1
|
Luanpitpong S, Klaihmon P, Janan M, Kungwankiattichai S, Owattanapanich W, Kunacheewa C, Chanthateyanonth S, Donsakul N, U-pratya Y, Warindpong T, Kittivorapart J, Permpikul P, Issaragrisil S. Point-of-care manufacturing of anti-CD19 CAR-T cells using a closed production platform: Experiences of an academic in Thailand. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200889. [PMID: 39507317 PMCID: PMC11539415 DOI: 10.1016/j.omton.2024.200889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/20/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
Anti-CD19 chimeric antigen receptor (CAR)-T cell therapy has evolved as a standard of care for various forms of relapsed/refractory B cell malignancies in major developed countries. However, access to industry-driven CAR-T cell therapy is limited in developing countries, partly due to the centralized manufacturing system. Here, we demonstrated the feasibility of the point-of-care (POC) manufacturing of anti-CD19 CAR-T cells from heavily pretreated patients and healthy graft donors at an academic medical center in Thailand using a closed semi-automated production platform, CliniMACS Prodigy, and established in-process quality control and release testing to ensure their identity, purity, sterility, safety, and potency. Nine out of the nine products manufactured were used in a pilot study (ISRCTN17901467). However, we did observe that starting T cells with CD4/CD8 ratios of less than one-third had a high chance of manufacturing failure, which could be minimized by serum supplementation. Further analysis of T cell phenotypes in the infused versus circulating CAR-T cells revealed the differentiation from early memory subtypes toward effector cells in vivo. The POC manufacturing and quality control settings herein could be applied to other CAR-T cell products and may benefit other academics, especially those in developing countries, making CAR-T cells more accessible.
Collapse
Affiliation(s)
- Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Cell Factory for Cancer Immunotherapy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Blood Products and Cellular Immunotherapy Research Group, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Phatchanat Klaihmon
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Cell Factory for Cancer Immunotherapy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Montira Janan
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Cell Factory for Cancer Immunotherapy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Blood Products and Cellular Immunotherapy Research Group, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Smith Kungwankiattichai
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Center of Excellence of Siriraj Adult Acute Myeloid/Lymphoblastic Leukemia, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Weerapat Owattanapanich
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Center of Excellence of Siriraj Adult Acute Myeloid/Lymphoblastic Leukemia, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chutima Kunacheewa
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Center of Excellence of Siriraj Adult Acute Myeloid/Lymphoblastic Leukemia, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Supasorn Chanthateyanonth
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Cell Factory for Cancer Immunotherapy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nawapotch Donsakul
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Center of Excellence of Siriraj Adult Acute Myeloid/Lymphoblastic Leukemia, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Yaowalak U-pratya
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thanatphak Warindpong
- Department of Transfusion Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Janejira Kittivorapart
- Department of Transfusion Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Parichart Permpikul
- Department of Transfusion Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- BDMS Center of Excellence for Hematology, Wattanosoth Cancer Hospital, Bangkok 10310, Thailand
| |
Collapse
|
2
|
Liu Y, An L, Wang X, Dai Y, Zhang C, Wen Q, Zhang X. Engineering a controllable and reversible switch for CAR-based cellular immunotherapies via a genetic code expansion system. J Hematol Oncol 2024; 17:122. [PMID: 39696585 DOI: 10.1186/s13045-024-01648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND As one of the most promising adoptive cell therapies, CAR-T cell therapy has achieved notable clinical effects in patients with hematological tumors. However, several treatment-related obstacles remain in CAR-T therapy, such as cytokine release syndrome, neurotoxicity, and high-frequency recurrence, which severely limit the long-term effects and can potentially be fatal. Therefore, strategies to increase the controllability and safety of CAR-T therapy are urgently needed. METHODS In this study, we engineered a genetic code expansion-based therapeutic system to achieve rapid CAR protein expression and regulation in response to cognate unnatural amino acids at the translational level. When the unnatural amino acid N-ε-((tert-butoxy) carbonyl)-l-lysine (BOCK) is absent, the CAR protein cannot be completely translated, and CAR-T is "closed". When BOCK is present, complete translation of the CAR protein is induced, and CAR-T is "open". Therefore, we investigated whether the BOCK-induced device can control CAR protein expression and regulate CAR-T cell function using a series of in vitro and in vivo experiments. RESULTS First, we verified that the BOCK-induced genetic code expansion system enables the regulation of protein expression as a controllable switch. We subsequently demonstrated that when the system was combined with CAR-T cells, BOCK could effectively and precisely control CAR protein expression and induce CAR signaling activation. When incubated with tumor cells, BOCK regulated CAR-T cells cytotoxicity in a dose-dependent manner. Our results revealed that the presence of BOCK enables the activation of CAR-T cells with strong anti-tumor cytotoxicity in a NOG mouse model. Furthermore, we verified that the BOCK-induced CAR device provided NK cells with controllable anti-tumor activity, which confirmed the universality of this device. CONCLUSIONS Our study systematically demonstrated that the BOCK-induced genetic code expansion system effectively and precisely regulates CAR protein expression and controls CAR-T cell anti-tumor effects in vitro and in vivo. We conclude that this controllable and reversible switch has the potential for more effective, secure, and clinically available CAR-based cellular immunotherapies.
Collapse
Affiliation(s)
- Yue Liu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Lingna An
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Yueyu Dai
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Cheng Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China.
| | - Qin Wen
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
3
|
Zhang M, Kong J, Yin F, Shi J, Li J, Qiu Z, Yue B, Wang S, Sun N, Lin Q, Fu L, Wang X, Sun X, Gao Y, Jiang Y, Guo R. Optimizing CAR-T cell Culture: Differential effects of IL-2, IL-12, and IL-21 on CAR-T cells. Cytokine 2024; 184:156758. [PMID: 39299100 DOI: 10.1016/j.cyto.2024.156758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T therapy has demonstrated sustained clinical remission in numerous hematologic malignancies and has expanded to encompass solid tumors and autoimmune diseases. While progress is being made in establishing optimal culture conditions for CAR-T cells, the identification of the most effective cytokine for promoting their persistence in vitro remains elusive. METHODS Here, we employed scRNA-seq (single-cell RNA sequencing) analysis to investigate the potential alterations in biological processes within CAR-T cells following exposure to cytokines (IL-2, IL-12, and IL-21) and antigens. Transcriptomic changes in diverse CAR-T groups were compared following various treatments, with a focus on epigenetic modifications, metabolic shifts, cellular senescence, and exhaustion. RESULTS Our study reveals that CAR-T cells treated with antigen, IL-2, and IL-12 exhibit signs of exhaustion and senescence, whereas those treated with IL-21 do not display these characteristics. The activities of glycolysis and epigenetic changes were significantly increased by treatments with antigens, IL-2, and IL-12, while IL-21 treatment maintained the oxidative phosphorylation (OXPHOS) of CAR-T cells. CONCLUSIONS Our findings suggest that IL-21 may play a role in preventing senescence and could be utilized in combination with other strategies, such as IL-2 and IL-12, for CAR-T culture.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Translational Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - JingJing Kong
- Translational Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fanxiang Yin
- Translational Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianxiang Shi
- Precision Medicine Center, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jin Li
- Translational Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zan Qiu
- Precision Medicine Center, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Baohong Yue
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuya Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Nannan Sun
- Translational Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Quande Lin
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Liyan Fu
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoqian Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xianlei Sun
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Yanxia Gao
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yong Jiang
- Henan Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine and Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Rongqun Guo
- Translational Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Dai Y, Liu Y, An L, Zhong F, Zhang X, Lou S. Afatinib boosts CAR-T cell antitumor therapeutic efficacy via metabolism and fate reprogramming. J Immunother Cancer 2024; 12:e009949. [PMID: 39551605 PMCID: PMC11574435 DOI: 10.1136/jitc-2024-009949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor T (CAR-T) cell therapy has been shown remarkable efficacy in the treatment of hematological malignancies in recent years. However, a considerable proportion of patients would experience tumor recurrence and deterioration. Insufficient CAR-T cell persistence is the major reason for relapse. Multiple strategies to enhance the long-term antitumor effects of CAR-T cells have been explored and developed. In this study, we focused on tyrosine kinase inhibitors (TKIs), which have emerged immunomodulatory potential besides direct tumoricidal effects. METHODS Here, we screened 50 approved TKIs drugs and identified that afatinib (AFA) markedly enhanced the expressing of CD62L and inhibited reactive oxygen species level in T cells. And the underlying mechanisms of AFA medicating T cells were explored by detecting signal transduction, and metabolism pattern. Furthermore, we co-cultured AFA with CAR-T cells during the preparation stage and multianalyses of differentiation characteristics, metabolic profiling, and RNA sequencing revealed that AFA induce comprehensive metabolism remodeling and fate reprogramming. Based on it, we finally identified the antitumor efficacy of AFA-pretreatment CAR-T compared with negative-control CAR-T. RESULTS We identified that AFA blocked the T-cell receptor (TCR) and phosphoinositide 3-kinase-protein kinase B-mechanistic target of rapamycin signaling pathways, induced metabolic reprogramming and modulated T-cell differentiation. When combined with CAR-T cells, AFA inhibited the exhaustion and enhanced the persistence and cytotoxicity. Our results revealed that the pretreatment of AFA enables to boost CAR-T cells with strong antitumor cytotoxicity in leukemia mouse model. CONCLUSIONS Our study systematically demonstrated that AFA pretreatment effectively enhanced CAR-T cells antitumor performance, which presents a novel optimization strategy for potent and durable CAR-T cell therapy.
