1
|
Habra K, Pearson JRD, Le Vu P, Puig‐Saenz C, Cripps MJ, Khan MA, Turner MD, Sale C, McArdle SEB. Anticancer actions of carnosine in cellular models of prostate cancer. J Cell Mol Med 2024; 28:e18061. [PMID: 38018900 PMCID: PMC10826443 DOI: 10.1111/jcmm.18061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/03/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023] Open
Abstract
Treatments for organ-confined prostate cancer include external beam radiation therapy, radical prostatectomy, radiotherapy/brachytherapy, cryoablation and high-intensity focused ultrasound. None of these are cancer-specific and are commonly accompanied by side effects, including urinary incontinence and erectile dysfunction. Moreover, subsequent surgical treatments following biochemical recurrence after these interventions are either limited or affected by the scarring present in the surrounding tissue. Carnosine (β-alanyl-L-histidine) is a histidine-containing naturally occurring dipeptide which has been shown to have an anti-tumorigenic role without any detrimental effect on healthy cells; however, its effect on prostate cancer cells has never been investigated. In this study, we investigated the effect of carnosine on cell proliferation and metabolism in both a primary cultured androgen-resistant human prostate cancer cell line, PC346Flu1 and murine TRAMP-C1 cells. Our results show that carnosine has a significant dose-dependent inhibitory effect in vitro on the proliferation of both human (PC346Flu1) and murine (TRAMP-C1) prostate cancer cells, which was confirmed in 3D-models of the same cells. Carnosine was also shown to decrease adenosine triphosphate content and reactive species which might have been caused in part by the increase in SIRT3 also shown after carnosine treatment. These encouraging results support the need for further human in vivo work to determine the potential use of carnosine, either alone or, most likely, as an adjunct therapy to surgical or other conventional treatments.
Collapse
Affiliation(s)
- K. Habra
- John van Geest Cancer Research Centre, School of Science and TechnologyNottingham Trent UniversityNottinghamUK
- Chemistry Department, School of Science and TechnologyNottingham Trent UniversityNottinghamUK
| | - J. R. D. Pearson
- John van Geest Cancer Research Centre, School of Science and TechnologyNottingham Trent UniversityNottinghamUK
- Centre for Systems Health and integrated Metabolic Research (SHiMR), School of Science and TechnologyNottingham Trent UniversityNottinghamUK
| | - P. Le Vu
- John van Geest Cancer Research Centre, School of Science and TechnologyNottingham Trent UniversityNottinghamUK
| | - C. Puig‐Saenz
- John van Geest Cancer Research Centre, School of Science and TechnologyNottingham Trent UniversityNottinghamUK
- Centre for Systems Health and integrated Metabolic Research (SHiMR), School of Science and TechnologyNottingham Trent UniversityNottinghamUK
| | - M. J. Cripps
- Centre for Diabetes, Chronic Diseases, and Ageing, School of Science and TechnologyNottingham Trent UniversityNottinghamUK
| | - M. A. Khan
- Department of UrologyUniversity Hospitals of Leicester NHS TrustLeicesterUK
| | - M. D. Turner
- Centre for Systems Health and integrated Metabolic Research (SHiMR), School of Science and TechnologyNottingham Trent UniversityNottinghamUK
- Centre for Diabetes, Chronic Diseases, and Ageing, School of Science and TechnologyNottingham Trent UniversityNottinghamUK
| | - C. Sale
- Institute of Sport, Manchester Metropolitan UniversityManchesterUK
| | - S. E. B. McArdle
- John van Geest Cancer Research Centre, School of Science and TechnologyNottingham Trent UniversityNottinghamUK
- Centre for Systems Health and integrated Metabolic Research (SHiMR), School of Science and TechnologyNottingham Trent UniversityNottinghamUK
| |
Collapse
|
2
|
Huang ZG, Chen Y, Wu T, Yin BT, Feng X, Li SH, Li DM, Chen G, Cheng JW, He J. What should be the future direction of development in the field of prostate cancer with lung metastasis? World J Clin Oncol 2023; 14:420-439. [PMID: 37970109 PMCID: PMC10631347 DOI: 10.5306/wjco.v14.i10.420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Since the start of the 21st century, prostate cancer with lung metastasis (PCLM) has accumulated significant scientific research output. However, a systematic knowledge framework for PCLM is still lacking. AIM To reconstruct the global knowledge system in the field of PCLM, sort out hot research directions, and provide reference for the clinical and mechanism research of PCLM. METHODS We retrieved 280 high-quality papers from the Web of Science Core Collection and conducted a bibliometric analysis of keywords, publication volume, and citation frequency. Additionally, we selected differentially expressed genes from global high-throughput datasets and performed enrichment analysis and protein-protein interaction analysis to further summarize and explore the mechanisms of PCLM. RESULTS PCLM has received extensive attention over the past 22 years, but there is an uneven spatial distribution in PCLM research. In the clinical aspect, the treatment of PCLM is mainly based on chemotherapy and immunotherapy, while diagnosis relies on methods such as prostate-specific membrane antigen positron emission tomography/computed tomography. In the basic research aspect, the focus is on cell adhesion molecules and signal transducer and activator of transcription 3, among others. Traditional treatments, such as chemotherapy, remain the mainstay of PCLM treatment, while novel approaches such as immunotherapy have limited effectiveness in PCLM. This study reveals for the first time that pathways related to coronavirus disease 2019, cytokine-cytokine receptor interaction, and ribosome are closely associated with PCLM. CONCLUSION Future research should focus on exploring and enhancing mechanisms such as cytokine-cytokine receptor interaction and ribosome and improve existing mechanisms like cadherin binding and cell adhesion molecules.
Collapse
Affiliation(s)
- Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yi Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Tong Wu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Bin-Tong Yin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiao Feng
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Sheng-Hua Li
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Dong-Ming Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ji-Wen Cheng
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Juan He
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
3
|
Koti M, Bivalacqua T, Black PC, Cathomen T, Galsky MD, Gulley JL, Ingersoll MA, Kamat AM, Kassouf W, Siemens DR, Gao J. Adaptive Immunity in Genitourinary Cancers. Eur Urol Oncol 2023; 6:263-272. [PMID: 37069029 DOI: 10.1016/j.euo.2023.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 04/19/2023]
Abstract
CONTEXT While urothelial and renal cell cancers have exhibited modest responses to novel immune checkpoint inhibitors targeting the programmed death ligand 1 and its receptor, response rates in patients with prostate cancer have remained poor. The factors underlying suboptimal outcomes observed in patients treated with novel immunotherapies are still to be resolved. OBJECTIVE To review the literature and describe the key adaptive immune physiological events associated with cancer progression and therapeutic response in genitourinary (GU) cancers. EVIDENCE ACQUISITION We performed a nonsystematic, collaborative narrative review to highlight recent advancements leading to the current state of knowledge on the critical mediators of antitumor adaptive immunity to GU cancers. Further, we discuss the findings on the pre- and post-treatment immunological events that either are unique to each of the three cancer types or exhibit overlapping clinical associations. EVIDENCE SYNTHESIS Aging-associated immune function decline is a major factor underlying poor outcomes observed in patients treated with both conventional and novel immunotherapies. Other cancer immunobiological aspects associated with suboptimal responses in GU cancers include the overall tumor mutational burden, mutations in specific tumor suppressor/DNA damage repair genes (KDM6A, PTEN, STAG2, TP53, ATM, and BRCA2), and abundance of multiple functional states of adaptive immune cells and their spatiotemporal localization within the tumor immune microenvironment. Understanding these mechanisms may potentially lead to the development of prognostic and predictive biomarkers such as immune cell infiltration profiles and tertiary lymphoid structures (TLSs) that associate with variable clinical outcomes depending on the nature of the novel immunotherapeutic approach. Implementation of newer immune-monitoring technologies and improved preclinical modeling systems will augment our understanding of the host and tumor intrinsic factors contributing to the variability of responses to immunotherapies. CONCLUSIONS Despite the tremendous progress made in the understanding of dynamic and static adaptive immune elements within the tumor immune landscape, several knowledge gaps remain. A comprehensive knowledge thus gained will lead to precision immunotherapy, improved drug sequencing, and a therapeutic response. PATIENT SUMMARY We performed a collaborative review by a diverse group of experts in the field to examine our understanding of the events and crosstalk between cancer cells and the patient's immune system that are associated with responses to novel immunotherapies. An evolving understanding of tumor-intrinsic and host-related immune alterations, both before and after therapy, will aid in the discovery of promising markers of responses to immunotherapy as well as the development of unique therapeutic approaches for the management of genitourinary cancers.
