1
|
Burov A, Grigorieva E, Lebedev T, Vedernikova V, Popenko V, Astakhova T, Leonova O, Spirin P, Prassolov V, Karpov V, Morozov A. Multikinase inhibitors modulate non-constitutive proteasome expression in colorectal cancer cells. Front Mol Biosci 2024; 11:1351641. [PMID: 38774235 PMCID: PMC11106389 DOI: 10.3389/fmolb.2024.1351641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/31/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction: Proteasomes are multi-subunit protein complexes responsible for protein degradation in cells. Immunoproteasomes and intermediate proteasomes (together non-constitutive proteasomes) are specific forms of proteasomes frequently associated with immune response, antigen presentation, inflammation and stress. Expression of non-constitutive proteasome subunits has a prognostic value in several types of cancer. Thus, factors that modulate non-constitutive proteasome expression in tumors are of particular interest. Multikinase inhibitors (MKIs) demonstrate promising results in treatment of cancer. At the same time, their immunomodulatory properties and effects on non-constitutive proteasome expression in colorectal cancer cells are poorly investigated. Methods: Proteasome subunit expression in colorectal cancer was evaluated by bioinformatic analysis of available datasets. Two colorectal cancer cell lines, expressing fluorescent non-constitutive proteasomes were treated with multikinase inhibitors: regorafenib and sorafenib. The proteasome subunit expression was assessed by real-time PCR, Western blotting and flow cytometry. The proteasome activity was studied using proteasome activity-based probe and fluorescent substrates. Intracellular proteasome localization was revealed by confocal microscopy. Reactive oxygen species levels following treatment were determined in cells. Combined effect of proteasome inhibition and treatment with MKIs on viability of cells was estimated. Results: Expression of non-constitutive proteasomes is increased in BRAF-mutant colorectal tumors. Regorafenib and sorafenib stimulated the activity and synthesis of non-constitutive proteasomes in examined cell lines. MKIs induced oxidative stress and redistribution of proteasomes within cells. Sorafenib stimulated formation of cytoplasmic aggregates, containing proteolyticaly active non-constitutive proteasomes, while regorafenib had no such effect. MKIs caused no synergistic action when were combined with the proteasome inhibitor. Discussion: Obtained results indicate that MKIs might affect the crosstalk between cancer cells and immune cells via modulation of intracellular proteasome pool. Observed phenomenon should be considered when MKI-based therapy is applied.
Collapse
Affiliation(s)
- Alexander Burov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Grigorieva
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
| | - Timofey Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Valeria Vedernikova
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Popenko
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Astakhova
- Laboratory of Biochemistry of Ontogenesis Processes, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga Leonova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vadim Karpov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Morozov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Hu X, Hu Z, Zhang H, Zhang N, Feng H, Jia X, Zhang C, Cheng Q. Deciphering the tumor-suppressive role of PSMB9 in melanoma through multi-omics and single-cell transcriptome analyses. Cancer Lett 2024; 581:216466. [PMID: 37944578 DOI: 10.1016/j.canlet.2023.216466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Skin cutaneous melanoma (SKCM) poses a significant challenge in skin cancers. Recent immunotherapy breakthroughs have revolutionized melanoma treamtment, yet tumor heterogeneity persists as an obstacle. Epigenetic modifications orchestrated by DNA methylation contributed to tumorigenesis, thus potentially unveiling melanoma prognosis. Here, we identified an interferon-gamma (IFN-g) sensitive subtype, which possesses favorable outcomes, robust infiltration CD8+T cells, and IFN-g score in bulk RNA-seq profile. Subsequently, we established an IFN-g sensitivity signature based on machine learning. We validated that PSMB9 is strongly correlated with immunotherapy response in both methylation and expression cohorts in this 10-probe signature. We assumed that PSMB9 acts as a putative melanoma suppressor, for its activation of CD8+T cell; capacity to modulate IFN-γ secretion; and dynamics altering IFN-g receptors in bulk tissue. We performed single-cell RNA-seq on immunotherapy patients' tissue to uncover the nuanced role of PSMB9 in activating CD8T + cells, enhancing IFN-g, and influencing malignant cells receptors and transcriptional factors. Overexpress PSMB9 in two SKCM cell lines to mimic the hypomethylated state to approve our conjecture. Strong cell proliferation and migration inhibition were detected on both cells, indicating that PSMB9 is present in tumor cells and that high expression is detrimental to tumor growth and migration. Overall, comprehensive integrated analysis shows that PSMB9 emerges as a vital prognostic marker, acting predictive potential regarding immunotherapy in melanoma. This evidence not only reveals the multifaceted impact of PSMB9 on both malignant and immune cells but also serves as a prospective target for undergoing immunotherapeutic strategies in the future.
Collapse
Affiliation(s)
- Xing Hu
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410000, China
| | - Zhengang Hu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, Chongqing, 400016, China
| | - Nan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, Chongqing, 400016, China; College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Hao Feng
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410000, China
| | - Xiaomin Jia
- Department of Pathology, Lhasa People's Hospital, Lhasa, Tibet Autonomous Region, 850001, China
| | - Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
3
|
Zibelman M, MacFarlane AW, Costello K, McGowan T, O'Neill J, Kokate R, Borghaei H, Denlinger CS, Dotan E, Geynisman DM, Jain A, Martin L, Obeid E, Devarajan K, Ruth K, Alpaugh RK, Dulaimi EAS, Cukierman E, Einarson M, Campbell KS, Plimack ER. A phase 1 study of nivolumab in combination with interferon-gamma for patients with advanced solid tumors. Nat Commun 2023; 14:4513. [PMID: 37500647 PMCID: PMC10374608 DOI: 10.1038/s41467-023-40028-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
This phase I, dose-escalation trial evaluates the safety of combining interferon-gamma (IFN-γ) and nivolumab in patients with metastatic solid tumors. Twenty-six patients are treated in four cohorts assessing increasing doses of IFN-γ with nivolumab to evaluate the primary endpoint of safety and determine the recommended phase two dose (RP2D). Most common adverse events are low grade and associated with IFN-γ. Three dose limiting toxicities are reported at the highest dose cohorts. We report only one patient with any immune related adverse event (irAE). No irAEs ≥ grade 3 are observed and no patients require corticosteroids. The maximum tolerated dose of IFN-γ is 75 mcg/m2, however based on a composite of safety, clinical, and correlative factors the RP2D is 50 mcg/m2. Exploratory analyses of efficacy in the phase I cohorts demonstrate one patient with a complete response, and five have achieved stable disease. Pre-planned correlative assessments of circulating immune cells demonstrate intermediate monocytes with increased PD-L1 expression correlating with IFN-γ dose and treatment duration. Interestingly, post-hoc analysis shows that IFN-γ induction increases circulating chemokines and is associated with an observed paucity of irAEs, warranting further evaluation. ClinicalTrials.gov Trial Registration: NCT02614456.
