1
|
Palecki J, Bhasin A, Bernstein A, Mille PJ, Tester WJ, Kelly WK, Zarrabi KK. T-Cell redirecting bispecific antibodies: a review of a novel class of immuno-oncology for advanced prostate cancer. Cancer Biol Ther 2024; 25:2356820. [PMID: 38801069 PMCID: PMC11135853 DOI: 10.1080/15384047.2024.2356820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Novel T-cell immunotherapies such as bispecific T-cell engagers (BiTEs) are emerging as promising therapeutic strategies for prostate cancer. BiTEs are engineered bispecific antibodies containing two distinct binding domains that allow for concurrent binding to tumor-associated antigens (TAAs) as well as immune effector cells, thus promoting an immune response against cancer cells. Prostate cancer is rich in tumor associated antigens such as, but not limited to, PSMA, PSCA, hK2, and STEAP1 and there is strong biologic rationale for employment of T-cell redirecting BiTEs within the prostate cancer disease space. Early generation BiTE constructs employed in clinical study have demonstrated meaningful antitumor activity, but challenges related to drug delivery, immunogenicity, and treatment-associated adverse effects limited their success. The ongoing development of novel BiTE constructs continues to address these barriers and to yield promising results in terms of efficacy and safety. This review will highlight some of most recent developments of BiTE therapies for patients with advanced prostate cancer and the evolving data surrounding BiTE constructs undergoing clinical evaluation.
Collapse
Affiliation(s)
- Julia Palecki
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Amman Bhasin
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Andrew Bernstein
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Patrick J. Mille
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - William J. Tester
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Wm. Kevin Kelly
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Kevin K. Zarrabi
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| |
Collapse
|
2
|
Maldonado-García JL, Fragozo A, Pavón L. Cytokine release syndrome induced by anti-programmed death-1 treatment in a psoriasis patient: A dark side of immune checkpoint inhibitors. World J Clin Cases 2024; 12:6782-6790. [DOI: 10.12998/wjcc.v12.i35.6782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 10/24/2024] Open
Abstract
In recent years, cancer immunotherapy has introduced novel treatments, such as monoclonal antibodies, which have facilitated targeted therapies against tumor cells. Programmed death-1 (PD-1) is an immune checkpoint expressed in T cells that regulates the immune system’s activity to prevent over-activation and tissue damage caused by inflammation. However, PD-1 is also expressed in tumor cells and functions as an immune evasion mechanism, making it a therapeutic target to enhance the immune response and eliminate tumor cells. Consequently, immune checkpoint inhibitors (ICIs) have emerged as an option for certain tumor types. Nevertheless, blocking immune checkpoints can lead to immune-related adverse events (irAEs), such as psoriasis and cytokine release syndrome (CRS), as exemplified in the clinical case presented by Zhou et al involving a patient with advanced gastric cancer who received sintilimab, a monoclonal antibody targeting PD-1. Subsequently, the patient experienced exacerbation of psoriasis and CRS. The objective of this editorial article is to elucidate potential immunologic mechanisms that may contribute to the development of CRS and psoriasis in patients receiving ICIs. It is crucial to acknowledge that while ICIs offer superior safety and efficacy compared to conventional therapies, they can also manifest irAEs affecting the skin, gastrointestinal tract, or respiratory system. In severe cases, these irAEs can lead to life-threatening complications such as circulatory shock or multiorgan failure. Consequently, it is recommended that patients receiving ICIs undergo regular monitoring to identify and manage these adverse events effectively.
Collapse
Affiliation(s)
- José Luis Maldonado-García
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán 04510, Ciudad de México, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Mexico City 1134, Ciudad de México, Mexico
| | - Ana Fragozo
- Unidad de Desarrollo e Investigación en Bioterapéuticos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Ciudad de México, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 11340, Mexico
| |
Collapse
|
3
|
Xu Z, Li H, Yu X, Luo J, Zhang Z. Clinical characterization of hemophagocytic lymphohistiocytosis caused by immune checkpoint inhibitors: a review of published cases. Hematology 2024; 29:2340144. [PMID: 38606818 DOI: 10.1080/16078454.2024.2340144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
OBJECTIVE An association exists between immune checkpoint inhibitors and hemophagocytic lymphohistiocytosis (HLH). Therefore, the main objective of this study was to collect data on this rare but potentially life-threatening immune-related adverse reaction to identify the medications that cause it, the clinical characteristics, and effective treatments. METHODS Literature in English and Chinese on immune checkpoint inhibitors causing HLH published from August 2014 to March 2024 was analyzed. Immune checkpoint inhibitors, immunotherapy, anti-PD-1, PD-L1 inhibitors, HLH, hemophagocytic lymphohistiocytosis, hemophagocytic syndrome keywords were used to find the literature on China Knowledge Network, Wanfang, PubMed and Emabase Databases. RESULTS AND DISCUSSION Twenty-four studies were included, with a total of 27 patients (18 males and 9 females) with a mean age of 58 years (range 26-86). The mean time to the onset of symptoms was 10.3 weeks (7 days-14 months). The main clinical characteristics were fever, cytopenia, splenomegaly, methemoglobinemia, hypofibrinogenemia, and bone marrow biopsy showed phagocytosis. Twenty-two patients improved after the treatment with steroids, cytokine blocking therapy and symptomatic treatment, four patients died, and one patient was not described. CONCLUSION HLH should be not underestimated as a potentially serious adverse effect of immune checkpoint inhibitors since appropriate treatments may save the life of patients.
Collapse
Affiliation(s)
- Zhiya Xu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Huilan Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xinyi Yu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jia Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zanling Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
4
|
Huntington SF, Lin D, Lafeuille M, Thompson‐Leduc P, Shah A, Kim N, Hester L, Tardif‐Samson A, Moore B, Fowler J, Marshall A, Zhang X, Gifkins D, Wu B. Identification of cytokine release syndrome and indicators of severity in retrospective databases among patients receiving immunotherapy. Pharmacol Res Perspect 2024; 12:e70024. [PMID: 39487576 PMCID: PMC11530407 DOI: 10.1002/prp2.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 11/04/2024] Open
Abstract
Cytokine release syndrome (CRS) can occur following cancer immunotherapies, but is most often mild and of limited duration. International Classification of Diseases (ICD)-10 codes allowing identification of CRS were introduced in 2020 but may be underutilized. We evaluated the performance of a published claims-based algorithm to detect CRS (any grade) and high-grade CRS (HG, grades 2-5), as well as identified indicators of HG CRS in retrospective data. Adults with low-grade and HG CRS during an encounter coinciding with administrations of blinatumomab or chimeric antigen receptor-T therapy were identified in three types of retrospective databases (hospital chargemaster data, electronic health records, and administrative claims). The algorithm's sensitivity in detecting any CRS and HG CRS was reported. A least absolute shrinkage and selection operator (LASSO) regression model was developed to identify indicators of HG CRS. Performance of the model was evaluated using area under the curve (AUC). The sensitivity of the algorithm to detect any grade CRS ranged between 77%-100% and between 8%-80% for HG CRS, depending on the type of database. The LASSO model identified hypotension, positive pressure (including mechanical ventilation), tocilizumab, and vasopressors as indicators of HG CRS. AUC varied between 60% and 75%. The algorithm accurately detected any grade CRS for over three-quarters of instances, but was not as reliable for HG CRS. Results varied based on database attributes. Hypotension, vasopressors, positive pressure, and tocilizumab were associated with HG CRS and may be methodologically helpful signals of CRS severity in retrospective data.
Collapse
Affiliation(s)
| | - Dee Lin
- Janssen Scientific Affairs, LLC, a Johnson and Johnson CompanyHorshamPennsylvaniaUSA
| | | | | | - Aditi Shah
- Analysis Group, Inc.MontrealQuebecCanada
| | - Nina Kim
- Janssen Scientific Affairs, LLC, a Johnson and Johnson CompanyHorshamPennsylvaniaUSA
| | - Laura Hester
- Janssen Scientific Affairs, LLC, a Johnson and Johnson CompanyHorshamPennsylvaniaUSA
| | | | | | - Jessica Fowler
- Janssen Scientific Affairs, LLC, a Johnson and Johnson CompanyHorshamPennsylvaniaUSA
| | - Alexander Marshall
- Janssen Global Services, LLC, a Johnson and Johnson CompanyRaritanPennsylvaniaUSA
| | - Xinke Zhang
- Janssen Scientific Affairs, LLC, a Johnson and Johnson CompanyHorshamPennsylvaniaUSA
| | - Dina Gifkins
- Janssen Research and Development, LLC, a Johnson and Johnson CompanyRaritanPennsylvaniaUSA
| | - Bingcao Wu
- Janssen Scientific Affairs, LLC, a Johnson and Johnson CompanyHorshamPennsylvaniaUSA
| |
Collapse
|
5
|
Zheng X, Zhang S, Wu H, Xia J, Zheng K, Wang Y, Qin Y. Plasma exchange as an effective treatment for cytokine release syndrome following T cell receptor‑engineered T cell immunotherapy: A case report. Oncol Lett 2024; 28:607. [PMID: 39483965 PMCID: PMC11526442 DOI: 10.3892/ol.2024.14740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/16/2024] [Indexed: 11/03/2024] Open
Abstract
T-cell receptor-engineered T-cell (TCR-T) immunotherapy is a promising approach for the treatment of solid tumors. However, TCR-T therapy can result in severe cytokine release syndrome (CRS), thus limiting its therapeutic application. The present study reported the case of a patient with TCR-T-related CRS, which was treated successfully with plasma exchange (PE). A 35-year-old male patient, who was diagnosed with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) with lung metastases, was enrolled in a clinical trial for hepatitis B virus surface antigen-specific TCR-expressing autologous T-cell therapy for HBV-related HCC after failing multiple lines of targeted immunotherapy and local treatments. Therefore, TCR-Ts were infused after peripheral blood mononuclear cell collection, engineering and lymphodepletion chemotherapy. However, following engineered T-cell reinfusion, the patient developed a fever, hypotension, edema, multiple serous effusion and acute kidney injury, and was consequently diagnosed with grade 3 CRS and transferred to the Intensive Care Unit. The patient received three daily PE sessions (3,000 ml of fresh frozen plasma per session), renal replacement therapy, tocilizumab and 1,000 mg pulse methylprednisolone for 3 days. Following treatment, the patient's hemodynamic condition was stabilized and the C-reactive protein, ferritin and IL-6 levels were markedly reduced. During follow-up, a stable disease state was exhibited by the liver cancer and lung metastatic lesions. To the best of our knowledge, this is the first case reporting PE as a treatment approach for managing CRS following TCR-T therapy for solid tumors. The present study demonstrated that blood purification treatments, such as PE, which target inflammatory mediators and restore the balance between pro- and anti-inflammatory cytokines, could be a notable component in managing severe CRS associated with engineered T-cell treatment. However, additional clinical and translational studies are needed to further understand the mechanisms of T-cell immunotherapy to treat patients with solid tumors.
Collapse
Affiliation(s)
- Xixi Zheng
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Shuo Zhang
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Haiting Wu
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Jinghua Xia
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Ke Zheng
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Ying Wang
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yan Qin
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
6
|
Kampouri E, Reynolds G, Teh BW, Hill JA. Chimeric antigen receptor-T-cell therapies going viral: latent and incidental viral infections. Curr Opin Infect Dis 2024; 37:526-535. [PMID: 39361275 DOI: 10.1097/qco.0000000000001066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
PURPOSE OF REVIEW Infections are the leading cause of non-relapse mortality following chimeric antigen receptor (CAR)-T-cell therapy, with viral infections being frequent both in the early and late phases post-infusion. We review the epidemiology of viral infections and discuss critical approaches to prevention and management strategies in this setting. RECENT FINDINGS Herpesviruses dominate the early period. herpes simplex virus and varicella zoster virus infections are rare due to widespread antiviral prophylaxis, but cytomegalovirus (CMV) reactivation is increasingly observed, particularly in high-risk groups including B cell maturation antigen (BCMA)-CAR-T-cell therapy recipients and patients receiving corticosteroids. While CMV end-organ disease is rare, CMV is associated with increased mortality, emphasizing the need to evaluate the broader impact of CMV on long-term hematological, infection, and survival outcomes. Human herpesvirus-6 (HHV-6) has also emerged as a concern, with its diagnosis complicated by overlapping symptoms with neurotoxicity, underscoring the importance of considering viral encephalitis in differential diagnoses. Respiratory viruses are the most common late infections with a higher incidence after BCMA CAR-T-cell therapy. Vaccination remains a critical preventive measure against respiratory viruses but may be less immunogenic following CAR-T-cell therapy. The optimal timing, type of vaccine, and dosing schedule require further investigation. SUMMARY A better understanding of viral epidemiology and preventive trials are needed to improve infection prevention practices and outcomes following CAR-T-cell therapies.
Collapse
Affiliation(s)
- Eleftheria Kampouri
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gemma Reynolds
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne
| | - Benjamin W Teh
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Joshua A Hill
- Vaccine and Infectious Disease Division
- Clinical Research Division, Fred Hutchinson Cancer Center
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Novograd J, Frishman WH. Teplizumab Therapy to Delay the Onset of Type 1 Diabetes. Cardiol Rev 2024; 32:572-576. [PMID: 37158990 DOI: 10.1097/crd.0000000000000563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease that results in the destruction of insulin-producing pancreatic beta cells. The incidence and prevalence of T1DM are increasing, making this one of the most common diseases of childhood. The disease is associated with significant morbidity and mortality with patients experiencing reduced quality of life and decreased life expectancy compared with the general population. Patients become dependent on exogenous insulin which has been the primary treatment since its first clinical use over 100 years ago. Although there have been advancements in glucose monitoring technology and insulin delivery devices, most patients fail to meet glycemic targets. Research has therefore focused on different treatment options to delay or prevent disease progression. Monoclonal antibodies have previously been utilized to suppress the immune response following an organ transplant and were subsequently studied for their ability to treat autoimmune diseases. Teplizumab, a monoclonal antibody (manufactured by Provention Bio and marketed as Tzield), was recently approved by the Food and Drug Administration as the first preventative treatment for T1DM. The approval came after a 3-decade history of research and development. This article provides an overview of the discovery and mechanism of action of teplizumab, as well as the clinical trials that led to its approval.
