1
|
Zhou H, Zou J, Han J, Zhou A, Huang S. P4HA3 promotes colon cancer cell escape from macrophage phagocytosis by increasing phagocytosis immune checkpoint CD47 expression. Mol Cell Biochem 2024; 479:3355-3374. [PMID: 38347264 DOI: 10.1007/s11010-024-04927-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/05/2024] [Indexed: 10/26/2024]
Abstract
Cancer immunotherapies have greatly changed the prospects for the therapy of many malignancies, including colon cancer. Macrophages as the effectors of cancer immunotherapy provide considerable promise for cancer treatment. Prolyl 4-hydroxylase subunit alpha 3 (P4HA3) plays a cancer-promoting role in a variety of cancers, including colon cancer. In the present work, we provided evidence for the first time that P4HA3 promoted colon cancer cell escape from macrophage phagocytosis, and preliminarily explored its possible molecular mechanism. Immunohistochemistry was used to detect the expression of P4HA3 in tissues. Bioinformatics methods were used to analyze the tumor public databases (including TCGA database and GEO database). Macrophage phagocytosis assay and flow cytometric analysis were used to detect the phagocytic capacity of macrophages. Western blot and qRT-PCR were used to detect the expression of related markers (such as P4HA3, CD47, CD24, IL-34, and M-CSF). First, we found that P4HA3 was significantly and highly expressed in both colon cancer tissues and cells, and that P4HA3 had a positive correlation with lymph node metastasis, Dukes stage and also strongly correlated with poorer survival. Subsequently, we found that P4HA3 was strongly associated with the macrophage infiltration level in colon cancer. Immediately we also found that decreasing P4HA3 expression promoted macrophage phagocytosis in colon cancer cells, whereas P4HA3 overexpression produced the opposite effect. Finally, we demonstrated that P4HA3 promoted the expression of cluster of differentiation 47 (CD47) in colon cancer cells. Moreover, P4HA3 caused colon cancer cells to secrete Interleukin 34 (IL34) and Macrophage colony stimulating factor (M-CSF), which further induced macrophages to differentiate to M2 type and thereby contributed to the progression of colon cancer. We have demonstrated that P4HA3-driven CD47 overexpression may act as an escape mechanism, causing colon cancer cells to evade phagocytosis from macrophages.
Collapse
Affiliation(s)
- Hailang Zhou
- Department of Gastroenterology, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huaian, 223400, Jiangsu, People's Republic of China
- The Institute of Life Sciences, Jiangsu College of Nursing, Huaian, 223300, Jiangsu, People's Republic of China
| | - Junwei Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China
| | - Jingli Han
- Department of Gastroenterology, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huaian, 223400, Jiangsu, People's Republic of China
| | - Aijun Zhou
- Department of Gastroenterology, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huaian, 223400, Jiangsu, People's Republic of China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, School of Clinical Medicine, Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, People's Republic of China.