Collapse
Affiliation(s)
- Madhuri Koti
- Department of Biomedical and Molecular Sciences, Cancer Research Institute, Queen's University, Kingston, ON, Canada.
| | - Trinity Bivalacqua
- Department of Urology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter C Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Faculty of Medicine & Medical Center - University of Freiburg, Freiburg, Germany
| | - Matthew D Galsky
- Division of Hematology/Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James L Gulley
- Center for Immuno-Oncology, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Molly A Ingersoll
- Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, 75014, France; Mucosal Inflammation and Immunity, Department of Immunology, Institut Pasteur, 75015 Paris, France
| | - Ashish M Kamat
- Department of Urology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wassim Kassouf
- Division of Urology, McGill University Health Center, Montreal, QC, Canada
| | - D Robert Siemens
- Department of Urology, Queen's University School of Medicine, Kingston, ON, Canada
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Denis M, Mathé D, Micoud M, Choffour PA, Grasselly C, Matera EL, Dumontet C. Impact of mouse model tumor implantation site on acquired resistance to anti-PD-1 immune checkpoint therapy. Front Immunol 2023; 13:1011943. [PMID: 36703964 PMCID: PMC9872099 DOI: 10.3389/fimmu.2022.1011943] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction The use of tumor subcutaneous (SC) implantations rather than orthotopic sites is likely to induce a significant bias, in particular, in the field of immunotherapy. Methods In this study, we developed and characterized MC38 models, implanted subcutaneously and orthotopically, which were either sensitive or rendered resistant to anti-PD1 therapy. We characterized the tumor immune infiltrate by flow cytometry at baseline and after treatment. Results and Discussion Our results demonstrate several differences between SC and orthotopic models at basal state, which tend to become similar after therapy. These results emphasize the need to take into account tumor implantation sites when performing preclinical studies with immunotherapeutic agents.
Collapse
Affiliation(s)
- Morgane Denis
- Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France,R&D Department, Antineo, Lyon, France
| | | | - Manon Micoud
- Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | | | - Chloé Grasselly
- Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Eva-Laure Matera
- Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Charles Dumontet
- Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France,Hematology Department, Hospices Civils de Lyon, Lyon, France,*Correspondence: Charles Dumontet,
| |
Collapse
|
5
|
A Mutated Prostatic Acid Phosphatase (PAP) Peptide-Based Vaccine Induces PAP-Specific CD8 + T Cells with Ex Vivo Cytotoxic Capacities in HHDII/DR1 Transgenic Mice. Cancers (Basel) 2022; 14:cancers14081970. [PMID: 35454873 PMCID: PMC9032647 DOI: 10.3390/cancers14081970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Current treatments for castrate (hormone)-resistant prostate cancer (CRPC) remain limited and are not curative, with a median survival from diagnosis of 23 months. The PAP-specific Sipuleucel-T vaccine, which was approved by the FDA in 2010, increases the Overall Survival (OS) by 4 months, but is extremely expensive. We have previously shown that a 15 amino accid (AA) PAP sequence-derived peptide could induce strong immune responses and delay the growth of murine TRAMP-C1 prostate tumors. We have now substituted one amino acid and elongated the sequence to include epitopes predicted to bind to several additional HLA haplotypes. Herein, we present the immunological properties of this 42mer-mutated PAP-derived sequence (MutPAP42mer). METHODS The presence of PAP-135-143 epitope-specific CD8+ T cells in the blood of patients with prostate cancer (PCa) was assessed by flow cytometry using Dextramer™ technology. HHDII/DR1 transgenic mice were immunized with mutated and non-mutated PAP-derived 42mer peptides in the presence of CAF®09 or CpG ODN1826 (TLR-9 agonist) adjuvants. Vaccine-induced immune responses were measured by assessing the proportion and functionality of splenic PAP-specific T cells in vitro. RESULTS PAP-135-143 epitope-specific CD8+ T cells were detected in the blood of patients with PCa and stimulation of PBMCs from patients with PCa with mutPAP42mer enhanced their capacity to kill human LNCaP PCa target cells expressing PAP. The MutPAP42mer peptide was significantly more immunogenic in HHDII/DR1 mice than the wild type sequence, and immunogenicity was further enhanced when combined with the CAF®09 adjuvant. The vaccine induced secretory (IFNγ and TNFα) and cytotoxic CD8+ T cells and effector memory splenic T cells. CONCLUSIONS The periphery of patients with PCa exhibits immune responsiveness to the MutPAP42mer peptide and immunization of mice induces/expands T cell-driven, wild-type PAP immunity, and therefore, has the potential to drive protective anti-tumor immunity in patients with PCa.
Collapse
|
6
|
Weitzen R, Epstein N, Oberman B, Shevetz R, Hidvegi M, Berger R. Fermented Wheat Germ Extract (FWGE) as a Treatment Additive for Castration-Resistant Prostate Cancer: A Pilot Clinical Trial. Nutr Cancer 2021; 74:1338-1346. [PMID: 34286638 DOI: 10.1080/01635581.2021.1952457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Castration-resistant prostate cancer (CRPC) is a devastating and incurable disease. Combined therapy using conventional anticancer drugs and a proprietary medical nutriment, fermented wheat germ extract (FWGE), also known as Avemar, has been suggested as a treatment for progressing prostate cancer (PCa) patients, who have become resistant to first line hormonal therapy (gonadotropin releasing hormone, GnRH). The primary aim of this study was to test if this combined therapy would slow down disease progression in CRPC patients. We tested the nontoxic, readily available, inexpensive FWGE, together with the conventional treatment, GnRH analogue, in 36 CRPC patients. Although this is a pilot study, with the drawback of a statistically small sample size, some anticancer clinical activity of FWGE could be seen in the CRPC patients, as measured by prostate specific antigen doubling time (PSADT). We found that the intake of GnRH with FWGE for at least 4 months, improved the overall health as well as the quality of life (QOL) in 4 patients (11%) and was instrumental in extending the PSADT in about 17 (out of 26) patients (65.4%), six of whom were significant. Since no mentionable adverse events were noticed, this treatment may permit the postponement of chemotherapy for these patients.
Collapse
Affiliation(s)
- Rony Weitzen
- Sheba Medical Center, Oncology, Tel Hashomer, Israel.,Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Nava Epstein
- Sheba Medical Center, Oncology, Tel Hashomer, Israel
| | - Bernice Oberman
- The Gertner Institute for Epidemiology and Health Policy Research, Tel Hashomer, Israel
| | | | - Mate Hidvegi
- Jewish Theological Seminary - University of Jewish Studies (OR-ZSE), Budapest, Hungary
| | - Raanan Berger
- Sheba Medical Center, Oncology, Tel Hashomer, Israel.,Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| |
Collapse
|
7
|
Ravindranathan D, Alhalabi O, Rafei H, Shah AY, Bilen MA. Landscape of Immunotherapy in Genitourinary Malignancies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1342:143-192. [PMID: 34972965 PMCID: PMC11235092 DOI: 10.1007/978-3-030-79308-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The past decade has witnessed a revolution in the development of immune checkpoint inhibitors for the treatment of multiple tumor types, including genitourinary cancers. Immune checkpoint inhibitors have notably improved the treatment outcomes of patients with metastatic renal cell carcinoma and metastatic urothelial carcinoma. In prostate cancer, the role of immunotherapy with checkpoint inhibitors is not yet established except for microsatellite instability high (MSI-H) tumors. Other immunotherapeutic approaches that have been explored in these malignancies include cytokines, vaccines, and cellular therapy. Ongoing studies are exploring the use of immunotherapy combinations as well as combination with chemotherapy and targeted therapy in these types of tumors. The use of immunotherapy beyond the metastatic setting is an active area of research. Moreover, there is great interest in biomarker development to predict response to immunotherapy and risk of toxicity. This book chapter is a comprehensive review of immunotherapeutic approaches, both approved and investigational, for the treatment of renal cell carcinoma, urothelial carcinoma, and prostate cancer.