Collapse
Affiliation(s)
- Yueyu Dai
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, Chongqing, China
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, Chongqing, China
| | - Yue Liu
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Clinical Specialty, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, Chongqing, China
| | - Lingna An
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Clinical Specialty, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, Chongqing, China
| | - Fangyuan Zhong
- Department of Gynecology and Obstetrics, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Clinical Specialty, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, Chongqing, China
- Jinfeng Laboratory, Chongqing, Chongqing, China
| | - Shifeng Lou
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, Chongqing, China
| |
Collapse
|
5
|
Zhang C, Wang X, Yi H, Wang Y, Yan Z, Zhou J, Yang T, Liang A, Wang Z, Ma Y, Wen Q, Gao L, Gao L, Kong P, Tan X, Jiang E, Zhang X. Long-term survival with donor CD19 CAR-T cell treatment for relapsed patients after allogeneic hematopietic stem cell transplantation. J Hematol Oncol 2024; 17:103. [PMID: 39468581 PMCID: PMC11520587 DOI: 10.1186/s13045-024-01626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Chimeric Antigen Receptor T (CAR-T) cell therapy has significantly advanced in treating B-cell acute lymphoblastic leukemia (B-ALL) and has shown efficacy in managing relapsed B-ALL after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Donor-derived CAR-T cell offer both high efficacy and rapid response. Although promising results exist, current research lacks definitive evidence of long-term survival benefits for patients treated with donor-derived CAR-T therapy. We report the long-term survival of 32 patients with post-transplant relapsed B-ALL treated with donor-derived CD19 CAR-T cell, achieving either complete Remission (CR) or CR with incomplete peripheral blood recovery (CRi). The median follow-up was 42 months, with 2-year overall survival (OS) and event-free survival (EFS) rates of 56.25% and 50.0%, respectively. The 5-year OS and EFS rates were 53.13% and 46.88%, with no new long-term adverse events observed. These findings demonstrate good long-term safety, supporting donor-derived CAR-T cell as a recommended treatment option for relapsed B-ALL patients post-transplantation. Trial registration: https://www.chictr.org.cn/showproj.html?proj=14315 . Registration number: ChiCTR-OOC-16008447.
Collapse
Affiliation(s)
- Cheng Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Hai Yi
- Department of Hematology, Sichuan Clinical Research Center for Hematological Disease. Branch of National Clinical Research Center for Hematological Disease, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Yi Wang
- Department of Hematology, Shaanxi Provincial Peoples Hospital, Xi'an, 710068, China
| | - Zhiling Yan
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Jian Zhou
- Department of Haematology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan, 450008, China
| | - Ting Yang
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200092, China
| | - Zhen Wang
- Department of Hematology, Henan Provincial People's Hospital, People's Hospital of Henan University, Henan, 450003, China
| | - Yingying Ma
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Qin Wen
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Lei Gao
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Li Gao
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Peiyan Kong
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Xu Tan
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China
| | - Erlie Jiang
- Center of Hematopoietic Stem Cell Transplantation, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300200, China.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
6
|
Rahbech A, Kurzay A, Fresnillo Saló S, Seremet T, Debets R, Met Ö, Peeters MJW, Straten PT. MerTK Signaling in Human Primary T cells Modulates Memory Potential and Improves Recall response. J Leukoc Biol 2024:qiae226. [PMID: 39422252 DOI: 10.1093/jleuko/qiae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024] Open
Abstract
Immune therapy using checkpoint inhibitors or adoptive cell transfer has revolutionized the treatment of several types of cancers. However, response to treatment is currently limited to a fraction of patients. Elucidation of immune modulatory mechanisms might optimize patient selection and present ways to modify anti-cancer immune responses. We recently discovered the expression and an important costimulatory role of TAM receptor MerTK signaling on activated human primary CD8+ T cells. Here we extend our study of the costimulatory role of MerTK expression in human CD8+ T cells. We uncover a clear link between MerTK expression and less differentiated Central Memory T cells based on an increased expression of CCR7, CD45RO, CD28, CD62L, and an altered metabolic profile. In addition, we observe an improved proliferative capacity and elevated expression of effector molecule IFNγ upon recall responses of MerTK-expressing cells in vitro. Finally, using gp100TCR-transduced T cells, we demonstrate how PROS1 treatment results in improved cytotoxicity and killing of tumors. Our findings describe a role of MerTK expression in T cells, which could be exploited in the search for improving immunotherapeutic approaches.
Collapse
Affiliation(s)
- Anne Rahbech
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, 2730 Herlev, Denmark
| | - Annina Kurzay
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, 2730 Herlev, Denmark
| | - Sara Fresnillo Saló
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, 2730 Herlev, Denmark
| | - Tina Seremet
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, 2730 Herlev, Denmark
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC-Cancer Center, Rotterdam, Netherlands
| | - Özcan Met
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, 2730 Herlev, Denmark
| | - Marlies J W Peeters
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, 2730 Herlev, Denmark
| | - Per Thor Straten
- National Center for Cancer Immune Therapy, Department of Oncology, University Hospital Herlev, 2730 Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Lu C, Xu J, Mei H. [The mechanisms and salvage treatment strategies underlying positive relapse following CD19 CAR-T cell therapy in B-acute lymphoblastic leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:970-976. [PMID: 39622764 PMCID: PMC11579761 DOI: 10.3760/cma.j.cn121090-20240701-00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Indexed: 12/06/2024]
Abstract
Approximately 50% of patients suffering from relapsed/refractory B-acute lymphoblastic leukemia (R/R B-ALL), experience relapse within one year, with around 60% of these relapses being antigen-positive, despite the transformative impact of chimeric antigen receptor (CAR) T cell therapy. The mechanisms underlying relapse are primarily associated with tumor heterogeneity, CAR-T cell dysfunction, subopimal in vivo expansion and persistence, and an inhibitory immune microenvironment. This review aims to investigate salvage strategies designed to enhance outcomes for patients undergoing relapse or disease progression following the CAR-T cell therapy. These strategies include a second CAR-T cell infusion that targets either the same antigen or an alternative target, the administration of immune checkpoint inhibitors, and the utilization of novel targeted therapies including monoclonal antibodies, antibody-conjugated drugs and small molecule compounds aimed at mitigating CD19-positive relapse or overcoming CAR-T cell resistance. Nevertheless, achieving improved long-term survival for these patients continues be challenging.
