1
|
Phan P, Deshwal A, McMahon TA, Slikas M, Andrews E, Becker B, Kumar TKS. A Review of Rattlesnake Venoms. Toxins (Basel) 2023; 16:2. [PMID: 38276526 PMCID: PMC10818703 DOI: 10.3390/toxins16010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Venom components are invaluable in biomedical research owing to their specificity and potency. Many of these components exist in two genera of rattlesnakes, Crotalus and Sistrurus, with high toxicity and proteolytic activity variation. This review focuses on venom components within rattlesnakes, and offers a comparison and itemized list of factors dictating venom composition, as well as presenting their known characteristics, activities, and significant applications in biosciences. There are 64 families and subfamilies of proteins present in Crotalus and Sistrurus venom. Snake venom serine proteases (SVSP), snake venom metalloproteases (SVMP), and phospholipases A2 (PLA2) are the standard components in Crotalus and Sistrurus venom. Through this review, we highlight gaps in the knowledge of rattlesnake venom; there needs to be more information on the venom composition of three Crotalus species and one Sistrurus subspecies. We discuss the activity and importance of both major and minor components in biomedical research and drug development.
Collapse
Affiliation(s)
- Phuc Phan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Anant Deshwal
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Tyler Anthony McMahon
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Matthew Slikas
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Elodie Andrews
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Brian Becker
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | | |
Collapse
|
2
|
Rodrigues CR, Molina Molina DA, de Souza DLN, Cardenas J, Costal-Oliveira F, Guerra-Duarte C, Chávez-Olórtegui C. Biological and proteomic characterization of the venom from Peruvian Andes rattlesnake Crotalus durissus. Toxicon 2021; 207:31-42. [PMID: 34968566 DOI: 10.1016/j.toxicon.2021.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
The Peruvian rattlesnake Crotalus durissus is a venomous species that is restricted to the Peruvian Departments of Puno and Madre de Dios. Although clinically meaningful in this region, Crotalus durissus venom composition remains largely elusive. In this sense, this work aimed to provide a primary description of Peruvian C. durissus venom (PCdV). The enzymatic activities (SVMP, SVSP, LAAO, Hyaluronidase and PLA2) of PCdV were analyzed and compared to Brazilian Crotalus durissus terrificus venom (BCdtV). PCdV showed higher PLA2 activity when compared to the Brazilian venom. PCdV also showed cytotoxicity in VERO cells. For proteomic analysis, PCdV proteins were separated by HPLC, followed by SDS-PAGE. Gel bands were excised and tryptic digested for MALDI-TOF/TOF identification. Approximately 21 proteins were identified, belonging to 7 families. Phospholipases A2 (PLA2, 66.63%) were the most abundant proteins of the venom, followed by snake venom serine proteinases (SVSPs, 13.37%), C-type lectins (Snaclec, 8.98%) and snake venom metalloproteinases (SVMPs, 7.13%), crotamine (2.98%) and phosphodiesterase (PDE, 0.87%). Moreover, antivenom recognition assays indicated that both Brazilian and Peruvian antivenoms recognize PCdV, indicating the presence of antigenically related proteins in crotalic venoms. The results reported here, may impact in the venom selection for the production of effective Pan-American crotalic antivenom.
Collapse
Affiliation(s)
- Carolina Rego Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Denis A Molina Molina
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010, Belo Horizonte, MG, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Correlating biological activity to thermo-structural analysis of the interaction of CTX with synthetic models of macrophage membranes. Sci Rep 2021; 11:23712. [PMID: 34887428 PMCID: PMC8660830 DOI: 10.1038/s41598-021-02552-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/11/2021] [Indexed: 11/10/2022] Open
Abstract
The important pharmacological actions of Crotoxin (CTX) on macrophages, the main toxin in the venom of Crotalus durissus terrificus, and its important participation in the control of different pathophysiological processes, have been demonstrated. The biological activities performed by macrophages are related to signaling mediated by receptors expressed on the membrane surface of these cells or opening and closing of ion channels, generation of membrane curvature and pore formation. In the present work, the interaction of the CTX complex with the cell membrane of macrophages is studied, both using biological cells and synthetic lipid membranes to monitor structural alterations induced by the protein. Here we show that CTX can penetrate THP-1 cells and induce pores only in anionic lipid model membranes, suggesting that a possible access pathway for CTX to the cell is via lipids with anionic polar heads. Considering that the selectivity of the lipid composition varies in different tissues and organs of the human body, the thermostructural studies presented here are extremely important to open new investigations on the biological activities of CTX in different biological systems.