Collapse
Affiliation(s)
- Deepak Ravindranathan
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Omar Alhalabi
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hind Rafei
- Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amishi Yogesh Shah
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Mehmet Asim Bilen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| |
Collapse
|
8
|
Hu-Lieskovan S, Bhaumik S, Dhodapkar K, Grivel JCJB, Gupta S, Hanks BA, Janetzki S, Kleen TO, Koguchi Y, Lund AW, Maccalli C, Mahnke YD, Novosiadly RD, Selvan SR, Sims T, Zhao Y, Maecker HT. SITC cancer immunotherapy resource document: a compass in the land of biomarker discovery. J Immunother Cancer 2020; 8:e000705. [PMID: 33268350 PMCID: PMC7713206 DOI: 10.1136/jitc-2020-000705] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Since the publication of the Society for Immunotherapy of Cancer's (SITC) original cancer immunotherapy biomarkers resource document, there have been remarkable breakthroughs in cancer immunotherapy, in particular the development and approval of immune checkpoint inhibitors, engineered cellular therapies, and tumor vaccines to unleash antitumor immune activity. The most notable feature of these breakthroughs is the achievement of durable clinical responses in some patients, enabling long-term survival. These durable responses have been noted in tumor types that were not previously considered immunotherapy-sensitive, suggesting that all patients with cancer may have the potential to benefit from immunotherapy. However, a persistent challenge in the field is the fact that only a minority of patients respond to immunotherapy, especially those therapies that rely on endogenous immune activation such as checkpoint inhibitors and vaccination due to the complex and heterogeneous immune escape mechanisms which can develop in each patient. Therefore, the development of robust biomarkers for each immunotherapy strategy, enabling rational patient selection and the design of precise combination therapies, is key for the continued success and improvement of immunotherapy. In this document, we summarize and update established biomarkers, guidelines, and regulatory considerations for clinical immune biomarker development, discuss well-known and novel technologies for biomarker discovery and validation, and provide tools and resources that can be used by the biomarker research community to facilitate the continued development of immuno-oncology and aid in the goal of durable responses in all patients.
Collapse
Affiliation(s)
- Siwen Hu-Lieskovan
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Kavita Dhodapkar
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | | | - Sumati Gupta
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Brent A Hanks
- Duke University Medical Center, Durham, North Carolina, USA
| | | | | | - Yoshinobu Koguchi
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Amanda W Lund
- Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | | - Tasha Sims
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | | | | |
Collapse
|
9
|
Denis M, Duruisseaux M, Brevet M, Dumontet C. How Can Immune Checkpoint Inhibitors Cause Hyperprogression in Solid Tumors? Front Immunol 2020; 11:492. [PMID: 32265935 PMCID: PMC7098964 DOI: 10.3389/fimmu.2020.00492] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/03/2020] [Indexed: 12/20/2022] Open
Abstract
Following the administration of immune checkpoint inhibitors, an unexpected pattern of response designated as hyperprogression may be observed in certain patients. This paradoxical response corresponds to an acceleration in tumor growth and a dramatic decrease of patient survival. The reported incidence rates of hyperprogressive disease are highly variable, ranging between 4 and 29%. In this review, we have performed a literature search on hyperprogressive disease, including both retrospective studies and case reports, and discuss potential predictive biomarkers as well as potential mechanisms associated with immune-checkpoint inhibitor associated hyperprogression.
Collapse
Affiliation(s)
- Morgane Denis
- INSERM 1052/CNRS 5286/UCBL - Cancer Research Center of Lyon, Anticancer Antibodies Laboratory, Lyon, France.,Antineo, Lyon, France
| | - Michael Duruisseaux
- INSERM 1052/CNRS 5286/UCBL - Cancer Research Center of Lyon, Anticancer Antibodies Laboratory, Lyon, France.,Respiratory Department, Louis Pradel Hospital, Hospices Civils de Lyon Cancer Institute, Bron, France
| | - Marie Brevet
- INSERM 1052/CNRS 5286/UCBL - Cancer Research Center of Lyon, Anticancer Antibodies Laboratory, Lyon, France.,Institut de Pathologie Multisites des HCL - Site Est- Hospices Civils of Lyon, Lyon, France
| | - Charles Dumontet
- INSERM 1052/CNRS 5286/UCBL - Cancer Research Center of Lyon, Anticancer Antibodies Laboratory, Lyon, France
| |
Collapse
|
10
|
Current Landscape of Immunotherapy in Genitourinary Malignancies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1244:107-147. [DOI: 10.1007/978-3-030-41008-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Higano CS, Armstrong AJ, Sartor AO, Vogelzang NJ, Kantoff PW, McLeod DG, Pieczonka CM, Penson DF, Shore ND, Vacirca J, Concepcion RS, Tutrone RF, Nordquist LT, Quinn DI, Kassabian V, Scholz MC, Harmon M, Tyler RC, Chang NN, Tang H, Cooperberg MR. Real-world outcomes of sipuleucel-T treatment in PROCEED, a prospective registry of men with metastatic castration-resistant prostate cancer. Cancer 2019; 125:4172-4180. [PMID: 31483485 PMCID: PMC6856402 DOI: 10.1002/cncr.32445] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND The large registry, PROVENGE Registry for the Observation, Collection, and Evaluation of Experience Data (PROCEED)(NCT01306890), evaluated sipuleucel-T immunotherapy for asymptomatic/minimally symptomatic metastatic castration-resistant prostate cancer (mCRPC). METHODS PROCEED enrolled patients with mCRPC receiving 3 biweekly sipuleucel-T infusions. Assessments included overall survival (OS), serious adverse events (SAEs), cerebrovascular events (CVEs), and anticancer interventions (ACIs). Follow-up was for ≥3 years or until death or study withdrawal. RESULTS In 2011-2017, 1976 patients were followed for 46.6 months (median). The median age was 72 years, and the baseline median prostate-specific antigen level was 15.0 ng/mL; 86.7% were white, and 11.6% were African American. Among the patients, 1902 had 1 or more sipuleucel-T infusions. The median OS was 30.7 months (95% confidence interval [CI], 28.6-32.2 months). Known prognostic factors were independently associated with OS in a multivariable analysis. Among the 1255 patients who died, 964 (76.8%) died of prostate cancer (PC) progression. The median time from the first infusion to PC death was 42.7 months (95% CI, 39.4-46.2 months). The incidence of sipuleucel-T-related SAEs was 3.9%. The incidence of CVEs was 2.8%, and the rate per 100 person-years was 1.2 (95% CI, 0.9-1.6). The CVE incidence among 11,972 patients with mCRPC from the Surveillance, Epidemiology, and End Results-Medicare database was 2.8%; the rate per 100 person-years was 1.5 (95% CI, 1.4-1.7). One or more ACIs (abiraterone, enzalutamide, docetaxel, cabazitaxel, or radium 223) were received by 77.1% of the patients after sipuleucel-T; 32.5% and 17.4% of the patients experienced 1- and 2-year treatment-free intervals, respectively. CONCLUSIONS PROCEED provides contemporary survival data for sipuleucel-T-treated men in a real-world setting of new life-prolonging agents, which will be useful in discussing treatment options with patients and in powering future trials with sipuleucel-T. The safety and tolerability of sipuleucel-T in PROCEED were consistent with previous findings.