Collapse
Affiliation(s)
- C Lu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - J Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - H Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| |
Collapse
|
8
|
Huang T, Bei C, Hu Z, Li Y. CAR-macrophage: Breaking new ground in cellular immunotherapy. Front Cell Dev Biol 2024; 12:1464218. [PMID: 39421021 PMCID: PMC11484238 DOI: 10.3389/fcell.2024.1464218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Chimeric Antigen Receptor (CAR) technology has revolutionized cellular immunotherapy, particularly with the success of CAR-T cells in treating hematologic malignancies. However, CAR-T cells have the limited efficacy of against solid tumors. To address these limitations, CAR-macrophages (CAR-Ms) leverage the innate properties of macrophages with the specificity and potency of CAR technology, offering a novel and promising approach to cancer immunotherapy. Preclinical studies have shown that CAR-Ms can effectively target and destroy tumor cells, even within challenging microenvironments, by exhibiting direct cytotoxicity and enhancing the recruitment and activation of other immune cells. Additionally, the favorable safety profile of macrophages and their persistence within solid tumors position CAR-Ms as potentially safer and more durable therapeutic options compared to CAR-T cells. This review explores recent advancements in CAR-Ms technology, including engineering strategies to optimize their anti-tumor efficacy and preclinical evidence supporting their use. We also discuss the challenges and future directions in developing CAR-Ms therapies, emphasizing their potential to revolutionize cellular immunotherapy. By harnessing the unique properties of macrophages, CAR-Ms offer a groundbreaking approach to overcoming the current limitations of CAR-T cell therapies, paving the way for more effective and sustainable cancer treatments.
Collapse
Affiliation(s)
- Ting Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenqi Bei
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenhua Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Yuanyuan Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Barzegari A, Salemi F, Kamyab A, Aratikatla A, Nejati N, Valizade M, Eltouny E, Ebrahimi A. The efficacy and applicability of chimeric antigen receptor (CAR) T cell-based regimens for primary bone tumors: A comprehensive review of current evidence. J Bone Oncol 2024; 48:100635. [PMID: 39381633 PMCID: PMC11460493 DOI: 10.1016/j.jbo.2024.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Primary bone tumors (PBT), although rare, could pose significant mortality and morbidity risks due to their high incidence of lung metastasis. Survival rates of patients with PBTs may vary based on the tumor type, therapeutic interventions, and the time of diagnosis. Despite advances in the management of patients with these tumors over the past four decades, the survival rates seem not to have improved significantly, implicating the need for novel therapeutic interventions. Surgical resection with wide margins, radiotherapy, and systemic chemotherapy are the main lines of treatment for PBTs. Neoadjuvant and adjuvant chemotherapy, along with emerging immunotherapeutic approaches such as chimeric antigen receptor (CAR)-T cell therapy, have the potential to improve the treatment outcomes for patients with PBTs. CAR-T cell therapy has been introduced as an option in hematologic malignancies, with FDA approval for several CD19-targeting CAR-T cell products. This review aims to highlight the potential of immunotherapeutic strategies, specifically CAR T cell therapy, in managing PBTs.
Collapse
Affiliation(s)
| | - Fateme Salemi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Adarsh Aratikatla
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, County Dublin, Ireland
| | - Negar Nejati
- Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Iran
| | - Mojgan Valizade
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehab Eltouny
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Alireza Ebrahimi
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Abdalhadi HM, Chatham WW, Alduraibi FK. CAR-T-Cell Therapy for Systemic Lupus Erythematosus: A Comprehensive Overview. Int J Mol Sci 2024; 25:10511. [PMID: 39408836 PMCID: PMC11476835 DOI: 10.3390/ijms251910511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder characterized by the production of autoreactive B and T cells and cytokines, leading to chronic inflammation affecting multiple organs. SLE is associated with significant complications that substantially increase morbidity and mortality. Given its complex pathogenesis, conventional treatments for SLE often have significant side effects and limited efficacy, necessitating the exploration of novel therapeutic strategies. One promising approach is the use of chimeric antigen receptor (CAR)-T-cell therapy, which has shown remarkable success in treating refractory hematological malignancies. This review provides a comprehensive analysis of the current use of CAR-T-cell therapy in SLE.
Collapse
Affiliation(s)
- Haneen M. Abdalhadi
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Walter W. Chatham
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Nevada, Las Vegas, NV 89102, USA;
| | - Fatima K. Alduraibi
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Department of Medicine, Division of Clinical Immunology and Rheumatology, Harvard Teaching Hospital, Boston, MA 02215, USA
- Department of Medicine, Division of Clinical Immunology and Rheumatology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| |
Collapse
|
11
|
Ge J, Yin X, Chen L. Regulatory T cells: masterminds of immune equilibrium and future therapeutic innovations. Front Immunol 2024; 15:1457189. [PMID: 39290699 PMCID: PMC11405253 DOI: 10.3389/fimmu.2024.1457189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Regulatory T cells (Tregs), a subset of CD4+T cells marked by the expression of the transcription factor forkhead box protein 3 (Foxp3), are pivotal in maintaining immune equilibrium and preventing autoimmunity. In our review, we addressed the functional distinctions between Foxp3+Tregs and other T cells, highlighting their roles in autoimmune diseases and cancer. We uncovered the dual nature of Tregs: they prevented autoimmune diseases by maintaining self-tolerance while contributing to tumor evasion by suppressing anti-tumor immunity. This study underscored the potential for targeted therapeutic strategies, such as enhancing Treg activity to restore balance in autoimmune diseases or depleting Foxp3+Tregs to augment anti-tumor immune responses in cancer. These insights laid the groundwork for future research and clinical applications, emphasizing the critical role of Foxp3+Tregs in immune regulation and the advancement of next-generation immunotherapies.
Collapse
Affiliation(s)
- Junwei Ge
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xuan Yin
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
12
|
Yu B, Kang J, Lei H, Li Z, Yang H, Zhang M. Immunotherapy for colorectal cancer. Front Immunol 2024; 15:1433315. [PMID: 39238638 PMCID: PMC11375682 DOI: 10.3389/fimmu.2024.1433315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Colorectal cancer is the third most common cancer and the second most lethal cancer in the world. The main cause of the disease is due to dietary and behavioral factors. The treatment of this complex disease is mainly based on traditional treatments, including surgery, radiotherapy, and chemotherapy. Due to its high prevalence and high morbidity, more effective treatments with fewer side effects are urgently needed. In recent years, immunotherapy has become a potential therapeutic alternative and one of the fastest-developing treatments. Immunotherapy inhibits tumor growth by activating or enhancing the immune system to recognize and attack cancer cells. This review presents the latest immunotherapies for immune checkpoint inhibitors, cell therapy, tumor-infiltrating lymphocytes, and oncolytic viruses. Some of these have shown promising results in clinical trials and are used in clinical treatment.
Collapse
Affiliation(s)
- Bing Yu
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Jian Kang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Hong Lei
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Zhe Li
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Hao Yang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Meng Zhang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| |
Collapse
|
13
|
Rehman M, Qaiser A, Khan HS, Manzoor S, Ashraf J. Enhancing CAR T cells function: role of immunomodulators in cancer immunotherapy. Clin Exp Med 2024; 24:180. [PMID: 39105978 PMCID: PMC11303469 DOI: 10.1007/s10238-024-01442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
CAR T-cell therapy is a promising immunotherapy, providing successful results for cancer patients who are unresponsive to standard and traditional therapeutic approaches. However, there are limiting factors which create a hurdle in the therapy performing its role optimally. CAR T cells get exhausted, produce active antitumor responses, and might even produce toxic reactions. Specifically, in the case of solid tumors, chimeric antigen receptor T (CAR-T) cells fail to produce the desired outcomes. Then, the need to use supplementary agents such as immune system modifying immunomodulatory agents comes into play. A series of the literature was studied to evaluate the role of immunomodulators including a phytochemical, Food and Drug Administration (FDA)-approved targeted drugs, and ILs in support of their achievements in boosting the efficiency of CAR-T cell therapy. Some of the most promising out of them are reported in this article. It is expected that by using the right combinations of immunotherapy, immunomodulators, and traditional cancer treatments, the best possible cancer defying results may be produced in the future.
Collapse
Affiliation(s)
- Maheen Rehman
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Ariba Qaiser
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Hassan Sardar Khan
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sobia Manzoor
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Javed Ashraf
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.