Collapse
Affiliation(s)
- Joel Novograd
- From the Department of Medicine, New York Medical College/Westchester Medical Center, Valhalla, NY
| | | |
Collapse
|
8
|
Tan S, Qi C, Zeng H, Wei Q, Huang Q, Pu X, Li W, Li Y, Tian P. Steroid-Refractory Myocarditis Induced by Immune Checkpoint Inhibitor Responded to Infliximab: Report of Two Cases and Literature Review. Cardiovasc Toxicol 2024; 24:1174-1191. [PMID: 39256296 PMCID: PMC11445312 DOI: 10.1007/s12012-024-09918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Immune checkpoint inhibitors (ICIs), including anti-programmed cell death protein 1 and its ligand (PD-1/PD-L1) as well as anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4), have been widely used for treating solid tumors. Myocarditis is a potentially lethal immune-related adverse events (irAEs) caused by ICIs therapy. The treatment of steroid-refractory myocarditis is challenging. We reported two non-small-cell lung cancer patients with steroid-refractory myocarditis induced by ICI. The symptoms were not resolved after pulse corticosteroid therapy and subsequent treatment including intravenous immunoglobulin and mycophenolate mofetil. Considering the level of serum interleukin (IL)-6 decreased by > 50% and level of serum tumor necrosis factor-α (TNF-α) increased during the course of the disease, infliximab was used. Myocarditis gradually alleviated after infliximab treatment. The cases revealed that specific cytokine inhibitors have promising roles in the treatment of steroid-refractory myocarditis. Infliximab could be considered for patients with low level of IL-6 and elevated level of TNF-α.
Collapse
Affiliation(s)
- Sihan Tan
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Chang Qi
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Hao Zeng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Qi Wei
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Qin Huang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Xin Pu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yalun Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China.
| | - Panwen Tian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Willemin ME, Gong J, Hilder BW, Masterson T, Tolbert J, Renaud T, Heuck C, Kane C, De Zwart L, Girgis S, Ma X, Ouellet D. Evaluation of Drug-Drug Interaction Potential of Talquetamab, a T-Cell-Redirecting GPRC5D × CD3 Bispecific Antibody, as a Result of Cytokine Release Syndrome in Patients with Relapsed/Refractory Multiple Myeloma in MonumenTAL-1, Using a Physiologically Based Pharmacokinetic Model. Target Oncol 2024; 19:965-979. [PMID: 39285155 DOI: 10.1007/s11523-024-01093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 11/14/2024]
Abstract
BACKGROUND Cytokine release syndrome, commonly associated with T-cell immunotherapies, was observed with talquetamab, a T-cell-redirecting bispecific antibody, in the phase I/II MonumenTAL-1 study, leading to elevated interleukin (IL)-6, which can suppress cytochrome P450 (CYP) enzyme activity. OBJECTIVE We aimed to evaluate the potential impact of elevated IL-6 on the exposure of co-administered CYP450 substrates for two scenarios: (1) the observed median IL-6 profile and (2) a profile with the highest IL-6 maximum concentration following talquetamab treatment. METHODS A physiologically based pharmacokinetic model was developed based on the literature and simulations performed using observed IL-6 profiles from patients in MonumenTAL-1 who received the subcutaneous recommended phase 2 doses (RP2Ds) of talquetamab: 0.4 mg/kg weekly (QW) and 0.8 mg/kg every other week (Q2W). RESULTS Median IL-6 maximum concentration was 18.4 and 7.1 pg/mL, and maximum IL-6 maximum concentration was 213 and 3503 pg/mL for talquetamab QW and Q2W RP2Ds, respectively. For the median IL-6 profile, no interaction between IL-6 and studied CYP substrates was predicted at either RP2D. The maximum IL-6 profile predicted weak-to-moderate impact on exposure of CYP2C19, CYP3A4, and CYP3A5 substrates and minimal impact on exposure of CYP1A2 substrates at both RP2Ds. Impact on exposure of CYP2C9 substrates was predicted as minimal at QW and minimal-to-weak at Q2W RP2Ds. Time to return to 20% difference from baseline enzymatic activity was predicted as 7 and 9 days after start of cycle 1 for QW and Q2W RP2Ds, respectively. CONCLUSIONS These modeling results suggest that IL-6 release due to talquetamab-induced cytokine release syndrome has limited impact on potential drug-drug interactions, with the highest likelihood of impact occurring from initiation of talquetamab step-up dosing up to 7 (QW) or 9 (Q2W) days after first treatment dose in cycle 1 and during and after cytokine release syndrome. Multiple myeloma can be treated with immunotherapies such as the bispecific antibody, talquetamab, which binds the novel antigen G protein-coupled receptor family C group 5 member D on multiple myeloma cells and CD3 on T cells and induces T-cell-mediated lysis of multiple myeloma cells. Following talquetamab treatment, many patients experience cytokine release syndrome, an inflammatory immune response where levels of proinflammatory cytokines, including interleukin (IL)-6, are increased. Interleukin-6 can suppress the activity of important enzymes in the body (cytochrome [CYP] P450s) that are involved in drug clearance. This study used a physiologically based pharmacokinetic computer model to investigate the potential impact of increased IL-6 levels on CYP450 enzymes to determine subsequent impact on drugs that are metabolized by CYP450 enzymes. The results showed no predicted interaction between median levels of IL-6 observed in patients and CYP substrates (such as caffeine and omeprazole) with talquetamab. In a simulation that assessed higher (maximum) IL-6 levels observed in patients, the predicted impact of IL-6 was minimal to weak for most of the CYP substrates assessed. The effect on CYP450 enzymatic activity was highest from initiation of talquetamab step-up dosing up to 7-9 days after the first treatment dose of talquetamab. These results suggest that, in this treatment time period, elevated IL-6 levels due to talquetamab-induced cytokine release syndrome have limited impact on drugs that are CYP substrates that may be used in conjunction with talquetamab, but that the concentration and toxicity of these drugs should be monitored and the dose of CYP substrate adjusted as required.
Collapse
Affiliation(s)
| | - Jue Gong
- Janssen Research & Development, Spring House, PA, USA
| | | | | | | | | | | | - Colleen Kane
- Janssen Research & Development, Spring House, PA, USA
| | - Loeckie De Zwart
- Janssen Research & Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | | | - Xuewen Ma
- Janssen Research & Development, Spring House, PA, USA
| | | |
Collapse
|
10
|
Riddler SA, Benson CA, Brinson C, Deeks SG, DeJesus E, Mills A, Para MF, Ramgopal MN, Cai Y, Zheng Y, Zhang L, Jiang W, Liu X, Verrill D, Lim D, de Vries CR, Wallin JJ, Vendrame E, SenGupta D. A Pooled Analysis of Eight Clinical Studies Suggests a Link Between Influenza-Like Symptoms and Pharmacodynamics of the Toll-Like Receptor-7 Agonist Vesatolimod. Infect Dis Ther 2024; 13:2285-2299. [PMID: 39278975 PMCID: PMC11499514 DOI: 10.1007/s40121-024-01034-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
INTRODUCTION Vesatolimod is a Toll-like receptor-7 (TLR7) agonist in clinical development as part of a combination regimen for human immunodeficiency virus (HIV) cure. Influenza-like symptoms associated with TLR7-mediated immune activation have been reported in clinical trials of vesatolimod. Therefore, a broader understanding of the safety profile of vesatolimod and association with dose and mechanism of action will help inform future clinical studies. METHODS In this analysis, data on flu-like adverse events of interest (AEIs) were pooled from eight clinical studies in which 606 participants either received single or multiple doses of vesatolimod (0.3-12 mg; n = 505) or placebo (n = 101). Vesatolimod pharmacokinetics, inflammatory responses, and pharmacodynamics were assessed. RESULTS The incidence of flu-like AEIs was higher with vesatolimod versus placebo (19% [96/505] vs. 8% [8/101]) and increased with vesatolimod dose and exposure. Most flu-like AEIs with vesatolimod were grade 1 or 2 severity (55% [53 of 96] grade 1; 35% [34 of 96] grade 2) with onset primarily after the first and second dose. Occurrence of flu-like AEIs after doses 1-3 was predictive of reoccurrence after later doses. Dose-dependent elevations of pharmacodynamic biomarkers (interferon-stimulated gene 15, 2'-5'-oligoadenylate synthetase 1, myxovirus resistance-1, interferon-α, interleukin-1 receptor antagonist, interferon-γ-induced protein 10, interferon-inducible T-cell-α chemoattractant) observed in participants with flu-like AEIs suggest a link with vesatolimod mechanism of action. CONCLUSIONS Flu-like AEIs associated with vesatolimod administration were typically mild but increased with exposure, which may be predicted by the response to initial doses. The data suggest that adaptive clinical monitoring could help maximize pharmacodynamic responses and balance adverse events in future clinical trials of vesatolimod.
Collapse
Affiliation(s)
- Sharon A Riddler
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Steven G Deeks
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Michael F Para
- The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Yanhui Cai
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | - Liao Zhang
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | | | | | - Daina Lim
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | | | | | | |
Collapse
|
11
|
Locke FL, Neelapu SS, Bartlett NL, Lekakis LJ, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, Timmerman JM, Kersten MJ, Zheng Y, Zhang T, Nater J, Shen R, Miao H, Kim JJ, Miklos DB. Tocilizumab Prophylaxis Following Axicabtagene Ciloleucel in Relapsed or Refractory Large B-Cell Lymphoma. Transplant Cell Ther 2024; 30:1065-1079. [PMID: 39187161 DOI: 10.1016/j.jtct.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Axicabtagene ciloleucel (axi-cel) is an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy approved in patients with relapsed/refractory (R/R) large B-cell lymphoma (LBCL). Most patients treated with axi-cel experience cytokine release syndrome (CRS) and/or adverse neurologic events (NEs). To explore potential approaches for reducing CAR T-cell-related toxicities with axi-cel, several safety expansion cohorts were added to the pivotal ZUMA-1 trial. ZUMA-1 Cohort 3 was an exploratory safety cohort that investigated the use of the IL-6 receptor-blocking antibody tocilizumab and anticonvulsant levetiracetam as prophylaxis against CRS and NEs in patients treated with axi-cel. Patients with R/R LBCL were enrolled in Cohort 3 and received conditioning chemotherapy on d -5 through -3 followed by a single infusion of axi-cel (2 × 106 cells/kg) on d 0. Prophylactic tocilizumab (8 mg/kg) was administered 48 h after axi-cel infusion. Primary endpoints were incidence and severity of CRS and NEs. Key secondary endpoints included the incidence of adverse events, objective response rate (ORR), duration of response, progression-free survival, overall survival (OS), and biomarker analyses (eg, circulating CAR T cells, cytokines, chemokines). Forty-two patients were enrolled in Cohort 3, 38 of whom received axi-cel. In the 24-month analysis, any-grade CRS and NEs occurred in 92% and 87% of patients, and Grade ≥3 CRS and NEs occurred in 3% and 42% of patients, respectively. One Grade 5 NE (cerebral edema) occurred. With 24-mo minimum follow-up, the ORR was 63%, and 39.5% of patients had ongoing response. With 48-month follow-up, median OS was 34.8 mo (95% CI, 5.4-not estimable). CAR T-cell expansion in ZUMA-1 Cohort 3 was comparable with pivotal Cohorts 1 and 2. Consistent with tocilizumab-mediated inhibition of IL-6R, serum IL-6 levels were increased relative to Cohorts 1 and 2. Grade ≥3 NEs were associated with elevated IL-6 levels, proinflammatory cytokines, and myeloid cells in the cerebrospinal fluid. Based on these findings, prophylactic tocilizumab is not recommended to prevent CAR T-cell-related adverse events, and beneficial effects of prophylactic levetiracetam remain uncertain in patients with R/R LBCL.
Collapse
Affiliation(s)
| | | | | | - Lazaros J Lekakis
- University of Miami Health System, Sylvester Comprehensive Cancer Center, Miami, Florida
| | | | - Ira Braunschweig
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | | | - Tanya Siddiqi
- City of Hope National Medical Center, Duarte, California
| | - Yi Lin
- Mayo Clinic, Rochester, Minnesota
| | | | - Marie José Kersten
- Amsterdam UMC, University of Amsterdam, Amsterdam, Cancer Center Amsterdam, Netherlands, on behalf of HOVON/LLPC
| | - Yan Zheng
- Kite, a Gilead Company, Santa Monica, California
| | - Teresa Zhang
- Kite, a Gilead Company, Santa Monica, California
| | - Jenny Nater
- Kite, a Gilead Company, Santa Monica, California
| | - Rhine Shen
- Kite, a Gilead Company, Santa Monica, California
| | - Harry Miao
- Kite, a Gilead Company, Santa Monica, California
| | - Jenny J Kim
- Kite, a Gilead Company, Santa Monica, California
| | - David B Miklos
- Stanford University School of Medicine, Stanford, California
| |
Collapse
|
12
|
Hu P, Xiao H, Alba MA, Atkins HM, Gou S, Hu Y, Gomez JC, Jania CM, Martin JR, Morrison TE, Tilley SL, Heise MT, Doerschuk CM, Falk RJ, Jennette JC. Myeloperoxidase-ANCA IgG induces different forms of small vessel vasculitis based on type of synergistic immune stimuli. Kidney Int 2024; 106:870-886. [PMID: 39216658 DOI: 10.1016/j.kint.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Anti-neutrophil cytoplasmic autoantibody (ANCA) vasculitis has diverse patterns of injury including microscopic polyangiitis (MPA), granulomatosis with polyangiitis (GPA), and eosinophilic granulomatosis with polyangiitis (EGPA). Necrotizing and crescentic glomerulonephritis (NCGN) occurs in all syndromes and as renal limited vasculitis (RLV). Single-dose intravenous ANCA IgG-specific for mouse myeloperoxidase (MPO) causes RLV in mice. Although multiple mouse models have elucidated ANCA-IgG induced necrotizing and crescentic glomerulonephritis (NCGN), pathogenesis of ANCA-induced granulomatosis and vasculitis outside the kidney has not been clarified. To investigate this, we used intravenous MPO-ANCA IgG in the same strain of mice to induce different patterns of lung disease mirroring patients with granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA), and eosinophilic granulomatosis with polyangiitis (EGPA). Repeated intravenous MPO-ANCA IgG induced GPA with NCGN, lung capillaritis, arteritis and granulomatosis. Lung leukocyte phenotypes were evaluated by immunohistochemical image analysis and by flow cytometry. ANCA lung capillaritis and microabscesses began within one day and evolved into granulomas in under seven days. Influenza plus single-dose MPO-ANCA IgG induced MPA with NCGN, lung capillaritis and arteritis, but no granulomatosis. Allergic airway disease caused by house dust mites or ovalbumin plus single-dose intravenous MPO-ANCA IgG induced EGPA with eosinophilic bronchiolitis, NCGN, capillaritis, arteritis, and granulomatosis. Thus, our study shows that the occurrence and pattern of lung lesions are determined by the same ANCA IgG accompanied by different synergistic immune factors.