| | - Shu Huang
- Department of Gastroenterology, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huaian, 223400, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Tran HCM, Mbemba E, Mourot N, Faltas B, Rousseau A, Lefkou E, Sabbah M, van Dreden P, Gerotziafas G. The procoagulant signature of cancer cells drives fibrin network formation in tumor microenvironment and impacts its quality. Implications in cancer cell migration and the resistance to anticancer agents. Thromb Res 2024; 238:172-183. [PMID: 38723522 DOI: 10.1016/j.thromres.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Cancer cells induce hypercoagulability in the tumoral microenvironment by expressing Tissue Factor (TF). We aimed to study the impact of the procoagulant signature of cancer cells on the quality and structure of fibrin network. We also studied the impact of fibrin clot shield (FCS) on the efficiency of anticancer agents and the migration of cancer cells. MATERIALS AND METHODS Pancreatic cancer cells BXPC3 and breast cancer cells MDA-MB231 and MCF7, were cultured in the presence of normal Platelet Poor Plasma (PPP), diluted 10 % in conditioning media. Their potential to induce thrombin generation and their fibrinolytic activity were assessed. The structure of fibrin network was analyzed with Scanning Electron Microscopy (SEM). Cancer cells' mobility with fibrin clot and their interactions with fibrin were observed. Cancer cells were treated with paclitaxel (PTX) or 4-hydroxy-tamoxifen (4OHTam) in the presence or absence of FCS. RESULTS Cancer cells, in presence of PPP, induced fibrin network formation. High TF-expressing cancer cells (BXPC3 and MDA-MB23 cells), led to dense fibrin network with fine fibers. Low TF expressing cells MCF7 led to thick fibers. Exogenous TF enhanced the density of fibrin network formed by MCF7 cells. Cancer cells through their inherent profibrinolytic potential migrated within the fiber scaffold. The BXPC3 and MCF7 cells moved in clusters whereas the MDA-MB231 cells moved individually within the fibrin network. FCS decreased the efficiency of PTX and 4OHTam on the viability of cancer cells. CONCLUSIONS The procoagulant signature of cancer cells is determinant for the quality and structure of fibrin network in the microenvironment. Original SEM images show the architecture of "bird's nest"-like fibrin network being in touch with the cell membranes and surrounding cancer cells. Fibrin network constructed by triggering thrombin generation by cancer cells, provides a scaffold for cell migration. Fibrin clot shields protect cancer cells against PTX and 4OHTam.
Collapse
Affiliation(s)
- Huong Chi Mai Tran
- Sorbonne University, INSERM UMR_S_938, Saint-Antoine Research Center (CRSA), Team "Cancer Biology and Therapeutics", Group "Cancer - Angiogenesis - Thrombosis", University Institute of Cancerology (UIC), 34 Rue du Crozatier, F-75012 Paris, France; Clinical Research Department, Diagnostica Stago, 125 Avenue Louis Roche, 92230 Gennevilliers, France
| | - Elisabeth Mbemba
- Sorbonne University, INSERM UMR_S_938, Saint-Antoine Research Center (CRSA), Team "Cancer Biology and Therapeutics", Group "Cancer - Angiogenesis - Thrombosis", University Institute of Cancerology (UIC), 34 Rue du Crozatier, F-75012 Paris, France
| | - Noémie Mourot
- Sorbonne University, INSERM UMR_S_938, Saint-Antoine Research Center (CRSA), Team "Cancer Biology and Therapeutics", Group "Cancer - Angiogenesis - Thrombosis", University Institute of Cancerology (UIC), 34 Rue du Crozatier, F-75012 Paris, France
| | - Beshoy Faltas
- Sorbonne University, INSERM UMR_S_938, Saint-Antoine Research Center (CRSA), Team "Cancer Biology and Therapeutics", Group "Cancer - Angiogenesis - Thrombosis", University Institute of Cancerology (UIC), 34 Rue du Crozatier, F-75012 Paris, France
| | - Aurélie Rousseau
- Clinical Research Department, Diagnostica Stago, 125 Avenue Louis Roche, 92230 Gennevilliers, France
| | - Elmina Lefkou
- Sorbonne University, INSERM UMR_S_938, Saint-Antoine Research Center (CRSA), Team "Cancer Biology and Therapeutics", Group "Cancer - Angiogenesis - Thrombosis", University Institute of Cancerology (UIC), 34 Rue du Crozatier, F-75012 Paris, France
| | - Michèle Sabbah
- Sorbonne University, INSERM UMR_S_938, Saint-Antoine Research Center (CRSA), Team "Cancer Biology and Therapeutics", Group "Cancer - Angiogenesis - Thrombosis", University Institute of Cancerology (UIC), 34 Rue du Crozatier, F-75012 Paris, France
| | - Patrick van Dreden
- Sorbonne University, INSERM UMR_S_938, Saint-Antoine Research Center (CRSA), Team "Cancer Biology and Therapeutics", Group "Cancer - Angiogenesis - Thrombosis", University Institute of Cancerology (UIC), 34 Rue du Crozatier, F-75012 Paris, France; Clinical Research Department, Diagnostica Stago, 125 Avenue Louis Roche, 92230 Gennevilliers, France
| | - Grigoris Gerotziafas
- Sorbonne University, INSERM UMR_S_938, Saint-Antoine Research Center (CRSA), Team "Cancer Biology and Therapeutics", Group "Cancer - Angiogenesis - Thrombosis", University Institute of Cancerology (UIC), 34 Rue du Crozatier, F-75012 Paris, France; Thrombosis Center, Tenon - Saint Antoine University Hospital,Hôpitaux Universitaires Est Parisien, Assitance Publique Hôpitaix de Paris (AP-HP), 4 Rue de la Chine, 75020 Paris, France.
