 12.1 to 42.2) for combination (n = 36). Adverse event-related treatment discontinuations were more common with monotherapy (54% v 22%). CONCLUSION The trial design provided efficient evaluation of pediatric dosing, safety, and efficacy of single-agent and combination targeted therapy. Age-based and weight-based dosing of trametinib with or without dabrafenib achieved target concentrations with manageable safety and demonstrated clinical efficacy and tolerability in BRAF V600-mutant LGG.
Collapse
Affiliation(s)
- Eric Bouffet
- Department of Paediatrics, The Hospital for Sick Children/University of Toronto, Toronto, ON, Canada
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | | | - James A Whitlock
- Department of Paediatrics, The Hospital for Sick Children/University of Toronto, Toronto, ON, Canada
| | - Isabelle Aerts
- Institut Curie, PSL Research University, Oncology Center SIREDO, Paris, France
| | - Darren Hargrave
- Great Ormond Street Hospital for Children, London, United Kingdom
| | | | - Eugene Tan
- Novartis Pharmaceuticals Corporation, East Hanover, NJ
| | - Jeea Choi
- Novartis Pharmaceuticals Corporation, East Hanover, NJ
| | - Mark Russo
- Novartis Pharmaceuticals Corporation, East Hanover, NJ
| | - Elizabeth Fox
- Comprehensive Cancer Center, St Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
14
|
Ahmed R, Uppuganti S, Derasari S, Meyer J, Pennings JS, Elefteriou F, Nyman JS. Identifying Bone Matrix Impairments in a Mouse Model of Neurofibromatosis Type 1 (NF1) by Clinically Translatable Techniques. J Bone Miner Res 2022; 37:1603-1621. [PMID: 35690920 PMCID: PMC9378557 DOI: 10.1002/jbmr.4633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/25/2022] [Accepted: 06/04/2022] [Indexed: 11/06/2022]
Abstract
Three-to-four percent of children with neurofibromatosis type 1 (NF1) present with unilateral tibia bowing, fracture, and recalcitrant healing. Alkaline phosphatase (ALP) enzyme therapy prevented poor bone mineralization and poor mechanical properties in mouse models of NF1 skeletal dysplasia; but transition to clinical trials is hampered by the lack of a technique that (i) identifies NF1 patients at risk of tibia bowing and fracture making them eligible for trial enrollment and (ii) monitors treatment effects on matrix characteristics related to bone strength. Therefore, we assessed the ability of matrix-sensitive techniques to provide characteristics that differentiate between cortical bone from mice characterized by postnatal loss of Nf1 in Osx-creTet-Off ;Nf1flox/flox osteoprogenitors (cKO) and from wild-type (WT) mice. Following euthanasia at two time points of bone disease progression, femur and tibia were harvested from both genotypes (n ≥ 8/age/sex/genotype). A reduction in the mid-diaphysis ultimate force during three-point bending at 20 weeks confirmed deleterious changes in bone induced by Nf1 deficiency, regardless of sex. Pooling females and males, low bound water (BW), and low cortical volumetric bone mineral density (Ct.vBMD) were the most accurate outcomes in distinguishing cKO from WT femurs with accuracy improving with age. Ct.vBMD and the average unloading slope (Avg-US) from cyclic reference point indentation tests were the most sensitive in differentiating WT from cKO tibias. Mineral-to-matrix ratio and carbonate substitution from Raman spectroscopy were not good classifiers. However, when combined with Ct.vBMD and BW (femur), they helped predict bending strength. Nf1 deficiency in osteoprogenitors negatively affected bone microstructure and matrix quality with deficits in properties becoming more pronounced with duration of Nf1 deficiency. Clinically measurable without ionizing radiation, BW and Avg-US are sensitive to deleterious changes in bone matrix in a preclinical model of NF1 bone dysplasia and require further clinical investigation as potential indicators of an onset of bone weakness in children with NF1. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Rafay Ahmed
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shrey Derasari
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Joshua Meyer
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jacquelyn S Pennings
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Musculoskeletal Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Florent Elefteriou
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Orthopaedic Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Center for Musculoskeletal Research, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
15
|
Montella L, Del Gaudio N, Bove G, Cuomo M, Buonaiuto M, Costabile D, Visconti R, Facchini G, Altucci L, Chiariotti L, Della Monica R. Looking Beyond the Glioblastoma Mask: Is Genomics the Right Path? Front Oncol 2022; 12:926967. [PMID: 35875139 PMCID: PMC9306486 DOI: 10.3389/fonc.2022.926967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/09/2022] [Indexed: 11/15/2022] Open
Abstract
Glioblastomas are the most frequent and malignant brain tumor hallmarked by an invariably poor prognosis. They have been classically differentiated into primary isocitrate dehydrogenase 1 or 2 (IDH1 -2) wild-type (wt) glioblastoma (GBM) and secondary IDH mutant GBM, with IDH wt GBMs being commonly associated with older age and poor prognosis. Recently, genetic analyses have been integrated with epigenetic investigations, strongly implementing typing and subtyping of brain tumors, including GBMs, and leading to the new WHO 2021 classification. GBM genomic and epigenomic profile influences evolution, resistance, and therapeutic responses. However, differently from other tumors, there is a wide gap between the refined GBM profiling and the limited therapeutic opportunities. In addition, the different oncogenes and tumor suppressor genes involved in glial cell transformation, the heterogeneous nature of cancer, and the restricted access of drugs due to the blood–brain barrier have limited clinical advancements. This review will summarize the more relevant genetic alterations found in GBMs and highlight their potential role as potential therapeutic targets.