Collapse
Affiliation(s)
- Peiqi Hu
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; University of North Carolina Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hong Xiao
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; University of North Carolina Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Marco A Alba
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hannah M Atkins
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shenju Gou
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yanglin Hu
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John C Gomez
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Corey M Jania
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jessica R Martin
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Thomas E Morrison
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephen L Tilley
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark T Heise
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Claire M Doerschuk
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ronald J Falk
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; University of North Carolina Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J Charles Jennette
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; University of North Carolina Kidney Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
13
|
Goyal PK, Sangwan K. Tarlatamab-dlle: A New Hope for Patients with Extensive-Stage Small-Cell Lung Cancer. Curr Treat Options Oncol 2024; 25:1337-1344. [PMID: 39392556 DOI: 10.1007/s11864-024-01268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/12/2024]
Abstract
OPINION STATEMENT Lung cancer is expected to contribute to about 0.234 million new cases and about 0.125 million mortalities in the United States in the year 2024. Small cell lung cancer (SCLC), a neuroendocrine carcinoma, has lesser prevalence but is more aggressive at an extensive stage where the tumor is not only confined to hemithorax, mediastinum, and supraclavicular region but spread beyond the supraclavicular region. The prognosis of SCLC, irrespective of the limited or extensive stage, is very poor. Only a 5-10% overall survival rate in five years is expected and with extensive-stage SCLC, long-term disease-free survival is rare. In May 2024, the USFDA approved Tarlatamab-dlle, a DLL3 targeted bi-specific T-cell engager, for treating extensive-stage SCLC in adult patients, on or after platinum-based chemotherapy or on progression. Before the approval of Tarlatamab-dlle, only a few drugs, such as Atezolizumab and Durvalumab, received FDA approval for treating extensive-stage SCLC. It might be possible that Tarlatamab-dlle received accelerated FDA approval for extensive-stage SCLC, leaving some questions unanswered at this stage. This manuscript is focused on clinical, pre-clinical, and other pharmacological aspects of Tarlatamab-dlle for extensive-stage SCLC.
Collapse
Affiliation(s)
- Parveen Kumar Goyal
- Department of Pharmacy, Panipat Institute of Engineering &Technology (PIET) Samalkha, Panipat, Haryana, 132102, India
| | - Kavita Sangwan
- Department of Pharmacy, Panipat Institute of Engineering &Technology (PIET) Samalkha, Panipat, Haryana, 132102, India.
| |
Collapse
|
14
|
Gu Y, Zhao Q. Clinical Progresses and Challenges of Bispecific Antibodies for the Treatment of Solid Tumors. Mol Diagn Ther 2024; 28:669-702. [PMID: 39172329 PMCID: PMC11512917 DOI: 10.1007/s40291-024-00734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/23/2024]
Abstract
In recent years, bispecific antibodies (BsAbs) have emerged as a promising therapeutic strategy against tumors. BsAbs can recruit and activate immune cells, block multiple signaling pathways, and deliver therapeutic payloads directly to tumor sites. This review provides a comprehensive overview of the recent advances in the development and clinical application of BsAbs for the treatment of solid tumors. We discuss the different formats, the unique mechanisms of action, and the clinical outcomes of the most advanced BsAbs in solid tumor therapy. Several studies have also analyzed the clinical progress of bispecific antibodies. However, this review distinguishes itself by exploring the challenges associated with bispecific antibodies and proposing potential solutions. As the field progresses, BsAbs hold promise to redefine cancer treatment paradigms and offer new hope to patients with solid tumors.
Collapse
Affiliation(s)
- Yuheng Gu
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China.
| |
Collapse
|
15
|
Gong H, Griffin JD, Groer CE, Wu S, Downes GM, Markum G, Abdelaziz MM, Alhakamy NA, Forrest ML, Berkland CJ. Glatiramer Acetate Complexes CpG Oligodeoxynucleotides into Nanoparticles and Boosts Their TLR9-Driven Immunity. Mol Pharm 2024. [PMID: 39484963 DOI: 10.1021/acs.molpharmaceut.4c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Unmethylated cytosine-guanine oligodeoxynucleotides (CpG ODNs) have a storied history as agonists for Toll-like receptor 9 (TLR9). CpG ODNs have shown promising antitumor effects in preclinical studies by inducing potent proinflammatory immune responses. However, clinical success has been hindered by inconsistent efficacy and immune-related toxicities caused by systemic exposure to CpG ODNs. We previously identified that glatiramer acetate (GA), an FDA-approved, lysine-rich polypeptide, could complex class B CpG into cationic nanoparticles which persist at the intratumoral injection site while mitigating the induction of systemic proinflammatory cytokines in mouse tumor models. To extend GA applications across subtypes of CpG ODN (class A, B, and C), we evaluated physiochemical properties and identified the immunological signaling of GA and its complexes with different classes of CpG ODNs. We compared the physiochemical characteristics of three types of GA-CpG nanoparticles, followed by assessments of cell uptake efficiency and endolysosomal trafficking. We then performed successive in vitro and in vivo assays to evaluate immunological discrepancies. Complexation with GA preserved the immunological activity of CpG ODN subtypes while encapsulating them into cationic spherical nanoparticles. GA improved the cellular uptake of CpG ODNs, generally increased retention in early endosomes, and amplified immunological responses. A subsequent in vivo experiment confirmed the achievement of potent tumor suppression while mitigating systemic immune-related toxicities. Together, these data help elucidate the noncanonical role of GA to serve as a nucleic acid delivery scaffold that can improve the efficacy and safety of CpG adjuvant for clinical cancer immunotherapy.
Collapse
Affiliation(s)
- Huan Gong
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | | | - Chad E Groer
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Sa Wu
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Grant M Downes
- Bioengineering Graduate Program, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Grace Markum
- Department of Chemical and Petroleum Engineering, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Moustafa M Abdelaziz
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Nabil A Alhakamy
- Kinimmune Inc., Saint Louis, Missouri 63141, United States
- Department of Pharmaceutics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Cory J Berkland
- Kinimmune Inc., Saint Louis, Missouri 63141, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, Missouri 63105, United States
- Department of Chemistry, Washington University, Saint Louis, Missouri 63130, United States
| |
Collapse
|
16
|
Niu Y, Liu S, Qiu Q, Fu D, Xiao Y, Liang L, Cui Y, Ye S, Xu H. Increased serum level of IL-6 predicts poor prognosis in anti-MDA5-positive dermatomyositis with rapidly progressive interstitial lung disease. Arthritis Res Ther 2024; 26:184. [PMID: 39468670 PMCID: PMC11520069 DOI: 10.1186/s13075-024-03415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUD Anti-melanoma differentiation-associated protein 5 antibody-positive dermatomyositis (anti-MDA5-positvie DM) is a subtype of dermatomyositis with a poor prognosis, characterized by rapidly progressive interstitial lung disease (RP-ILD). The study aims to investigate the significance of serum cytokines profiles and peripheral lymphocytes in predicting prognoses of anti-MDA5-positvie DM with RP-ILD. Furthermore, it seeks to analyze longitudinal data of lymphocytes during hospitalization to identify distinct trajectories and cluster patients accordingly. METHODS A total of 168 patients with anti-MDA5-positive DM were enrolled in this retrospective study from two cohorts. Univariate and multivariate Cox regression analyses were conducted to determine the predictors of 6-month all-cause mortality and RP-ILD. Group-based trajectory modeling (GBTM) was employed to model the trajectories of longitudinal peripheral lymphocytes. RESULTS In the multivariate Cox regression analysis, IL-6 ≥ 13.41pg/mL, lymphocytes < 0.5 × 109 /L, lymphocytes from 0.5 to 1.0 × 109 /L, older age, and elevated LDH were identified as independent predictors of 6-month all-cause mortality. Furthermore, IL-6 ≥ 13.41pg/mL, lymphocytes < 0.5 × 109 /L, and lymphocytes from 0.5 to 1.0 × 109 /L were found to be independent predictors of RP-ILD. Additionally, three trajectory groups of lymphocytes within the first week after admission were established based on GBTM. These groups included: Group 1, with low-level of lymphocytes that declined; Group 2, with medium-level of lymphocytes that slightly rose; and Group 3, with high-level of lymphocytes that rose. Notably, group 1 showed the highest mortality (90.7%) and all experiencing RP-ILD. Increased expression of IL-6 in lung tissues was observed in two cases with RP-ILD compared to two cases without RP-ILD. We also found the increased infiltration of CD4 + and CD8 + T cells, particularly CD8 + T cells, in lung tissues from patients with RP-ILD. CONCLUSIONS Our study demonstrated that increased level of serum IL-6 (≥ 13.41pg/mL) and severe lymphopenia were promising predictors of 6-month all-cause mortality and the occurrence of RP-ILD in anti-MDA5-positive DM patients. Furthermore, tracking distinct trajectories of lymphocytes during hospitalization can be utilized to cluster patients.
Collapse
Affiliation(s)
- Yuanyuan Niu
- Department of General Practice, the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, China
| | - Suling Liu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, China
| | - Qian Qiu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, China
| | - Di Fu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang West Road, Guangzhou, Guangdong Province, 510120, China
| | - Youjun Xiao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, China
| | - Liuqin Liang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, China
| | - Yang Cui
- Department of Rheumatology and Immunology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, No. 106 Zhongshan Er Road, Guangzhou, Guangdong Province, 510180, China.
| | - Shanhui Ye
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang West Road, Guangzhou, Guangdong Province, 510120, China.
| | - Hanshi Xu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, China.
| |
Collapse
|
17
|
Zhang Q, Dai J, Liu T, Rao W, Li D, Gu Z, Huang L, Wang J, Hou X. Targeting cardiac fibrosis with Chimeric Antigen Receptor-Engineered Cells. Mol Cell Biochem 2024:10.1007/s11010-024-05134-6. [PMID: 39460827 DOI: 10.1007/s11010-024-05134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Cardiac fibrosis poses a significant challenge in cardiovascular diseases due to its intricate pathogenesis, and there is currently no standardized and effective treatment approach. The fibrotic process entails the involvement of various cell types and molecular mechanisms, such as fibroblast activation and proliferation, increased collagen synthesis, and extracellular matrix rearrangement. Traditional therapies often fall short in efficacy or carry substantial side effects. However, recent studies have shown that Chimeric Antigen Receptor T (CAR-T) cells can selectively target and eliminate activated cardiac fibroblasts (CFs) in mice, leading to reduced cardiac fibrosis and improved myocardial tissue compliance. This breakthrough presents a new and promising avenue for treating cardiac fibrosis. Currently, CAR-T cell-based therapy for cardiac fibrosis is undergoing animal experimentation, indicating ample scope for enhancement. Future investigations could explore the application of CAR cell therapy in cardiac fibrosis treatment, including the potential of CAR-natural killer (CAR-NK) cells and CAR macrophages (CAR-M), offering novel insights and strategies for combating cardiac fibrosis.
Collapse
Affiliation(s)
- Qinghang Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Jinjie Dai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Tianbao Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Wutian Rao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Dan Li
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xumin Hou
- Hospital's Office, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
18
|
Carter PJ, Quarmby V. Immunogenicity risk assessment and mitigation for engineered antibody and protein therapeutics. Nat Rev Drug Discov 2024:10.1038/s41573-024-01051-x. [PMID: 39424922 DOI: 10.1038/s41573-024-01051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/21/2024]
Abstract
Remarkable progress has been made in recent decades in engineering antibodies and other protein therapeutics, including enhancements to existing functions as well as the advent of novel molecules that confer biological activities previously unknown in nature. These protein therapeutics have brought major benefits to patients across multiple areas of medicine. One major ongoing challenge is that protein therapeutics can elicit unwanted immune responses (immunogenicity) in treated patients, including the generation of anti-drug antibodies. In rare and unpredictable cases, anti-drug antibodies can seriously compromise therapeutic safety and/or efficacy. Systematic deconvolution of this immunogenicity problem is confounded by the complexity of its many contributing factors and the inherent limitations of available experimental and computational methods. Nevertheless, continued progress with the assessment and mitigation of immunogenicity risk at the preclinical stage has the potential to reduce the incidence and severity of clinical immunogenicity events. This Review focuses on identifying key unsolved anti-drug antibody-related challenges and offers some pragmatic approaches towards addressing them. Examples are drawn mainly from antibodies, given that the majority of available clinical data are from this class of protein therapeutics. Plausible and seemingly tractable solutions are in sight for some immunogenicity problems, whereas other challenges will likely require completely new approaches.
Collapse
Affiliation(s)
- Paul J Carter
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA, USA.
| | - Valerie Quarmby
- Department of BioAnalytical Sciences, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
19
|
Sutherland AR, Parlekar B, Livingstone DW, Medina AX, Bernhard W, García TH, DeCoteau J, Geyer CR. Antibody-targeted T cells and natural killer cells for cancer immunotherapy. J Nanobiotechnology 2024; 22:640. [PMID: 39425222 PMCID: PMC11488284 DOI: 10.1186/s12951-024-02898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Adoptive cell cancer therapies aim to re-engineer a patient's immune cells to mount an anti-cancer response. Chimeric antigen receptor T and natural killer cells have been engineered and proved successful in treating some cancers; however, the genetic methods for engineering are laborious, expensive, and inefficient and can cause severe toxicities when they over-proliferate. RESULTS We examined whether the cell-killing capacity of activated T and NK cells could be targeted to cancer cells by anchoring antibodies to their cell surface. Using metabolic glycoengineering to introduce azide moieties to the cellular surface, we covalently attached a dibenzocyclooctyne-modified antibody using the strain-promoted alkyne azide cycloaddition reaction, creating antibody-conjugated T and NK cells. We targeted the immune cells to tumors possessing the xenoantigen, N-glycolyl neuraminic acid GM3 ganglioside, using the 14F7hT antibody. These activated T and NK cells are "armed" with tumour-homing capabilities that specifically lyses antigen-positive cancer cells without off-target toxicities. Moreover, when exposed to target cells, 14F7hT-conjugated T cells that are not preactivated exhibit increased perforin, granzyme, CD69, and CD25 expression and specific cell killing. CONCLUSIONS This research shows the potential for a non-genetic method for redirecting cytotoxic immune cells as a feasible and effective approach for tumor-targeted cell immunotherapy.