Collapse
Affiliation(s)
- Matthew Zibelman
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA.
| | - Alexander W MacFarlane
- Immune Monitoring/Cell Sorting Facility, Institute for Cancer Research, Philadelphia, PA, USA
| | - Kimberly Costello
- Office of Clinical Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Thomas McGowan
- Office of Clinical Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - John O'Neill
- Office of Clinical Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Rutika Kokate
- Office of Clinical Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Hossein Borghaei
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Crystal S Denlinger
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Efrat Dotan
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel M Geynisman
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Angela Jain
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lainie Martin
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Elias Obeid
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Karthik Devarajan
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Karen Ruth
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | | | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Margret Einarson
- High Throughput Screening Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kerry S Campbell
- Immune Monitoring/Cell Sorting Facility, Institute for Cancer Research, Philadelphia, PA, USA
| | - Elizabeth R Plimack
- Department of Hematology Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
4
|
Wang Z, You T, Cai C, Su Q, Cheng J, Xiao J, Duan X. Biomimetic Gold Nanostructure with a Virus-like Topological Surface for Enhanced Antigen Cross-Presentation and Antitumor Immune Response. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36897565 DOI: 10.1021/acsami.2c21028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The internalization of antigens by dendritic cells (DCs) is the initial critical step for vaccines to activate the immune response; however, the systemic delivery of antigens into DCs is hampered by various technical challenges. Here we show that a virus-like gold nanostructure (AuNV) can effectively bind to and be internalized by DCs due to its biomimetic topological morphology, thereby significantly promoting the maturation of DCs and the cross-presentation of the model antigen ovalbumin (OVA). In vivo experiments demonstrate that AuNV efficiently delivers OVA to draining lymph nodes and significantly inhibits the growth of MC38-OVA tumors, generating a ∼80% decrease in tumor volume. Mechanistic studies reveal that the AuNV-OVA vaccine induces a remarkable increase in the rate of maturation of DCs, OVA presentation, and CD4+ and CD8+ T lymphocyte populations in both lymph node and tumor and an obvious decrease in myeloid-derived suppressor cells and regulatory T cell populations in spleen. The good biocompatibility, strong adjuvant activity, enhanced uptake of DCs, and improved T cell activation make AuNV a promising antigen delivery platform for vaccine development.
Collapse
Affiliation(s)
- Zhenyu Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tingting You
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chengyuan Cai
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qianyi Su
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinmei Cheng
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jisheng Xiao
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University; Department of Pharmacy, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xiaopin Duan
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
The dichotomous role of immunoproteasome in cancer: Friend or foe? Acta Pharm Sin B 2022; 13:1976-1989. [DOI: 10.1016/j.apsb.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/08/2022] Open
|
6
|
Hensen L, Illing PT, Rowntree LC, Davies J, Miller A, Tong SYC, Habel JR, van de Sandt CE, Flanagan K, Purcell AW, Kedzierska K, Clemens EB. T Cell Epitope Discovery in the Context of Distinct and Unique Indigenous HLA Profiles. Front Immunol 2022; 13:812393. [PMID: 35603215 PMCID: PMC9121770 DOI: 10.3389/fimmu.2022.812393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
CD8+ T cells are a pivotal part of the immune response to viruses, playing a key role in disease outcome and providing long-lasting immunity to conserved pathogen epitopes. Understanding CD8+ T cell immunity in humans is complex due to CD8+ T cell restriction by highly polymorphic Human Leukocyte Antigen (HLA) proteins, requiring T cell epitopes to be defined for different HLA allotypes across different ethnicities. Here we evaluate strategies that have been developed to facilitate epitope identification and study immunogenic T cell responses. We describe an immunopeptidomics approach to sequence HLA-bound peptides presented on virus-infected cells by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Using antigen presenting cell lines that stably express the HLA alleles characteristic of Indigenous Australians, this approach has been successfully used to comprehensively identify influenza-specific CD8+ T cell epitopes restricted by HLA allotypes predominant in Indigenous Australians, including HLA-A*24:02 and HLA-A*11:01. This is an essential step in ensuring high vaccine coverage and efficacy in Indigenous populations globally, known to be at high risk from influenza disease and other respiratory infections.
Collapse
Affiliation(s)
- Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Patricia T. Illing
- Department of Biochemistry and Molecular Biology & Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Louise C. Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Jane Davies
- Menzies School of Health Research, Darwin, NT, Australia
| | - Adrian Miller
- Indigenous Engagement, CQUniversity, Townsville, QLD, Australia
| | - Steven Y. C. Tong
- Menzies School of Health Research, Darwin, NT, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jennifer R. Habel
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Carolien E. van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Katie L. Flanagan
- Department of Infectious Diseases and Tasmanian Vaccine Trial Centre, Launceston General Hospital, Launceston, TAS, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology & Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - E. Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| |
Collapse
|
7
|
Tundo GR, Sbardella D, Oddone F, Kudriaeva AA, Lacal PM, Belogurov AA, Graziani G, Marini S. At the Cutting Edge against Cancer: A Perspective on Immunoproteasome and Immune Checkpoints Modulation as a Potential Therapeutic Intervention. Cancers (Basel) 2021; 13:4852. [PMID: 34638337 PMCID: PMC8507813 DOI: 10.3390/cancers13194852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023] Open
Abstract
Immunoproteasome is a noncanonical form of proteasome with enzymological properties optimized for the generation of antigenic peptides presented in complex with class I MHC molecules. This enzymatic property makes the modulation of its activity a promising area of research. Nevertheless, immunotherapy has emerged as a front-line treatment of advanced/metastatic tumors providing outstanding improvement of life expectancy, even though not all patients achieve a long-lasting clinical benefit. To enhance the efficacy of the currently available immunotherapies and enable the development of new strategies, a broader knowledge of the dynamics of antigen repertoire processing by cancer cells is needed. Therefore, a better understanding of the role of immunoproteasome in antigen processing and of the therapeutic implication of its modulation is mandatory. Studies on the potential crosstalk between proteasome modulators and immune checkpoint inhibitors could provide novel perspectives and an unexplored treatment option for a variety of cancers.