Collapse
|
4
|
Ortiz-Prado E, Yeager J, Andrade F, Schiavi-Guzman C, Abedrabbo-Figueroa P, Terán E, Gómez-Barreno L, Simbaña-Rivera K, Izquierdo-Condoy JS. Snake antivenom production in Ecuador: Poor implementation, and an unplanned cessation leads to a call for a renaissance. Toxicon 2021; 202:90-97. [PMID: 34571098 DOI: 10.1016/j.toxicon.2021.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/28/2022]
Abstract
Snakebite envenomation is a global health problem. This health problem asymmetrically affects rural populations in developing countries to such an extent that it recently has been listed as a priority neglected tropical disease (NTD). It is estimated that 5.4 million individuals are bitten by snakes each year, causing at least 2.7 million envenomations and more than 100,000 deaths each year. Ecuador has one of the highest snakebite envenomation incidence rates in Latin America, mostly in the coastal and Amazonian provinces. Envenomations in these regions are the result of bites primarily by species of snakes belonging to the Viperidae family. Ecuador was able to locally produce antivenoms, however serious flaws were revealed in the antivenom production process, leading to the decommissioning of the existing facility. In the interest of public health, we have summarized the political and social setbacks experienced by the antivenom serum production plant in Ecuador, while encouraging resuming local production of snake antivenom to improve the responsiveness of the already overburdened health system.
Collapse
Affiliation(s)
- Esteban Ortiz-Prado
- OneHealth Global Research Group, Universidad de las Américas, Quito, Ecuador.
| | - Justin Yeager
- Biodiversity, Environment, and Health (BIOMAS), Universidad de las Americas, Quito, Ecuador
| | - Felipe Andrade
- OneHealth Global Research Group, Universidad de las Américas, Quito, Ecuador
| | | | | | - Enrique Terán
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador
| | - Lenin Gómez-Barreno
- OneHealth Global Research Group, Universidad de las Américas, Quito, Ecuador
| | | | | |
Collapse
|
5
|
Pucca MB, Bernarde PS, Rocha AM, Viana PF, Farias RES, Cerni FA, Oliveira IS, Ferreira IG, Sandri EA, Sachett J, Wen FH, Sampaio V, Laustsen AH, Sartim MA, Monteiro WM. Crotalus Durissus Ruruima: Current Knowledge on Natural History, Medical Importance, and Clinical Toxinology. Front Immunol 2021; 12:659515. [PMID: 34168642 PMCID: PMC8219050 DOI: 10.3389/fimmu.2021.659515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Crotalus durissus ruruima is a rattlesnake subspecies mainly found in Roraima, the northernmost state of Brazil. Envenomings caused by this subspecies lead to severe clinical manifestations (e.g. respiratory muscle paralysis, rhabdomyolysis, and acute renal failure) that can lead to the victim’s death. In this review, we comprehensively describe C. d. ruruima biology and the challenges this subspecies poses for human health, including morphology, distribution, epidemiology, venom cocktail, clinical envenoming, and the current and future specific treatment of envenomings by this snake. Moreover, this review presents maps of the distribution of the snake subspecies and evidence that this species is responsible for some of the most severe envenomings in the country and causes the highest lethality rates. Finally, we also discuss the efficacy of the Brazilian horse-derived antivenoms to treat C. d. ruruima envenomings in Roraima state.