Collapse
Affiliation(s)
- Ashley R Sutherland
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Brijesh Parlekar
- Department of Health Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - David W Livingstone
- Department of Health Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Andrés X Medina
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Wendy Bernhard
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | | | - John DeCoteau
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - C Ronald Geyer
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
20
|
Tix T, Alhomoud M, Shouval R, Cliff ERS, Perales MA, Cordas dos Santos DM, Rejeski K. Second Primary Malignancies after CAR T-Cell Therapy: A Systematic Review and Meta-analysis of 5,517 Lymphoma and Myeloma Patients. Clin Cancer Res 2024; 30:4690-4700. [PMID: 39256908 PMCID: PMC11546643 DOI: 10.1158/1078-0432.ccr-24-1798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024]
Abstract
PURPOSE Chimeric antigen receptor (CAR) T-cell therapy is a potent immunotherapy for hematologic malignancies, but patients can develop long-term adverse events, including second primary malignancies (SPM) that impact morbidity and mortality. To delineate the frequency and subtypes of SPMs following CAR-T in lymphoma and myeloma, we performed a systematic review and meta-analysis. EXPERIMENTAL DESIGN A literature search was conducted in the MEDLINE, Embase, and Cochrane CENTRAL databases. Following the extraction of SPM cases and assignment of malignant origin, we analyzed SPM point estimates using random effects models. RESULTS We identified 326 SPMs across 5,517 patients from 18 clinical trials and 7 real-world studies. With a median follow-up of 21.7 months, the overall SPM point estimate was 6.0% (95% confidence interval, 4.8%-7.4%). SPM estimates were associated with treatment setting (clinical trials > real-world studies), duration of follow-up, and number of prior treatment lines, which were each confirmed as independent study-level risk factors of SPM in a meta-regression model. A subgroup meta-analysis of the four trials that randomized CAR-T versus standard-of-care revealed a similar risk of SPM with either treatment strategy (P = 0.92). In a distribution analysis of SPM subtypes, hematologic malignancies were the most common entity (37%), followed by solid tumors (27%) and non-melanoma skin cancers (16%). T-cell malignancies represented a small minority of events (1.5%). We noted disease- and product-specific variations in SPM distribution. CONCLUSIONS These data raise awareness of SPM as a clinically relevant long-term adverse event in patients receiving CAR T-cell therapy. However, our findings do not indicate that SPM frequency is higher with CAR-T versus previous standard-of-care strategies.
Collapse
Affiliation(s)
- Tobias Tix
- Department of Medicine III – Hematology/Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Mohammad Alhomoud
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Roni Shouval
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Edward R. Scheffer Cliff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Program on Regulation, Therapeutics and Law, Brigham and Women’s Hospital, Boston, MA
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - David M. Cordas dos Santos
- Department of Medicine III – Hematology/Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Kai Rejeski
- Department of Medicine III – Hematology/Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and LMU University Hospital, Munich, Germany
| |
Collapse
|
21
|
Kandav G, Chandel A. Revolutionizing cancer treatment: an in-depth exploration of CAR-T cell therapies. Med Oncol 2024; 41:275. [PMID: 39400611 DOI: 10.1007/s12032-024-02491-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
Cancer is a leading cause of fatality worldwide. Due to the heterogeneity of cancer cells the effectiveness of various conventional cancer treatment techniques is constrained. Thus, researchers are diligently investigating therapeutic approaches like immunotherapy for effective tumor managements. Immunotherapy harnesses the inherent potential of patient's immune system to achieve desired outcomes. Within the realm of immunotherapy, CAR-T (Chimeric Antigen Receptor T) cells, emerges as a revolutionary innovation for cancer therapy. The process of CAR-T cell therapy entails extracting the patient's T cells, altering them with customized receptors designed to specifically recognize and eradicate the tumor cells, and then reinfusing the altered cells into the patient's body. Although there has been significant progress with CAR-T cell therapy in certain cases of specific B-cell leukemia and lymphoma, its effectiveness is hindered in hematological and solid tumors due to the challenges such as severe toxicities, restricted tumor infiltration, cytokine release syndrome and antigen escape. Overcoming these obstacles requires innovative approaches to design more effective CAR-T cells, which require a competent and diverse team to develop and implement. This comprehensive review addresses numerous therapeutic issues and provides a strategic solution while providing a deep understanding of the structural intricacies and production processes of CAR-T cells. In addition, this review explores the practical aspects of CAR-T cell therapy in clinical settings.
Collapse
Affiliation(s)
- Gurpreet Kandav
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Sahibzada Ajit Singh Nagar, Punjab, 140307, India.
| | - Akash Chandel
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Sahibzada Ajit Singh Nagar, Punjab, 140307, India
| |
Collapse
|
22
|
Tian J, Gao M, Zhu J, Xu H, Ji H, Xia D, Wang X. Platelets camouflaged nanovehicle improved bladder cancer immunotherapy by triggering pyroptosis. Theranostics 2024; 14:6692-6707. [PMID: 39479459 PMCID: PMC11519802 DOI: 10.7150/thno.99040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
The regulation of immunosuppressive microenvironments in tumors through targeted drug delivery shows promise for immunochemotherapy in bladder cancer. Drawing inspiration from stealth tactics, a nano-vehicle camouflaged with platelets (PLTs) was developed to enable precise delivery and trigger pyroptosis for tumor immunotherapy. Methods: Erdafitinib (Erda) was nano-sized and encapsulated in PLTs to construct nano-Erda@PLT. Characterization of the PLTs camouflaged nano-vehicle was conducted using Zetasizer, SEM, and confocal laser scanning microscopy. The excellent targeted delivery property of the PLTs nano-vehicle was investigated through intravital imaging, three-dimensional microspheres, and SEM. Validation of pyroptosis in bladder cancer cells via the caspase-3/GSDME pathway was performed using western blot, immunofluorescence, and ELISA tests. Immunotherapy by nano-Erda@PLT treatment in vivo was confirmed using H&E, immunohistochemical, and flow cytometry. Lastly, the side effects of nano-Erda@PLT were assessed. Results: Proteomic analysis revealed that the activation of p-selectin on platelets facilitated the identification of nano-Erda@PLT targeted therapies. Nanoscale of Erda released in response to adenosine diphosphate, facilitated intratumoral permeation. This could contribute to an upregulation of the key proteins of pyroptosis, caspase-3 and GSDME, in bladder cancer cells due to nano-Erda@PLT accumulation. Additionally, the burst release of numerous inflammatory factors may enhance the system's adaptive immune response. In a bladder cancer animal model, this treatment was found to regulate the immunosuppressive microenvironment, resulting in effective tumor immunotherapy and the induction of a long-lasting, robust immune memory. Conclusion: PLTs-camouflaged nano-vehicles enable nano-Erda-mediated tumor immunotherapy through the induction of pyroptosis. These findings introduce a novel approach in exploring nanomaterial-mediated pyroptosis for cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Donglin Xia
- Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University & School of Public Health of Nantong University, Nantong, 226000, P. R. China
| | - Xiaolin Wang
- Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University & School of Public Health of Nantong University, Nantong, 226000, P. R. China
| |
Collapse
|
23
|
Xiong X, Zhang Y, Huang X, Zhang S, Li Q. Generating Immunological Memory Against Cancer by Camouflaging Gold-Based Photothermal Nanoparticles in NIR-II Biowindow for Mimicking T-Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407038. [PMID: 39394989 DOI: 10.1002/smll.202407038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Indexed: 10/14/2024]
Abstract
Photothermal therapy (PTT) against cancer not only directly ablates tumors but also induces tumor immunogenic cell death (ICD). However, the antitumor immune response elicited by ICD is insufficient to prevent relapse and metastasis because of the immunosuppressive tumor microenvironment (TME). A biomimetic nanoplatform (bmNP) mimicking cytotoxic lymphocytes (CTLs) for combinational photothermal-immunotherapy to effectively regulate the immunosuppressive TME is reported here. The bmNP is constructed by wrapping the T-cell membrane onto a new type of photothermal agents, spherical Au-based PNCs (sAuPNCs). Similar to T-cells, the bmNP enhanced accumulation at the tumor site by targeting the tumor via adhesion proteins on T-cell membrane. The obtained sAuPNCs have a wide absorption band in the second near-infrared (NIR-II) region with a high photothermal conversion efficiency (PCE) up to about 75% and excellent photostability. The bmNP with a smaller size is more superior compete with T-cells to bond with tumor cells via PD-1/PD-L1 interaction to effectively block the PD-1 checkpoint of T-cells for preventing T-cell exhaustion. Furthermore, in vivo studies reveal the immunological memory effect is significantly elicited in mice received bmNPs therapy. Collectively, bmNPs show great potential in photothermal-enhanced immunotherapy.
Collapse
Affiliation(s)
- Xuefan Xiong
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, P. R. China
| | - Ying Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, P. R. China
| | - Xinqi Huang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, P. R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| | - Qiong Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| |
Collapse
|
24
|
Yang S, Sheffer M, Kaplan IE, Wang Z, Tarannum M, Dinh K, Abdulhamid Y, Bobilev E, Shapiro R, Porter R, Soiffer R, Ritz J, Koreth J, Wei Y, Chen P, Zhang K, Márquez-Pellegrin V, Bonanno S, Joshi N, Guan M, Yang M, Li D, Bellini C, Liu F, Chen J, Wu CJ, Barbie D, Li J, Romee R. Non-pathogenic E. coli displaying decoy-resistant IL18 mutein boosts anti-tumor and CAR NK cell responses. Nat Biotechnol 2024:10.1038/s41587-024-02418-6. [PMID: 39367093 DOI: 10.1038/s41587-024-02418-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/29/2024] [Indexed: 10/06/2024]
Abstract
The tumor microenvironment can inhibit the efficacy of cancer therapies through mechanisms such as poor trafficking and exhaustion of immune cells. Here, to address this challenge, we exploited the safety, tumor tropism and ease of genetic manipulation of non-pathogenic Escherichia coli (E. coli) to deliver key immune-activating cytokines to tumors via surface display on the outer membrane of E. coli K-12 DH5α. Non-pathogenic E. coli expressing murine decoy-resistant IL18 mutein (DR18) induced robust CD8+ T and natural killer (NK) cell-dependent immune responses and suppressed tumor progression in immune-competent colorectal carcinoma and melanoma mouse models. E. coli K-12 DH5α engineered to display human DR18 potently activated mesothelin-targeting chimeric antigen receptor (CAR) NK cells and enhance their trafficking into tumors, which extended survival in an NK cell treatment-resistant mesothelioma xenograft model by enhancing TNF signaling and upregulating NK activation markers. Our live bacteria-based immunotherapeutic system safely and effectively induces potent anti-tumor responses in treatment-resistant solid tumors, motivating further evaluation of this approach in the clinic.
Collapse
Affiliation(s)
- Shaobo Yang
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michal Sheffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Isabel E Kaplan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zongqi Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mubin Tarannum
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Khanhlinh Dinh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yasmin Abdulhamid
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eden Bobilev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Roman Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rebecca Porter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Robert Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - John Koreth
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yun Wei
- Department of Chemistry and Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Peiru Chen
- Department of Chemistry and Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ke Zhang
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Chemistry and Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Shanna Bonanno
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Neel Joshi
- Department of Chemistry and Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ming Guan
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Mengdi Yang
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Deng Li
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Fuguo Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jiahe Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Rizwan Romee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
25
|
Zhou Y, Li C, Mei S, Xu Q, Qin S, Feng J, Wang J, Xing S, Wang W, Li F, Zhou Q, He Z, Gao Y, Zhang X, Zhang Z. Identifying risk factors for acute respiratory distress syndrome in critically ill patients: a retrospective study. Front Med (Lausanne) 2024; 11:1469291. [PMID: 39416868 PMCID: PMC11480032 DOI: 10.3389/fmed.2024.1469291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is a life-threatening condition that can develop in critically ill patients. Early identification of risk factors associated with ARDS development is essential for timely intervention and improved patient outcomes. This study aimed to investigate the potential predictors of ARDS in critically ill patients admitted to the intensive care unit (ICU). Methods We conducted a retrospective study involving 502 critically ill patients admitted to the ICUs of three hospitals. Demographic and clinical data, including laboratory test results, were collected during their ICU stay. Multivariable logistic regression analysis was performed to identify independent risk factors associated with the development of ARDS. Results Among the 502 critically ill patients, 104 (20.7%) patients developed ARDS during their ICU stay, with a median time to development of 5.2 days. Multivariable logistic regression analysis revealed that age (odds ratio [OR], 1.07; 95% confidence interval [CI], 1.01-1.13; P = 0.002), C-reactive protein (CRP) levels (OR, 1.11; 95% CI, 1.05-1.17; P = 0.013), T lymphocyte count (OR, 0.82; 95% CI, 0.69-0.93; P = 0.011), and interleukin-6 (IL-6) levels (OR, 1.17; 95% CI, 1.08-1.23; P = 0.003) were independently associated with the development of ARDS in critically ill patients. Conclusions Our study identified age, CRP, T lymphocyte count, and IL-6 as independent predictors of ARDS in critically ill patients admitted to the ICU. These findings highlight the importance of monitoring these parameters in critically ill patients to identify those at high risk of developing ARDS. Early recognition and intervention based on these risk factors may improve patient outcomes in the ICU setting. Further prospective studies are warranted to validate these results and develop a reliable predictive model for ARDS in critically ill patients.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Congye Li
- Department of Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuya Mei
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiaoyi Xu
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaojie Qin
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhua Feng
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiemin Wang
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunpeng Xing
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Li
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Quanhong Zhou
- Department of Critical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyu He
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Gao
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolin Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhiyun Zhang
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Deus MDC, Gadotti AC, Dias ES, Monte Alegre JB, Van Spitzenbergen BAK, Andrade GB, Tozoni SS, Stocco RB, Olandoski M, Tuon FFB, Pinho RA, de Noronha L, Baena CP, Moreno-Amaral AN. Prospective Variation of Cytokine Trends during COVID-19: A Progressive Approach from Disease Onset until Outcome. Int J Mol Sci 2024; 25:10578. [PMID: 39408907 PMCID: PMC11477561 DOI: 10.3390/ijms251910578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
COVID-19 is characterized by pronounced hypercytokinemia. The cytokine switch, marked by an imbalance between pro-inflammatory and anti-inflammatory cytokines, emerged as a focal point of investigation throughout the COVID-19 pandemic. However, the kinetics and temporal dynamics of cytokine release remain contradictory, making the development of new therapeutics difficult, especially in severe cases. This study collected serum samples from SARS-CoV-2 infected patients at 72 h intervals and monitored them for various cytokines at each timepoint until hospital discharge or death. Cytokine levels were analyzed based on time since symptom onset and patient outcomes. All cytokines studied prospectively were strong predictors of mortality, particularly IL-4 (AUC = 0.98) and IL-1β (AUC = 0.96). First-timepoint evaluations showed elevated cytokine levels in the mortality group (p < 0.001). Interestingly, IFN-γ levels decreased over time in the death group but increased in the survival group. Patients who died exhibited sustained levels of IL-1β and IL-4 and increased IL-6 levels over time. These findings suggest cytokine elevation is crucial in predicting COVID-19 mortality. The dynamic interplay between IFN-γ and IL-4 highlights the balance between Th1/Th2 immune responses and underscores IFN-γ as a powerful indicator of immune dysregulation throughout the infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Andrea Novais Moreno-Amaral
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Escola de Medicina, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, PR, Brazil; (M.d.C.D.); (A.C.G.); (E.S.D.); (J.B.M.A.); (B.A.K.V.S.); (G.B.A.); (S.S.T.); (R.B.S.); (M.O.); (F.F.B.T.); (R.A.P.); (L.d.N.); (C.P.B.)