Collapse
Affiliation(s)
| | | | | | - Anna A. Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
| | - Pedro M. Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
- Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Grazia Graziani
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
8
|
Yang R, Wang Z, Li J, Pi X, Gao R, Ma J, Qing Y, Zhou S. The Identification of the Metabolism Subtypes of Skin Cutaneous Melanoma Associated With the Tumor Microenvironment and the Immunotherapy. Front Cell Dev Biol 2021; 9:707677. [PMID: 34458265 PMCID: PMC8397464 DOI: 10.3389/fcell.2021.707677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023] Open
Abstract
Skin cutaneous melanoma (SKCM) is a highly aggressive and resistant cancer with immense metabolic heterogeneity. Here, we performed a comprehensive examination of the diverse metabolic signatures of SKCM based on non-negative matrix factorization (NMF) categorization, clustering SKCM into three distinct metabolic subtypes (C1, C2, and C3). Next, we evaluated the metadata sets of the metabolic signatures, prognostic values, transcriptomic features, tumor microenvironment signatures, immune infiltration, clinical features, drug sensitivity, and immunotherapy response of the subtypes and compared them with those of prior publications for classification. Subtype C1 was associated with high metabolic activity, low immune scores, and poor prognosis. Subtype C2 displayed low metabolic activity, high immune infiltration, high stromal score, and high expression of immune checkpoints, demonstrating the drug sensitivity to PD-1 inhibitors. The C3 subtype manifested moderate metabolic activity, high enrichment in carcinogenesis-relevant pathways, high levels of CpG island methylator phenotype (CIMP), and poor prognosis. Eventually, a 90-gene classifier was produced to implement the SKCM taxonomy and execute a consistency test in different cohorts to validate its reliability. Preliminary validation was performed to ascertain the role of SLC7A4 in SKCM. These results indicated that the 90-gene signature can be replicated to stably identify the metabolic classification of SKCM. In this study, a novel SKCM classification approach based on metabolic gene expression profiles was established to further understand the metabolic diversity of SKCM and provide guidance on precisely targeted therapy to patients with the disease.
Collapse
Affiliation(s)
- Ronghua Yang
- Department of Burn Surgery and Skin Regeneration, The First People's Hospital of Foshan, Foshan, China
| | - Zhengguang Wang
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiehua Li
- Department of Dermatology, The First People's Hospital of Foshan, Foshan, China
| | - Xiaobing Pi
- Department of Dermatology, The First People's Hospital of Foshan, Foshan, China
| | - Runxing Gao
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, China
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Qing
- Department of Oncology, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Sitong Zhou
- Department of Dermatology, The First People's Hospital of Foshan, Foshan, China
| |
Collapse
|
9
|
Immunoproteasome Function in Normal and Malignant Hematopoiesis. Cells 2021; 10:cells10071577. [PMID: 34206607 PMCID: PMC8305381 DOI: 10.3390/cells10071577] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is a central part of protein homeostasis, degrading not only misfolded or oxidized proteins but also proteins with essential functions. The fact that a healthy hematopoietic system relies on the regulation of protein homeostasis and that alterations in the UPS can lead to malignant transformation makes the UPS an attractive therapeutic target for the treatment of hematologic malignancies. Herein, inhibitors of the proteasome, the last and most important component of the UPS enzymatic cascade, have been approved for the treatment of these malignancies. However, their use has been associated with side effects, drug resistance, and relapse. Inhibitors of the immunoproteasome, a proteasomal variant constitutively expressed in the cells of hematopoietic origin, could potentially overcome the encountered problems of non-selective proteasome inhibition. Immunoproteasome inhibitors have demonstrated their efficacy and safety against inflammatory and autoimmune diseases, even though their development for the treatment of hematologic malignancies is still in the early phases. Various immunoproteasome inhibitors have shown promising preliminary results in pre-clinical studies, and one inhibitor is currently being investigated in clinical trials for the treatment of multiple myeloma. Here, we will review data on immunoproteasome function and inhibition in hematopoietic cells and hematologic cancers.
Collapse
|
10
|
Faridi P, Woods K, Ostrouska S, Deceneux C, Aranha R, Duscharla D, Wong SQ, Chen W, Ramarathinam SH, Lim Kam Sian TCC, Croft NP, Li C, Ayala R, Cebon JS, Purcell AW, Schittenhelm RB, Behren A. Spliced Peptides and Cytokine-Driven Changes in the Immunopeptidome of Melanoma. Cancer Immunol Res 2020; 8:1322-1334. [PMID: 32938616 DOI: 10.1158/2326-6066.cir-19-0894] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/20/2020] [Accepted: 08/20/2020] [Indexed: 11/16/2022]
Abstract
Antigen recognition by CD8+ T cells is governed by the pool of peptide antigens presented on the cell surface in the context of HLA class I complexes. Studies have shown not only a high degree of plasticity in the immunopeptidome, but also that a considerable fraction of all presented peptides is generated through proteasome-mediated splicing of noncontiguous regions of proteins to form novel peptide antigens. Here, we used high-resolution mass spectrometry combined with new bioinformatic approaches to characterize the immunopeptidome of melanoma cells in the presence or absence of IFNγ. In total, we identified more than 60,000 peptides from a single patient-derived cell line (LM-MEL-44) and demonstrated that IFNγ induced changes in the peptidome, with an overlap of only approximately 50% between basal and treated cells. Around 6% to 8% of the peptides were identified as cis-spliced peptides, and 2,213 peptides (1,827 linear and 386 cis-spliced peptides) were derived from known melanoma-associated antigens. These peptide antigens were equally distributed between the constitutive- and IFNγ-induced peptidome. We next examined additional HLA-matched patient-derived cell lines to investigate how frequently these peptides were identified and found that a high proportion of both linear and spliced peptides was conserved between individual patient tumors, drawing on data amassing to more than 100,000 peptide sequences. Several of these peptides showed in vitro immunogenicity across multiple patients with melanoma. These observations highlight the breadth and complexity of the repertoire of immunogenic peptides that can be exploited therapeutically and suggest that spliced peptides are a major class of tumor antigens.