- Riphah International University, Islamabad, Pakistan.
| |
Collapse
|
14
|
Xiong D, Yu H, Sun ZJ. Unlocking T cell exhaustion: Insights and implications for CAR-T cell therapy. Acta Pharm Sin B 2024; 14:3416-3431. [PMID: 39220881 PMCID: PMC11365448 DOI: 10.1016/j.apsb.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 09/04/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy as a form of adoptive cell therapy (ACT) has shown significant promise in cancer treatment, demonstrated by the FDA-approved CAR-T cell therapies targeting CD19 or B cell maturation antigen (BCMA) for hematological malignancies, albeit with moderate outcomes in solid tumors. However, despite these advancements, the efficacy of CAR-T therapy is often compromised by T cell exhaustion, a phenomenon that impedes the persistence and effector function of CAR-T cells, leading to a relapse rate of up to 75% in patients treated with CD19 or CD22 CAR-T cells for hematological malignancies. Strategies to overcome CAR-T exhaustion employ state-of-the-art genomic engineering tools and single-cell sequencing technologies. In this review, we provide a comprehensive understanding of the latest mechanistic insights into T cell exhaustion and their implications for the current efforts to optimize CAR-T cell therapy. These insights, combined with lessons learned from benchmarking CAR-T based products in recent clinical trials, aim to address the challenges posed by T cell exhaustion, potentially setting the stage for the development of tailored next-generation approaches to cancer treatment.
Collapse
Affiliation(s)
- Dian Xiong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China
| | - Haijun Yu
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China
| |
Collapse
|
15
|
Wang X, Zhang C, Su J, Ren S, Wang X, Zhang Y, Yuan Z, He X, Wu X, Li M, Du F, Chen Y, Deng S, Zhao Y, Wang X, Sun Y, Shen J, Ji H, Hou Y, Xiao Z. Rejuvenation Strategy for Inducing and Enhancing Autoimmune Response to Eliminate Senescent Cells. Aging Dis 2024:AD.2024.0579. [PMID: 39122450 DOI: 10.14336/ad.2024.0579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
The process of aging, which involves progressive changes in the body over time, is closely associated with the development of age-related diseases. Cellular senescence is a pivotal hallmark and mechanism of the aging process. The accumulation of senescent cells can significantly contribute to the onset of age-related diseases, thereby compromising overall health. Conversely, the elimination of senescent cells enhances the body's regenerative and reparative capacity, thereby retarding the aging process. Here, we present a brief overview of 12 Hallmarks of aging and subsequently emphasize the potential of immune checkpoint blockade, innate immune cell therapy (including T cells, iNKT cells, macrophages, and NK cells), as well as CAR-T cell therapy for inducing and augmenting immune responses aimed at eliminating senescent cells. In addition to CAR-T cells, we also explore the possibility of engineered immune cells such as CAR-NK and CAR-M cells to eliminate senescent cells. In summary, immunotherapy, as an emerging strategy for the treatment of aging, offers new prospects for age-related research.
Collapse
Affiliation(s)
- Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Chengyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siqi Ren
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zijun Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xiaodong Wang
- Department of Hepatobiliary Disease, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Huijiao Ji
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yunqing Hou
- LongmaTan District People's Hospital of Luzhou City, Luzhou 646600, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
- Department of Pharmacology, School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang 621000, China
| |
Collapse
|
16
|
Yan Z, Zhang Z, Chen Y, Xu J, Wang J, Wang Z. Enhancing cancer therapy: the integration of oncolytic virus therapy with diverse treatments. Cancer Cell Int 2024; 24:242. [PMID: 38992667 PMCID: PMC11238399 DOI: 10.1186/s12935-024-03424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
As one of the significant challenges to human health, cancer has long been a focal point in medical treatment. With ongoing advancements in the field of medicine, numerous methodologies for cancer therapy have emerged, among which oncolytic virus therapy has gained considerable attention. However, oncolytic viruses still exhibit limitations. Combining them with various therapies can further enhance the efficacy of cancer treatment, offering renewed hope for patients. In recent research, scientists have recognized the promising prospect of amalgamating oncolytic virus therapy with diverse treatments, potentially surmounting the restrictions of singular approaches. The central concept of this combined therapy revolves around leveraging oncolytic virus to incite localized tumor inflammation, augmenting the immune response for immunotherapeutic efficacy. Through this approach, the patient's immune system can better recognize and eliminate cancer cells, simultaneously reducing tumor evasion mechanisms against the immune system. This review delves deeply into the latest research progress concerning the integration of oncolytic virus with diverse treatments and its role in various types of cancer therapy. We aim to analyze the mechanisms, advantages, potential challenges, and future research directions of this combination therapy. By extensively exploring this field, we aim to instill renewed hope in the fight against cancer.
Collapse
Affiliation(s)
- Zhuo Yan
- Department of Clinical Medical Laboratory Center, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Zhengbo Zhang
- Department of Clinical Medical Laboratory Center, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, Zhejiang, China
| | - Yanan Chen
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Jianghua Xu
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China
| | - Jilong Wang
- Department of Clinical Medical Laboratory Center, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, Zhejiang, China.
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, Zhejiang, China.
| | - Zhangquan Wang
- Department of Clinical Medical Laboratory Center, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, Zhejiang, China.
| |
Collapse
|
17
|
Ghorai SK, Pearson AN. Current Strategies to Improve Chimeric Antigen Receptor T (CAR-T) Cell Persistence. Cureus 2024; 16:e65291. [PMID: 39184661 PMCID: PMC11343441 DOI: 10.7759/cureus.65291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has transformed the field of immunology by redirecting T lymphocytes toward tumor antigens. Despite successes in attaining high remission rates as high as 90%, the performance of CAR therapy is limited by the survival of T cells. T cell persistence is crucial as it sustains immune response against malignancies, playing a critical role in cancer treatment outcomes. This review explores various approaches to improve CAR-T cell persistence, focusing on the choice between autologous and allogeneic cell sources, optimization of culture conditions for T cell subsets, metabolite adjustments to modify T cell metabolism, the use of oncolytic viruses (OVs), and advancements in CAR design. Autologous CAR-T cells generally exhibit longer persistence but are less accessible and cost-effective than their allogeneic counterparts. Optimizing culture conditions by promoting TSCM and TCM cell differentiation has also demonstrated increased persistence, as seen with the use of cytokine combinations like IL-7 and IL-15. Metabolic adjustments, such as using 2-deoxy-D-glucose (2-DG) and L-arginine, have enhanced the formation of memory T cells, leading to improved antitumor activity. OVs, when combined with CAR-T therapy, can amplify CAR-T cell penetration and persistence in solid tumors, although further clinical validation is needed. Advances in CAR design from second to fifth generations have progressively improved T cell activation and survival, with fifth-generation CARs demonstrating strong cytokine-mediated signaling and long-lasting persistence. Understanding the underlying mechanisms behind these strategies is essential for maximizing the potential of CAR-T therapy in treating cancer. Further research is needed to improve safety and efficacy and seamlessly integrate the discussed strategies into the manufacturing process.
Collapse
Affiliation(s)
| | - Ashley N Pearson
- Biomedical Sciences, University of Michigan Medical School, Ann Arbor, USA
| |
Collapse
|
18
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
19
|
Tang L, Sun Q, Li M, Yu X, Meng J, Zhang Y, Ma Y, Zeng A, Li Z, Liu Y, Xu X, Guo W. Broadening anticancer spectrum by preprocessing and treatment of T- lymphocytes expressed FcγRI and monoclonal antibodies for refractory cancers. Front Immunol 2024; 15:1400177. [PMID: 38953027 PMCID: PMC11215118 DOI: 10.3389/fimmu.2024.1400177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Background Chimeric antigen receptor T (CAR-T) cell therapies have achieved remarkable success in the treatment of hematological tumors. However, given the distinct features of solid tumors, particularly heterogeneity, metabolic aggressiveness, and fewer immune cells in tumor microenvironment (TME), the practical utility of CAR-T cells for solid tumors remains as a challenging issue. Meanwhile, although anti-PD-1 monoclonal antibody (mAb) has shown clinical efficacy, most mAbs also show limited clinical benefits for solid tumors due mainly to the issues associated with the lack of immune cells in TME. Thus, the infiltration of targeted immunological active cells into TME could generate synergistic efficacy for mAbs. Methods We present a combinational strategy for solid tumor treatment, which combines armored-T cells to express Fc-gamma receptor I (FcγRI) fragment on the surfaces for targeting various tumors with therapeutically useful mAbs. Choosing CD20 and HER-2 as the targets, we characterized the in vitro and in vivo efficacy and latent mechanism of the combination drug by using flow cytometry, ELISA and other methods. Results The combination and preprocessing of armored T-cells with corresponding antibody of Rituximab and Pertuzumab exerted profound anti-tumor effects, which is demonstrated to be mediated by synergistically produced antibody-dependent cellular cytotoxicity (ADCC) effects. Meanwhile, mAb was able to carry armored-T cell by preprocessing for the infiltration to TME in cell derived xenograft (CDX) model. Conclusions This combination strategy showed a significant increase of safety profiles from the reduction of antibody doses. More importantly, the present strategy could be a versatile tool for a broad spectrum of cancer treatment, with a simple pairing of engineered T cells and a conventional antibody.