| |
Collapse
|
4
|
Yu KX, Yuan WJ, Wang HZ, Li YX. Extracellular matrix stiffness and tumor-associated macrophage polarization: new fields affecting immune exclusion. Cancer Immunol Immunother 2024; 73:115. [PMID: 38693304 PMCID: PMC11063025 DOI: 10.1007/s00262-024-03675-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/12/2024] [Indexed: 05/03/2024]
Abstract
In the malignant progression of tumors, there is deposition and cross-linking of collagen, as well as an increase in hyaluronic acid content, which can lead to an increase in extracellular matrix stiffness. Recent research evidence have shown that the extracellular matrix plays an important role in angiogenesis, cell proliferation, migration, immunosuppression, apoptosis, metabolism, and resistance to chemotherapeutic by the alterations toward both secretion and degradation. The clinical importance of tumor-associated macrophage is increasingly recognized, and macrophage polarization plays a central role in a series of tumor immune processes through internal signal cascade, thus regulating tumor progression. Immunotherapy has gradually become a reliable potential treatment strategy for conventional chemotherapy resistance and advanced cancer patients, but the presence of immune exclusion has become a major obstacle to treatment effectiveness, and the reasons for their resistance to these approaches remain uncertain. Currently, there is a lack of exact mechanism on the regulation of extracellular matrix stiffness and tumor-associated macrophage polarization on immune exclusion. An in-depth understanding of the relationship between extracellular matrix stiffness, tumor-associated macrophage polarization, and immune exclusion will help reveal new therapeutic targets and guide the development of clinical treatment methods for advanced cancer patients. This review summarized the different pathways and potential molecular mechanisms of extracellular matrix stiffness and tumor-associated macrophage polarization involved in immune exclusion and provided available strategies to address immune exclusion.
Collapse
Affiliation(s)
- Ke-Xun Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wei-Jie Yuan
- Department of Gastrointestinal Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Hui-Zhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yong-Xiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
5
|
Liu B, Du F, Feng Z, Xiang X, Guo R, Ma L, Zhu B, Qiu L. Ultrasound-augmented cancer immunotherapy. J Mater Chem B 2024; 12:3636-3658. [PMID: 38529593 DOI: 10.1039/d3tb02705h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Cancer is a growing worldwide health problem with the most broadly studied treatments, in which immunotherapy has made notable advancements in recent years. However, innumerable patients have presented a poor response to immunotherapy and simultaneously experienced immune-related adverse events, with failed therapeutic results and increased mortality rates. Consequently, it is crucial to develop alternate tactics to boost therapeutic effects without producing negative side effects. Ultrasound is considered to possess significant therapeutic potential in the antitumor field because of its inherent characteristics, including cavitation, pyrolysis, and sonoporation. Herein, this timely review presents the comprehensive and systematic research progress of ultrasound-enhanced cancer immunotherapy, focusing on the various ultrasound-related mechanisms and strategies. Moreover, this review summarizes the design and application of current sonosensitizers based on sonodynamic therapy, with an attempt to provide guidance on new directions for future cancer therapy.