Collapse
Affiliation(s)
- Manuela B Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil
| | - Paulo Sérgio Bernarde
- Laboratório de Herpetologia, Centro Multidisciplinar, Universidade Federal do Acre, Cruzeiro do Sul, Brazil
| | | | - Patrik F Viana
- National Institute of Amazonian Research, Biodiversity Coordination, Laboratory of Animal Genetics, Manaus, Brazil
| | - Raimundo Erasmo Souza Farias
- National Institute of Amazonian Research, Biodiversity Coordination, Laboratory of Animal Genetics, Manaus, Brazil
| | - Felipe A Cerni
- Medical School, Federal University of Roraima, Boa Vista, Brazil.,Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isadora S Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isabela G Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Eliseu A Sandri
- Insikiram Institute of Indigenous Higher Studies, Federal University of Roraima, Boa Vista, Brazil
| | - Jacqueline Sachett
- Department of Medicine and Nursing, School of Health Sciences, Amazonas State University, Manaus, Brazil.,Department of Teaching and Research, Alfredo da Matta Foundation, Manaus, Brazil
| | - Fan Hui Wen
- Antivenom Production Section, Butantan Institute, São Paulo, Brazil
| | - Vanderson Sampaio
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marco A Sartim
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil.,Institute of Biological Sciences, Amazonas Federal University, Manaus, Brazil
| | - Wuelton M Monteiro
- Department of Medicine and Nursing, School of Health Sciences, Amazonas State University, Manaus, Brazil.,Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| |
Collapse
|
6
|
Ponce-López R, Neri-Castro E, Olvera-Rodríguez F, Sánchez EE, Alagón A, Olvera-Rodríguez A. Neutralization of crotamine by polyclonal antibodies generated against two whole rattlesnake venoms and a novel recombinant fusion protein. Toxicon 2021; 197:70-78. [PMID: 33894246 DOI: 10.1016/j.toxicon.2021.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/24/2021] [Accepted: 04/10/2021] [Indexed: 02/06/2023]
Abstract
Crotamine is a paralyzing toxin (MW: ~5 kDa) found in different proportions in some rattlesnake venoms (up to 62%). Mexican pit viper antivenoms have shown low immunoreactivity against crotamine, which is an urgent quality to be improved. The objective of this work was to evaluate the ability of a novel recombinant fusion protein composed of sphingomyelinase D and crotamine, and two whole venoms from Crotalus molossus nigrescens and C. oreganus helleri to produce neutralizing antibodies against crotamine. These immunogens were separately used for immunization procedures in rabbits. Then, we generated three experimental antivenoms to test their cross-reactivity via western-blot against crotamine from 7 species (C. m. nigrescens, C. o. helleri, C. durissus terrificus, C. scutulatus salvini, C. basiliscus, C. culminatus and C. tzabcan). We also performed pre-incubation neutralization experiments in mice to measure the neutralizing potency of each antivenom against crotamine induced hind limb paralysis. Our antivenoms showed broad recognition across crotamine from most of the tested species. Also, neutralization against crotamine paralysis symptom was successfully achieved by our three antivenoms, albeit with different efficiencies. Our results highlight the use of crotamine enriched venoms and our novel recombinant fusion protein as promising immunogens to improve the neutralizing potency against crotamine for the improvement of Mexican antivenoms.
Collapse
Affiliation(s)
- Roberto Ponce-López
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, C.P. 62210, Mexico
| | - Edgar Neri-Castro
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, C.P. 62210, Mexico
| | - Felipe Olvera-Rodríguez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, C.P. 62210, Mexico
| | - Elda E Sánchez
- National Natural Toxins Research Center (NNTRC) and Department of Chemistry, Texas A&M University-Kingsville, Kingsville, TX, USA
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, C.P. 62210, Mexico
| | - Alejandro Olvera-Rodríguez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, C.P. 62210, Mexico.
| |
Collapse
|
7
|
Preparation and detection of sea snake antisera raised in rabbits. Toxicon 2020; 186:168-174. [PMID: 32828954 DOI: 10.1016/j.toxicon.2020.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 11/22/2022]
Abstract
Antivenoms are currently the most effective medication used in the treatment of snakebites. However, there were relatively few studies on preparation of antivenoms targeting sea snakes, especially common sea snakes in China. In this study, we sought to prepare and detect mono- and bispecific antisera raised in rabbits against venoms of two sea snakes, Hydrophis cyanocinctus and H. curtus. The results of enzyme-linked immunosorbent assay showed that the rabbit antisera generally showed clearly detectable immunological cross-reactions after the third immunization and indicated that the strength of cross-reactions increased with an increase in the immunizing dose. Proteins within the H. cyanocinctus and H. curtus venoms showed similar profiles and were mainly concentrated in the low-molecular-weight region (8-25 kDa). Western blotting results revealed that the bands of these low-molecular weight proteins were dense and showed strong immunogenicity. Although we detected comparatively few bands of the high-molecular-weight proteins, these also showed strong immunogenicity. Our results indicate that both mono- and bispecific antisera both can neutralize H. cyanocinctus and H. curtus venoms, and in this regard, the monospecific H. curtus and bispecific antiserum were found to be superior to the H. cyanocinctus antiserum. Given the increasing frequency of snakebites worldwide, we believe that the findings of this study will have high practical applicability.