Collapse
Affiliation(s)
- Liliana Montella
- Oncology Operative Unit, "Santa Maria delle Grazie" Hospital, ASL Napoli 2 NORD-, Pozzuoli, Italy
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Guglielmo Bove
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Mariella Cuomo
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Napoli, Italy
| | - Michela Buonaiuto
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Napoli, Italy
| | - Davide Costabile
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,SEMM-European School of Molecular Medicine, Milano, Italy
| | - Roberta Visconti
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,Institute of Experimental Endocrinology and Oncology, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Gaetano Facchini
- Oncology Operative Unit, "Santa Maria delle Grazie" Hospital, ASL Napoli 2 NORD-, Pozzuoli, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy.,BIOGEM, Ariano Irpino, Italy
| | - Lorenzo Chiariotti
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Napoli, Italy
| | - Rosa Della Monica
- CEINGE Biotecnologie Avanzate scarl, Napoli, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Napoli, Italy
| |
Collapse
|
16
|
Huang S, Gong N, Li J, Hong M, Li L, Zhang L, Zhang H. The role of ncRNAs in neuroblastoma: mechanisms, biomarkers and therapeutic targets. Biomark Res 2022; 10:18. [PMID: 35392988 PMCID: PMC8991791 DOI: 10.1186/s40364-022-00368-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/22/2022] [Indexed: 12/30/2022] Open
Abstract
Neuroblastoma (NB) is a malignant tumor in young children that originates from the neural crest of the sympathetic nervous system. Generally, NB occurs in the adrenal glands, but it can also affect the nerve tissues of the neck, chest, abdomen, and pelvis. Understanding the pathophysiology of NB and developing novel therapeutic approaches are critical. Noncoding RNAs (ncRNAs) are associated with crucial aspects of pathology, metastasis and drug resistance in NB. Here, we summarized the pretranscriptional, transcriptional and posttranscriptional regulatory mechanisms of ncRNAs involved in NB, especially focusing on regulatory pathways. Furthermore, ncRNAs with the potential to serve as biomarkers for risk stratification, drug resistance and therapeutic targets are also discussed, highlighting the clinical application of ncRNAs in NB.
Collapse
Affiliation(s)
- Shaohui Huang
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Naying Gong
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Jiangbin Li
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Mingye Hong
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Li Li
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Ling Zhang
- Health Science Center, University of Texas, Houston, 77030, USA.
| | - Hua Zhang
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
17
|
Chen X, Zhou X, Wang X. m 6A binding protein YTHDF2 in cancer. Exp Hematol Oncol 2022; 11:21. [PMID: 35382893 PMCID: PMC8981655 DOI: 10.1186/s40164-022-00269-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/10/2022] [Indexed: 12/14/2022] Open
Abstract
YT521-B homology domain family member 2 (YTHDF2) is an N6-methyladenosine (m6A)-binding protein that was originally found to regulate the stability of mRNA. Growing evidence has shown that YTHDF2 can participate in multifarious bioprocesses, including embryonic development, immune response, and tumor progression. Furthermore, YTHDF2 is closely associated with the proliferation, apoptosis, invasion, and migration of tumor cells, suggesting its significant role in cancers. YTHDF2 primarily relies on m6A modification to modulate signaling pathways in cancer cells. However, the expression and function of YTHDF2 in human malignancies remain controversial. Meanwhile, the underlying molecular mechanisms of YTHDF2 have not been elucidated. In this review, we principally summarized the biological functions and molecular mechanisms of YTHDF2 in tumors and discussed its prognostic and therapeutic values.