Collapse
Affiliation(s)
- Pouya Faridi
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Katherine Woods
- Cancer Immunobiology, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Simone Ostrouska
- Cancer Immunobiology, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Cyril Deceneux
- Cancer Immunobiology, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Ritchlynn Aranha
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Divya Duscharla
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Stephen Q Wong
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Sri H Ramarathinam
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Terry C C Lim Kam Sian
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Nathan P Croft
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Chen Li
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Rochelle Ayala
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jonathan S Cebon
- Cancer Immunobiology, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| | - Ralf B Schittenhelm
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia. .,Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Andreas Behren
- Cancer Immunobiology, Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia. .,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
11
|
Cebon JS, Gore M, Thompson JF, Davis ID, McArthur GA, Walpole E, Smithers M, Cerundolo V, Dunbar PR, MacGregor D, Fisher C, Millward M, Nathan P, Findlay MPN, Hersey P, Evans TRJ, Ottensmeier CH, Marsden J, Dalgleish AG, Corrie PG, Maria M, Brimble M, Williams G, Winkler S, Jackson HM, Endo-Munoz L, Tutuka CSA, Venhaus R, Old LJ, Haack D, Maraskovsky E, Behren A, Chen W. Results of a randomized, double-blind phase II clinical trial of NY-ESO-1 vaccine with ISCOMATRIX adjuvant versus ISCOMATRIX alone in participants with high-risk resected melanoma. J Immunother Cancer 2020; 8:e000410. [PMID: 32317292 PMCID: PMC7204806 DOI: 10.1136/jitc-2019-000410] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND To compare the clinical efficacy of New York Esophageal squamous cell carcinoma-1 (NY-ESO-1) vaccine with ISCOMATRIX adjuvant versus ISCOMATRIX alone in a randomized, double-blind phase II study in participants with fully resected melanoma at high risk of recurrence. METHODS Participants with resected stage IIc, IIIb, IIIc and IV melanoma expressing NY-ESO-1 were randomized to treatment with three doses of NY-ESO-1/ISCOMATRIX or ISCOMATRIX adjuvant administered intramuscularly at 4-week intervals, followed by a further dose at 6 months. Primary endpoint was the proportion free of relapse at 18 months in the intention-to-treat (ITT) population and two per-protocol populations. Secondary endpoints included relapse-free survival (RFS) and overall survival (OS), safety and NY-ESO-1 immunity. RESULTS The ITT population comprised 110 participants, with 56 randomized to NY-ESO-1/ISCOMATRIX and 54 to ISCOMATRIX alone. No significant toxicities were observed. There were no differences between the study arms in relapses at 18 months or for median time to relapse; 139 vs 176 days (p=0.296), or relapse rate, 27 (48.2%) vs 26 (48.1%) (HR 0.913; 95% CI 0.402 to 2.231), respectively. RFS and OS were similar between the study arms. Vaccine recipients developed strong positive antibody responses to NY-ESO-1 (p≤0.0001) and NY-ESO-1-specific CD4+ and CD8+ responses. Biopsies following relapse did not demonstrate differences in NY-ESO-1 expression between the study populations although an exploratory study demonstrated reduced (NY-ESO-1)+/Human Leukocyte Antigen (HLA) class I+ double-positive cells in biopsies from vaccine recipients performed on relapse in 19 participants. CONCLUSIONS The vaccine was well tolerated, however, despite inducing antigen-specific immunity, it did not affect survival endpoints. Immune escape through the downregulation of NY-ESO-1 and/or HLA class I molecules on tumor may have contributed to relapse.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/adverse effects
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Biopsy
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/adverse effects
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Chemotherapy, Adjuvant/adverse effects
- Chemotherapy, Adjuvant/methods
- Cholesterol/administration & dosage
- Cholesterol/adverse effects
- Dermatologic Surgical Procedures
- Disease-Free Survival
- Double-Blind Method
- Drug Combinations
- Female
- Follow-Up Studies
- Humans
- Immunogenicity, Vaccine
- Male
- Melanoma/diagnosis
- Melanoma/immunology
- Melanoma/mortality
- Melanoma/therapy
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Middle Aged
- Neoplasm Recurrence, Local/diagnosis
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/prevention & control
- Neoplasm Staging
- Phospholipids/administration & dosage
- Phospholipids/adverse effects
- Saponins/administration & dosage
- Saponins/adverse effects
- Skin/pathology
- Skin Neoplasms/diagnosis
- Skin Neoplasms/immunology
- Skin Neoplasms/mortality
- Skin Neoplasms/therapy
Collapse
Affiliation(s)
- Jonathan S Cebon
- Cancer Immunobiology Programme, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University at Austin Health, Heidelberg, Victoria, Australia
- Ludwig Institute for Cancer Research Austin Branch, Heidelberg, Victoria, Australia
| | - Martin Gore
- Oncology, Royal Marsden Hospital NHS Trust, London, UK
| | - John F Thompson
- Melanoma Institute Australia, North Sydney, New South Wales, Australia
| | - Ian D Davis
- Ludwig Institute for Cancer Research Austin Branch, Heidelberg, Victoria, Australia
- Monash University Eastern Health Clinical School, Box Hill, Victoria, Australia
| | - Grant A McArthur
- Melanona and Skin Service, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Euan Walpole
- Cancer Services Division, Princess Alexandra Hospital Health Service District, Woolloongabba, Queensland, Australia
| | - Mark Smithers
- Oncology Services Unit, Princess Alexandra Hospital Health Service District, Woolloongabba, Queensland, Australia
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, Oxfordshire, UK
| | - P Rod Dunbar
- School of Biological Sciences and Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Duncan MacGregor
- Department of Anatomical Pathology, Austin Health, Heidelberg, Victoria, Australia
| | - Cyril Fisher
- Oncology, Royal Marsden Hospital NHS Trust, London, UK
| | - Michael Millward
- School of Medicine and Pharmacology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Paul Nathan
- Mount Vernon Cancer Centre, Mount Vernon Hospital, Northwood, London, UK
| | - Michael P N Findlay
- School of Medicine and Health Science, The University of Auckland, Auckland, New Zealand
| | - Peter Hersey
- Melanoma Immunology and Oncology Group, Centenary Institute, Newtown, New South Wales, Australia
| | - T R Jeffry Evans
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Jeremy Marsden
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Angus G Dalgleish
- Cell and Molecular Sciences, Division of Oncology, St Georges Hospital Medical School, London, UK
| | - Pippa G Corrie
- West Anglia Cancer Research Network Oncology Centre, Addenbrooke's Hospital, Cambridge, Cambridgeshire, UK
| | - Marples Maria
- The Cancer Research Centre, Weston Park Hospital, Sheffield, UK
| | - Margaret Brimble
- School of Biological Sciences and Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Geoff Williams
- School of Biological Sciences and Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Sintia Winkler
- School of Biological Sciences and Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Heather M Jackson
- Ludwig Institute for Cancer Research Austin Branch, Heidelberg, Victoria, Australia
| | - Liliana Endo-Munoz
- Cancer Immunobiology Programme, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University at Austin Health, Heidelberg, Victoria, Australia
| | - Candani S A Tutuka
- Cancer Immunobiology Programme, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University at Austin Health, Heidelberg, Victoria, Australia