Collapse
Affiliation(s)
- Bingjie Liu
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Fangxue Du
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Ziyan Feng
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xi Xiang
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Ruiqian Guo
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Lang Ma
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Bihui Zhu
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Li Qiu
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Lv D, Fei Y, Chen H, Wang J, Han W, Cui B, Feng Y, Zhang P, Chen J. Crosstalk between T lymphocyte and extracellular matrix in tumor microenvironment. Front Immunol 2024; 15:1340702. [PMID: 38690275 PMCID: PMC11058664 DOI: 10.3389/fimmu.2024.1340702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
The extracellular matrix (ECM) is a complex three-dimensional structure composed of proteins, glycans, and proteoglycans, constituting a critical component of the tumor microenvironment. Complex interactions among immune cells, extracellular matrix, and tumor cells promote tumor development and metastasis, consequently influencing therapeutic efficacy. Hence, elucidating these interaction mechanisms is pivotal for precision cancer therapy. T lymphocytes are an important component of the immune system, exerting direct anti-tumor effects by attacking tumor cells or releasing lymphokines to enhance immune effects. The ECM significantly influences T cells function and infiltration within the tumor microenvironment, thereby impacting the behavior and biological characteristics of tumor cells. T cells are involved in regulating the synthesis, degradation, and remodeling of the extracellular matrix through the secretion of cytokines and enzymes. As a result, it affects the proliferation and invasive ability of tumor cells as well as the efficacy of immunotherapy. This review discusses the mechanisms underlying T lymphocyte-ECM interactions in the tumor immune microenvironment and their potential application in immunotherapy. It provides novel insights for the development of innovative tumor therapeutic strategies and drug.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiao Chen
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Kim SI, Joung JG, Kim YN, Park J, Park E, Kim JW, Lee S, Lee JB, Kim S, Choi CH, Kim HS, Lim J, Chung J, Kim BG, Lee JY. Durvalumab with or without tremelimumab plus chemotherapy in HRR non-mutated, platinum-resistant ovarian cancer (KGOG 3045): A phase II umbrella trial. Gynecol Oncol 2024; 182:7-14. [PMID: 38246047 DOI: 10.1016/j.ygyno.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
AIM We investigated the efficacy and safety of durvalumab (D) with or without tremelimumab (T) in addition to single-agent chemotherapy (CT) in patients with platinum-resistant recurrent ovarian cancer (PROC) lacking homologous recombination repair (HRR) gene mutations. PATIENTS AND METHODS KGOG 3045 was an open-label, investigator-initiated phase II umbrella trial. Patients with PROC without HRR gene mutations who had received ≥2 prior lines of therapy were enrolled. Patients with high PD-L1 expression (TPS ≥25%) were assigned to arm A (D + CT), whereas those with low PD-L1 expression were assigned to arm B (D + T75 + CT). After completing arm B recruitment, patients were sequentially assigned to arms C (D + T300 + CT) and D (D + CT). RESULTS Overall, 58 patients were enrolled (5, 18, 17, and 18 patients in arms A, B, C, and D, respectively). The objective response rates were 20.0, 33.3, 29.4, and 22.2%, respectively. Grade 3-4 treatment-related adverse events were observed in 20.0, 66.7, 47.1, and 66.7 of patients, respectively, but were effectively managed. Multivariable analysis demonstrated that adding T to D + CT improved progression-free survival (adjusted HR, 0.435; 95% CI, 0.229-0.824; P = 0.011). Favorable response to chemoimmunotherapy was associated with MUC16 mutation (P = 0.0214), high EPCAM expression (P = 0.020), high matrix remodeling gene signature score (P = 0.017), and low FOXP3 expression (P = 0.047). Patients showing favorable responses to D + T + CT exhibited significantly higher EPCAM expression levels (P = 0.008) and matrix remodeling gene signature scores (P = 0.031) than those receiving D + CT. CONCLUSIONS Dual immunotherapy with chemotherapy showed acceptable response rates and tolerable safety in HRR non-mutated PROC, warranting continued clinical investigation.