Collapse
Affiliation(s)
- Celestia S Higano
- Division of Medical Oncology, Departments of Medicine and Urology, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Andrew J Armstrong
- Division of Medical Oncology, Duke University Medical Center, Duke Cancer Institute, Duke University, Durham, North Carolina.,Division of Urology, Duke University Medical Center, Duke Cancer Institute, Duke University, Durham, North Carolina
| | - A Oliver Sartor
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane Cancer Center and Tulane University School of Medicine, New Orleans, Louisiana
| | - Nicholas J Vogelzang
- Division of Hematology/Oncology, Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - David G McLeod
- Department of Surgery, Center for Prostate Disease Research at the Uniformed Services of Health Sciences, Bethesda, Maryland
| | | | - David F Penson
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Neal D Shore
- Department of Urology, Carolina Urologic Research Center, Myrtle Beach, South Carolina
| | | | | | | | - Luke T Nordquist
- Department of Medical Oncology, GU Research Network, Omaha, Nebraska
| | - David I Quinn
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | | | - Mark C Scholz
- Prostate Cancer Research Institute, Marina del Rey, California
| | - Matt Harmon
- Department of Biometrics, Dendreon Pharmaceuticals LLC, Seattle, Washington
| | - Robert C Tyler
- Department of Medical Affairs, Dendreon Pharmaceuticals LLC, Seattle, Washington
| | - Nancy N Chang
- Department of Medical Affairs, Dendreon Pharmaceuticals LLC, Seattle, Washington
| | - Hong Tang
- Department of Medical Affairs, Dendreon Pharmaceuticals LLC, Seattle, Washington
| | - Matthew R Cooperberg
- Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California.,Department of Epidemiology and Biostatistics, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| |
Collapse
|
12
|
Patel VG, Oh WK. The evolving landscape of immunotherapy in advanced prostate cancer. Immunotherapy 2019; 11:903-912. [PMID: 31161846 DOI: 10.2217/imt-2019-0019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Prostate cancer exists in a clinical continuum of hormone-sensitive to castration-resistant disease. Despite the use of chemotherapy and androgen synthesis inhibitors in the castration-resistant setting, this remains a lethal disease. The advent of immune checkpoint blockade has changed the outlook for cancer treatment and survival for several tumors since its first approval in 2011; however, the clinical benefit in castration-resistant prostate cancer (CRPC) is rather limited. Currently, Sipuleucel-T remains the only immune modality to be approved in CRPC setting. Such immune resistance likely exists due to low immunogenicity of prostate tumor cells and an immunosuppressive tumor microenvironment. In this review, we describe the early experiences of immune checkpoint blockade and therapeutic vaccines in CRPC. We then outline strategies currently being implemented to overcome immune resistance, as well as genomic biomarker investigation to identify patients that may harbor more immunogenic tumors. At last, we preview emerging immunotherapeutic platforms.
Collapse
Affiliation(s)
- Vaibhav G Patel
- Department of Medicine, Division of Hematology & Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10010, USA
| | - William K Oh
- Department of Medicine, Division of Hematology & Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10010, USA
| |
Collapse
|
13
|
Malone S, Shayegan B, Basappa NS, Chi K, Conter HJ, Hamilton RJ, Hotte SJ, Saad F, So AI, Park-Wyllie L, Hew H, McLeod D, Gotto G. Management algorithms for metastatic prostate cancer. Can Urol Assoc J 2019; 14:50-60. [PMID: 31039111 DOI: 10.5489/cuaj.5840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Prostate cancer poses a significant lifetime risk to Canadian men. Treatment for metastatic prostatic cancer (mPCa) is an area of ongoing research with a lack of up-to-date clinical guidance. The multidisciplinary Canadian Genitourinary Research Consortium (GURC) determined that additional guidance focusing on management of mPCa was warranted. METHODS The most up-to-date guidelines, consensus statements, and emerging phase 3 trials were identified and used to inform development of algorithms by a multidisciplinary genitourinary oncology panel outlining recommendations for the management of mPCa. RESULTS A single pan-Canadian guideline and five national and international guidelines or consensus statements published since 2015 were identified, along with two new phase 3 trials and one additional randomized comparison. Iterative GURC discussions led to the development of two mPCa algorithms: the first addressing management of newly diagnosed metastatic castration-sensitive prostate cancer (mCSPC) patients and the second addressing treatment of patients with metastatic castration-resistant prostate cancer (mCRPC). For newly diagnosed mCSPC patients with high-volume/high-risk disease, either docetaxel or abiraterone acetate and prednisone (AAP) added to androgen-deprivation therapy (ADT) is recommended. The addition of radiotherapy to ADT is suggested for those with low-volume disease and/or AAP to ADT for low-volume or low-risk disease. For first-line mCRPC, androgen receptor-axis-targeted (ARAT) therapy is recommended for most patients, while sequencing with docetaxel, radium-223, ARAT therapy, and/or cabazitaxel is recommended for later lines of therapy. CONCLUSIONS Two treatment algorithms were developed for the management of mPC and can be used by multidisciplinary specialist teams to guide treatment.
Collapse
Affiliation(s)
- Shawn Malone
- The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Bobby Shayegan
- Juravinski Cancer Centre, McMaster University, Hamilton, ON, Canada
| | - Naveen S Basappa
- Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Kim Chi
- BC Cancer Agency, Vancouver, BC, Canada
| | - Henry J Conter
- William Osler Health System, University of Western Ontario, Brampton, ON, Canada
| | - Robert J Hamilton
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | | | - Fred Saad
- Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Alan I So
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | | | - Huong Hew
- Medical Affairs, Janssen Inc., Toronto, ON, Canada
| | | | | |
Collapse
|
14
|
[Immunotherapy for the treatment of prostate cancer-a comeback?]. Urologe A 2018; 57:1342-1345. [PMID: 30341689 DOI: 10.1007/s00120-018-0790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND Prostate cancer (PCA) seems to be more of an immunologic desert than other tumor entities. It is striking that only rarely does prostate cancer show abundant immune cells and a proimmunogenic microenvironment. OBJECTIVES Is immunotherapy in PCA effective and which patients can benefit. MATERIALS AND METHODS A review of the literature and recent congress data are presented. RESULTS Preliminary results with sipuleucel-T for PCA cancer were very promising showing a significant overall survival benefit in randomised phase III studies and the US Federal Drug Administration (FDA) approval for this individualised vaccine. Contrary to other tumor entities this was not the immediate breakthrough to a new therapeutic era of immunotherapy but remained an isolated case and restricted to the USA. More recently, several trials evaluated immunotherapeutic agents but missed their preliminary endpoints. Interestingly, individual patients did benefit and showed long-term remission. CONCLUSIONS Genome sequencing and new biomarkers are also paving a novel pathway towards individualised immunotherapy for PCA. On-going research and clinical trials are exploring the question of which patients will benefit.
Collapse
|
15
|
Moreira D, Adamus T, Zhao X, Su YL, Zhang Z, White SV, Swiderski P, Lu X, DePinho RA, Pal SK, Kortylewski M. STAT3 Inhibition Combined with CpG Immunostimulation Activates Antitumor Immunity to Eradicate Genetically Distinct Castration-Resistant Prostate Cancers. Clin Cancer Res 2018; 24:5948-5962. [PMID: 30337279 DOI: 10.1158/1078-0432.ccr-18-1277] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/09/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Prostate cancers show remarkable resistance to emerging immunotherapies, partly due to tolerogenic STAT3 signaling in tumor-associated myeloid cells. Here, we describe a novel strategy combining STAT3 inhibition with Toll-like Receptor 9 (TLR9) stimulation to unleash immune response against prostate cancers regardless of the genetic background. EXPERIMENTAL DESIGN We developed and validated a conjugate of the STAT3 antisense oligonucleotide (ASO) tethered to immunostimulatory TLR9 agonist (CpG oligonucleotide) to improve targeting of human and mouse prostate cancer and myeloid immune cells, such as myeloid-derived suppressor cells (MDSC). RESULTS CpG-STAT3ASO conjugates showed improved biodistribution and potency of STAT3 knockdown in target cells in vitro and in vivo. Systemic administration of CpG-STAT3ASO (5 mg/kg) eradicated bone-localized, Ras/Myc-driven, and Ptenpc -/- Smad4pc -/- Trp53c -/- prostate tumors in the majority of treated mice. These antitumor effects were primarily immune-mediated and correlated with an increased ratio of CD8+ to regulatory T cells and reduced pSTAT3+/PD-L1+ MDSCs. Both innate and adaptive immunity contributed to systemic antitumor responses as verified by the depletion of Gr1+ myeloid cells and CD8+ and CD4+ T cells, respectively. Importantly, only the bifunctional CpG-STAT3ASO, but not control CpG oligonucleotides, STAT3ASO alone, or the coinjection of both oligonucleotides, succeeded in recruiting neutrophils and CD8+ T cells into tumors. Thus, the concurrence of TLR9 activation with STAT3 inhibition in the same cellular compartment is indispensable for overcoming tumor immune tolerance and effective antitumor immunity against prostate cancer. CONCLUSIONS The bifunctional, immunostimulatory, and tolerance-breaking design of CpG-STAT3ASO offers a blueprint for the development of effective and safer oligonucleotide strategies for treatment of immunologically "cold" human cancers.