Collapse
Affiliation(s)
- Xiaomin Chen
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,School of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
18
|
Zauner R, Wimmer M, Dorfer S, Ablinger M, Koller U, Piñón Hofbauer J, Guttmann-Gruber C, Bauer JW, Wally V. Transcriptome-Guided Drug Repurposing for Aggressive SCCs. Int J Mol Sci 2022; 23:ijms23021007. [PMID: 35055192 PMCID: PMC8780441 DOI: 10.3390/ijms23021007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/03/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Despite a significant rise in the incidence of cutaneous squamous cell carcinoma (SCC) in recent years, most SCCs are well treatable. However, against the background of pre-existing risk factors such as immunosuppression upon organ transplantation, or conditions such as recessive dystrophic epidermolysis bullosa (RDEB), SCCs arise more frequently and follow a particularly aggressive course. Notably, such SCC types display molecular similarities, despite their differing etiologies. We leveraged the similarities in transcriptomes between tumors from organ transplant recipients and RDEB-patients, augmented with data from more common head and neck (HN)-SCCs, to identify drugs that can be repurposed to treat these SCCs. The in silico approach used is based on the assumption that SCC-derived transcriptome profiles reflect critical tumor pathways that, if reversed towards healthy tissue, will attenuate the malignant phenotype. We determined tumor-specific signatures based on differentially expressed genes, which were then used to mine drug-perturbation data. By leveraging recent efforts in the systematic profiling and cataloguing of thousands of small molecule compounds, we identified drugs including selumetinib that specifically target key molecules within the MEK signaling cascade, representing candidates with the potential to be effective in the treatment of these rare and aggressive SCCs.
Collapse
Affiliation(s)
- Roland Zauner
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (M.W.); (S.D.); (M.A.); (U.K.); (J.P.H.); (C.G.-G.); (J.W.B.); (V.W.)
- Correspondence:
| | - Monika Wimmer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (M.W.); (S.D.); (M.A.); (U.K.); (J.P.H.); (C.G.-G.); (J.W.B.); (V.W.)
| | - Sonja Dorfer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (M.W.); (S.D.); (M.A.); (U.K.); (J.P.H.); (C.G.-G.); (J.W.B.); (V.W.)
| | - Michael Ablinger
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (M.W.); (S.D.); (M.A.); (U.K.); (J.P.H.); (C.G.-G.); (J.W.B.); (V.W.)
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (M.W.); (S.D.); (M.A.); (U.K.); (J.P.H.); (C.G.-G.); (J.W.B.); (V.W.)
| | - Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (M.W.); (S.D.); (M.A.); (U.K.); (J.P.H.); (C.G.-G.); (J.W.B.); (V.W.)
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (M.W.); (S.D.); (M.A.); (U.K.); (J.P.H.); (C.G.-G.); (J.W.B.); (V.W.)
| | - Johann W. Bauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (M.W.); (S.D.); (M.A.); (U.K.); (J.P.H.); (C.G.-G.); (J.W.B.); (V.W.)
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (M.W.); (S.D.); (M.A.); (U.K.); (J.P.H.); (C.G.-G.); (J.W.B.); (V.W.)
| |
Collapse
|
19
|
Neurofibromatosis Type 1 Gene Alterations Define Specific Features of a Subset of Glioblastomas. Int J Mol Sci 2021; 23:ijms23010352. [PMID: 35008787 PMCID: PMC8745708 DOI: 10.3390/ijms23010352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 02/08/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) gene mutations or alterations occur within neurofibromatosis type 1 as well as in many different malignant tumours on the somatic level. In glioblastoma, NF1 loss of function plays a major role in inducing the mesenchymal (MES) subtype and, therefore defining the most aggressive glioblastoma. This is associated with an immune signature and mediated via the NF1–MAPK–FOSL1 axis. Specifically, increased invasion seems to be regulated via mutations in the leucine-rich domain (LRD) of the NF1 gene product neurofibromin. Novel targets for therapy may arise from neurofibromin deficiency-associated cellular mechanisms that are summarised in this review.
Collapse
|