- Ludwig Institute for Cancer Research Austin Branch, Heidelberg, Victoria, Australia
| | - Ralph Venhaus
- Ludwig Institute for Cancer Research, New York, New York, USA
| | - Lloyd J Old
- Ludwig Institute for Cancer Research, New York, New York, USA
| | - Dennis Haack
- Versagenics Inc, Morrisville, North Carolina, USA
| | | | - Andreas Behren
- Cancer Immunobiology Programme, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University at Austin Health, Heidelberg, Victoria, Australia
- Ludwig Institute for Cancer Research Austin Branch, Heidelberg, Victoria, Australia
| | - Weisan Chen
- Ludwig Institute for Cancer Research Austin Branch, Heidelberg, Victoria, Australia
- Biochemistry and Genetics, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Immunoproteasome expression is associated with better prognosis and response to checkpoint therapies in melanoma. Nat Commun 2020; 11:896. [PMID: 32060274 PMCID: PMC7021791 DOI: 10.1038/s41467-020-14639-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Predicting the outcome of immunotherapy treatment in melanoma patients is challenging. Alterations in genes involved in antigen presentation and the interferon gamma (IFNγ) pathway play an important role in the immune response to tumors. We describe here that the overexpression of PSMB8 and PSMB9, two major components of the immunoproteasome, is predictive of better survival and improved response to immune-checkpoint inhibitors of melanoma patients. We study the mechanism underlying this connection by analyzing the antigenic peptide repertoire of cells that overexpress these subunits using HLA peptidomics. We find a higher response of patient-matched tumor infiltrating lymphocytes against antigens diferentially presented after immunoproteasome overexpression. Importantly, we find that PSMB8 and PSMB9 expression levels are much stronger predictors of melanoma patientsʼ immune response to checkpoint inhibitors than the tumors’ mutational burden. These results suggest that PSMB8 and PSMB9 expression levels can serve as important biomarkers for stratifying melanoma patients for immune-checkpoint treatment. The response to immunotherapy of melanoma patients is heterogeneous. Here, the authors demonstrate that a high expression of the two major components of the immunoproteasome, PSMB8 and PSMB9, modulates the production of HLA peptides and it is predictive of better survival and improved response to immune-checkpoint inhibitors of melanoma patients.
Collapse
|
13
|
Javitt A, Barnea E, Kramer MP, Wolf-Levy H, Levin Y, Admon A, Merbl Y. Pro-inflammatory Cytokines Alter the Immunopeptidome Landscape by Modulation of HLA-B Expression. Front Immunol 2019; 10:141. [PMID: 30833945 PMCID: PMC6387973 DOI: 10.3389/fimmu.2019.00141] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
Antigen presentation on HLA molecules is a major mechanism by which the immune system monitors self and non-self-recognition. Importantly, HLA-I presentation has gained much attention through its role in eliciting anti-tumor immunity. Several determinants controlling the peptides presented on HLA have been uncovered, mainly through the study of model substrates and large-scale immunopeptidome analyses. These determinants include the relative abundances of proteins in the cell, the stability or turnover rate of these proteins and the binding affinities of a given peptide to the HLA haplotypes found in a cell. However, the regulatory principles involved in selection and regulation of specific antigens in response to tumor pro-inflammatory signals remain largely unknown. Here, we chose to examine the effect that TNFα and IFNγ stimulation may exert on the immunopeptidome landscape of lung cancer cells. We show that the expression of many of the proteins involved in the class I antigen presentation pathway are changed by pro-inflammatory cytokines. Further, we could show that increased expression of the HLA-B allomorph drives a significant change in HLA-bound antigens, independently of the significant changes observed in the cellular proteome. Finally, we observed increased HLA-B levels in correlation with tumor infiltration across the TCGA lung cancer cohorts. Taken together, our results suggest that the immunopeptidome landscape should be examined in the context of anti-tumor immunity whereby signals in the microenvironment may be critical in shaping and modulating this important aspect of host-tumor interactions.
Collapse
Affiliation(s)
- Aaron Javitt
- Department of Immunology, Weizmann Institute of ScienceRehovot, Israel
| | - Eilon Barnea
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Hila Wolf-Levy
- Department of Immunology, Weizmann Institute of ScienceRehovot, Israel
| | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, de Botton Institute for Protein Profiling, Weizmann Institute of Science, Rehovot, Israel
| | - Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yifat Merbl
- Department of Immunology, Weizmann Institute of ScienceRehovot, Israel
| |
Collapse
|
14
|
Perspective: cancer vaccines in the era of immune checkpoint blockade. Mamm Genome 2018; 29:703-713. [PMID: 30446791 PMCID: PMC6267701 DOI: 10.1007/s00335-018-9786-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/24/2018] [Indexed: 12/30/2022]
Abstract
Current excitement about cancer immunotherapy is the result of unprecedented clinical impact from immune checkpoint inhibitors, particularly those that target programmed death (PD)-1 and PD-ligand (L)-1. Numerous other immunotherapeutics are also finding their way into the clinic either alone or in combination, and these have potential applications in many cancer types. Therapeutic cancer vaccines have been a major focus for many pioneers in the field yet have largely failed to live up to expectations as game-changing immunotherapeutics. This, despite decades of focussed efforts that have identified antigens, optimised adjuvants and refined approaches to pre-clinical modelling and clinical monitoring. If antigen-directed immunotherapeutics are to take a place in the anti-cancer therapeutic armamentarium, it will be crucial to understand the potential niche that could be occupied by cancer vaccines that can specifically induce or modify immune response against cancer antigens.
Collapse
|
15
|
Halse H, Colebatch AJ, Petrone P, Henderson MA, Mills JK, Snow H, Westwood JA, Sandhu S, Raleigh JM, Behren A, Cebon J, Darcy PK, Kershaw MH, McArthur GA, Gyorki DE, Neeson PJ. Multiplex immunohistochemistry accurately defines the immune context of metastatic melanoma. Sci Rep 2018; 8:11158. [PMID: 30042403 PMCID: PMC6057961 DOI: 10.1038/s41598-018-28944-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/02/2018] [Indexed: 01/01/2023] Open
Abstract
A prospective study explored the heterogeneous nature of metastatic melanoma using Multiplex immunohistochemistry (IHC) and flow cytometry (FACS). Multiplex IHC data quantitated immune subset number present intra-tumoral (IT) vs the tumor stroma, plus distance of immune subsets from the tumor margin (TM). In addition, mIHC showed a close association between the presence of IT CD8+ T cells and PDL1 expression in melanoma, which was more prevalent on macrophages than on melanoma cells. In contrast, FACS provided more detailed information regarding the T cell subset differentiation, their activation status and expression of immune checkpoint molecules. Interestingly, mIHC detected significantly higher Treg numbers than FACS and showed preferential CD4+ T cell distribution in the tumor stroma. Based on the mIHC and FACS data, we provide a model which defines metastatic melanoma immune context into four categories using the presence or absence of PDL1+ melanoma cells and/or macrophages, and their location within the tumor or on the periphery, combined with the presence or absence of IT CD8+ T cells. This model interprets melanoma immune context as a spectrum of tumor escape from immune control, and provides a snapshot upon which interpretation of checkpoint blockade inhibitor (CBI) therapy responses can be built.