| |
Collapse
|
27
|
Catamero D, Ray C, Purcell K, Leahey S, Esler E, Rogers S, Hefner K, O'Rourke L, Gray K, Tolbert J, Renaud T, Patel S, Hannemann L, Shenoy S. Nursing Considerations for the Clinical Management of Adverse Events Associated with Talquetamab in Patients with Relapsed or Refractory Multiple Myeloma. Semin Oncol Nurs 2024; 40:151712. [PMID: 39155155 DOI: 10.1016/j.soncn.2024.151712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVES Talquetamab is a newly approved bispecific antibody targeting the CD3 receptor on T cells and a receptor, G protein-coupled receptor family C group 5 member D (GPRC5D), highly expressed on multiple myeloma (MM) cells. In addition to immune therapy-related adverse events (AEs) associated with bispecific antibody therapies, talquetamab is associated with unique skin/nail and oral GPRC5D-related side effects that require additional supportive care. This review provides clinical management strategies for talquetamab based on oncology nurses' experience during the MonumenTAL-1 (NCT03399799/NCT04634552) clinical trial. The objective of this review is to raise awareness among nurses and patients to better understand and manage the side effects associated with talquetamab treatment in order to optimize patient outcomes. DATA SOURCES MonumenTAL-1 is a phase 1/2 clinical trial of talquetamab in patients with relapsed/refractory MM who are triple-class exposed. Details on overall response, safety, and AE incidence and occurrence were previously published. Management strategies for the T-cell-related and unique GPRC5D-related AEs were collected from oncology nurses from different study sites. CONCLUSION Talquetamab has shown overall response rates of >71% in patients with relapsed/refractory MM in the MonumenTAL-1 study. AEs were low grade and predictable; few led to study discontinuation. IMPLICATIONS FOR NURSING PRACTICE Oncology nurses have specialized knowledge of treatment administration monitoring based on their participation in the MonumenTAL-1 trial. This review provides information for nurses in both the academic and community settings on how to monitor, counsel, and support patients, which will in turn improve patients' quality of life and overall survival.
Collapse
Affiliation(s)
| | - Chloe Ray
- Mount Sinai Health System, New York, New York
| | | | - Sheryl Leahey
- City of Hope Comprehensive Cancer Center, Duarte, California
| | - Elaine Esler
- University of California San Francisco, San Francisco, California
| | - Stephanie Rogers
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kayla Hefner
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Lisa O'Rourke
- Janssen Research & Development, Spring House, Pennsylvania
| | | | | | | | - Saurabh Patel
- Janssen Research & Development, Spring House, Pennsylvania
| | | | - Samantha Shenoy
- University of California San Francisco, San Francisco, California.
| |
Collapse
|
28
|
Ma L, Acuff NV, Joseph IB, Ptacin JL, Caffaro CE, San Jose KM, Aerni HR, Carrio R, Byers AM, Herman RW, Pavlova Y, Pena MJ, Chen DB, Buetz C, Ismaili TK, Pham HV, Cucchetti M, Sassoon I, Koriazova LK, Leveque JA, Shawver LK, Mooney JM, Milla ME. A Precision Engineered Interleukin-2 for Bolstering CD8+ T- and NK-cell Activity without Eosinophilia and Vascular Leak Syndrome in Nonhuman Primates. CANCER RESEARCH COMMUNICATIONS 2024; 4:2799-2814. [PMID: 39320047 PMCID: PMC11503527 DOI: 10.1158/2767-9764.crc-24-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/03/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
We have created a precisely pegylated IL-2 [SAR-444245 (SAR'245) or pegenzileukin, previously THOR-707] designed for proliferation of target CD8+ T and NK cells for anticancer activity, with minimal expansion of anti-target regulatory CD4+ T cells (Treg) that counter their action, or eosinophils that trigger vascular leak syndrome (VLS). We performed in vivo studies in nonhuman primates (NHP) to monitor the safety of SAR'245, pharmacokinetic profile, and pharmacodynamic parameters including expansion of peripheral CD8+ T and NK cells, and effects on Tregs and eosinophils. Studies included multiple ascending dosing and repeat dosing with different regimens (QW, Q2W, Q3W and Q4W). We also conducted ex vivo studies using human primary cells to further evaluate SAR'245 stimulation of target cells alone and in combination with programmed cell-death 1 (PD-1) checkpoint inhibitors. The pharmacokinetic profile of SAR'245 in NHP demonstrated dose-proportional exposure that was comparable with redosing. It elicited expansion of peripheral CD8+ T and NK cells that was comparable with each dose and with multiple dosing regimens. Once-weekly dosing showed no significant adverse effects, including no hallmark signs of VLS at dosing levels up to 1 mg/kg. Ex vivo, SAR'245 enhanced T-cell receptor responses alone and in combination with PD-1 inhibitors without inducing cytokines associated with cytokine release syndrome or VLS. Results support the clinical development of SAR'245 as a drug candidate for the treatment of solid tumors, alone or in combination with PD-1 inhibitory agents. SIGNIFICANCE SAR-444245 (SAR'245, pegenzileukin) is an extended half-life IL-2 that targets effector CD8+ T and NK cells, with little effect on regulatory T cells. We show that in the nonhuman primate model that closely approximates human immune function and response to IL-2, SAR'245 selectively activates CD8+ T and NK effectors without significant serious side effects (vascular leak syndrome or cytokine release syndrome), suggesting its potential for the treatment of solid tumors in humans.
Collapse
Affiliation(s)
- Lina Ma
- Synthorx, Inc., A Sanofi Company, La Jolla, California
| | | | | | | | | | | | - Hans R. Aerni
- Synthorx, Inc., A Sanofi Company, La Jolla, California
| | | | | | - Rob W. Herman
- Synthorx, Inc., A Sanofi Company, La Jolla, California
| | | | | | - David B. Chen
- Synthorx, Inc., A Sanofi Company, La Jolla, California
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Peng L, Sferruzza G, Yang L, Zhou L, Chen S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cell Mol Immunol 2024; 21:1089-1108. [PMID: 39134804 PMCID: PMC11442786 DOI: 10.1038/s41423-024-01207-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/22/2024] [Indexed: 10/02/2024] Open
Abstract
In the past decade, chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic approach for combating cancers, demonstrating remarkable efficacy in relapsed/refractory hematological malignancies in both pediatric and adult patients. CAR-natural killer (CAR-NK) cell complements CAR-T cell therapy by offering several distinct advantages. CAR-NK cells do not require HLA compatibility and exhibit low safety concerns. Moreover, CAR-NK cells are conducive to "off-the-shelf" therapeutics, providing significant logistic advantages over CAR-T cells. Both CAR-T and CAR-NK cells have shown consistent and promising results in hematological malignancies. However, their efficacy against solid tumors remains limited due to various obstacles including limited tumor trafficking and infiltration, as well as an immuno-suppressive tumor microenvironment. In this review, we discuss the recent advances and current challenges of CAR-T and CAR-NK cell immunotherapies, with a specific focus on the obstacles to their application in solid tumors. We also analyze in depth the advantages and drawbacks of CAR-NK cells compared to CAR-T cells and highlight CAR-NK CAR optimization. Finally, we explore future perspectives of these adoptive immunotherapies, highlighting the increasing contribution of cutting-edge biotechnological tools in shaping the next generation of cellular immunotherapy.
Collapse
Affiliation(s)
- Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
| | - Giacomo Sferruzza
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Liqun Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
30
|
Herrera M, Pretelli G, Desai J, Garralda E, Siu LL, Steiner TM, Au L. Bispecific antibodies: advancing precision oncology. Trends Cancer 2024; 10:893-919. [PMID: 39214782 DOI: 10.1016/j.trecan.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/29/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Bispecific antibodies (bsAbs) are engineered molecules designed to target two different epitopes or antigens. The mechanism of action is determined by the bsAb molecular targets and structure (or format), which can be manipulated to create variable and novel functionalities, including linking immune cells with tumor cells, or dual signaling pathway blockade. Several bsAbs have already changed the treatment landscape of hematological malignancies and select solid cancers. However, the mechanisms of resistance to these agents are understudied and the management of toxicities remains challenging. Herein, we review the principles in bsAb engineering, current understanding of mechanisms of action and resistance, data for clinical application, and provide a perspective on ongoing challenges and future developments in this field.
Collapse
Affiliation(s)
- Mercedes Herrera
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Giulia Pretelli
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jayesh Desai
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Elena Garralda
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Thiago M Steiner
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Lewis Au
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| |
Collapse
|
31
|
Chari A, Krishnan A, Rasche L, Ye JC, Garfall A, Popat R, Lipe B, Qin X, Campagna M, Masterson T, Tomlinson C, Hilder B, Tolbert J, Renaud T, Smit MD, Gray K, Kane C, Heuck C, van de Donk NWCJ. Clinical Management of Patients With Relapsed/Refractory Multiple Myeloma Treated With Talquetamab. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:665-693.e14. [PMID: 38871558 DOI: 10.1016/j.clml.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Talquetamab is a bispecific antibody targeting the multiple myeloma-associated antigen G protein-coupled receptor family C group 5 member D (GPRC5D). In the phase 1/2 MonumenTAL-1 trial (NCT03399799/NCT04634552), overall responses rates were > 71% in patients with triple-class exposed relapsed/refractory multiple myeloma (RRMM). Due to the distribution of the target antigen, a unique pattern of GPRC5D-associated adverse events (AEs) was observed, together with T-cell redirection-associated AEs. Management strategies for talquetamab-associated AEs are described. DISCUSSION GPRC5D-associated AEs included dermatologic (rash, nonrash, and nail toxicities) and oral AEs (dysgeusia, dysphagia, and dry mouth). The incidence of cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) were consistent with other T-cell redirection therapies. The incidence of high-grade infections was lower than observed with B-cell maturation antigen-targeting bispecific antibodies, with less frequent use of intravenous immunoglobulin required. GPRC5D-associated AEs were mostly low grade and led to few discontinuations. Skin toxicities were managed with emollients, topical corticosteroids, and oral corticosteroids (for high-grade, persistent, or AEs that progress). Nail toxicities were commonly managed with emollients. Based on investigator experience, dose modification may be effective for controlling oral events. Observation for potential weight changes is required. Infections were managed per standard of care. CRS and ICANS were effectively managed, consistent with other trials of T-cell redirection therapies. CONCLUSION Although talquetamab had a distinct safety profile, AEs were considered clinically manageable and mostly low grade. With appropriate education and support, health care practitioners can ensure patients with RRMM maintain quality of life and treatment adherence. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Ajai Chari
- Department of Medicine, Hematology, and Medical Oncology and Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY.
| | - Amrita Krishnan
- Judy and Bernard Briskin Myeloma Center, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Jing Christine Ye
- Department of Lymphoma - Myeloma, Division of Cancer Medicine, MD Anderson Cancer Center, University of Texas, Houston, TX
| | - Alfred Garfall
- Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Rakesh Popat
- Hematology Department, University College London Hospitals NHS Foundation Trust, London, UK
| | - Brea Lipe
- Department of Medicine, University of Rochester Medical Center, Rochester, NY
| | - Xiang Qin
- Janssen Research and Development, Spring House, PA
| | | | | | | | | | | | | | | | | | - Colleen Kane
- Janssen Research and Development, Spring House, PA
| | | | - Niels W C J van de Donk
- Department of Hematology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Sheehy T, Kwiatkowski AJ, Arora K, Kimmel BR, Schulman JA, Gibson-Corley KN, Wilson JT. STING-Activating Polymer-Drug Conjugates for Cancer Immunotherapy. ACS CENTRAL SCIENCE 2024; 10:1765-1781. [PMID: 39345818 PMCID: PMC11428287 DOI: 10.1021/acscentsci.4c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 10/01/2024]
Abstract
The stimulator of interferon genes (STING) pathway links innate and adaptive antitumor immunity and therefore plays an important role in cancer immune surveillance. This has prompted widespread development of STING agonists for cancer immunotherapy, but pharmacological barriers continue to limit the clinical impact of STING agonists and motivate the development of drug delivery systems to improve their efficacy and/or safety. We developed SAPCon, a STING-activating polymer-drug conjugate platform based on strain-promoted azide-alkyne cycloaddition of a novel dimeric amidobenzimidazole (diABZI) STING prodrug to hydrophilic poly(dimethylacrylamide-co-azido-ethylmethacrylate) polymer chains through a cathepsin B-responsive linker to increase circulation time and enable passive tumor accumulation. We found that intravenously administered SAPCon accumulated at tumor sites, where it was endocytosed by tumor-associated myeloid cells, resulting in increased STING activation in the tumor tissue. Consequently, SAPCon promoted an immunogenic tumor microenvironment characterized by increased frequency of activated macrophages and dendritic cells and improved infiltration of CD8+ T cells, resulting in inhibition of tumor growth, prolonged survival, and enhanced response to anti-PD-1 immune checkpoint blockade in orthotopic breast cancer models. Collectively, these studies position SAPCon as a modular and programmable platform for improving the efficacy of systemically administered STING agonists for cancer immunotherapy.