Collapse
Affiliation(s)
- Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Je-Gun Joung
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
| | - Yoo-Na Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junsik Park
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eunhyang Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Weon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sungyoung Lee
- Department of Genomic Medicine, Center for Precision Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung Bok Lee
- Department of Clinical Epidemiology & Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Sunghoon Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chel Hun Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinyeong Lim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea; Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | | | - Byoung-Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Shen XT, Xie SZ, Zheng X, Zou TT, Hu BY, Xu J, Liu L, Xu YF, Wang XF, Wang H, Wang S, Zhu L, Yu KK, Zhu WW, Lu L, Zhang JB, Chen JH, Dong QZ, Yang LY, Qin LX. Cirrhotic-extracellular matrix attenuates aPD-1 treatment response by initiating immunosuppressive neutrophil extracellular traps formation in hepatocellular carcinoma. Exp Hematol Oncol 2024; 13:20. [PMID: 38388466 PMCID: PMC10882882 DOI: 10.1186/s40164-024-00476-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is closely associatedwith chronic liver diseases, particularly liver cirrhosis, which has an altered extracellular matrix (ECM) composition. The influence and its mechanism of the cirrhotic-ECM on the response of HCC to immune checkpoint inhibitor (ICI) remains less clarified. METHODS In silico, proteomic and pathological assessment of alteration of cirrhotic-ECM were applied in clinical cohort. Multiple pre-clinical models with ECM manipulation were used to evaluate cirrhotic-ECM's effect on ICI treatment. In silico, flow cytometry and IHC were applied to explore how cirrhotic-ECM affect HCC microenvironment. In vitro and in vivo experiments were carried out to identify the mechanism of how cirrhotic-ECM undermined ICI treatment. RESULTS We defined "a pro-tumor cirrhotic-ECM" which was featured as the up-regulation of collagen type 1 (Col1). Cirrhotic-ECM/Col1 was closely related to impaired T cell function and limited anti PD-1 (aPD-1) response of HCC patients from the TCGA pan cancer cohort and the authors' institution, as well as in multiple pre-clinical models. Mechanically, cirrhotic-ECM/Col1 orchestrated an immunosuppressive microenvironment (TME) by triggering Col1-DDR1-NFκB-CXCL8 axis, which initiated neutrophil extracellular traps (NETs) formation to shield HCC cells from attacking T cells and impede approaching T cells. Nilotinib, an inhibitor of DDR1, reversed the neutrophils/NETs dominant TME and efficiently enhanced the response of HCC to aPD-1. CONCLUSIONS Cirrhotic-ECM modulated a NETs enriched TME in HCC, produced an immune suppressive TME and weakened ICI efficiency. Col1 receptor DDR1 could be a potential target synergically used with ICI to overcome ECM mediated ICI resistance. These provide a mechanical insight and novel strategy to overcome the ICI resistance of HCC.
Collapse
Affiliation(s)
- Xiao-Tian Shen
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Sun-Zhe Xie
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xin Zheng
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Tian-Tian Zou
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Bei-Yuan Hu
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Jing Xu
- Department of Dermatology, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Lu Liu
- Department of Infection Disease, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Yun-Feng Xu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xu-Feng Wang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Hao Wang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Shun Wang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Le Zhu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Kang-Kang Yu
- Department of Infection Disease, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Wen-Wei Zhu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Ju-Bo Zhang
- Department of Infection Disease, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Jin-Hong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Lu-Yu Yang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Cancer Metastasis Institute, Fudan University, Shanghai, China.