Collapse
MESH Headings
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Humans
- Animals
- Mice
- Neoplasms/immunology
- Neoplasms/therapy
- Neoplasms/drug therapy
- T-Lymphocytes/immunology
- Tumor Microenvironment/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal/immunology
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Immunotherapy, Adoptive/methods
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/antagonists & inhibitors
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Female
- Antigens, CD20/immunology
Collapse
Affiliation(s)
- Lei Tang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qinyi Sun
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Mengyuan Li
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaoxiao Yu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, Nanjing, Jiangsu, China
- Department of Research and Development, RegeneCore Biotech Co., Ltd, Nanjing, Jiangsu, China
| | - Jinguo Meng
- Department of Research and Development, RegeneCore Biotech Co., Ltd, Nanjing, Jiangsu, China
| | - Yun Zhang
- Department of Research and Development, RegeneCore Biotech Co., Ltd, Nanjing, Jiangsu, China
| | - Yuxiao Ma
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Aizhong Zeng
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Zhuolan Li
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuanyuan Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xinyu Xu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wei Guo
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Momtazkari S, Dev Choudhury A, Yong ZWE, Le DT, Nguyen Canh H, Harada K, Toshiyuki H, Osato M, Takahashi C, Koh CP, Voon DCC. Differential requirement for IL-2 and IL-23 in the differentiation and effector functions of Th17/ILC3-like cells in a human T cell line. J Leukoc Biol 2024; 115:1108-1117. [PMID: 38374693 DOI: 10.1093/jleuko/qiae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/30/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
A well-documented Achilles heel of current cancer immunotherapy approaches is T cell exhaustion within solid tumor tissues. The proinflammatory cytokine interleukin (IL)-23 has been utilized to augment chimeric antigen receptor (CAR) T cell survival and tumor immunity. However, in-depth interrogation of molecular events downstream of IL-23/IL-23 receptor signaling is hampered by a paucity of suitable cell models. The current study investigates the differential contribution of IL-2 and IL-23 to the maintenance and differentiation of the IL-23 responsive Kit225 T-cell line. We observed that IL-23 enhanced cellular fitness and survival but was insufficient to drive proliferation. IL-23 rapidly induced phosphorylation of STAT1, STAT3, and STAT4, and messenger RNA expression of IL17A, the archetypal effector cytokine of T helper 17 (Th17) cells, but not their lineage markers RORC and NCR1. These observations suggest that IL-23 endowed Th17/ILC3-like effector function but did not promote their differentiation. In contrast, spontaneous differentiation of Kit225 cells toward a Th17/ILC3-like phenotype was induced by prolonged IL-2 withdrawal. This was marked by strongly elevated basal IL17A and IL17F expression and the secretion of IL-17. Together, our data present Kit225 cells as a valuable model for studying the interplay between cytokines and their contribution to T cell survival, proliferation, and differentiation.
Collapse
Affiliation(s)
- Sarah Momtazkari
- Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Anahita Dev Choudhury
- Institute of Frontier Sciences Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Zachary Wei Ern Yong
- Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Dong Thanh Le
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Takaramachi, Ishikawa, 920-8640, Japan
| | - Hiep Nguyen Canh
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Takaramachi, Ishikawa, 920-8640, Japan
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Takaramachi, Ishikawa, 920-8640, Japan
| | - Hori Toshiyuki
- Biomedical Sciences Course, Graduate School of Life Sciences, Ritsumeikan University, Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Motomi Osato
- International Research Center for Medical Sciences, Kumamoto University, 2-chōme-2-1 Honjō, Chuo Ward, Kumamoto, 860-0811, Japan
| | - Chiaki Takahashi
- Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
- Institute of Frontier Sciences Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Cai Ping Koh
- Department of Biochemistry, Faculty of Medicine, Quest International University, Jalan Raja Permaisuri Bainun, Ipoh, Perak, 30250, Malaysia
| | - Dominic Chih-Cheng Voon
- Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
- Institute of Frontier Sciences Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
21
|
Montoya M, Gallus M, Phyu S, Haegelin J, de Groot J, Okada H. A Roadmap of CAR-T-Cell Therapy in Glioblastoma: Challenges and Future Perspectives. Cells 2024; 13:726. [PMID: 38727262 PMCID: PMC11083543 DOI: 10.3390/cells13090726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/20/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor, with a median overall survival of less than 2 years and a nearly 100% mortality rate under standard therapy that consists of surgery followed by combined radiochemotherapy. Therefore, new therapeutic strategies are urgently needed. The success of chimeric antigen receptor (CAR) T cells in hematological cancers has prompted preclinical and clinical investigations into CAR-T-cell treatment for GBM. However, recent trials have not demonstrated any major success. Here, we delineate existing challenges impeding the effectiveness of CAR-T-cell therapy for GBM, encompassing the cold (immunosuppressive) microenvironment, tumor heterogeneity, T-cell exhaustion, local and systemic immunosuppression, and the immune privilege inherent to the central nervous system (CNS) parenchyma. Additionally, we deliberate on the progress made in developing next-generation CAR-T cells and novel innovative approaches, such as low-intensity pulsed focused ultrasound, aimed at surmounting current roadblocks in GBM CAR-T-cell therapy.
Collapse
Affiliation(s)
- Megan Montoya
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Marco Gallus
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Su Phyu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Jeffrey Haegelin
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - John de Groot
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| |
Collapse
|
22
|
Xiong Q, Wang H, Shen Q, Wang Y, Yuan X, Lin G, Jiang P. The development of chimeric antigen receptor T-cells against CD70 for renal cell carcinoma treatment. J Transl Med 2024; 22:368. [PMID: 38637886 PMCID: PMC11025280 DOI: 10.1186/s12967-024-05101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
In this study, we investigated CD70 as a promising target for renal cell carcinoma (RCC) therapy and developed a potent chimeric antigen receptor T (CAR-T) cells for potential clinical testing. CD70, found to be highly expressed in RCC tumors, was associated with decreased survival. We generated CAR-T cells expressing VHH sequence of various novel nanobodies from immunized alpaca and a single-chain variable fragment (scFv) derived from human antibody (41D12). In our in vitro experiments, anti-CD70 CAR-T cells effectively eliminated CD70-positive tumor cells while sparing CD70-negative cells. The nanobody-based CAR-T cells demonstrated significantly higher production of cytokines such as IL-2, IFN-γ and TNF-ɑ during co-culture, indicating their potential for enhanced functionality. In xenograft mouse model, these CAR-T cells exhibited remarkable anti-tumor activity, leading to the eradication of RCC tumor cells. Importantly, human T cell expansion after infusion was significantly higher in the VHH groups compared to the scFv CAR-T group. Upon re-challenging mice with RCC tumor cells, the VHH CAR-T treated group remained tumor-free, suggesting a robust and long-lasting anti-tumor response. These findings provide strong support for the potential of nanobody-based CD70 CAR-T cells as a promising therapeutic option for RCC. This warrants further development and consideration for future clinical trials and applications.