Collapse
Affiliation(s)
- H Halse
- Cancer Immunology Research, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia
| | - A J Colebatch
- Division of Cancer Medicine Melanoma Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia
| | - P Petrone
- Cancer Immunology Research, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia
| | - M A Henderson
- Cancer Immunology Research, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia
| | - J K Mills
- Cancer Immunology Research, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia
| | - H Snow
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia
| | - J A Westwood
- Cancer Immunology Research, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia
| | - S Sandhu
- Division of Cancer Medicine Melanoma Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - J M Raleigh
- Division of Cancer Medicine Melanoma Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia
| | - A Behren
- Olivia Newton John Cancer Research Institute, Heidelberg, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, 3086, Australia
| | - J Cebon
- Olivia Newton John Cancer Research Institute, Heidelberg, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, 3086, Australia
| | - P K Darcy
- Cancer Immunology Research, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - M H Kershaw
- Cancer Immunology Research, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - G A McArthur
- Division of Cancer Medicine Melanoma Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia
| | - D E Gyorki
- Cancer Immunology Research, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia.,Department of Surgery, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - P J Neeson
- Cancer Immunology Research, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, 3000, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
16
|
Andrews MC, Reuben A, Gopalakrishnan V, Wargo JA. Concepts Collide: Genomic, Immune, and Microbial Influences on the Tumor Microenvironment and Response to Cancer Therapy. Front Immunol 2018; 9:946. [PMID: 29780391 PMCID: PMC5945998 DOI: 10.3389/fimmu.2018.00946] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/16/2018] [Indexed: 12/30/2022] Open
Abstract
Cancer research has seen unprecedented advances over the past several years, with tremendous insights gained into mechanisms of response and resistance to cancer therapy. Central to this has been our understanding of crosstalk between the tumor and the microenvironment, with the recognition that complex interactions exist between tumor cells, stromal cells, overall host immunity, and the environment surrounding the host. This is perhaps best exemplified in cancer immunotherapy, where numerous studies across cancer types have illuminated our understanding of the genomic and immune factors that shape responses to therapy. In addition to their individual contributions, it is now clear that there is a complex interplay between genomic/epigenomic alterations and tumor immune responses that impact cellular plasticity and therapeutic responses. In addition to this, it is also now apparent that significant heterogeneity exists within tumors-both at the level of genomic mutations as well as tumor immune responses-thus contributing to heterogeneous clinical responses. Beyond the tumor microenvironment, overall host immunity plays a major role in mediating clinical responses. The gut microbiome plays a central role, with recent evidence revealing that the gut microbiome influences the overall immune set-point, through diverse effects on local and systemic inflammatory processes. Indeed, quantifiable differences in the gut microbiome have been associated with disease and treatment outcomes in patients and pre-clinical models, though precise mechanisms of microbiome-immune interactions are yet to be elucidated. Complexities are discussed herein, with a discussion of each of these variables as they relate to treatment response.
Collapse
Affiliation(s)
- Miles C Andrews
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Alexandre Reuben
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vancheswaran Gopalakrishnan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
17
|
Thomas R, Al-Khadairi G, Roelands J, Hendrickx W, Dermime S, Bedognetti D, Decock J. NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives. Front Immunol 2018; 9:947. [PMID: 29770138 PMCID: PMC5941317 DOI: 10.3389/fimmu.2018.00947] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
NY-ESO-1 or New York esophageal squamous cell carcinoma 1 is a well-known cancer-testis antigen (CTAs) with re-expression in numerous cancer types. Its ability to elicit spontaneous humoral and cellular immune responses, together with its restricted expression pattern, have rendered it a good candidate target for cancer immunotherapy. In this review, we provide background information on NY-ESO-1 expression and function in normal and cancerous tissues. Furthermore, NY-ESO-1-specific immune responses have been observed in various cancer types; however, their utility as biomarkers are not well determined. Finally, we describe the immune-based therapeutic options targeting NY-ESO-1 that are currently in clinical trial. We will highlight the recent advancements made in NY-ESO-1 cancer vaccines, adoptive T cell therapy, and combinatorial treatment with checkpoint inhibitors and will discuss the current trends for future NY-ESO-1 based immunotherapy. Cancer treatment has been revolutionized over the last few decades with immunotherapy emerging at the forefront. Immune-based interventions have shown promising results, providing a new treatment avenue for durable clinical responses in various cancer types. The majority of successful immunotherapy studies have been reported in liquid cancers, whereas these approaches have met many challenges in solid cancers. Effective immunotherapy in solid cancers is hampered by the complex, dynamic tumor microenvironment that modulates the extent and phenotype of the antitumor immune response. Furthermore, many solid tumor-associated antigens are not private but can be found in normal somatic tissues, resulting in minor to detrimental off-target toxicities. Therefore, there is an ongoing effort to identify tumor-specific antigens to target using various immune-based modalities. CTAs are considered good candidate targets for immunotherapy as they are characterized by a restricted expression in normal somatic tissues concomitant with a re-expression in solid epithelial cancers. Moreover, several CTAs have been found to induce a spontaneous immune response, NY-ESO-1 being the most immunogenic among the family members. Hence, this review will focus on NY-ESO-1 and discuss the past and current NY-ESO-1 targeted immunotherapeutic strategies.