Collapse
|
8
|
D Vaz de Melo P, de Almeida Lima S, Araújo P, Medina Santos R, Gonzalez E, Alves Belo A, Machado-de-Ávila RA, Costal-Oliveira F, T Soccol V, Guerra-Duarte C, Rezende L, Chavez-Olortegui C. Immunoprotection against lethal effects of Crotalus durissus snake venom elicited by synthetic epitopes trapped in liposomes. Int J Biol Macromol 2020; 161:299-307. [PMID: 32464201 DOI: 10.1016/j.ijbiomac.2020.05.171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 10/24/2022]
Abstract
Snakebites caused by Crotalus genus are the second most frequent in Brazil. Crotoxin is a beta-neurotoxin responsible for the main envenomation effects of Crotalus biting, while crotamine immobilizes the animal hind limbs, contributing to prey immobilization and to envenoming symptoms. As crotoxin and crotamine represent about 90% of Crotalus venom dry weight, these toxins are of great importance for antivenom therapy. In this sense, knowledge regarding the antigenicity/immunogenicity at the molecular level of these toxins can provide valuable information for the improvement of specific antivenoms. Therefore, the aims of this study are the identification of the B-cell epitopes from crotoxin and crotamine; and the characterization of the neutralizing potency of antibodies directed against the corresponding synthetic epitopes defined in the current study. Linear B-cell epitopes were identified using the Spot Synthesis technique probed with specific anti-C. d. terrificus venom horse IgG. One epitope of crotamine (F12PKEKICLPPSSDFGKMDCRW32) and three of crotoxin (L10LVGVEGHLLQFNKMIKFETR30; Y43CGWGGRGRPKDATDRCCFVH63 and T118YKYGYMFYPDSRCRGPSETC138) were identified. After synthesis in their soluble form, the peptides mixture correspondent to the mapped epitopes was entrapped in liposomes and used as immunogens for antibody production in rabbits. Anti-synthetic peptide antibodies were able to protect mice from the lethal activity of C. d. terrificus venom.
Collapse
Affiliation(s)
- Patrícia D Vaz de Melo
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil; Labtest Diagnostica SA, Minas Gerais, Brazil
| | - Sabrina de Almeida Lima
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Priscila Araújo
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Raíssa Medina Santos
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Edgar Gonzalez
- Icahn School of Medicine at Mount Sinai, NY, United States of America
| | - Andreza Alves Belo
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil; Labtest Diagnostica SA, Minas Gerais, Brazil
| | | | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | | | - Clara Guerra-Duarte
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010 Belo Horizonte, MG, Brazil
| | | | - Carlos Chavez-Olortegui
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
9
|
Tasima LJ, Serino-Silva C, Hatakeyama DM, Nishiduka ES, Tashima AK, Sant'Anna SS, Grego KF, de Morais-Zani K, Tanaka-Azevedo AM. Crotamine in Crotalus durissus: distribution according to subspecies and geographic origin, in captivity or nature. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190053. [PMID: 32362925 PMCID: PMC7187639 DOI: 10.1590/1678-9199-jvatitd-2019-0053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Crotalus durissus is considered one of the most important
species of venomous snakes in Brazil, due to the high mortality of its
snakebites. The venom of Crotalus durissus contains four
main toxins: crotoxin, convulxin, gyroxin and crotamine. Venoms can vary in
their crotamine content, being crotamine-negative or -positive. This
heterogeneity is of great importance for producing antivenom, due to their
different mechanisms of action. The possibility that antivenom produced by
Butantan Institute might have a different immunorecognition capacity between
crotamine-negative and crotamine-positive C. durissus
venoms instigated us to investigate the differences between these two venom
groups. Methods: The presence of crotamine was analyzed by SDS-PAGE, western blotting and
ELISA, whereas comparison between the two types of venoms was carried out
through HPLC, mass spectrometry analysis as well as assessment of antivenom
lethality and efficacy. Results: The results showed a variation in the presence of crotamine among the
subspecies and the geographic origin of snakes from nature, but not in
captive snakes. Regarding differences between crotamine-positive and
-negative venoms, some exclusive proteins are found in each pool and the
crotamine-negative pool presented more phospholipase A2 than
crotamine-positive pool. This variation could affect the time to death, but
the lethal and effective dose were not affected. Conclusion: These differences between venom pools indicate the importance of using both,
crotamine-positive and crotamine-negative venoms, to produce the
antivenom.