Collapse
Affiliation(s)
- Qinghui Xiong
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China.
| | - Haiying Wang
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China.
| | - Qiushuang Shen
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China
| | - Yan Wang
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China
| | - Xiujie Yuan
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China
| | - Guangyao Lin
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China
| | - Pengfei Jiang
- Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Shanghai, 201203, China
| |
Collapse
|
23
|
Sun D, Shi X, Li S, Wang X, Yang X, Wan M. CAR‑T cell therapy: A breakthrough in traditional cancer treatment strategies (Review). Mol Med Rep 2024; 29:47. [PMID: 38275119 PMCID: PMC10835665 DOI: 10.3892/mmr.2024.13171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Chimeric antigen receptor (CAR)‑T cell therapy is an innovative approach to immune cell therapy that works by modifying the T cells of a patient to express the CAR protein on their surface, and thus induce their recognition and destruction of cancer cells. CAR‑T cell therapy has shown some success in treating hematological tumors, but it still faces a number of challenges in the treatment of solid tumors, such as antigen selection, tolerability and safety. In response to these issues, studies continue to improve the design of CAR‑T cells in pursuit of improved therapeutic efficacy and safety. In the future, CAR‑T cell therapy is expected to become an important cancer treatment, and may provide new ideas and strategies for individualized immunotherapy. The present review provides a comprehensive overview of the principles, clinical applications, therapeutic efficacy and challenges of CAR‑T cell therapy.
Collapse
Affiliation(s)
- Dahua Sun
- Department of General Surgery, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xiang Shi
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Sanyan Li
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xiaohua Wang
- Department of Obstetrics, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xiao Yang
- Department of General Surgery, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Meiping Wan
- Department of Traditional Chinese Medicine, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| |
Collapse
|
24
|
Zhen S, Wang W, Qin G, Lu T, Yang L, Zhang Y. Dynamic surveillance of lymphocyte subsets in patients with non-small cell lung cancer during chemotherapy or combination immunotherapy for early prediction of efficacy. Front Immunol 2024; 15:1316778. [PMID: 38482008 PMCID: PMC10933068 DOI: 10.3389/fimmu.2024.1316778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/14/2024] [Indexed: 04/05/2024] Open
Abstract
Background Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths worldwide. Lymphocytes are the primary executors of the immune system and play essential roles in tumorigenesis and development. We investigated the dynamic changes in peripheral blood lymphocyte subsets to predict the efficacy of chemotherapy or combination immunotherapy in NSCLC. Methods This retrospective study collected data from 81 patients with NSCLC who received treatments at the First Affiliated Hospital of Zhengzhou University from May 2021 to May 2023. Patients were divided into response and non-response groups, chemotherapy and combination immunotherapy groups, and first-line and multiline groups. We analyzed the absolute counts of each lymphocyte subset in the peripheral blood at baseline and after each treatment cycle. Within-group and between-group differences were analyzed using paired Wilcoxon signed-rank and Mann-Whitney U tests, respectively. The ability of lymphocyte subsets to predict treatment efficacy was analyzed using receiver operating characteristic curve and logistic regression. Results The absolute counts of lymphocyte subsets in the response group significantly increased after the first cycle of chemotherapy or combination immunotherapy, whereas those in the non-response group showed persistent decreases. Ratios of lymphocyte subsets after the first treatment cycle to those at baseline were able to predict treatment efficacy early. Combination immunotherapy could increase lymphocyte counts compared to chemotherapy alone. In addition, patients with NSCLC receiving chemotherapy or combination immunotherapy for the first time mainly presented with elevated lymphocyte levels, whereas multiline patients showed continuous reductions. Conclusion Dynamic surveillance of lymphocyte subsets could reflect a more actual immune status and predict efficacy early. Combination immunotherapy protected lymphocyte levels from rapid decrease and patients undergoing multiline treatments were more prone to lymphopenia than those receiving first-line treatment. This study provides a reference for the early prediction of the efficacy of clinical tumor treatment for timely combination of immunotherapy or the improvement of immune status.
Collapse
Affiliation(s)
- Shanshan Zhen
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenqian Wang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guohui Qin
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Taiying Lu
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Yang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
25
|
Tao R, Han X, Bai X, Yu J, Ma Y, Chen W, Zhang D, Li Z. Revolutionizing cancer treatment: enhancing CAR-T cell therapy with CRISPR/Cas9 gene editing technology. Front Immunol 2024; 15:1354825. [PMID: 38449862 PMCID: PMC10914996 DOI: 10.3389/fimmu.2024.1354825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
CAR-T cell therapy, a novel immunotherapy, has made significant breakthroughs in clinical practice, particularly in treating B-cell-associated leukemia and lymphoma. However, it still faces challenges such as poor persistence, limited proliferation capacity, high manufacturing costs, and suboptimal efficacy. CRISPR/Cas system, an efficient and simple method for precise gene editing, offers new possibilities for optimizing CAR-T cells. It can increase the function of CAR-T cells and reduce manufacturing costs. The combination of CRISPR/Cas9 technology and CAR-T cell therapy may promote the development of this therapy and provide more effective and personalized treatment for cancer patients. Meanwhile, the safety issues surrounding the application of this technology in CAR-T cells require further research and evaluation. Future research should focus on improving the accuracy and safety of CRISPR/Cas9 technology to facilitate the better development and application of CAR-T cell therapy. This review focuses on the application of CRISPR/Cas9 technology in CAR-T cell therapy, including eliminating the inhibitory effect of immune checkpoints, enhancing the ability of CAR-T cells to resist exhaustion, assisting in the construction of universal CAR-T cells, reducing the manufacturing costs of CAR-T cells, and the security problems faced. The objective is to show the revolutionary role of CRISPR/Cas9 technology in CAR-T cell therapy for researchers.
Collapse
Affiliation(s)
- Ruiyu Tao
- Department of Gastrointestinal Surgery, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Xiaopeng Han
- Department of Gastrointestinal Surgery, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Xue Bai
- Department of Urology, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Jianping Yu
- Department of Gastrointestinal Surgery, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Youwei Ma
- Department of Gastrointestinal Surgery, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Weikai Chen
- Department of Gastrointestinal Surgery, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Dawei Zhang
- Department of Gastrointestinal Surgery, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Zhengkai Li
- Department of Gastrointestinal Surgery, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| |
Collapse
|
26
|
Li S, Zhang H, Shang G. Current status and future challenges of CAR-T cell therapy for osteosarcoma. Front Immunol 2023; 14:1290762. [PMID: 38187386 PMCID: PMC10766856 DOI: 10.3389/fimmu.2023.1290762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Osteosarcoma, the most common bone malignancy in children and adolescents, poses considerable challenges in terms of prognosis, especially for patients with metastatic or recurrent disease. While surgical intervention and adjuvant chemotherapy have improved survival rates, limitations such as impractical tumor removal or chemotherapy resistance hinder the treatment outcomes. Chimeric antigen receptor (CAR)-T cell therapy, an innovative immunotherapy approach that involves targeting tumor antigens and releasing immune factors, has shown significant advancements in the treatment of hematological malignancies. However, its application in solid tumors, including osteosarcoma, is constrained by factors such as low antigen specificity, limited persistence, and the complex tumor microenvironment. Research on osteosarcoma is ongoing, and some targets have shown promising results in pre-clinical studies. This review summarizes the current status of research on CAR-T cell therapy for osteosarcoma by compiling recent literature. It also proposes future research directions to enhance the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Shizhe Li
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - He Zhang
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guanning Shang
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
27
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
28
|
Zhang A, Wang S, Sun Y, Zhang Y, Zhao L, Yang Y, Zhang Y, Xu L, Lei Y, Du J, Chen H, Duan L, He M, Shi L, Liu L, Wang Q, Hu L, Zhang B. Targeting and cytotoxicity of chimeric antigen receptor T cells grafted with PD1 extramembrane domain. Exp Hematol Oncol 2023; 12:85. [PMID: 37777797 PMCID: PMC10543853 DOI: 10.1186/s40164-023-00438-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/22/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Immunosuppression induced by programmed cell death protein 1 (PD1) presents a significant constraint on the effectiveness of chimeric antigen receptor (CAR)-T therapy. The potential of combining PD1/PDL1 (Programmed cell death 1 ligand 1) axis blockade with CAR-T cell therapy is promising. However, developing a highly efficient and minimally toxic approach requires further exploration. Our attempt to devise a novel CAR structure capable of recognizing both tumor antigens and PDL1 encountered challenges since direct targeting of PDL1 resulted in systemic adverse effects. METHODS In this research, we innovatively engineered novel CARs by grafting the PD1 domain into a conventional second-generation (2G) CAR specifically targeting CD19. These CARs exist in two distinct forms: one with PD1 extramembrane domain (EMD) directly linked to a transmembrane domain (TMD), referred to as PE CAR, and the other with PD1 EMD connected to a TMD via a CD8 hinge domain (HD), known as PE8HT CAR. To evaluate their efficacy, we conducted comprehensive assessments of their cytotoxicity, cytokine release, and potential off-target effects both in vitro and in vivo using tumor models that overexpress CD19/PDL1. RESULTS The findings of our study indicate that PE CAR demonstrates enhanced cytotoxicity and reduced cytokine release specifically towards CD19 + PDL1 + tumor cells, without off-target effects to CD19-PDL1 + tumor cells, in contrast to 2G CAR-T cells. Additionally, PE CAR showed ameliorative differentiation, exhaustion, and apoptosis phenotypes as assessed by flow cytometry, RNA-sequencing, and metabolic parameter analysis, after encountering CD19 + PDL1 + tumor cells. CONCLUSION Our results revealed that CAR grafted with PD1 exhibits enhanced antitumor activity with lower cytokine release and no PD1-related off-target toxicity in tumor models that overexpress CD19 and PDL1. These findings suggest that our CAR design holds the potential for effectively addressing the PD1 signal.