Collapse
Affiliation(s)
- Dayson Moreira
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California
| | - Tomasz Adamus
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California
| | - Xingli Zhao
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California
| | - Yu-Lin Su
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California
| | - Zhuoran Zhang
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California
| | - Seok Voon White
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California
| | - Piotr Swiderski
- DNA/RNA Synthesis Core Laboratory, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California
| | - Xin Lu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sumanta K Pal
- Medical Oncology and Experimental Therapeutics, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California.
| | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California. .,Center for Gene Therapy, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California
| |
Collapse
|
16
|
Gevaert T, Montironi R, Lopez-Beltran A, Van Leenders G, Allory Y, De Ridder D, Claessens F, Kockx M, Akand M, Joniau S, Netto G, Libbrecht L. Genito-urinary genomics and emerging biomarkers for immunomodulatory cancer treatment. Semin Cancer Biol 2018; 52:216-227. [DOI: 10.1016/j.semcancer.2017.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 01/01/2023]
|
17
|
Eckert F, Schaedle P, Zips D, Schmid-Horch B, Rammensee HG, Gani C, Gouttefangeas C. Impact of curative radiotherapy on the immune status of patients with localized prostate cancer. Oncoimmunology 2018; 7:e1496881. [PMID: 30393582 PMCID: PMC6208674 DOI: 10.1080/2162402x.2018.1496881] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/30/2022] Open
Abstract
Combination of radiotherapy with immunotherapy has become an attractive concept for the treatment of cancer. The objective of this study was to assess the effect of curative, normofractionated radiotherapy on peripheral immune lymphocytes in prostate cancer patients, in order to propose a rationale for scheduling of normofractionated radiotherapy with T-cell based immunotherapy. In a prospective study (clinicaltrials.gov: NCT01376674), eighteen patients with localized prostate cancer were treated with radiotherapy with or without hormonal therapy. Irradiation volumes encompassed prostate and, in select cases, elective pelvic nodal regions. Blood samples were collected from all patients before, during, and after radiotherapy, as well as from 6 healthy individuals as control. Normofractionated radiotherapy of prostate cancer over eight weeks had a significant influence on the systemic immune status of patients compared to healthy controls. Absolute leukocyte and lymphocyte counts decreased during treatment as did peripheral blood immune subsets (T cells, CD8+ and naïve CD4+ T cells, B cells). Regulatory T cells and NK cells increased. Proliferation of all immune cells except regulatory T cells increased during RT. Most of these changes were transient. Importantly, the functionality of T lymphocytes and the frequency of antigen-specific CD8+ T cells were not affected during therapy. Our data indicate that combination of normofractionated radiotherapy with immunotherapy might be feasible for patients with prostate cancer. Conceptually, beginning with immunotherapy early during the course of radiotherapy could be beneficial, as the percentage of T cells is highest, the percentage of regulatory T cells is lowest, and as the effects of radiotherapy did not completely subside 3 months after end of radiotherapy.
Collapse
Affiliation(s)
- Franziska Eckert
- Department of Radiation Oncology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | - Philipp Schaedle
- Department of Radiation Oncology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
- Interfaculty Institute for Cell Biology, Department of Immunology, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
- Department for Internal Medicine I, Marienhospital Stuttgart, Stuttgart, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | - Barbara Schmid-Horch
- Institute for Clinical and Experimental Transfusion Medicine, University Hospital Tuebingen, Eberhard-Karls-University, Tuebingen, Germany
| | - Hans-Georg Rammensee
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
- Interfaculty Institute for Cell Biology, Department of Immunology, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Cihan Gani
- Department of Radiation Oncology, University Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
| | - Cécile Gouttefangeas
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tuebingen, Tuebingen, Germany
- Interfaculty Institute for Cell Biology, Department of Immunology, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| |
Collapse
|
18
|
Collins JM, Redman JM, Gulley JL. Combining vaccines and immune checkpoint inhibitors to prime, expand, and facilitate effective tumor immunotherapy. Expert Rev Vaccines 2018; 17:697-705. [PMID: 30058393 DOI: 10.1080/14760584.2018.1506332] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Multiple immune checkpoint inhibitors (ICIs) that modulate immune cells in the periphery and the tumor microenvironment (TME) have been approved, as have the therapeutic cancer vaccines sipuleucel-T for metastatic castration-resistant prostate cancer and talimogene laherparepvec (T-VEC) for metastatic melanoma. These developments provide rationale for combining these modalities to improve response rates and durability of responses in a variety of cancers. Preclinical data have shown that vaccines can induce immune responses that turn a tumor from 'cold' to 'hot,' but vaccines do not appear to be highly active as monotherapy. AREAS COVERED Here, we provide a review of the current state of vaccine and ICI combination studies. EXPERT COMMENTARY Most combination trials are in early phases, but several are now in phase III. Vaccines that target antigens expressed exclusively on tumor cells, neoantigens, have the potential to induce robust antitumor responses. Several techniques for predicting which neoepitopes to target, based on tumor mutational profiling, are in various stages of development. To be successful, combination immunotherapy approaches must seek to prime the immune system, expand the immune response, and facilitate immune function within the TME.
Collapse
Affiliation(s)
- Julie M Collins
- a Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| | - Jason M Redman
- a Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| | - James L Gulley
- a Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
19
|
Brahmer JR, Govindan R, Anders RA, Antonia SJ, Sagorsky S, Davies MJ, Dubinett SM, Ferris A, Gandhi L, Garon EB, Hellmann MD, Hirsch FR, Malik S, Neal JW, Papadimitrakopoulou VA, Rimm DL, Schwartz LH, Sepesi B, Yeap BY, Rizvi NA, Herbst RS. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of non-small cell lung cancer (NSCLC). J Immunother Cancer 2018; 6:75. [PMID: 30012210 PMCID: PMC6048854 DOI: 10.1186/s40425-018-0382-2] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) accounting for over 85% of all cases. Until recently, chemotherapy – characterized by some benefit but only rare durable responses – was the only treatment option for patients with NSCLC whose tumors lacked targetable mutations. By contrast, immune checkpoint inhibitors have demonstrated distinctly durable responses and represent the advent of a new treatment approach for patients with NSCLC. Three immune checkpoint inhibitors, pembrolizumab, nivolumab and atezolizumab, are now approved for use in first- and/or second-line settings for selected patients with advanced NSCLC, with promising benefit also seen in patients with stage III NSCLC. Additionally, durvalumab following chemoradiation has been approved for use in patients with locally advanced disease. Due to the distinct features of cancer immunotherapy, and rapid progress in the field, clinical guidance is needed on the use of these agents, including appropriate patient selection, sequencing of therapies, response monitoring, adverse event management, and biomarker testing. The Society for Immunotherapy of Cancer (SITC) convened an expert Task Force charged with developing consensus recommendations on these key issues. Following a systematic process as outlined by the National Academy of Medicine, a literature search and panel voting were used to rate the strength of evidence for each recommendation. This consensus statement provides evidence-based recommendations to help clinicians integrate immune checkpoint inhibitors into the treatment plan for patients with NSCLC. This guidance will be updated following relevant advances in the field.
Collapse
Affiliation(s)
- Julie R Brahmer
- Bloomberg Kimmel Immunotherapy Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, MD, 21231, USA
| | | | | | - Scott J Antonia
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Sarah Sagorsky
- Johns Hopkins Kimmel Cancer Center, Baltimore, MD, 21231, USA
| | - Marianne J Davies
- Yale Comprehensive Cancer Center, Yale University School of Nursing, New Haven, CT, 06520, USA
| | - Steven M Dubinett
- University of California Los Angeles Lung Cancer Research Program, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | | | - Leena Gandhi
- Department of Medicine, New York University, Perlmutter Cancer Center, NYU School of Medicine, New York, NY, 10016, USA
| | - Edward B Garon
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90404, USA
| | - Matthew D Hellmann
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Fred R Hirsch
- University of Colorado Denver School of Medicine, Denver, CO, 80011, USA
| | - Shakuntala Malik
- National Cancer Institute, Division of Cancer Treatment and Diagnosis, Cancer Therapy Evaluation Program, Rockville, USA
| | - Joel W Neal
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - David L Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Lawrence H Schwartz
- Department of Radiology, Columbia University College of Physicians and Surgeons and New York Presbyterian Hospital, New York City, NY, 10032, USA
| | - Boris Sepesi
- Thoracic Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Beow Yong Yeap
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Naiyer A Rizvi
- Columbia University Medical Center, New York, NY, 10028, USA
| | - Roy S Herbst
- Yale Comprehensive Cancer Center, Yale School of Medicine, 333 Cedar Street, WWW221, New Haven, CT, 06520-8028, USA.