Collapse
Affiliation(s)
- Lídia J Tasima
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil.,Interinstitutional Postgraduate Program in Biotechnology (PPIB - IPT, IBU and USP), University of São Paulo(USP), São Paulo, SP, Brazil
| | - Caroline Serino-Silva
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil.,Interinstitutional Postgraduate Program in Biotechnology (PPIB - IPT, IBU and USP), University of São Paulo(USP), São Paulo, SP, Brazil
| | - Daniela M Hatakeyama
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil.,Interinstitutional Postgraduate Program in Biotechnology (PPIB - IPT, IBU and USP), University of São Paulo(USP), São Paulo, SP, Brazil
| | - Erika S Nishiduka
- Department of Biochemistry, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Alexandre K Tashima
- Department of Biochemistry, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Sávio S Sant'Anna
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
| | - Kathleen F Grego
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
| | - Karen de Morais-Zani
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil.,Interinstitutional Postgraduate Program in Biotechnology (PPIB - IPT, IBU and USP), University of São Paulo(USP), São Paulo, SP, Brazil
| | - Anita M Tanaka-Azevedo
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil.,Interinstitutional Postgraduate Program in Biotechnology (PPIB - IPT, IBU and USP), University of São Paulo(USP), São Paulo, SP, Brazil
| |
Collapse
|
10
|
Vanuopadath M, Shaji SK, Raveendran D, Nair BG, Nair SS. Delineating the venom toxin arsenal of Malabar pit viper (Trimeresurus malabaricus) from the Western Ghats of India and evaluating its immunological cross-reactivity and in vitro cytotoxicity. Int J Biol Macromol 2020; 148:1029-1045. [PMID: 31982532 DOI: 10.1016/j.ijbiomac.2020.01.226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
The venom protein components of Malabar pit viper (Trimeresurus malabaricus) were identified by combining SDS-PAGE and ion-exchange chromatography pre-fractionation techniques with LC-MS/MS incorporating Novor and PEAKS-assisted de novo sequencing strategies. Total 97 proteins that belong to 16 protein families such as L-amino acid oxidase, metalloprotease, serine protease, phospholipase A2, 5'-nucleotidase, C-type lectins/snaclecs and disintegrin were recognized from the venom of a single exemplar species. Of the 97 proteins, eighteen were identified through de novo approaches. Immunological cross-reactivity assessed through ELISA and western blot indicate that the Indian antivenoms binds less effectively to Malabar pit viper venom components compared to that of Russell's viper venom. The in vitro cell viability assays suggest that compared to the normal cells, MPV venom induces concentration dependent cell death in various cancer cells. Moreover, crude venom resulted in chromatin condensation and apoptotic bodies implying the induction of apoptosis. Taken together, the present study enabled in dissecting the venom proteome of Trimeresurus malabaricus and revealed the immuno-cross-reactivity profiles of commercially available Indian polyvalent antivenoms that, in turn, is expected to provide valuable insights on the need in improving antivenom preparations against its bite.