Collapse
Affiliation(s)
- Ang Zhang
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, PR China
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
| | - Shenyu Wang
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, PR China
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, PR China
| | - Yao Sun
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, PR China
| | - Yikun Zhang
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
| | - Long Zhao
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, PR China
| | - Yang Yang
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, PR China
| | - Yijian Zhang
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, PR China
| | - Lei Xu
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, PR China
| | - Yangyang Lei
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, PR China
| | - Jie Du
- SAFE Pharmaceutical Research Institute Co., Ltd, Beijing, China
| | - Hu Chen
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, PR China
| | - Lian Duan
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, PR China
| | - Mingyi He
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
| | - Lintao Shi
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
| | - Lei Liu
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
| | - Quanjun Wang
- SAFE Pharmaceutical Research Institute Co., Ltd, Beijing, China.
| | - Liangding Hu
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, PR China.
| | - Bin Zhang
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, PR China.
| |
Collapse
|
29
|
Yan L, Li J, Zhang C. The role of MSCs and CAR-MSCs in cellular immunotherapy. Cell Commun Signal 2023; 21:187. [PMID: 37528472 PMCID: PMC10391838 DOI: 10.1186/s12964-023-01191-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/07/2023] [Indexed: 08/03/2023] Open
Abstract
Chimeric antigen receptors (CARs) are widely used by T cells (CAR-T cells), natural killer cells dendritic cells and macrophages, and they are of great importance in cellular immunotherapy. However, the use of CAR-related products faces several challenges, including the poor persistence of cells carrying CARs, cell dysfunction or exhaustion, relapse of disease, immune effector cell-associated neurotoxicity syndrome, cytokine release syndrome, low efficacy against solid tumors and immunosuppression by the tumor microenvironment. Another important cell therapy regimen involves mesenchymal stem cells (MSCs). Recent studies have shown that MSCs can improve the anticancer functions of CAR-related products. CAR-MSCs can overcome the flaws of cellular immunotherapy. Thus, MSCs can be used as a biological vehicle for CARs. In this review, we first discuss the characteristics and immunomodulatory functions of MSCs. Then, the role of MSCs as a source of exosomes, including the characteristics of MSC-derived exosomes and their immunomodulatory functions, is discussed. The role of MSCs in CAR-related products, CAR-related product-derived exosomes and the effect of MSCs on CAR-related products are reviewed. Finally, the use of MSCs as CAR vehicles is discussed. Video Abstract.
Collapse
Affiliation(s)
- Lun Yan
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jing Li
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Cheng Zhang
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
30
|
Wei W, Chen ZN, Wang K. CRISPR/Cas9: A Powerful Strategy to Improve CAR-T Cell Persistence. Int J Mol Sci 2023; 24:12317. [PMID: 37569693 PMCID: PMC10418799 DOI: 10.3390/ijms241512317] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
As an emerging treatment strategy for malignant tumors, chimeric antigen receptor T (CAR-T) cell therapy has been widely used in clinical practice, and its efficacy has been markedly improved in the past decade. However, the clinical effect of CAR-T therapy is not so satisfying, especially in solid tumors. Even in hematologic malignancies, a proportion of patients eventually relapse after receiving CAR-T cell infusions, owing to the poor expansion and persistence of CAR-T cells. Recently, CRISPR/Cas9 technology has provided an effective approach to promoting the proliferation and persistence of CAR-T cells in the body. This technology has been utilized in CAR-T cells to generate a memory phenotype, reduce exhaustion, and screen new targets to improve the anti-tumor potential. In this review, we aim to describe the major causes limiting the persistence of CAR-T cells in patients and discuss the application of CRISPR/Cas9 in promoting CAR-T cell persistence and its anti-tumor function. Finally, we investigate clinical trials for CRISPR/Cas9-engineered CAR-T cells for the treatment of cancer.
Collapse
Affiliation(s)
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an 710032, China;
| | - Ke Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an 710032, China;
| |
Collapse
|
31
|
Li L, Guo Y, Lu Y, Xu Y, Lu Y, Zhu X, Dong X, Che J. An updated patent review of AKT inhibitors (2020 - present). Expert Opin Ther Pat 2023; 33:549-564. [PMID: 37864349 DOI: 10.1080/13543776.2023.2273895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023]
Abstract
INTRODUCTION Protein kinase B (Akt), an essential protein in the PI3K/Akt/mTOR signaling pathway, plays a crucial role in tumor progression. Over the past two years, different types of Akt modulators have continued to emerge in the patent literature. AREAS COVERED This review focuses on the patent literature covering small molecule inhibitors, peptides, PROTACs, and antisense nucleic acids targetingAkt from 2020 to present. Also, we discuss the outcomes of several clinical trials, combination strategies for different mechanisms, and the application of Akt regulators in other non-oncology indications.Our search for relevant information was conducted using various databases, including the European Patent Office, SciFinder, andPubMed, from 01.2020 to 04.2023. EXPERT OPINION In recent years, some combination therapeutic strategies involvingAkt inhibitors have shown promising clinical outcomes. Future research can be directed toward developing new applications of Akt inhibitors, which may have implications for other diseases beyond cancer. New attempts suggest that targeting allosteric sites may be a potential solution to the problem of isoform selectivity.Furthermore, directly knocking out Akt protein by using the degraderssuggests a promising direction for future development.
Collapse
Affiliation(s)
- Linjie Li
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yu Guo
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yang Lu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yaping Xu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yan Lu
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Xiuping Zhu
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, P. R. China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
32
|
Liu Y, An L, Yang C, Wang X, Huang R, Zhang X. Ginsenoside Rg1 improves anti-tumor efficacy of adoptive cell therapy by enhancing T cell effector functions. BLOOD SCIENCE 2023; 5:170-179. [PMID: 37546705 PMCID: PMC10400057 DOI: 10.1097/bs9.0000000000000165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/13/2023] [Indexed: 08/08/2023] Open
Abstract
Adoptive cell therapy (ACT) has emerged with remarkable efficacies for tumor immunotherapy. Chimeric antigen receptor (CAR) T cell therapy, as one of most promising ACTs, has achieved prominent effects in treating malignant hematological tumors. However, the insufficient killing activity and limited persistence of T cells in the immunosuppressive tumor microenvironment limit the further application of ACTs for cancer patients. Many studies have focused on improving cytotoxicity and persistence of T cells to achieve improved therapeutic effects. In this study, we explored the potential function in ACT of ginsenoside Rg1, the main pharmacologically active component of ginseng. We introduced Rg1 during the in vitro activation and expansion phase of T cells, and found that Rg1 treatment upregulated two T cell activation markers, CD69 and CD25, while promoting T cell differentiation towards a mature state. Transcriptome sequencing revealed that Rg1 influenced T cell metabolic reprogramming by strengthening mitochondrial biosynthesis. When co-cultured with tumor cells, Rg1-treated T cells showed stronger cytotoxicity than untreated cells. Moreover, adding Rg1 to the culture endowed CAR-T cells with enhanced anti-tumor efficacy. This study suggests that ginsenoside Rg1 provides a potential approach for improving the anti-tumor efficacy of ACT by enhancing T cell effector functions.