| |
Collapse
|
20
|
Antonarakis ES, Small EJ, Petrylak DP, Quinn DI, Kibel AS, Chang NN, Dearstyne E, Harmon M, Campogan D, Haynes H, Vu T, Sheikh NA, Drake CG. Antigen-Specific CD8 Lytic Phenotype Induced by Sipuleucel-T in Hormone-Sensitive or Castration-Resistant Prostate Cancer and Association with Overall Survival. Clin Cancer Res 2018; 24:4662-4671. [PMID: 29858218 DOI: 10.1158/1078-0432.ccr-18-0638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/15/2018] [Accepted: 05/31/2018] [Indexed: 12/25/2022]
Abstract
Purpose: Sipuleucel-T is FDA approved for the treatment of metastatic castration-resistant prostate cancer (mCRPC) based on the IMPACT trial showing a 4.1-month benefit in median overall survival (OS) for patients receiving sipuleucel-T versus control. Although efficacy of sipuleucel-T is well established, its mechanism remains incompletely understood.Patients and Methods: Patient samples from three sipuleucel-T trials were assessed for peripheral cellular immune responses to the immunogen PA2024 and the target antigen prostatic acid phosphatase (PAP). PAP- and PA2024-specific proliferative and cytolytic responses were characterized to delineate sipuleucel-T-induced immune responses. To quantify potential cytotoxic T lymphocyte (CTL) activity, cell-surface CD107a expression on PAP- or PA2024-specific CD8+ T cells was measured in sipuleucel-T-treated patient and healthy volunteer samples.Results: Increased PA2024-specific CD4+ (P = 0.030) and CD8+ (P = 0.052) T-cell proliferation from baseline to week 6 was observed (N = 14) post-sipuleucel-T, with greater magnitude of PA2024-specific responses compared with PAP. PAP- and PA2024-CTL activity (CD107a positivity) significantly increased at weeks 6 and 26 after sipuleucel-T treatment (P < 0.0001; N = 22). At 26 weeks post-sipuleucel-T, OS correlated with the magnitude of PAP (Pearson R, 0.52; P = 0.013) or PA2024 (Pearson R, 0.67; P = 0.0006) CTL activity. Higher PA2024-CTL activity at week 26 was significantly associated with longer OS using tertile analysis (P = 0.0005; N = 22), with PA2024 responses correlating with PAP responses at week 26 (R = 0.90; P = 1.53E-08).Conclusions: This study is the first to report PAP-specific CD8+ T-cell responses elicited by sipuleucel-T treatment. Increased and persistent potential PA2024-specific CTL activity correlated with PAP-specific CTL activity and associated with improved OS following sipuleucel-T treatment. Clin Cancer Res; 24(19); 4662-71. ©2018 AACR.
Collapse
Affiliation(s)
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | | | - David I Quinn
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Adam S Kibel
- Dana Farber/Brigham and Women's Cancer Center, Harvard University, Boston, Massacheuttes
| | | | | | - Matt Harmon
- Dendreon Pharmaceuticals, LLC, Seattle, Washington
| | | | | | - Tuyen Vu
- Dendreon Pharmaceuticals, LLC, Seattle, Washington
| | | | - Charles G Drake
- Columbia University Herbert Irving Comprehensive Cancer Center, Department of Urology, and the Columbia Center for Translational Immunology (CCTI), New York, New York.
| |
Collapse
|
21
|
Wei XX, Perry J, Chang E, Zhang L, Hiatt RA, Ryan CJ, Small EJ, Fong L. Clinical Variables Associated With Overall Survival in Metastatic Castration-Resistant Prostate Cancer Patients Treated With Sipuleucel-T Immunotherapy. Clin Genitourin Cancer 2018; 16:184-190.e2. [DOI: 10.1016/j.clgc.2017.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 11/28/2022]
|
22
|
Abstract
PURPOSE OF REVIEW To provide an overview of current strategies being investigated in the development of immunotherapy in prostate cancer. RECENT FINDINGS Development of immunotherapy in prostate cancer actually began in 2010 with FDA approval of sipuleucel-T. Given that immune checkpoint inhibitor trials have either been negative at the phase III level or underwhelming in smaller studies, it is likely that combination strategies will be required to further maximize the impact immune-based therapies on the clinical course of the disease. Emerging data suggests the presence of multiple checkpoint inhibitors in the prostate cancer tumor microenvironment highlighting the need for combination immunotherapy platforms that would potentially include androgen deprivation, chemotherapy, or radiation. SUMMARY Preclinical and clinical data support immune-based combinations in prostate cancer and several trials are underway to better define the future of immunotherapy in prostate cancer.
Collapse
|
23
|
Marciscano AE, Madan RA. Targeting the Tumor Microenvironment with Immunotherapy for Genitourinary Malignancies. Curr Treat Options Oncol 2018. [PMID: 29520448 DOI: 10.1007/s11864-018-0523-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OPINION STATEMENT Bacillus Calmette-Guérin in urothelial carcinoma, high-dose interleukin-2 in renal cell carcinoma, and sipuleucel-T in prostate cancer serve as enduring examples that the host immune response can be harnessed to promote effective anti-tumor immunity in genitourinary malignancies. Recently, cancer immunotherapy with immune checkpoint inhibitors has transformed the prognostic landscape leading to durable responses in a subset of urothelial carcinoma and renal cell carcinoma patients with traditionally poor prognosis. Despite this success, many patients fail to respond to immune checkpoint inhibitors and progression/relapse remains common. Furthermore, modest clinical activity has been observed with ICIs as a monotherapy in advanced PCa. As such, novel treatment approaches are warranted and improved biomarkers for patient selection and treatment response are desperately needed. Future efforts should focus on exploring synergistic and rational combinations that safely and effectively boost response rates and survival in genitourinary malignancies. Specific areas of interest include (1) evaluating the optimal sequencing, disease burden, and timing of immuno-oncology agents with other anti-cancer therapeutics and (2) validating novel biomarkers of response to immunotherapy to optimize patient selection and to identify individuals most likely to benefit from immunotherapy across the heterogenous spectrum of genitourinary malignancies.
Collapse
Affiliation(s)
- Ariel E Marciscano
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive 13N240B, Bethesda, MD, 20892, USA
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive 13N240B, Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
Abstract
The clinical effectiveness of immunotherapies for prostate cancer remains subpar compared with that for other cancers. The goal of most immunotherapies is the activation of immune effectors, such as T cells and natural killer cells, as the presence of these activated mediators positively correlates with patient outcomes. Clinical evidence shows that prostate cancer is immunogenic, accessible to the immune system, and can be targeted by antitumour immune responses. However, owing to the detrimental effects of prostate-cancer-associated immunosuppression, even the newest immunotherapeutic approaches fail to initiate the clinically desired antitumour immune reaction. Oncolytic viruses, originally used for their preferential cancer-killing activity, are now being recognized for their ability to overturn cancer-associated immune evasion and promote otherwise absent antitumour immunity. This oncolytic-virus-induced subversion of tumour-associated immunosuppression can potentiate the effectiveness of current immunotherapeutics, including immune checkpoint inhibitors (for example, antibodies against programmed cell death protein 1 (PD1), programmed cell death 1 ligand 1 (PDL1), and cytotoxic T lymphocyte antigen 4 (CTLA4)) and chemotherapeutics that induce immunogenic cell death (for example, doxorubicin and oxaliplatin). Importantly, oncolytic-virus-induced antitumour immunity targets existing prostate cancer cells and also establishes long-term protection against future relapse. Hence, the strategic use of oncolytic viruses as monotherapies or in combination with current immunotherapies might result in the next breakthrough in prostate cancer immunotherapy.