Collapse
Affiliation(s)
- Taylor
L. Sheehy
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Alexander J. Kwiatkowski
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Karan Arora
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Blaise R. Kimmel
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jacob A. Schulman
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Katherine N. Gibson-Corley
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - John T. Wilson
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Ingram Cancer Center, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Immunobiology, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
33
|
Cicala G, Russo G, Santoro V, Franchina T, Silvestris N, Santarpia M, Spina E, Barbieri MA. Neuropsychiatric Adverse Events with Monoclonal Antibodies Approved for Multiple Myeloma: An Analysis from the FDA Adverse Event Reporting System. Pharmaceuticals (Basel) 2024; 17:1266. [PMID: 39458907 PMCID: PMC11510275 DOI: 10.3390/ph17101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Monoclonal antibodies (mAbs) have revolutionized multiple myeloma (MM) treatment. However, post-marketing data on their neuropsychiatric safety are limited. This study aimed to evaluate neuropsychiatric adverse events (AEs) related to mAbs used for MM through a retrospective pharmacovigilance analysis using the Food and Drug Administration (FDA) Adverse Events Reporting System (FAERS) database. Methods: Individual case safety reports (ICSRs) from 2015 to 2023 with at least one neuropsychiatric AE and one of the MM-approved mAbs as the suspected drug (i.e., daratumumab, elotuzumab, isatuximab, belantamab mafodotin, teclistamab, elranatamab, and talquentamab) were analyzed using descriptive and disproportionality approaches. Results: Unknown signals of disproportionate reporting (SDR) included the following: cerebral infarction for daratumumab (n = 45; reporting odds ratio (ROR) = 2.39, 95% confidence interval (CI) = 1.79-3.21; information component (IC) = 1.54, IC025-IC075 = 1.05-1.9), elotuzumab (25; 7.61, 5.13-11.28; 3.03, 2.37-3.51), and isatuximab (10; 2.56, 1.38-4.76; 1.67, 0.59-2.4); mental status changes for daratumumab (40; 2.66, 1.95-3.63; 1.67, 1.14-2.04) and belantamab mafodotin (10; 4.23, 2.28-7.88; 2.3, 1.22-3.03); an altered state of consciousness for daratumumab (32; 1.97, 1.39-2.78; 1.32, 0.73-1.74) and belantamab mafodotin (6; 2.35, 1.05-5.23; 1.6, 0.19-2.52); Guillain-Barre syndrome (GBS) for daratumumab (23; 6.42, 4.26-9.69; 2.81, 2.11-3.3), isatuximab (8; 10.72, 5.35-21.48; 3.57, 2.35-4.37), and elotuzumab (3; 4.74, 1.53-14.7; 2.59, 0.52-3.8); and orthostatic intolerance for daratumumab (10; 12.54, 6.71-23.43; 3.75, 2.67-4.48) and elotuzumab (4; 28.31, 10.58-75.73; 5, 3.24-6.08). Conclusions: Our analysis highlighted several previously unacknowledged SDRs for MM-approved mAbs. Given the complex and not entirely understood etiology of some neuropsychiatric AEs, including GBS, further investigations are necessary.
Collapse
Affiliation(s)
- Giuseppe Cicala
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.C.); (G.R.); (E.S.)
| | - Giulia Russo
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.C.); (G.R.); (E.S.)
| | - Vincenza Santoro
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy;
| | - Tindara Franchina
- Department of Human Pathology in Adulthood and Childhood Gaetano Barresi, University of Messina, 98125 Messina, Italy; (T.F.); (N.S.); (M.S.)
| | - Nicola Silvestris
- Department of Human Pathology in Adulthood and Childhood Gaetano Barresi, University of Messina, 98125 Messina, Italy; (T.F.); (N.S.); (M.S.)
| | - Mariacarmela Santarpia
- Department of Human Pathology in Adulthood and Childhood Gaetano Barresi, University of Messina, 98125 Messina, Italy; (T.F.); (N.S.); (M.S.)
| | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.C.); (G.R.); (E.S.)
| | - Maria Antonietta Barbieri
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.C.); (G.R.); (E.S.)
| |
Collapse
|
34
|
Ortiz V, Loeuillard E. Rethinking Immune Check Point Inhibitors Use in Liver Transplantation: Implications and Resistance. Cell Mol Gastroenterol Hepatol 2024:101407. [PMID: 39326581 DOI: 10.1016/j.jcmgh.2024.101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy, including the two most common liver tumors, hepatocellular carcinoma and cholangiocarcinoma, but their use in the peri-transplantation period is controversial. ICI therapy aims to heighten cytotoxic T lymphocytes response against tumors. However, tumor recurrence is common owing to tumor immune response escape involving ablation of CTL response by interfering with antigen presentation, triggering CLT apoptosis and inducing epigenetic changes that promote ICI therapy resistance. ICI can also affect tissue resident memory T cell population, impact tolerance in the post-transplant period, and induce acute inflammation risking graft survival post-transplant. Their interaction with immunosuppression may be key in reducing tumor burden and may thus, require multimodal therapy to treat these tumors. This review summarizes ICI use in the liver transplantation period, their impact on tolerance and resistance, and new potential therapies for combination or sequential treatments for liver tumors.
Collapse
Affiliation(s)
- Vivian Ortiz
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, Missouri.
| | | |
Collapse
|
35
|
Nagaraja Shastri P, Shah N, Lechmann M, Mody H, Retter MW, Zhu M, Li T, Wang J, Shaik N, Zheng X, Ovacik M, Hua F, Jawa V, Boetsch C, Cao Y, Burke J, Datta K, Gadkar K, Upreti V, Betts A. Industry Perspective on First-in-Human and Clinical Pharmacology Strategies to Support Clinical Development of T-Cell Engaging Bispecific Antibodies for Cancer Therapy. Clin Pharmacol Ther 2024. [PMID: 39295563 DOI: 10.1002/cpt.3439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/25/2024] [Indexed: 09/21/2024]
Abstract
T-cell-engaging bispecific antibodies (TCEs) that target tumor antigens and T cells have shown great promise in treating cancer, particularly in hematological indications. The clinical development of TCEs often involves a lengthy first-in-human (FIH) trial with many dose-escalation cohorts leading up to an early proof of concept (POC), enabling either a no-go decision or dose selection for further clinical development. Multiple factors related to the target, product, disease, and patient population influence the efficacy and safety of TCEs. The intricate mechanism of action limits the translatability of preclinical models to the clinic, thereby posing challenges to streamline clinical development. In addition, unlike traditional chemotherapy, the top dose and recommended phase II doses (RP2Ds) for TCEs in the clinic are often not guided by the maximum tolerated dose (MTD), but rather based on the integrated dose-response assessment of the benefit/risk profile. These uncertainties pose complex challenges for translational and clinical pharmacologists (PK/PD scientists), as well as clinicians, to design an efficient clinical study that guides development. To that end, experts in the field, under the umbrella of the American Association of Pharmaceutical Scientists, have reviewed learnings from published literature and currently marketed products to share perspectives on the FIH and clinical pharmacology strategies to support early clinical development of TCEs.
Collapse
Affiliation(s)
- Prathap Nagaraja Shastri
- Clinical Pharmacology and Pharmacometrics, Johnson and Johnson Innovative Medicine, Spring House, Pennsylvania, USA
| | - Nirav Shah
- Clinical Pharmacology and Pharmacometrics, Johnson and Johnson Innovative Medicine, Spring House, Pennsylvania, USA
| | - Martin Lechmann
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, Penzberg, Germany
| | - Hardik Mody
- Clinical Pharmacology, Genentech, South San Francisco, California, USA
| | - Marc W Retter
- Preclinical PK/PD, Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - Min Zhu
- Clinical Pharmacology, Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - Tommy Li
- Clinical Pharmacology, Genmab, Plainsboro, New Jersey, USA
| | - Jun Wang
- Biotherapeutics Discovery Research, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, Connecticut, USA
| | - Naveed Shaik
- Clinical Pharmacology, Pfizer Oncology Development, San Diego, California, USA
| | - Xirong Zheng
- Clinical Pharmacology, Pharmacometrics and Bioanalysis, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Meric Ovacik
- Preclinical PK/PD, Genentech, South San Francisco, California, USA
| | - Fei Hua
- Certara Predictive Technology, Certara, Concord, Massachusetts, USA
| | - Vibha Jawa
- Clinical Pharmacology, Pharmacometrics and Bioanalysis, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Christophe Boetsch
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John Burke
- Certara Predictive Technology, Certara, Concord, Massachusetts, USA
| | - Kaushik Datta
- Nonclinical Safety, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Kapil Gadkar
- Preclinical PK/PD, Genentech, South San Francisco, California, USA
| | - Vijay Upreti
- Clinical Pharmacology, Modeling & Simulation, Amgen, South San Francisco, California, USA
| | - Alison Betts
- Preclinical & Translational Sciences, Takeda Pharmaceutical Company Limited, Cambridge, Massachusetts, USA
| |
Collapse
|
36
|
Hao T, Tsang YP, Yin M, Mao Q, Unadkat JD. Dysregulation of Human Hepatic Drug Transporters by Proinflammatory Cytokines. J Pharmacol Exp Ther 2024; 391:82-90. [PMID: 39103232 DOI: 10.1124/jpet.123.002019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Proinflammatory cytokines, elevated during inflammation caused by infection and/or autoimmune disorders, result in reduced clearance of drugs eliminated primarily by cytochrome P450 enzymes (CYPs). However, the effect of cytokines on hepatic drug transporter expression or activity has not been well-studied. Here, using plated human hepatocytes (PHHs; n = 3 lots), we investigated the effect of interleukin (IL)-6, IL-1β, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ), on the mRNA expression and activity of hepatic drug transporters. PHHs were incubated for 72 hours at their pathophysiologically relevant plasma concentrations, both individually (0.01, 0.1, 1, 10 ng/ml) or as a cocktail (i.e., when each was combined at 0.1 or 1 ng/ml). Following cytokine cocktail exposure (1 ng/ml), significant downregulation of mRNA expression of organic anion transporting polypeptide 1B1 (OATP1B1), OATP1B3, sodium/taurocholate cotransporting polypeptide (NTCP), breast cancer resistance protein (BCRP), P-glycoprotein (P-gp), multidrug and toxin extrusion protein 1, multidrug resistance proteins (MRP) 2, 3, and 4 was observed. While the mRNA expression of organic anion transporter (OAT) 2 and organic cation transporter (OCT) 1 was downregulated in two lots, it was upregulated in one lot. In agreement (mostly), the 1 ng/ml cytokine cocktail reduced OATP1B1/3, OATP2B1, OAT2, OCT1, and NTCP activity by 75%, 44%, 82%, 47%, and 80%, respectively. Interestingly, upregulation of OAT2 and OCT1 mRNA in one donor did not translate into the same directional change in activity. Although significant interlot variability was observed, in general, the above effects, using individual cytokines, could be attributed to IL-1β, TNF-α, and IFN-γ. SIGNIFICANCE STATEMENT: To date, this is the first comprehensive study to investigate the effect of four major proinflammatory cytokines, both individually and as a cocktail, on the mRNA expression and activity of human hepatic drug transporters. The data obtained can be used in the future to predict transporter-mediated drug clearance changes during inflammation through physiologically based pharmacokinetic modeling and simulation.
Collapse
Affiliation(s)
- Tianran Hao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Yik Pui Tsang
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Mengyue Yin
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Jashvant D Unadkat
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| |
Collapse
|
37
|
Yashar D, Regidor B, Goldwater MS, Bujarski S, Del Dosso A, Berenson JR. Targeting B-cell maturation antigen for treatment and monitoring of relapsed/refractory multiple myeloma patients: a comprehensive review. Ther Adv Hematol 2024; 15:20406207241275797. [PMID: 39290982 PMCID: PMC11406639 DOI: 10.1177/20406207241275797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/24/2024] [Indexed: 09/19/2024] Open
Abstract
Despite major therapeutic advancements in recent years, multiple myeloma (MM) remains an incurable disease with nearly all patients experiencing relapsed and refractory disease over the course of treatment. Extending the duration and durability of clinical responses will necessitate the development of therapeutics with novel targets that are capable of robustly and specifically eliminating myeloma cells. B-cell maturation antigen (BCMA) is a membrane-bound protein expressed predominantly on malignant plasma cells and has recently been the target of several novel therapeutics to treat MM patients. This review will focus on recently approved and currently in development agents that target this protein, including bispecific antibodies, antibody-drug conjugates, and chimeric antigen receptor T-cell therapies. In addition, this protein also serves as a novel serum biomarker to predict outcomes and monitor disease status for MM patients; the studies demonstrating this use of BCMA will be discussed in detail.
Collapse
Affiliation(s)
| | | | | | | | | | - James R Berenson
- Institute for Myeloma & Bone Cancer Research, 9201 Sunset Blvd., West Hollywood, CA 90069, USA
- Berenson Cancer Center, West Hollywood, CA, USA
- ONCOtracker, West Hollywood, CA, USA
- ONCOtherapeutics, West Hollywood, CA, USA
| |
Collapse
|
38
|
Su M, Chen L, Xie L, Fleurie A, Jonquieres R, Cao Q, Li B, Liang J, Tang Y. Identification of early predictive biomarkers for severe cytokine release syndrome in pediatric patients with chimeric antigen receptor T-cell therapy. Front Immunol 2024; 15:1450173. [PMID: 39328408 PMCID: PMC11424402 DOI: 10.3389/fimmu.2024.1450173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
CAR-T cell therapy is a revolutionary new treatment for hematological malignancies, but it can also result in significant adverse effects, with cytokine release syndrome (CRS) being the most common and potentially life-threatening. The identification of biomarkers to predict the severity of CRS is crucial to ensure the safety and efficacy of CAR-T therapy. To achieve this goal, we characterized the expression profiles of seven cytokines, four conventional biochemical markers, and five hematological markers prior to and following CAR-T cell infusion. Our results revealed that IL-2, IFN-γ, IL-6, and IL-10 are the key cytokines for predicting severe CRS (sCRS). Notably, IL-2 levels rise at an earlier stage of sCRS and have the potential to serve as the most effective cytokine for promptly detecting the condition's onset. Furthermore, combining these cytokine biomarkers with hematological factors such as lymphocyte counts can further enhance their predictive performance. Finally, a predictive tree model including lymphocyte counts, IL-2, and IL-6 achieved an accuracy of 85.11% (95% CI = 0.763-0.916) for early prediction of sCRS. The model was validated in an independent cohort and achieved an accuracy of 74.47% (95% CI = 0.597-0.861). This new prediction model has the potential to become an effective tool for assessing the risk of CRS in clinical practice.