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Cancer Metastasis Institute, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Zhou Y, Qin X, Hu Q, Qin S, Xu R, Gu K, Lu H. Cross-talk between disulfidptosis and immune check point genes defines the tumor microenvironment for the prediction of prognosis and immunotherapies in glioblastoma. Sci Rep 2024; 14:3901. [PMID: 38365809 PMCID: PMC10873294 DOI: 10.1038/s41598-024-52128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/14/2024] [Indexed: 02/18/2024] Open
Abstract
Disulfidptosis is a condition where dysregulated NAPDH levels and abnormal accumulation of cystine and other disulfides occur in cells with high SLC7A11 expression under glucose deficiency. This disrupts normal formation of disulfide bonds among cytoskeletal proteins, leading to histone skeleton collapse and triggering cellular apoptosis. However, the correlation between disulfidptosis and immune responses in relation to glioblastoma survival rates and immunotherapy sensitivity remains understudied. Therefore, we utilized The Cancer Genome Atlas and The Chinese Glioma Genome Atlas to identify disulfidptosis-related immune checkpoint genes and established an overall survival (OS) prediction model comprising six genes: CD276, TNFRSF 14, TNFSF14, TNFSF4, CD40, and TNFRSF18, which could also be used for predicting immunotherapy sensitivity. We identified a cohort of glioblastoma patients classified as high-risk, which exhibited an upregulation of angiogenesis, extracellular matrix remodeling, and epithelial-mesenchymal transition as well as an immunosuppressive tumor microenvironment (TME) enriched with tumor associated macrophages, tumor associated neutrophils, CD8 + T-cell exhaustion. Immunohistochemical staining of CD276 in 144 cases further validated its negative correlation with OS in glioma. Disulfidptosis has the potential to induce chronic inflammation and an immunosuppressive TME in glioblastoma.
Collapse
Affiliation(s)
- Yanjun Zhou
- Department of Radiotherapy and Oncology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, Jiangsu, China.
| | - Xue Qin
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qunchao Hu
- Department of Radiation Oncology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, China, Shanghai
| | - Shaolei Qin
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Ran Xu
- Department of Neurosurgery, Affiliated Hospital of Jiangnan University, Wuxi, 214125, Jiangsu, China
| | - Ke Gu
- Department of Radiotherapy and Oncology, Affiliated Hospital of Jiangnan University, Wuxi, 214000, Jiangsu, China.
| | - Hua Lu
- Department of Neurosurgery, Affiliated Hospital of Jiangnan University, Wuxi, 214125, Jiangsu, China.
| |
Collapse
|
10
|
Ma Z, Chen M, Liu X, Cui H. Identification and verification of a prognostic autophagy-related gene signature in hepatocellular carcinoma. Sci Rep 2024; 14:3032. [PMID: 38321105 PMCID: PMC10847443 DOI: 10.1038/s41598-024-53565-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/02/2024] [Indexed: 02/08/2024] Open
Abstract
This study aimed to investigate the potential of autophagy-related genes (ATGs) as a prognostic signature for HCC and explore their relationships with immune cells and immune checkpoint molecules. A total of 483 samples were collected from the GEO database (n = 115) and The Cancer Genome Atlas (TCGA) database (n = 368). The GEO dataset was used as the training set, while the TCGA dataset was used for validation. The list of ATGs was obtained from the human autophagy database (HADB). Using Cox regression and LASSO regression methods, a prognostic signature based on ATGs was established. The independent use of this prognostic signature was tested through subgroup analysis. Additionally, the predictive value of this signature for immune-related profiles was explored. Following selection through univariate Cox regression analysis and iterative LASSO Cox analysis, a total of 11 ATGs were used in the GEO dataset to establish a prognostic signature that stratified patients into high- and low-risk groups based on survival. The robustness of this prognostic signature was validated using an external dataset. This signature remained a prognostic factor even in subgroups with different clinical features. Analysis of immune profiles revealed that patients in the high-risk group exhibited immunosuppressive states characterized by lower immune scores and ESTIMATE scores, greater tumour purity, and increased expression of immune checkpoint molecules. Furthermore, this signature was found to be correlated with the infiltration of different immune cell subpopulations. The results suggest that the ATG-based signature can be utilized to evaluate the prognosis of HCC patients and predict the immune status within the tumour microenvironment (TME). However, it is important to note that this study represents a preliminary attempt to use ATGs as prognostic indicators for HCC, and further validation is necessary to determine the predictive power of this signature.