Collapse
Affiliation(s)
| | | | - Dileepkumar Raveendran
- Indriyam Biologics Pvt. Ltd., SCTIMST-TIMed, BMT Wing-Poojappura, Thiruvananthapuram 695 012, Kerala, India
| | | | | |
Collapse
|
11
|
Engineered protein containing crotoxin epitopes induces neutralizing antibodies in immunized rabbits. Mol Immunol 2020; 119:144-153. [PMID: 32023500 DOI: 10.1016/j.molimm.2020.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/27/2019] [Accepted: 01/20/2020] [Indexed: 10/25/2022]
Abstract
Crotoxin (Ctx) is the main lethal component of Crotalus durissus terrificus venom. It is a neurotoxin, composed of two subunits associated by noncovalent interactions, the non-toxic acid subunit (CA), named Crotapotin, and the basic subunit (CB), with phospholipase A2 (PLA2) activity. Employing the SPOT synthesis technique, we determined two epitopes located in the C-terminal of each Ctx subunit. In addition, 3 other epitopes were mapped in different regions of Ctx using subcutaneous spot implants surgically inserted in mice. All epitopes mapped here were expressed together as recombinant multi-epitopic protein (rMEPCtx), which was used to immunize New Zealand rabbits. Anti-rMEPCtx rabbit serum cross-reacted with Ctx and crude venoms from C. d. terrificus, Crotalus durissus ruruima, Peruvian C. durissus and Bothrops jararaca (with lower intensity). Furthermore, anti-rMEPCtx serum was able to neutralize Ctx lethal activity. As the recombinant multiepitopic protein is not toxic, it can be administered in larger doses without causing adverse effects on the immunized animals health. Therefore, our work evidences the identification of neutralizing epitopes of Ctx and support the use of recombinant multiepitopic proteins as an innovation to immunotherapeutics production.
Collapse
|
12
|
Lopes-de-Souza L, Costal-Oliveira F, Stransky S, Fonseca de Freitas C, Guerra-Duarte C, Braga VMM, Chávez-Olórtegui C. Development of a cell-based in vitro assay as a possible alternative for determining bothropic antivenom potency. Toxicon 2019; 170:68-76. [PMID: 31494208 DOI: 10.1016/j.toxicon.2019.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/22/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022]
Abstract
Accidents with venomous snakes are a major health hazard in tropical countries. Bothrops genus is responsible for almost 80% of snakebites in Brazil. Immunotherapy is the only approved specific treatment against snake toxins and the production of therapeutic antivenoms requires quality control tests to determine their neutralizing potency. Currently, these controls are performed by in vivo lethality neutralization, however, the inhibition of particular events produced by bothropic venoms such as coagulopathy, hemorrhage, edema or cytotoxic effects are also required. The aim of this work is to develop an in vitro alternative assay for antivenom pre-clinical evaluation. In this sense, we designed a cell viability assay using different amounts (0.2-10 μL/well) of low and high potency anti-bothropic sera, previously classified by the traditional in vivo test, for assessing the antivenom capacity to protect the cells against B. jararaca venom cytotoxicity (5xEC50 = 58.95 μg/mL). We found that high potency sera are more effective in neutralizing B. jararaca venom cytotoxicity when compared to low potency sera, which is in accordance to their pre-determined in vivo potency. Considering sera in vitro inhibitory concentration able to prevent 50% cell death (IC50) and their known in vivo potency, a cut-off point was determined to discriminate low and high potency sera. Our data provide insights for the development of an in vitro method which can determine the anti-bothropic antivenom potency during its production.
Collapse
Affiliation(s)
- Letícia Lopes-de-Souza
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais (UFMG), 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais (UFMG), 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Stephanie Stransky
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais (UFMG), 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | | | - Clara Guerra-Duarte
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010, Belo Horizonte, MG, Brazil
| | - Vania M M Braga
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, SW7 2AZ, London, UK
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais (UFMG), 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
13
|
Baum RA, Bronner J, Akpunonu PDS, Plott J, Bailey AM, Keyler DE. Crotalus durissus terrificus (viperidae; crotalinae) envenomation: Respiratory failure and treatment with antivipmyn TRI ® antivenom. Toxicon 2019; 163:32-35. [PMID: 30880190 DOI: 10.1016/j.toxicon.2019.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
Abstract
We report an envenomation to a professional herpetologist by a South American rattlesnake (Crotalus durissus terrificus) that resulted in respiratory failure, and therapeutic improvement following antivenom administration. A 56-year-old male was bitten on the left wrist by a Crotalus durissus terrificus (C. d. terrificus) while attempting to tube the snake for maintaining safe control while performing venom extraction. The patient was intubated due to rapidly ensuing respiratory failure and administration of Antivipmyn-TRI® was initiated while being transported via ambulance. The patient was admitted to the hospital unconscious and unresponsive. Mechanical ventilation was required until 5 h after completion of antivenom administration. No significant adverse effects were observed with antivenom administration. The patient was discharged approximately 55 h following envenomation. This is the first reported case in the United States of a patient following a C. d. terrificus envenomation with consequent respiratory failure, and in which Antivipmyn-TRI® was successfully administered.