Collapse
Affiliation(s)
- Yue Liu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Lingna An
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Chengfei Yang
- Department of Urology, Xinqiao Hospital, Army Military Medical University, Chongqing 400037, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
- Jinfeng Laboratory, Chongqing 401329 China
| |
Collapse
|
33
|
Műzes G, Sipos F. CAR-Based Therapy for Autoimmune Diseases: A Novel Powerful Option. Cells 2023; 12:1534. [PMID: 37296654 PMCID: PMC10252902 DOI: 10.3390/cells12111534] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The pervasive application of chimeric antigen receptor (CAR)-based cellular therapies in the treatment of oncological diseases has long been recognized. However, CAR T cells can target and eliminate autoreactive cells in autoimmune and immune-mediated diseases. By doing so, they can contribute to an effective and relatively long-lasting remission. In turn, CAR Treg interventions may have a highly effective and durable immunomodulatory effect via a direct or bystander effect, which may have a positive impact on the course and prognosis of autoimmune diseases. CAR-based cellular techniques have a complex theoretical foundation and are difficult to implement in practice, but they have a remarkable capacity to suppress the destructive functions of the immune system. This article provides an overview of the numerous CAR-based therapeutic options developed for the treatment of immune-mediated and autoimmune diseases. We believe that well-designed, rigorously tested cellular therapies could provide a promising new personalized treatment strategy for a significant number of patients with immune-mediated disorders.
Collapse
Affiliation(s)
- Györgyi Műzes
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary;
| | | |
Collapse
|
34
|
Mazinani M, Rahbarizadeh F. New cell sources for CAR-based immunotherapy. Biomark Res 2023; 11:49. [PMID: 37147740 PMCID: PMC10163725 DOI: 10.1186/s40364-023-00482-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, in which a patient's own T lymphocytes are engineered to recognize and kill cancer cells, has achieved striking success in some hematological malignancies in preclinical and clinical trials, resulting in six FDA-approved CAR-T products currently available in the market. Despite impressive clinical outcomes, concerns about treatment failure associated with low efficacy or high cytotoxicity of CAR-T cells remain. While the main focus has been on improving CAR-T cells, exploring alternative cellular sources for CAR generation has garnered growing interest. In the current review, we comprehensively evaluated other cell sources rather than conventional T cells for CAR generation.
Collapse
Affiliation(s)
- Marzieh Mazinani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
35
|
Zhang H, Passang T, Ravindranathan S, Bommireddy R, Jajja MR, Yang L, Selvaraj P, Paulos CM, Waller EK. The magic of small-molecule drugs during ex vivo expansion in adoptive cell therapy. Front Immunol 2023; 14:1154566. [PMID: 37153607 PMCID: PMC10160370 DOI: 10.3389/fimmu.2023.1154566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
In the past decades, advances in the use of adoptive cellular therapy to treat cancer have led to unprecedented responses in patients with relapsed/refractory or late-stage malignancies. However, cellular exhaustion and senescence limit the efficacy of FDA-approved T-cell therapies in patients with hematologic malignancies and the widespread application of this approach in treating patients with solid tumors. Investigators are addressing the current obstacles by focusing on the manufacturing process of effector T cells, including engineering approaches and ex vivo expansion strategies to regulate T-cell differentiation. Here we reviewed the current small-molecule strategies to enhance T-cell expansion, persistence, and functionality during ex vivo manufacturing. We further discussed the synergistic benefits of the dual-targeting approaches and proposed novel vasoactive intestinal peptide receptor antagonists (VIPR-ANT) peptides as emerging candidates to enhance cell-based immunotherapy.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Tenzin Passang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Sruthi Ravindranathan
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Ramireddy Bommireddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Mohammad Raheel Jajja
- Departmert of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, United States
| | - Lily Yang
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Chrystal M. Paulos
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
- Department of Microbiology and Immunology, Emory University of School of Medicine, Atlanta, GA, United States
| | - Edmund K. Waller
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| |
Collapse
|
36
|
Alvanou M, Lysandrou M, Christophi P, Psatha N, Spyridonidis A, Papadopoulou A, Yannaki E. Empowering the Potential of CAR-T Cell Immunotherapies by Epigenetic Reprogramming. Cancers (Basel) 2023; 15:1935. [PMID: 37046597 PMCID: PMC10093039 DOI: 10.3390/cancers15071935] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
T-cell-based, personalized immunotherapy can nowadays be considered the mainstream treatment for certain blood cancers, with a high potential for expanding indications. Chimeric antigen receptor T cells (CAR-Ts), an ex vivo genetically modified T-cell therapy product redirected to target an antigen of interest, have achieved unforeseen successes in patients with B-cell hematologic malignancies. Frequently, however, CAR-T cell therapies fail to provide durable responses while they have met with only limited success in treating solid cancers because unique, unaddressed challenges, including poor persistence, impaired trafficking to the tumor, and site penetration through a hostile microenvironment, impede their efficacy. Increasing evidence suggests that CAR-Ts' in vivo performance is associated with T-cell intrinsic features that may be epigenetically altered or dysregulated. In this review, we focus on the impact of epigenetic regulation on T-cell differentiation, exhaustion, and tumor infiltration and discuss how epigenetic reprogramming may enhance CAR-Ts' memory phenotype, trafficking, and fitness, contributing to the development of a new generation of potent CAR-T immunotherapies.
Collapse
Affiliation(s)
- Maria Alvanou
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, 570 10 Thessaloniki, Greece
- Bone Marrow Transplantation Unit, Institute of Cell Therapy, University of Patras, 265 04 Rio, Greece
| | - Memnon Lysandrou
- Bone Marrow Transplantation Unit, Institute of Cell Therapy, University of Patras, 265 04 Rio, Greece
| | - Panayota Christophi
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, 570 10 Thessaloniki, Greece
- Bone Marrow Transplantation Unit, Institute of Cell Therapy, University of Patras, 265 04 Rio, Greece
| | - Nikoleta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 570 10 Thessaloniki, Greece
| | - Alexandros Spyridonidis
- Bone Marrow Transplantation Unit, Institute of Cell Therapy, University of Patras, 265 04 Rio, Greece
| | - Anastasia Papadopoulou
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, 570 10 Thessaloniki, Greece
| | - Evangelia Yannaki
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, 570 10 Thessaloniki, Greece
- Department of Medicine, University of Washington, Seattle, WA 98195-2100, USA
| |
Collapse
|
37
|
Nanjireddy PM, Olejniczak SH, Buxbaum NP. Targeting of chimeric antigen receptor T cell metabolism to improve therapeutic outcomes. Front Immunol 2023; 14:1121565. [PMID: 36999013 PMCID: PMC10043186 DOI: 10.3389/fimmu.2023.1121565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Genetically engineered chimeric antigen receptor (CAR) T cells can cure patients with cancers that are refractory to standard therapeutic approaches. To date, adoptive cell therapies have been less effective against solid tumors, largely due to impaired homing and function of immune cells within the immunosuppressive tumor microenvironment (TME). Cellular metabolism plays a key role in T cell function and survival and is amenable to manipulation. This manuscript provides an overview of known aspects of CAR T metabolism and describes potential approaches to manipulate metabolic features of CAR T to yield better anti-tumor responses. Distinct T cell phenotypes that are linked to cellular metabolism profiles are associated with improved anti-tumor responses. Several steps within the CAR T manufacture process are amenable to interventions that can generate and maintain favorable intracellular metabolism phenotypes. For example, co-stimulatory signaling is executed through metabolic rewiring. Use of metabolic regulators during CAR T expansion or systemically in the patient following adoptive transfer are described as potential approaches to generate and maintain metabolic states that can confer improved in vivo T cell function and persistence. Cytokine and nutrient selection during the expansion process can be tailored to yield CAR T products with more favorable metabolic features. In summary, improved understanding of CAR T cellular metabolism and its manipulations have the potential to guide the development of more effective adoptive cell therapies.
Collapse
Affiliation(s)
- Priyanka Maridhi Nanjireddy
- Department of Pediatric Oncology, Pediatric Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Immunology Department, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Scott H. Olejniczak
- Immunology Department, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Nataliya Prokopenko Buxbaum
- Department of Pediatrics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- *Correspondence: Nataliya Prokopenko Buxbaum,
| |
Collapse
|