Collapse
Affiliation(s)
- Zhen Ma
- The Second Clinical Medical School, Lanzhou University, No. 82, Cuiyingmen, Chengguan District, Lanzhou City, 730000, Gansu Province, China
- The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, 730030, China
| | - Mali Chen
- Department of Obstetrics, Gansu Provincial Maternity and Child-Care Hospital, 143 North Street, Qilihe District, Lanzhou City, 730030, Gansu Province, People's Republic of China
| | - XiaoLong Liu
- The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Hongbin Cui
- The Second Hospital of Lanzhou University, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
11
|
Ramzy A, Soliman AH, Hassanein SI, Sebak AA. Multitarget, multiagent PLGA nanoparticles for simultaneous tumor eradication and TME remodeling in a melanoma mouse model. Drug Deliv Transl Res 2024; 14:491-509. [PMID: 37612575 PMCID: PMC10761550 DOI: 10.1007/s13346-023-01413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
Despite the fact that chemoimmunotherapy has emerged as a key component in the era of cancer immunotherapy, it is challenged by the complex tumor microenvironment (TME) that is jam-packed with cellular and non-cellular immunosuppressive components. The aim of this study was to design a nanoparticulate system capable of sufficiently accumulating in the tumor and spleen to mediate local and systemic immune responses, respectively. The study also aimed to remodel the immunosuppressive TME. For such reasons, multi-functional polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) were engineered to simultaneously eradicate the cancer cells, silence the tumor-associated fibroblasts (TAFs), and re-educate the tumor-associated macrophages (TAMs) using doxorubicin, losartan, and metformin, respectively. These agents were also selected for their ability to tip the balance of the splenic immune cells towards immunostimulatory phenotypes. To establish TAM and TAF cultures, normal macrophages and fibroblasts were incubated with B16F10 melanoma cell (Mel)-derived secretome. Drug-loaded PLGA NPs were prepared, characterized, and tested in the target cell types. Organ distribution of fluorescein-loaded PLGA NPs was evaluated in a mouse model of melanoma. Finally, the local and systemic effects of different combination therapy programs were portrayed. The in vitro studies showed that the drug-loaded PLGA NPs could significantly ablate the immunosuppressive nature of Mel and skew TAMs and TAFs towards more favorable phenotypes. While in vivo, PLGA NPs were proven to exhibit long blood circulation time and to localize preferentially in the tumor and the spleen. The combination of either metformin or losartan with doxorubicin was superior to the monotherapy, both locally and systemically. However, the three-agent combo produced detrimental effects in the form of compromised well-being, immune depletion, and metastasis. These findings indicate the potential of TME remodeling as means to prime the tumors for successful chemoimmunotherapy. In addition, they shed light on the importance of the careful use of combination therapies and the necessity of employing dose-reduction strategies. D-NPs doxorubicin-loaded NPs, M-NPs metformin-loaded NPs, L-NPs losartan-loaded NPs, TAMs tumor-associated macrophages, TAFs tumor-associated fibroblasts, PD-L1 programmed death ligand 1, TNF-α tumor necrosis factor alpha, TGF-β transforming growth factor beta, CD206/40/86 cluster of differentiation 206/40/86, α-SMA alpha-smooth muscle actin, MMPs matrix metalloproteases.
Collapse
Affiliation(s)
- Asmaa Ramzy
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, New Cairo, 11511, Egypt
| | - Aya H Soliman
- Department of Pharmaceutical Biology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, New Cairo, 11511, Egypt
| | - Sally I Hassanein
- Department of Biochemistry, Faculty of Pharmacy & Biotechnology, the German University in Cairo, New Cairo, 11511, Egypt
| | - Aya A Sebak
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, the German University in Cairo, New Cairo, 11511, Egypt.