Collapse
Affiliation(s)
- R A Baum
- University of Kentucky HealthCare, Lexington, KY, 40536, USA; College of Pharmacy, University of Kentucky, Lexington, KY, 40504, USA
| | - J Bronner
- Department of Emergency Medicine, University of Kentucky-Chandler Medical Center, Lexington, KY, 40536, USA
| | - P D S Akpunonu
- Department of Emergency Medicine, University of Kentucky-Chandler Medical Center, Lexington, KY, 40536, USA
| | - J Plott
- College of Pharmacy, University of Kentucky, Lexington, KY, 40504, USA
| | - A M Bailey
- University of Kentucky HealthCare, Lexington, KY, 40536, USA; College of Pharmacy, University of Kentucky, Lexington, KY, 40504, USA
| | - D E Keyler
- Department of Experimental & Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
14
|
Venom characterization of the three species of Ophryacus and proteomic profiling of O. sphenophrys unveils Sphenotoxin, a novel Crotoxin-like heterodimeric β-neurotoxin. J Proteomics 2019; 192:196-207. [DOI: 10.1016/j.jprot.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/02/2018] [Accepted: 09/07/2018] [Indexed: 01/11/2023]
|
15
|
Oliveira ISD, Pucca MB, Sampaio SV, Arantes EC. Antivenomic approach of different Crotalus durissus collilineatus venoms. J Venom Anim Toxins Incl Trop Dis 2018; 24:34. [PMID: 30534148 PMCID: PMC6260869 DOI: 10.1186/s40409-018-0169-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/01/2018] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Our group has previously performed a proteomic study verifying that individual variations can occur among Crotalus durissus collilineatus venoms. These variations may lead to differences in venom toxicity and may result in lack of neutralization of some components by antivenom. In this way, this study aimed to evaluate the Brazilian anticrotalic serum capacity in recognizing twenty-two Crotalus durissus collilineatus venoms, as well as their fractions. METHODS The indirect enzyme-linked immunosorbent assay (ELISA) was chosen to evaluate the efficacy of heterologous anticrotalic serum produced by Instituto Butantan (Brazil) in recognizing the twenty-two Crotalus durissus collilineatus venoms and the pool of them. Moreover, the venom pool was fractionated using reversed-phase fast protein liquid chromatography (RP-FPLC) and the obtained fractions were analyzed concerning antivenom recognition. RESULTS Evaluation of venom variability by ELISA showed that all venom samples were recognized by the Brazilian anticrotalic antivenom. However, some particular venom fractions were poorly recognized. CONCLUSION This study demonstrated that the Brazilian anticrotalic serum recognizes all the different twenty-two venoms of C. d. collilineatus and their fractions, although in a quantitatively different way, which may impact the effectiveness of the antivenom therapy. These results confirm the need to use a pool of venoms with the greatest possible variability in the preparation of antivenoms, in order to improve their effectiveness.