Collapse
|
25
|
Affiliation(s)
- John C. Henegan
- Division of Hematology and Oncology, Department of Medicine, University of Mississippi Cancer Center, Jackson, MS, USA
| | - Guru Sonpavde
- Department of Medical Oncology, GU section, Dana Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
26
|
Bilusic M, Madan RA, Gulley JL. Immunotherapy of Prostate Cancer: Facts and Hopes. Clin Cancer Res 2017; 23:6764-6770. [PMID: 28663235 PMCID: PMC5690854 DOI: 10.1158/1078-0432.ccr-17-0019] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/24/2017] [Accepted: 06/23/2017] [Indexed: 11/16/2022]
Abstract
In the last few years, immunotherapy has become an important cancer treatment modality, and although the principles of immunotherapy have evolved over many decades, the FDA approvals of sipuleucel-T and ipilimumab began a new wave in immuno-oncology. Despite the current enthusiasm, it is unlikely that any of the immunotherapeutics alone can dramatically change prostate cancer outcomes, but combination strategies are more promising and provide a reason for optimism. Several completed and ongoing studies have shown that the combination of cancer vaccines or checkpoint inhibitors with different immunotherapeutic agents, hormonal therapy (enzalutamide), radiotherapy (radium 223), DNA-damaging agents (olaparib), or chemotherapy (docetaxel) can enhance immune responses and induce more dramatic, long-lasting clinical responses without significant toxicity. The goal of prostate cancer immunotherapy does not have to be complete eradication of advanced disease but rather the return to an immunologic equilibrium with an indolent disease state. In addition to determining the optimal combination of treatment regimens, efforts are also ongoing to discover biomarkers of immune response. With such concerted efforts, the future of immunotherapy in prostate cancer looks brighter than ever. Clin Cancer Res; 23(22); 6764-70. ©2017 AACR.
Collapse
Affiliation(s)
- Marijo Bilusic
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
27
|
Hendry S, Salgado R, Gevaert T, Russell PA, John T, Thapa B, Christie M, van de Vijver K, Estrada MV, Gonzalez-Ericsson PI, Sanders M, Solomon B, Solinas C, Van den Eynden GGGM, Allory Y, Preusser M, Hainfellner J, Pruneri G, Vingiani A, Demaria S, Symmans F, Nuciforo P, Comerma L, Thompson EA, Lakhani S, Kim SR, Schnitt S, Colpaert C, Sotiriou C, Scherer SJ, Ignatiadis M, Badve S, Pierce RH, Viale G, Sirtaine N, Penault-Llorca F, Sugie T, Fineberg S, Paik S, Srinivasan A, Richardson A, Wang Y, Chmielik E, Brock J, Johnson DB, Balko J, Wienert S, Bossuyt V, Michiels S, Ternes N, Burchardi N, Luen SJ, Savas P, Klauschen F, Watson PH, Nelson BH, Criscitiello C, O’Toole S, Larsimont D, de Wind R, Curigliano G, André F, Lacroix-Triki M, van de Vijver M, Rojo F, Floris G, Bedri S, Sparano J, Rimm D, Nielsen T, Kos Z, Hewitt S, Singh B, Farshid G, Loibl S, Allison KH, Tung N, Adams S, Willard-Gallo K, Horlings HM, Gandhi L, Moreira A, Hirsch F, Dieci MV, Urbanowicz M, Brcic I, Korski K, Gaire F, Koeppen H, Lo A, Giltnane J, Ziai J, Rebelatto MC, Steele KE, Zha J, Emancipator K, Juco JW, Denkert C, Reis-Filho J, Loi S, Fox SB. Assessing Tumor-Infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method from the International Immuno-Oncology Biomarkers Working Group: Part 2: TILs in Melanoma, Gastrointestinal Tract Carcinomas, Non-Small Cell Lung Carcinoma and Mesothelioma, Endometrial and Ovarian Carcinomas, Squamous Cell Carcinoma of the Head and Neck, Genitourinary Carcinomas, and Primary Brain Tumors. Adv Anat Pathol 2017; 24:311-335. [PMID: 28777143 PMCID: PMC5638696 DOI: 10.1097/pap.0000000000000161] [Citation(s) in RCA: 481] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Assessment of the immune response to tumors is growing in importance as the prognostic implications of this response are increasingly recognized, and as immunotherapies are evaluated and implemented in different tumor types. However, many different approaches can be used to assess and describe the immune response, which limits efforts at implementation as a routine clinical biomarker. In part 1 of this review, we have proposed a standardized methodology to assess tumor-infiltrating lymphocytes (TILs) in solid tumors, based on the International Immuno-Oncology Biomarkers Working Group guidelines for invasive breast carcinoma. In part 2 of this review, we discuss the available evidence for the prognostic and predictive value of TILs in common solid tumors, including carcinomas of the lung, gastrointestinal tract, genitourinary system, gynecologic system, and head and neck, as well as primary brain tumors, mesothelioma and melanoma. The particularities and different emphases in TIL assessment in different tumor types are discussed. The standardized methodology we propose can be adapted to different tumor types and may be used as a standard against which other approaches can be compared. Standardization of TIL assessment will help clinicians, researchers and pathologists to conclusively evaluate the utility of this simple biomarker in the current era of immunotherapy.
Collapse
Affiliation(s)
- Shona Hendry
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Roberto Salgado
- Breast Cancer Translational Research Laboratory/Breast International Group, Institut Jules Bordet, Brussels, Belgium
- Department of Pathology and TCRU, GZA, Antwerp, Belgium
| | - Thomas Gevaert
- Department of Development and Regeneration, Laboratory of Experimental Urology, KU Leuven, Leuven, Belgium
- Department of Pathology, AZ Klina, Brasschaat, Belgium
| | - Prudence A. Russell
- Department of Anatomical Pathology, St Vincent’s Hospital Melbourne, Fitzroy, Australia
- Department of Pathology, University of Melbourne, Parkville, Australia
| | - Tom John
- Department of Medical Oncology, Austin Health, Heidelberg, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Australia
| | - Bibhusal Thapa
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- Department of Medicine, University of Melbourne, Parkville, Australia
| | - Michael Christie
- Department of Anatomical Pathology, Royal Melbourne Hospital, Parkville, Australia
| | - Koen van de Vijver
- Divisions of Diagnostic Oncology & Molecular Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - M. Valeria Estrada
- Department of Pathology, School of Medicine, University of California, San Diego, USA
| | | | - Melinda Sanders
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| | - Benjamin Solomon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Cinzia Solinas
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Gert GGM Van den Eynden
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Department of Pathology, GZA Ziekenhuizen, Antwerp, Belgium
| | - Yves Allory
- Université Paris-Est, Créteil, France
- INSERM, UMR 955, Créteil, France
- Département de pathologie, APHP, Hôpital Henri-Mondor, Créteil, France
| | - Matthias Preusser
- Department of Medicine, Clinical Division of Oncology, Comprehensive Cancer Centre Vienna, Medical University of Vienna, Vienna, Austria
| | - Johannes Hainfellner
- Institute of Neurology, Comprehensive Cancer Centre Vienna, Medical University of Vienna, Vienna, Austria
| | - Giancarlo Pruneri
- European Institute of Oncology, Milan, Italy
- University of Milan, School of Medicine, Milan, Italy
| | - Andrea Vingiani
- European Institute of Oncology, Milan, Italy
- University of Milan, School of Medicine, Milan, Italy
| | - Sandra Demaria
- New York University Medical School, New York, USA
- Perlmutter Cancer Center, New York, USA
| | - Fraser Symmans
- Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, USA
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Laura Comerma
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | | | - Sunil Lakhani
- Centre for Clinical Research and School of Medicine, The University of Queensland, Brisbane, Australia
- Pathology Queensland, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Seong-Rim Kim
- National Surgical Adjuvant Breast and Bowel Project Operations Center/NRG Oncology, Pittsburgh, Pennsylvania
| | - Stuart Schnitt
- Cancer Research Institute and Department of Pathology, Beth Israel Deaconess Cancer Center, Boston, USA
- Harvard Medical School, Boston, USA
| | - Cecile Colpaert
- Department of Pathology, GZA Ziekenhuizen, Sint-Augustinus, Wilrijk, Belgium
| | - Christos Sotiriou
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Stefan J. Scherer
- Academic Medical Innovation, Novartis Pharmaceuticals Corporation, East Hanover, USA
| | - Michail Ignatiadis
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Sunil Badve
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, USA
| | - Robert H. Pierce
- Cancer Immunotherapy Trials Network, Central Laboratory and Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Giuseppe Viale
- Department of Pathology, Istituto Europeo di Oncologia, University of Milan, Milan, Italy
| | - Nicolas Sirtaine
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Frederique Penault-Llorca
- Department of Surgical Pathology and Biopathology, Jean Perrin Comprehensive Cancer Centre, Clermont-Ferrand, France
- University of Auvergne UMR1240, Clermont-Ferrand, France
| | - Tomohagu Sugie
- Department of Surgery, Kansai Medical School, Hirakata, Japan
| | - Susan Fineberg
- Montefiore Medical Center, Bronx, New York, USA
- The Albert Einstein College of Medicine, Bronx, New York, USA
| | - Soonmyung Paik