Collapse
Affiliation(s)
- Remy Thomas
- Cancer Research Center, Qatar Biomedical Research Institute, Qatar Foundation, Hamad Bin Khalifa University, Doha, Qatar
| | - Ghaneya Al-Khadairi
- Cancer Research Center, Qatar Biomedical Research Institute, Qatar Foundation, Hamad Bin Khalifa University, Doha, Qatar
| | - Jessica Roelands
- Immunology, Inflammation, and Metabolism Department, Tumor Biology, Immunology, and Therapy Section, Division of Translational Medicine, Sidra Medicine, Doha, Qatar.,Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Wouter Hendrickx
- Immunology, Inflammation, and Metabolism Department, Tumor Biology, Immunology, and Therapy Section, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Doha, Qatar
| | - Davide Bedognetti
- Immunology, Inflammation, and Metabolism Department, Tumor Biology, Immunology, and Therapy Section, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Julie Decock
- Cancer Research Center, Qatar Biomedical Research Institute, Qatar Foundation, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
18
|
Tsuji T, Yoneda A, Matsuzaki J, Miliotto A, Ryan C, Koya RC, Odunsi K. Rapid Construction of Antitumor T-cell Receptor Vectors from Frozen Tumors for Engineered T-cell Therapy. Cancer Immunol Res 2018; 6:594-604. [PMID: 29588318 DOI: 10.1158/2326-6066.cir-17-0434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/26/2017] [Accepted: 03/12/2018] [Indexed: 12/31/2022]
Abstract
T cells genetically engineered with tumor antigen-specific T-cell receptor (TCR) genes have demonstrated therapeutic potential in patients with solid tumors. In order to achieve broader application, an efficient method to identify TCR genes for an array of tumor antigens and HLA restriction elements is required. Here, we have developed a method to construct a TCR-expression library from specimens, including frozen tumor biopsies, that contain antigen-specific T cells. TCR-expressing cassettes were constructed and cloned in a retroviral plasmid vector within 24 hours by unbiased PCR amplification of TCR α and β chain variable regions assembled with TCR constant regions. The method was validated by constructing TCR-expressing vectors from tumor antigen-specific T-cell clones and functionally assessing TCR gene-transduced T cells. We applied this method to frozen ovarian tumor specimens that were infiltrated by tumor antigen-specific T cells. The tumor-derived TCR libraries were expressed in peripheral T cells from healthy volunteers and screened for tumor antigen-specific TCR pairs with the use of an MHC/peptide tetramer reagent. Tumor antigen-specific TCR-expressing transgenes were recovered from isolated tetramer-positive T cells. Peripheral T cells that were engineered with library-derived TCR gene showed potent therapeutic antitumor effect in a tumor xenograft model. Our method can efficiently and rapidly provide tumor-specific TCR-expressing viral vectors for the manufacture of therapeutic and personalized antitumor T-cell products. Cancer Immunol Res; 6(5); 594-604. ©2018 AACR.
Collapse
Affiliation(s)
- Takemasa Tsuji
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York.,Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Akira Yoneda
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York
| | - Junko Matsuzaki
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York.,Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Anthony Miliotto
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York
| | - Courtney Ryan
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York
| | - Richard C Koya
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York.,Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Kunle Odunsi
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York. .,Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York.,Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
19
|
Granier C, Vinatier E, Colin E, Mandavit M, Dariane C, Verkarre V, Biard L, El Zein R, Lesaffre C, Galy-Fauroux I, Roussel H, De Guillebon E, Blanc C, Saldmann A, Badoual C, Gey A, Tartour É. Multiplexed Immunofluorescence Analysis and Quantification of Intratumoral PD-1+ Tim-3+ CD8+ T Cells. J Vis Exp 2018. [PMID: 29553498 DOI: 10.3791/56606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Immune cells are important components of the tumor microenvironment and influence tumor growth and evolution at all stages of carcinogenesis. Notably, it is now well established that the immune infiltrate in human tumors can correlate with prognosis and response to therapy. The analysis of the immune infiltrate in the tumor microenvironment has become a major challenge for the classification of patients and the response to treatment. The co-expression of inhibitory receptors such as Program Cell Death Protein 1 (PD1; also known as CD279), Cytotoxic T Lymphocyte Associated Protein 4 (CTLA-4), T-Cell Immunoglobulin and Mucin Containing Protein-3 (Tim-3; also known as CD366), and Lymphocyte Activation Gene 3 (Lag-3; also known as CD223), is a hallmark of T cell exhaustion. We developed a multiparametric in situ immunofluorescence staining to identify and quantify at the cellular level the co-expression of these inhibitory receptors. On a retrospective series of frozen tissue of renal cell carcinomas (RCC), using a fluorescence multispectral imaging technology coupled with an image analysis software, it was found that co-expression of PD-1 and Tim-3 on tumor infiltrating CD8+ T cells is correlated with a poor prognosis in RCC. To our knowledge, this represents the first study demonstrating that this automated multiplex in situ technology may have some clinical relevance.
Collapse
Affiliation(s)
| | - Emeline Vinatier
- INSERM U970, Université Paris Descartes; Equipe Labellisée Ligue Contre le Cancer; Department of Immunology, Hopital Européen Georges Pompidou
| | - Elia Colin
- INSERM U970, Université Paris Descartes; Equipe Labellisée Ligue Contre le Cancer
| | - Marion Mandavit
- INSERM U970, Université Paris Descartes; Equipe Labellisée Ligue Contre le Cancer
| | - Charles Dariane
- INSERM U970, Université Paris Descartes; Equipe Labellisée Ligue Contre le Cancer; Department of Medical Urology, Hopital Européen Georges Pompidou
| | | | | | | | | | | | - Hélène Roussel
- INSERM U970, Université Paris Descartes; Equipe Labellisée Ligue Contre le Cancer; Department of Pathology, Hopital Européen Georges Pompidou
| | | | - Charlotte Blanc
- INSERM U970, Université Paris Descartes; Equipe Labellisée Ligue Contre le Cancer
| | | | - Cécile Badoual
- INSERM U970, Université Paris Descartes; Department of Pathology, Hopital Européen Georges Pompidou
| | - Alain Gey
- Department of Immunology, Hopital Européen Georges Pompidou
| | - Éric Tartour
- INSERM U970, Université Paris Descartes; Department of Immunology, Hopital Européen Georges Pompidou;
| |
Collapse
|
20
|
da Gama Duarte J, Woods K, Andrews MC, Behren A. The good, the (not so) bad and the ugly of immune homeostasis in melanoma. Immunol Cell Biol 2018; 96:497-506. [PMID: 29392770 DOI: 10.1111/imcb.12001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/24/2022]
Abstract
Within the immune system multiple mechanisms balance the need for efficient pathogen recognition and destruction with the prevention of tissue damage by excessive, inappropriate or even self-targeting (auto)immune reactions. This immune homeostasis is a tightly regulated system which fails during tumor development, often due to the hijacking of its essential self-regulatory mechanisms by cancer cells. It is facilitated not only by tumor intrinsic properties, but also by the microbiome, host genetics and other factors. In certain ways many cancers can therefore be considered a rare failure of immune control rather than an uncommon or rare disease of the tissue of origin, as the acquisition of potentially oncogenic traits through mutation occurs constantly in most tissues during proliferation. Normally, aberrant cells are well-controlled by cell intrinsic (repair or apoptosis) and extrinsic (immune) mechanisms. However, occasionally oncogenic cells survive and escape control. Melanoma is one of the first cancer types where treatments aimed at restoring and enhancing an immune response to regain control over the tumor have been used with various success rates. With the advent of "modern" immunotherapeutics such as anti-CTLA-4 or anti-PD-1 antibodies that both target negative immune-regulatory pathways on immune cells resulting in durable responses in a proportion of patients, the importance of the interplay between the immune system and cancer has been established beyond doubt.