Collapse
Affiliation(s)
- Isadora Sousa de Oliveira
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | | | - Suely Vilela Sampaio
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Eliane Candiani Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| |
Collapse
|
16
|
Lima SDC, Porta LDC, Lima ÁDC, Campeiro JD, Meurer Y, Teixeira NB, Duarte T, Oliveira EB, Picolo G, Godinho RO, Silva RH, Hayashi MAF. Pharmacological characterization of crotamine effects on mice hind limb paralysis employing both ex vivo and in vivo assays: Insights into the involvement of voltage-gated ion channels in the crotamine action on skeletal muscles. PLoS Negl Trop Dis 2018; 12:e0006700. [PMID: 30080908 PMCID: PMC6095621 DOI: 10.1371/journal.pntd.0006700] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/16/2018] [Accepted: 07/19/2018] [Indexed: 11/20/2022] Open
Abstract
The high medical importance of Crotalus snakes is unquestionable, as this genus is the second in frequency of ophidian accidents in many countries, including Brazil. With a relative less complex composition compared to other genera venoms, as those from the Bothrops genus, the Crotalus genus venom from South America is composed basically by the neurotoxin crotoxin (a phospholipase A2), the thrombin-like gyroxin (a serinoprotease), a very potent aggregating protein convulxin, and a myotoxic polypeptide named crotamine. Interestingly not all Crotalus snakes express crotamine, which was first described in early 50s due to its ability to immobilize animal hind limbs, contributing therefore to the physical immobilization of preys and representing an important advantage for the envenoming efficacy, and consequently, for the feeding and survival of these snakes in nature. Representing about 10–25% of the dry weight of the crude venom of crotamine-positive rattlesnakes, the polypeptide crotamine is also suggested to be of importance for antivenom therapy, although the contribution of this toxin to the main symptoms of envenoming process remains far unknown until now. Herein, we concomitantly performed in vitro and in vivo assays to show for the first time the dose-dependent response of crotamine-triggered hind limbs paralysis syndrome, up to now believed to be observable only at high (sub-lethal) concentrations of crotamine. In addition, ex vivo assay performed with isolated skeletal muscles allowed us to suggest here that compounds active on voltage-sensitive sodium and/or potassium ion channels could both affect the positive inotropic effect elicited by crotamine in isolated diaphragm, besides also affecting the hind limbs paralysis syndrome imposed by crotamine in vivo. By identifying the potential molecular targets of this toxin, our data may contribute to open new roads for translational studies aiming to improve the snakebite envenoming treatment in human. Interestingly, we also demonstrate that the intraplantal or intraperitoneal (ip) injections of crotamine in mice do not promote pain. Therefore, this work may also suggest the profitable utility of non-toxic analogs of crotamine as a potential tool for targeting voltage-gated ion channels in skeletal muscles, aiming its potential use in the therapy of neuromuscular dysfunctions and envenoming therapy. Representing more than 10% of the dry weight of the crude venom of crotamine-positive rattlesnakes, crotamine may act as toxin mainly by imposing the physical immobilization of preys. Its presence was described to be important for antivenom therapy, although the knowledge on the effective contribution of crotamine to the main symptoms of envenoming process remains elusive and limited. Herein, we show for the first time the dose-dependent response for the hind limbs paralysis syndrome promoted by crotamine. We also report herein that compounds active on voltage-sensitive sodium and/or potassium ion channels can affect the positive inotropic effect elicited by crotamine in vitro in isolated diaphragm and also in the hind limbs paralysis syndrome triggered by crotamine in vivo. This potential targeting of voltage-sensitive sodium and/or potassium ion channels suggested here for crotamine may contribute to open new roads for translational studies aiming to improve the snakebite envenoming treatment in human. More importantly, nociceptive threshold evaluation demonstrated that crotamine does not trigger pain, and therefore, we also suggest crotamine as a potential tool for targeting voltage-gated ion channels present in skeletal muscles, with potential to be used as a lead compound to develop drugs for neuromuscular dysfunctions therapy.
Collapse
Affiliation(s)
- Sunamita de Carvalho Lima
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Lucas de Carvalho Porta
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Álvaro da Costa Lima
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Joana D'Arc Campeiro
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ywlliane Meurer
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | | | - Thiago Duarte
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Eduardo Brandt Oliveira
- Departamento de Bioquímica e Imunologia, Universidade de São Paulo (USP-RP), Ribeirão Preto, Brazil
| | - Gisele Picolo
- Laboratório Especial de Dor e Sinalização, Instituto Butantan, São Paulo, Brazil
| | - Rosely Oliveira Godinho
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Regina Helena Silva
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Mirian Akemi Furuie Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
17
|
Preclinical assessment of the neutralizing efficacy of snake antivenoms in Latin America and the Caribbean: A review. Toxicon 2018; 146:138-150. [DOI: 10.1016/j.toxicon.2018.02.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/28/2018] [Indexed: 11/19/2022]
|