Collapse
Affiliation(s)
- Meng Su
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luoquan Chen
- Shanghai Children's Medical Center-bioMérieux Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- bioMérieux (Shanghai) Company Limited, Shanghai, China
| | - Li Xie
- Shanghai Children's Medical Center-bioMérieux Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- bioMérieux (Shanghai) Company Limited, Shanghai, China
| | - Aurore Fleurie
- Open Innovation & Partnerships Department, bioMérieux SA, Marcy l'Etoile, France
| | - Renaud Jonquieres
- Open Innovation & Partnerships Department, bioMérieux SA, Marcy l'Etoile, France
| | - Qing Cao
- Infectious Disease Department, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Benshang Li
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji Liang
- Shanghai Children's Medical Center-bioMérieux Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- bioMérieux (Shanghai) Company Limited, Shanghai, China
| | - Yanjing Tang
- Department of Hematology/Oncology, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Liu J, Zhu J. Progresses of T-cell-engaging bispecific antibodies in treatment of solid tumors. Int Immunopharmacol 2024; 138:112609. [PMID: 38971103 DOI: 10.1016/j.intimp.2024.112609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
T-cell-engaging bispecific antibody (TCB) therapies have emerged as a promising immunotherapeutic approach, effectively redirecting effector T cells to selectively eliminate tumor cells. The therapeutic potential of TCBs has been well recognized, particularly with the approval of multiple TCBs in recent years for the treatment of hematologic malignancies as well as some solid tumors. However, TCBs encounter multiple challenges in treating solid tumors, such as on-target off-tumor toxicity, cytokine release syndrome (CRS), and T cell dysfunction within the immunosuppressive tumor microenvironment, all of which may impact their therapeutic efficacy. In this review, we summarize clinical data on TCBs for solid tumor treatment, highlight the challenges faced, and discuss potential solutions based on emerging strategies from current clinical and preclinical research. These solutions include TCB structural optimization, target selection, and combination strategies. This comprehensive analysis aims to guide the development of TCBs from design to clinical application, addressing the evolving landscape of cancer immunotherapy.
Collapse
Affiliation(s)
- Junjun Liu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Jecho Laboratories, Inc., Frederick, MD 21704, USA.
| |
Collapse
|
40
|
Nunes F, de Gusmão BM, Wiginesk FB, Manenti E, Soares J, Freitas MG, Seabra-Garcez JD, Varela AM, Dutra JPP, Bacchiega BC, Peixoto TFLDF, de Carvalho E Silva CMPD, Lopes RD, Macedo AVS. From the mechanism of action to clinical management: A review of cardiovascular toxicity in adult treated with CAR-T therapy. Hematol Transfus Cell Ther 2024:S2531-1379(24)00319-5. [PMID: 39261150 DOI: 10.1016/j.htct.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/29/2024] [Indexed: 09/13/2024] Open
Abstract
Chimeric antigen receptor T-cell therapy represents an innovative approach to immunotherapy and currently stands out, particularly for oncohematological patients refractory to traditional treatments. Ongoing trials are further expanding its clinical use for new oncological and non-oncological indications, potentially leading to newer treatment options soon. This new approach, however, also presents challenges, including cardiovascular toxicity. Little is reported in pivotal studies, and some recent retrospective observations suggest a non-negligible incidence of side effects with presentation ranging from mild adverse cardiovascular events to fatal complications in which, in most cases, there is a direct or indirect association with cytokine release syndrome. In this literature review, the hypotheses of an important interface between cytokine release syndrome and cardiotoxicity by chimeric antigen receptor T-cell therapy will be addressed, as will current knowledge about risk factors for cardiotoxicity and recommendations for pre-therapy evaluation, post-infusion monitoring and clinical management of these complications.
Collapse
Affiliation(s)
| | | | | | - Euler Manenti
- Instituto de Medicina Vascular, Hospital Mãe de Deus, Porto Alegre, Brazil
| | | | | | | | - Alexandre Manoel Varela
- Hospital Universitário Evangélico Mackenzie, Curitiba, Brazil; Complexo Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil; Hospital Erasto Gaertner, Curitiba, Brazil
| | - João Pedro Passos Dutra
- Centro de Pesquisas Oncológicas, Florianópolis, Brazil; Hospital SOS Cárdio, Florianópolis, Brazil
| | | | | | | | - Renato D Lopes
- Duke University /Duke Clinical Research Institute, Durham, USA
| | | |
Collapse
|
41
|
Molloy ME, Aaron WH, Barath M, Bush MC, Callihan EC, Carlin K, Cremin M, Evans T, Guerrero MG, Hemmati G, Hundal AS, Lao L, Laurie P, Lemon BD, Lin S, O’Rear J, Patnaik P, Sotelo Rocha S, Santiago L, Strobel KL, Valenzuela LB, Wu CH, Yu S, Yu TZ, Anand BS, Law CL, Sun LL, Wesche H, Austin RJ. HPN328, a Trispecific T Cell-Activating Protein Construct Targeting DLL3-Expressing Solid Tumors. Mol Cancer Ther 2024; 23:1294-1304. [PMID: 38670552 PMCID: PMC11372363 DOI: 10.1158/1535-7163.mct-23-0524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/17/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Delta-like ligand 3 (DLL3) is expressed in more than 70% of small cell lung cancers (SCLCs) and other neuroendocrine-derived tumor types. SCLC is highly aggressive, and limited therapeutic options lead to poor prognosis for patients. HPN328 is a trispecific T cell-activating construct (TriTAC) consisting of three binding domains: a CD3 binder for T-cell engagement, an albumin binder for half-life extension, and a DLL3 binder for tumor cell engagement. In vitro assays, rodent models, and non-human primates were used to assess the activity of HPN328. HPN328 induces potent dose-dependent killing of DLL3-expressing SCLC cell lines in vitro, concomitant with T-cell activation and cytokine release. In an NCI-H82 xenograft model with established tumors, HPN328 treatment led to T-cell recruitment and anti-tumor activity. In an immunocompetent mouse model expressing a human CD3ε epitope, mice previously treated with HPN328 withstood tumor rechallenge, demonstrating long-term anti-tumor immunity. When repeat doses were administered to cynomolgus monkeys, HPN328 was well tolerated up to 10 mg/kg. Pharmacodynamic changes, such as transient cytokine elevation, were observed, consistent with the expected mechanism of action of T-cell engagers. HPN328 exhibited linear pharmacokinetics in the given dose range with a serum half-life of 78 to 187 hours, supporting weekly or less frequent administration of HPN328 in humans. Preclinical and nonclinical characterization suggests that HPN328 is a highly efficacious, safe, and novel therapeutic candidate. A phase 1/2 clinical trial is currently underway testing safety and efficacy in patients with DLL3-expressing malignancies.
Collapse
Affiliation(s)
| | - Wade H. Aaron
- Harpoon Therapeutics, South San Francisco, California.
| | - Manasi Barath
- Harpoon Therapeutics, South San Francisco, California.
| | - Mabel C. Bush
- Harpoon Therapeutics, South San Francisco, California.
| | | | - Kevin Carlin
- Harpoon Therapeutics, South San Francisco, California.
| | | | - Thomas Evans
- Harpoon Therapeutics, South San Francisco, California.
| | | | | | | | - Llewelyn Lao
- Harpoon Therapeutics, South San Francisco, California.
| | - Payton Laurie
- Harpoon Therapeutics, South San Francisco, California.
| | | | - S.J. Lin
- Harpoon Therapeutics, South San Francisco, California.
| | | | | | | | | | | | | | - Chi-Heng Wu
- Harpoon Therapeutics, South San Francisco, California.
| | - Stephen Yu
- Harpoon Therapeutics, South San Francisco, California.
| | - Timothy Z. Yu
- Harpoon Therapeutics, South San Francisco, California.
| | | | - Che-Leung Law
- Harpoon Therapeutics, South San Francisco, California.
| | - Liping L. Sun
- Harpoon Therapeutics, South San Francisco, California.
| | - Holger Wesche
- Harpoon Therapeutics, South San Francisco, California.
| | | |
Collapse
|
42
|
Feng F, Shen J, Qi Q, Zhang Y, Ni S. Empowering brain tumor management: chimeric antigen receptor macrophage therapy. Theranostics 2024; 14:5725-5742. [PMID: 39310093 PMCID: PMC11413779 DOI: 10.7150/thno.98290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/17/2024] [Indexed: 09/25/2024] Open
Abstract
Brain tumors pose formidable challenges in oncology due to the intricate biology and the scarcity of effective treatment modalities. The emergence of immunotherapy has opened new avenues for innovative therapeutic strategies. Chimeric antigen receptor, originally investigated in T cell-based therapy, has now expanded to encompass macrophages, presenting a compelling avenue for augmenting anti-tumor immune surveillance. This emerging frontier holds promise for advancing the repertoire of therapeutic options against brain tumors, offering potential breakthroughs in combating the formidable malignancies of the central nervous system. Tumor-associated macrophages constitute a substantial portion, ranging from 30% to 50%, of the tumor tissue and exhibit tumor-promoting phenotypes within the immune-compromised microenvironment. Constructing CAR-macrophages can effectively repolarize M2-type macrophages towards an M1-type phenotype, thereby eliciting potent anti-tumor effects. CAR-macrophages can recruit T cells to the brain tumor site, thereby orchestrating a remodeling of the immune niche to effectively inhibit tumor growth. In this review, we explore the potential limitations as well as strategies for optimizing CAR-M therapy, offering insights into the future direction of this innovative therapeutic approach.
Collapse
Affiliation(s)
| | | | - Qichao Qi
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yulin Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| |
Collapse
|
43
|
Cordas Dos Santos DM, Tix T, Shouval R, Gafter-Gvili A, Alberge JB, Cliff ERS, Theurich S, von Bergwelt-Baildon M, Ghobrial IM, Subklewe M, Perales MA, Rejeski K. A systematic review and meta-analysis of nonrelapse mortality after CAR T cell therapy. Nat Med 2024; 30:2667-2678. [PMID: 38977912 DOI: 10.1038/s41591-024-03084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/22/2024] [Indexed: 07/10/2024]
Abstract
Although chimeric antigen receptor (CAR) T cell therapy represents a transformative immunotherapy, it is also associated with distinct toxicities that contribute to morbidity and mortality. In this systematic review and meta-analysis, we searched MEDLINE, Embase and CINAHL (Cochrane) for reports of nonrelapse mortality (NRM) after CAR T cell therapy in lymphoma and multiple myeloma up to March 2024. After extraction of causes and numbers of death, we analyzed NRM point estimates using random-effect models. We identified 7,604 patients across 18 clinical trials and 28 real-world studies. NRM point estimates varied across disease entities and were highest in patients with mantle-cell lymphoma (10.6%), followed by multiple myeloma (8.0%), large B cell lymphoma (6.1%) and indolent lymphoma (5.7%). Entity-specific meta-regression models for large B cell lymphoma and multiple myeloma revealed that axicabtagene ciloleucel and ciltacabtagene autoleucel were independently associated with increased NRM point estimates, respectively. Of 574 reported nonrelapse deaths, over half were attributed to infections (50.9%), followed by other malignancies (7.8%) and cardiovascular/respiratory events (7.3%). Conversely, the CAR T cell-specific side effects, immune effector cell-associated neurotoxicity syndrome/neurotoxicity, cytokine release syndrome and hemophagocytic lymphohistiocytosis, represented only a minority of nonrelapse deaths (cumulatively 11.5%). Our findings underline the critical importance of infectious complications after CAR T cell therapy and support the comprehensive reporting of NRM, including specific causes and long-term outcomes.
Collapse
Affiliation(s)
- David M Cordas Dos Santos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Department of Medicine III-Hematology/Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Tobias Tix
- Department of Medicine III-Hematology/Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Roni Shouval
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Anat Gafter-Gvili
- Department of Medicine A and Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
- Tel Aviv University, Tel Aviv, Israel
| | - Jean-Baptiste Alberge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Edward R Scheffer Cliff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Program on Regulation, Therapeutics and Law, Brigham and Women's Hospital, Boston, MA, USA
| | - Sebastian Theurich
- Department of Medicine III-Hematology/Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium, Partner Site Munich, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III-Hematology/Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium, Partner Site Munich, Munich, Germany
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Marion Subklewe
- Department of Medicine III-Hematology/Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium, Partner Site Munich, Munich, Germany
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Kai Rejeski
- Department of Medicine III-Hematology/Oncology, LMU University Hospital, LMU Munich, Munich, Germany.
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
- German Cancer Consortium, Partner Site Munich, Munich, Germany.
| |
Collapse
|
44
|
Schroeder T, Martens T, Fransecky L, Valerius T, Schub N, Pott C, Baldus C, Stölzel F. Management of chimeric antigen receptor T (CAR-T) cell-associated toxicities. Intensive Care Med 2024; 50:1459-1469. [PMID: 39172238 PMCID: PMC11377606 DOI: 10.1007/s00134-024-07576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/21/2024] [Indexed: 08/23/2024]
Abstract
The use of chimeric antigen receptor T (CAR-T) cells is a significant therapeutic improvement increasing the prognosis for patients with a variety of hematological malignancies. However, this therapy has also sometimes life-threatening, complications. Therefore, knowledge of the treatment and management of these complications, especially in treatment centers and intensive care units, respectively, is of outstanding importance. This review provides recommendations for the diagnosis, management, and treatment of CAR-T cell-associated complications such as cytokine release syndrome, immune effector cell associated neurotoxicity syndrome, hematotoxicity, hypogammaglobulinemia, and CAR-T cell-induced pseudo-progression amongst others for physicians treating patients with CAR-T cell-associated complications and intensivists.