- National Surgical Adjuvant Breast and Bowel Project Operations Center/NRG Oncology, Pittsburgh, Pennsylvania
- Severance Biomedical Science Institute and Department of Medical Oncology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ashok Srinivasan
- National Surgical Adjuvant Breast and Bowel Project Operations Center/NRG Oncology, Pittsburgh, Pennsylvania
| | - Andrea Richardson
- Harvard Medical School, Boston, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, USA
| | - Yihong Wang
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Medical Center, Providence, USA
- Warren Alpert Medical School of Brown University, Providence, USA
| | - Ewa Chmielik
- Tumor Pathology Department, Maria Sklodowska-Curie Memorial Cancer Center, Gliwice, Poland
- Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Jane Brock
- Harvard Medical School, Boston, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, USA
| | - Douglas B. Johnson
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
- Vanderbilt Ingram Cancer Center, Nashville, USA
| | - Justin Balko
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, USA
- Vanderbilt Ingram Cancer Center, Nashville, USA
| | - Stephan Wienert
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
- VMscope GmbH, Berlin, Germany
| | - Veerle Bossuyt
- Department of Pathology, Yale University School of Medicine, New Haven, USA
| | - Stefan Michiels
- Service de Biostatistique et d’Epidémiologie, Gustave Roussy, CESP, Inserm U1018, Université-Paris Sud, Université Paris-Saclay, Villejuif, France
| | - Nils Ternes
- Service de Biostatistique et d’Epidémiologie, Gustave Roussy, CESP, Inserm U1018, Université-Paris Sud, Université Paris-Saclay, Villejuif, France
| | | | - Stephen J. Luen
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Peter Savas
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Peter H. Watson
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia, Canada
| | - Brad H. Nelson
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
- Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Sandra O’Toole
- The Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Australia
- Australian Clinical Labs, Bella Vista, Australia
| | - Denis Larsimont
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Roland de Wind
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Fabrice André
- INSERM Unit U981, and Department of Medical Oncology, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris Sud, Kremlin-Bicêtre, France
| | - Magali Lacroix-Triki
- INSERM Unit U981, and Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Mark van de Vijver
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Federico Rojo
- Pathology Department, IIS-Fundacion Jimenez Diaz, UAM, Madrid, Spain
| | - Giuseppe Floris
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Shahinaz Bedri
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Joseph Sparano
- Department of Oncology, Montefiore Medical Centre, Albert Einstein College of Medicine, Bronx, USA
| | - David Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, USA
| | - Torsten Nielsen
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Zuzana Kos
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Canada
| | - Stephen Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Baljit Singh
- Department of Pathology, New York University Langone Medical Centre, New York, USA
| | - Gelareh Farshid
- Directorate of Surgical Pathology, SA Pathology, Adelaide, Australia
- Discipline of Medicine, Adelaide University, Adelaide, Australia
| | | | | | - Nadine Tung
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, USA
| | - Sylvia Adams
- New York University Medical School, New York, USA
- Perlmutter Cancer Center, New York, USA
| | - Karen Willard-Gallo
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Hugo M. Horlings
- Department of Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Leena Gandhi
- Perlmutter Cancer Center, New York, USA
- Dana-Farber Cancer Institute, Boston, USA
| | - Andre Moreira
- Pulmonary Pathology, New York University Center for Biospecimen Research and Development, New York University, New York, USA
| | - Fred Hirsch
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Maria Urbanowicz
- European Organisation for Research and Treatment of Cancer (EORTC) Headquarters, Brussels, Belgium
| | - Iva Brcic
- Institute of Pathology, Medical University of Graz, Austria
| | - Konstanty Korski
- Pathology and Tissue Analytics, Roche Innovation Centre Munich, Penzberg, Germany
| | - Fabien Gaire
- Pathology and Tissue Analytics, Roche Innovation Centre Munich, Penzberg, Germany
| | - Hartmut Koeppen
- Research Pathology, Genentech Inc., South San Francisco, USA
| | - Amy Lo
- Research Pathology, Genentech Inc., South San Francisco, USA
- Department of Pathology, Stanford University, Palo Alto, USA
| | | | - James Ziai
- Research Pathology, Genentech Inc., South San Francisco, USA
| | | | | | - Jiping Zha
- Translational Sciences, MedImmune, Gaithersberg, USA
| | | | | | - Carsten Denkert
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jorge Reis-Filho
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Sherene Loi
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Stephen B. Fox
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| |
Collapse
|
28
|
Cattrini C, Zanardi E, Vallome G, Cavo A, Cerbone L, Di Meglio A, Fabbroni C, Latocca MM, Rizzo F, Messina C, Rubagotti A, Barboro P, Boccardo F. Targeting androgen-independent pathways: new chances for patients with prostate cancer? Crit Rev Oncol Hematol 2017; 118:42-53. [PMID: 28917268 DOI: 10.1016/j.critrevonc.2017.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 02/08/2023] Open
Abstract
Androgen deprivation therapy (ADT) is the mainstay treatment for advanced prostate cancer (PC). Most patients eventually progress to a condition known as castration-resistant prostate cancer (CRPC), characterized by lack of response to ADT. Although new androgen receptor signaling (ARS) inhibitors and chemotherapeutic agents have been introduced to overcome resistance to ADT, many patients progress because of primary or acquired resistance to these agents. This comprehensive review aims at exploring the mechanisms of resistance and progression of PC, with specific focus on alterations which lead to the activation of androgen receptor (AR)-independent pathways of survival. Our work integrates available clinical and preclinical data on agents which target these pathways, assessing their potential clinical implication in specific settings of patients. Given the rising interest of the scientific community in cancer immunotherapy strategies, further attention is dedicated to the role of immune evasion in PC.
Collapse
Affiliation(s)
- C Cattrini
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy.
| | - E Zanardi
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - G Vallome
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - A Cavo
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - L Cerbone
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - A Di Meglio
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - C Fabbroni
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - M M Latocca
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - F Rizzo
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - C Messina
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - A Rubagotti
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Health Sciences (DISSAL), University of Genoa, Via A. Pastore 1, 16132, Genoa, Italy
| | - P Barboro
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy
| | - F Boccardo
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| |
Collapse
|
29
|
Vogelzang NJ. Radium-223 dichloride for the treatment of castration-resistant prostate cancer with symptomatic bone metastases. Expert Rev Clin Pharmacol 2017. [PMID: 28649893 DOI: 10.1080/17512433.2017.1345624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Castration-resistant prostate cancer (CRPC) is associated with the development of bone metastases, increased mortality, and a reduction in the patient's quality of life (QOL). The management of metastatic CRPC (mCRPC) has rapidly evolved over the past decade, with a number of available therapeutic agents improving overall survival. Radium-223 dichloride (radium-223), the first targeted alpha therapy, improves survival accompanied by QOL benefits with a favorable safety profile. It is approved in over 40 countries for the treatment of patients with CRPC with symptomatic bone metastases and no known visceral metastatic disease. Areas covered: The current management of CRPC in men with bone metastases, and in particular the role of radium-223 in this setting, is reviewed and discussed. A search of bibliographic databases for peer-reviewed literature and major meetings was conducted. Expert commentary: In treating patients with mCRPC, the best sequencing and/or combination of radium-223 with other agents has yet to be fully elucidated. The role of radium-223 in treating patients with hormone-sensitive metastatic prostate cancer who are candidates for chemotherapy should also be investigated in well-designed trials. The ability to tailor radium-223 therapy to both the clinical and genetic profiles of CRPC patients would be a promising development.
Collapse
Affiliation(s)
- Nicholas J Vogelzang
- a Division of Hematology/Oncology , Comprehensive Cancer Centers of Nevada , Las Vegas , NV , USA
| |
Collapse
|