Collapse
Affiliation(s)
- Jessica da Gama Duarte
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Katherine Woods
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Miles C Andrews
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia.,MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
21
|
Ilangumaran S, Williams BRG, Kalvakolanu DV. Meeting summary: 2nd Aegean Conference on Cytokine Signaling in Cancer. Cytokine 2017; 108:225-231. [PMID: 29102683 DOI: 10.1016/j.cyto.2017.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 10/25/2017] [Indexed: 11/26/2022]
Abstract
Cytokines and chemokines are intricately connected to cancer initiation, progression and metastasis as well as to innate and adaptive host defense mechanisms against transformed cells. The Aegean Conference on Cytokine Signaling in Cancer (ACCSC) aims to bring together researchers in this highly targeted area of cancer research in a lovely and relaxing Greek-Mediterranean backdrop to discuss latest developments. Being small in size with about one hundred participants, this conference fosters scientific and social interactions among established and emerging scientists in clinical and basic research in diverse fields of oncology, biochemistry, biophysics, genetics and immunology. The 2nd ACCSC held at Heraklion on the Greek island of Crete was organized by Serge Fuchs (University of Pennsylvania), Mathias Muller (University of Veterinary Medicine Vienna), Leonidas Platanias (Northwestern University, Chicago) and Belinda Parker (La Trobe University, Melbourne) between May 30 and June 04, 2017, was a great success in every single aspect of a high level scientific meeting. Signaling within cancer cells as well as in stromal and immune cells is the common thread of this conference series. An outline of the research topics discussed at this conference is presented here to emphasize its high quality and to stimulate interest among cytokine researchers to participate in future ACCSC meetings.
Collapse
Affiliation(s)
- Subburaj Ilangumaran
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Bryan R G Williams
- Department of Molecular and Translational Science, Monash University Faculty of Medicine, Nursing and Health Sciences, Melbourne, Australia.
| | - Dhan V Kalvakolanu
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
22
|
Vigneron N, Abi Habib J, Van den Eynde BJ. Learning from the Proteasome How To Fine-Tune Cancer Immunotherapy. Trends Cancer 2017; 3:726-741. [PMID: 28958390 DOI: 10.1016/j.trecan.2017.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
Abstract
Cancer immunotherapy has recently emerged as a forefront strategy to fight cancer. Key players in antitumor responses are CD8+ cytolytic T lymphocytes (CTLs) that can detect tumor cells that carry antigens, in other words, small peptides bound to surface major histocompatibility complex (MHC) class I molecules. The success and safety of cancer immunotherapy strategies depends on the nature of the antigens recognized by the targeted T cells, their strict tumor specificity, and whether tumors and antigen-presenting cells can efficiently process the peptide. We review here the nature of the tumor antigens and their potential for the development of immunotherapeutic strategies. We also discuss the importance of proteasome in the production of these peptides in the context of immunotherapy and therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Nathalie Vigneron
- Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium.
| | - Joanna Abi Habib
- Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium
| |
Collapse
|
23
|
Borch TH, Engell-Noerregaard L, Zeeberg Iversen T, Ellebaek E, Met Ö, Hansen M, Andersen MH, Thor Straten P, Svane IM. mRNA-transfected dendritic cell vaccine in combination with metronomic cyclophosphamide as treatment for patients with advanced malignant melanoma. Oncoimmunology 2016; 5:e1207842. [PMID: 27757300 DOI: 10.1080/2162402x.2016.1207842] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/13/2016] [Accepted: 06/25/2016] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Vaccination with dendritic cells (DCs) has generally not fulfilled its promise in cancer immunotherapy due to ineffective translation of immune responses into clinical responses. A proposed reason for this is intrinsic immune regulatory mechanisms, such as regulatory T cells (Tregs). A metronomic regimen of cyclophosphamide (mCy) has been shown to selectively deplete Tregs. To test this in a clinical setting, we conducted a phase I trial to evaluate the feasibility and safety of vaccination with DCs transfected with mRNA in combination with mCy in patients with metastatic malignant melanoma (MM). In addition, clinical and immunological effect of the treatment was evaluated. EXPERIMENTAL DESIGN Twenty-two patients were enrolled and treated with six cycles of cyclophosphamide 50 mg orally bi-daily for a week every second week (day 1-7). During the six cycles patients received at least 5 × 106 autologous DCs administered by intradermal (i.d.) injection in the week without chemotherapy. Patients were evaluated 12 and 27 weeks and every 3rd mo thereafter with CT scans according to RECIST 1.0. Blood samples for immune monitoring were collected at baseline, at the time of 4th and 6th vaccines. Immune monitoring consisted of IFNγ ELISpot assay, proliferation assay, and flow cytometry for enumeration of immune cell subsets. RESULTS Toxicity was manageable. Eighteen patients were evaluable after six cycles. Of these, nine patients had progressive disease as best response and nine patients achieved stable disease. In three patients minor tumor regression was observed. By IFNγ ELISpot and proliferation assay immune responses were seen in 6/17 and 4/17 patients, respectively; however, no correlation with clinical response was found. The percentage of Tregs was unchanged during treatment. CONCLUSION Treatment with autologous DCs transfected with mRNA in combination with mCy was feasible and safe. Importantly, mCy did not alter the percentage of Tregs in our patient cohort. There was an indication of clinical benefit; however, more knowledge is needed in order for DCs to be exploited as a therapeutic option.
Collapse
Affiliation(s)
- Troels Holz Borch
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Lotte Engell-Noerregaard
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Trine Zeeberg Iversen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Eva Ellebaek
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Özcan Met
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Hansen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital , Herlev, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital , Herlev, Denmark
| | - Per Thor Straten
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital , Herlev, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, Copenhagen University Hospital, Herlev, Denmark; Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|