Collapse
Affiliation(s)
- Torsten Schroeder
- Department of Hematology and Oncology, Division of Stem Cell Transplantation and Cellular Immunotherapies, University Hospital Schleswig-Holstein Kiel, Kiel University, Arnold-Heller-Str. 3, 24106, Kiel, Germany
| | - Tjark Martens
- Department of Hematology and Oncology, Division of Stem Cell Transplantation and Cellular Immunotherapies, University Hospital Schleswig-Holstein Kiel, Kiel University, Arnold-Heller-Str. 3, 24106, Kiel, Germany
| | - Lars Fransecky
- Department of Hematology and Oncology, Division of Stem Cell Transplantation and Cellular Immunotherapies, University Hospital Schleswig-Holstein Kiel, Kiel University, Arnold-Heller-Str. 3, 24106, Kiel, Germany
| | - Thomas Valerius
- Department of Hematology and Oncology, Division of Stem Cell Transplantation and Cellular Immunotherapies, University Hospital Schleswig-Holstein Kiel, Kiel University, Arnold-Heller-Str. 3, 24106, Kiel, Germany
| | - Natalie Schub
- Department of Hematology and Oncology, Division of Stem Cell Transplantation and Cellular Immunotherapies, University Hospital Schleswig-Holstein Kiel, Kiel University, Arnold-Heller-Str. 3, 24106, Kiel, Germany
| | - Christiane Pott
- Department of Hematology and Oncology, Division of Stem Cell Transplantation and Cellular Immunotherapies, University Hospital Schleswig-Holstein Kiel, Kiel University, Arnold-Heller-Str. 3, 24106, Kiel, Germany
| | - Claudia Baldus
- Department of Hematology and Oncology, Division of Stem Cell Transplantation and Cellular Immunotherapies, University Hospital Schleswig-Holstein Kiel, Kiel University, Arnold-Heller-Str. 3, 24106, Kiel, Germany
| | - Friedrich Stölzel
- Department of Hematology and Oncology, Division of Stem Cell Transplantation and Cellular Immunotherapies, University Hospital Schleswig-Holstein Kiel, Kiel University, Arnold-Heller-Str. 3, 24106, Kiel, Germany.
| |
Collapse
|
45
|
Brittain G, Roldan E, Alexander T, Saccardi R, Snowden JA, Sharrack B, Greco R. The Role of Chimeric Antigen Receptor T-Cell Therapy in Immune-Mediated Neurological Diseases. Ann Neurol 2024; 96:441-452. [PMID: 39015040 DOI: 10.1002/ana.27029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/20/2024] [Accepted: 06/23/2024] [Indexed: 07/18/2024]
Abstract
Despite the use of 'high efficacy' disease-modifying therapies, disease activity and clinical progression of different immune-mediated neurological diseases continue for some patients, resulting in accumulating disability, deteriorating social and mental health, and high economic cost to patients and society. Although autologous hematopoietic stem cell transplant is an effective treatment modality, it is an intensive chemotherapy-based therapy with a range of short- and long-term side-effects. Chimeric antigen receptor T-cell therapy (CAR-T) has revolutionized the treatment of B-cell and other hematological malignancies, conferring long-term remission for otherwise refractory diseases. However, the toxicity of this treatment, particularly cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome, and the complexity of production necessitate the need for a high level of specialization at treating centers. Early-phase trials of CAR-T therapies in immune-mediated B cell driven conditions, such as systemic lupus erythematosus, neuromyelitis optica spectrum disorder and myasthenia gravis, have shown dramatic clinical response with few adverse events. Based on the common physiopathology, CAR-T therapy in other immune-mediated neurological disease, including multiple sclerosis, chronic inflammatory polyradiculopathy, autoimmune encephalitis, and stiff person syndrome, might be an effective option for patients, avoiding the need for long-term immunosuppressant medications. It may prove to be a more selective immunoablative approach than autologous hematopoietic stem cell transplant, with potentially increased efficacy and lower adverse events. In this review, we present the state of the art and future directions of the use of CAR-T in such conditions. ANN NEUROL 2024;96:441-452.
Collapse
Affiliation(s)
- Gavin Brittain
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Department of Neurology and Sheffield NIHR Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Elisa Roldan
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology-Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health (BIH), Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ Berlin)-a Leibniz Institute, Autoimmunology Group, Berlin, Germany
| | - Riccardo Saccardi
- Cell Therapy and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Basil Sharrack
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Department of Neurology and Sheffield NIHR Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Hospital, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
46
|
Das A, Pathak S, Premkumar M, Sarpparajan CV, Balaji ER, Duttaroy AK, Banerjee A. A brief overview of SARS-CoV-2 infection and its management strategies: a recent update. Mol Cell Biochem 2024; 479:2195-2215. [PMID: 37742314 PMCID: PMC11371863 DOI: 10.1007/s11010-023-04848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/02/2023] [Indexed: 09/26/2023]
Abstract
The COVID-19 pandemic has become a global health crisis, inflicting substantial morbidity and mortality worldwide. A diverse range of symptoms, including fever, cough, dyspnea, and fatigue, characterizes COVID-19. A cytokine surge can exacerbate the disease's severity. This phenomenon involves an increased immune response, marked by the excessive release of inflammatory cytokines like IL-6, IL-8, TNF-α, and IFNγ, leading to tissue damage and organ dysfunction. Efforts to reduce the cytokine surge and its associated complications have garnered significant attention. Standardized management protocols have incorporated treatment strategies, with corticosteroids, chloroquine, and intravenous immunoglobulin taking the forefront. The recent therapeutic intervention has also assisted in novel strategies like repurposing existing medications and the utilization of in vitro drug screening methods to choose effective molecules against viral infections. Beyond acute management, the significance of comprehensive post-COVID-19 management strategies, like remedial measures including nutritional guidance, multidisciplinary care, and follow-up, has become increasingly evident. As the understanding of COVID-19 pathogenesis deepens, it is becoming increasingly evident that a tailored approach to therapy is imperative. This review focuses on effective treatment measures aimed at mitigating COVID-19 severity and highlights the significance of comprehensive COVID-19 management strategies that show promise in the battle against COVID-19.
Collapse
Affiliation(s)
- Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Madhavi Premkumar
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Chitra Veena Sarpparajan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Esther Raichel Balaji
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Asim K Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India.
| |
Collapse
|
47
|
Ravandi F, Subklewe M, Walter RB, Vachhani P, Ossenkoppele G, Buecklein V, Döhner H, Jongen-Lavrencic M, Baldus CD, Fransecky L, Pardee TS, Kantarjian H, Yen PK, Mukundan L, Panwar B, Yago MR, Agarwal S, Khaldoyanidi SK, Stein A. Safety and tolerability of AMG 330 in adults with relapsed/refractory AML: a phase 1a dose-escalation study. Leuk Lymphoma 2024; 65:1281-1291. [PMID: 38712673 DOI: 10.1080/10428194.2024.2346755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
AMG 330, a bispecific T-cell engager (BiTE®) that binds CD33 and CD3 on T cells facilitates T-cell-mediated cytotoxicity against CD33+ cells. This first-in-human, open-label, dose-escalation study evaluated the safety, pharmacokinetics, pharmacodynamics, and preliminary efficacy of AMG 330 in adults with relapsed/refractory acute myeloid leukemia (R/R AML). Amongst 77 patients treated with AMG 330 (0.5 µg/day-1.6 mg/day) on 14-day or 28-day cycles, maximum tolerated dose was not reached; median duration of treatment was 29 days. The most frequent treatment-related adverse events were cytokine release syndrome (CRS; 78%) and rash (30%); 10% of patients experienced grade 3/4 CRS. CRS was mitigated with stepwise dosing of AMG 330, prophylactic dexamethasone, and early treatment with tocilizumab. Among 60 evaluable patients, eight achieved complete remission or morphologic leukemia-free state; of the 52 non-responders, 37% had ≥50% reduction in AML bone marrow blasts. AMG 330 is a promising CD33-targeted therapeutic strategy for R/R AML.
Collapse
MESH Headings
- Humans
- Male
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/diagnosis
- Female
- Middle Aged
- Adult
- Aged
- Antibodies, Bispecific/administration & dosage
- Antibodies, Bispecific/adverse effects
- Antibodies, Bispecific/therapeutic use
- Treatment Outcome
- Young Adult
- Maximum Tolerated Dose
- Drug Resistance, Neoplasm/drug effects
- Sialic Acid Binding Ig-like Lectin 3/metabolism
- Recurrence
- Aged, 80 and over
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/pathology
- Dose-Response Relationship, Drug
- Cytokine Release Syndrome/etiology
Collapse
Affiliation(s)
- Farhad Ravandi
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Research, Gene Center, LMU Munich, Munich, Germany
| | - Roland B Walter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Pankit Vachhani
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Veit Buecklein
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Research, Gene Center, LMU Munich, Munich, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Mojca Jongen-Lavrencic
- Department of Hematology, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Claudia D Baldus
- Department of Internal Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lars Fransecky
- Department of Internal Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Timothy S Pardee
- Department of Internal Medicine, Section on Hematology and Oncology, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Hagop Kantarjian
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | - Anthony Stein
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
48
|
Kuruvilla D, Huynh T, Nester M, Chose C, Zervoudakis G, Letson GD, Joyce DM, Binitie OT, Figura NB, Costello JR, Freeman CL, Lazarides AL. Management of bone disease with concurrent chimeric antigen receptor T-cell therapy for multiple myeloma. Crit Rev Oncol Hematol 2024; 201:104429. [PMID: 38942219 DOI: 10.1016/j.critrevonc.2024.104429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024] Open
Abstract
In the intricate landscape of multiple myeloma, a hematologic malignancy of plasma cells, bone disease presents a pivotal and often debilitating complication. The emergence of Chimeric Antigen Receptor T-cell (CAR-T) therapy has marked a pivotal shift in the therapeutic landscape, offering novel avenues for the management of MM, particularly for those with relapsed or refractory disease. This innovative treatment modality not only targets malignant cells with precision but also influences the bone microenvironment, presenting both challenges and opportunities in patient care. In this comprehensive review, we aim to examine the multifaceted aspects of bone disease in patients with multiple myeloma and concurrent CAR-T therapy, highlighting its clinical ramifications and the latest advancements in diagnostic modalities and therapeutic interventions. The article aims to synthesize current understanding of the interplay between myeloma cells, CAR-T cells, and the bone microenvironment in the context of current treatment strategies in this challenging and unique patient population.
Collapse
Affiliation(s)
- Davis Kuruvilla
- University of South Florida, Morsani College of Medicine, Tampa, FL, United States.
| | - Thien Huynh
- University of South Florida, Morsani College of Medicine, Tampa, FL, United States.
| | - Matthew Nester
- University of South Florida, Morsani College of Medicine, Tampa, FL, United States.
| | - Chloe Chose
- University of South Florida, Morsani College of Medicine, Tampa, FL, United States.
| | | | - G Douglas Letson
- Department of Sarcoma, Moffitt Cancer Center, Tampa, FL, United States.
| | - David M Joyce
- Department of Sarcoma, Moffitt Cancer Center, Tampa, FL, United States.
| | - Odion T Binitie
- Department of Sarcoma, Moffitt Cancer Center, Tampa, FL, United States.
| | - Nicholas B Figura
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, United States.
| | - James R Costello
- Department of Diagnostic Imaging and Intervention, Moffitt Cancer Center, Tampa, FL, United States.
| | - Ciara L Freeman
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, United States.
| | | |
Collapse
|
49
|
Li J, Chen H, Xu C, Hu M, Li J, Chang W. Systemic toxicity of CAR-T therapy and potential monitoring indicators for toxicity prevention. Front Immunol 2024; 15:1422591. [PMID: 39253080 PMCID: PMC11381299 DOI: 10.3389/fimmu.2024.1422591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Malignant tumors of the hematologic system have a high degree of malignancy and high mortality rates. Chimeric antigen receptor T cell (CAR-T) therapy has become an important option for patients with relapsed/refractory tumors, showing astonishing therapeutic effects and thus, it has brought new hope to the treatment of malignant tumors of the hematologic system. Despite the significant therapeutic effects of CAR-T, its toxic reactions, such as Cytokine Release Syndrome (CRS) and Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS), cannot be ignored since they can cause damage to multiple systems, including the cardiovascular system. We summarize biomarkers related to prediction, diagnosis, therapeutic efficacy, and prognosis, further exploring potential monitoring indicators for toxicity prevention. This review aims to summarize the effects of CAR-T therapy on the cardiovascular, hematologic, and nervous systems, as well as potential biomarkers, and to explore potential monitoring indicators for preventing toxicity, thereby providing references for clinical regulation and assessment of therapeutic effects.
Collapse
Affiliation(s)
- Jingxian Li
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Huiguang Chen
- Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Chaoping Xu
- Department of Hematology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Mengci Hu
- Department of Hematology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jiangping Li
- Department of Blood Transfusion, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Wei Chang
- Department of Hematology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
50
|
Lin S, Zhang Y, Yao J, Yang J, Qiu Y, Zhu Z, Hua H. DB-1314, a novel DLL3-targeting ADC with DNA topoisomerase I inhibitor, exhibits promising safety profile and therapeutic efficacy in preclinical small cell lung cancer models. J Transl Med 2024; 22:766. [PMID: 39143619 PMCID: PMC11323672 DOI: 10.1186/s12967-024-05568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Delta-like ligand 3 (DLL3) is highly expressed on the cell surface of small cell lung cancer (SCLC), one of the most lethal malignancies, but minimally or not in normal tissues, making it an attractive target for SCLC. However, none of the DLL3-targeting antibody-drug conjugates (ADCs) have been approved for SCLC therapy yet. We developed DB-1314, the new anti-DLL3 ADC composed of a novel humanized anti-DLL3 monoclonal antibody (DB131401) conjugated with eight molecules of P1021 (topoisomerase I inhibitor), and described its preclinical profiles. METHODS The binding epitope for DB131401 and Rovalpituzumab was tested by biolayer interferometry. The binding affinity and specificity of DB-1314 to DLL3 and other homologous proteins were respectively measured by surface plasmon resonance and enzyme-linked immunosorbent assay. Internalization, bystander effects, and antibody-dependent cell-mediated cytotoxicity (ADCC) were assessed by respective assay. DLL3 was quantified by antibodies bound per cell assay and immunohistochemistry. In vitro and in vivo growth inhibition studies were evaluated in SCLC cell lines, and cell line/patient-derived xenograft models. The safety profile was measured in cynomolgus monkeys. RESULTS DB-1314 induces potent, durable, and dose-dependent antitumor effects in cells in vitro and in cell/patient-derived xenograft models in vivo. The killing activity of DB-1314 mechanically arises from P1021-induced DNA damage, whereby P1021 is delivered and released within tumor cells through DLL3-specific binding and efficient internalization. Bystander effects and ADCC also contribute to the antitumor activity of DB-1314. DB-1314 displays favorable pharmacokinetic and toxicokinetic profiles in rats and cynomolgus monkeys; besides, DB-1314 is well-tolerated at a dose of up to 60 mg/kg in monkeys. CONCLUSIONS These results suggest that DB-1314 may be a candidate ADC targeting DLL3 for the treatment of DLL3-positive SCLC, supporting further evaluation in the clinical setting.
Collapse
Affiliation(s)
- Shengchao Lin
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Unite, 1106, 201204, Shanghai, P.R. China.
| | - Yu Zhang
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Unite, 1106, 201204, Shanghai, P.R. China
| | - Jun Yao
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Unite, 1106, 201204, Shanghai, P.R. China
| | - Junjie Yang
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Unite, 1106, 201204, Shanghai, P.R. China
| | - Yang Qiu
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Unite, 1106, 201204, Shanghai, P.R. China
| | - Zhongyuan Zhu
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Unite, 1106, 201204, Shanghai, P.R. China
| | - Haiqing Hua
- Department of Research and Development, Duality Biologics, LTD, Unite 1106 868 Yinghua Road, Unite, 1106, 201204, Shanghai, P.R. China.
| |
Collapse
|