| |
Collapse
|
12
|
Abenavoli EM, Linguanti F, Calabretta R, Delgado Bolton RC, Berti V, Lopci E. Clinical Application of ImmunoPET Targeting Checkpoint Inhibitors. Cancers (Basel) 2023; 15:5675. [PMID: 38067379 PMCID: PMC10705400 DOI: 10.3390/cancers15235675] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 10/16/2024] Open
Abstract
In the last decade, monoclonal antibodies (mAbs) targeting CTLA-4, PD-1, or PD-L1 have been developed and immune checkpoint inhibitors (ICIs) have become the main approach in cancer immunotherapy. However, not all patients benefit from ICI therapy and some are at risk of developing treatment-induced side-effects. These aspects, in parallel with the imaging challenges related to response assessments during immunotherapy, have driven scientific research to the discovery of new predictive biomarkers to individualize patients who could benefit from ICIs. In this context, molecular imaging using PET (positron emission tomography), which allows for whole-body tumor visualization, may be a promising non-invasive method for the determination of patients' sensitivity to antibody drugs. Several PET tracers, diverse from 2-[18F]FDG (or 2-Deoxy-2-[18F]fluoroglucose), have been developed to image immune checkpoints (ICs) or key elements of the immune system, although most of them are still in preclinical phases. Herein, we present the current state of the ImmunoPET-targeting of IC proteins with mAbs and antibody fragments, with a main focus on the latest developments in clinical molecular imaging studies of solid tumors. Moreover, given the relevance of the immune system and of tumor-infiltrating lymphocytes in particular in the prediction of the benefit of ICIs, we dedicate a portion of this review to ImmunoPET-targeting T cells.
Collapse
Affiliation(s)
| | - Flavia Linguanti
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy (V.B.)
- Nuclear Medicine Department, Ospedale San Donato, 52100 Arezzo, Italy
| | - Raffaella Calabretta
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Roberto C. Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro, Centre for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
- Servicio Cántabro de Salud, 39011 Santander, Spain
| | - Valentina Berti
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy (V.B.)
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS—Humanitas Research Hospital, 20089 Rozzano, Italy
| |
Collapse
|
13
|
Flies DB, Langermann S, Jensen C, Karsdal MA, Willumsen N. Regulation of tumor immunity and immunotherapy by the tumor collagen extracellular matrix. Front Immunol 2023; 14:1199513. [PMID: 37662958 PMCID: PMC10470046 DOI: 10.3389/fimmu.2023.1199513] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
It has been known for decades that the tumor extracellular matrix (ECM) is dysfunctional leading to loss of tissue architecture and promotion of tumor growth. The altered ECM and tumor fibrogenesis leads to tissue stiffness that act as a physical barrier to immune cell infiltration into the tumor microenvironment (TME). It is becoming increasingly clear that the ECM plays important roles in tumor immune responses. A growing body of data now indicates that ECM components also play a more active role in immune regulation when dysregulated ECM components act as ligands to interact with receptors on immune cells to inhibit immune cell subpopulations in the TME. In addition, immunotherapies such as checkpoint inhibitors that are approved to treat cancer are often hindered by ECM changes. In this review we highlight the ways by which ECM alterations affect and regulate immunity in cancer. More specifically, how collagens and major ECM components, suppress immunity in the complex TME. Finally, we will review how our increased understanding of immune and immunotherapy regulation by the ECM is leading towards novel disruptive strategies to overcome immune suppression.
Collapse
|
14
|
Zhang YC, Zhang YT, Wang Y, Zhao Y, He LJ. What role does PDL1 play in EMT changes in tumors and fibrosis? Front Immunol 2023; 14:1226038. [PMID: 37649487 PMCID: PMC10463740 DOI: 10.3389/fimmu.2023.1226038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Epithelial-mesenchymal transformation (EMT) plays a pivotal role in embryonic development, tissue fibrosis, repair, and tumor invasiveness. Emerging studies have highlighted the close association between EMT and immune checkpoint molecules, particularly programmed cell death ligand 1 (PDL1). PDL1 exerts its influence on EMT through bidirectional regulation. EMT-associated factors, such as YB1, enhance PDL1 expression by directly binding to its promoter. Conversely, PDL1 signaling triggers downstream pathways like PI3K/AKT and MAPK, promoting EMT and facilitating cancer cell migration and invasion. Targeting PDL1 holds promise as a therapeutic strategy for EMT-related diseases, including cancer and fibrosis. Indeed, PDL1 inhibitors, such as pembrolizumab and nivolumab, have shown promising results in clinical trials for various cancers. Recent research has also indicated their potential benefit in fibrosis treatment in reducing fibroblast activation and extracellular matrix deposition, thereby addressing fibrosis. In this review, we examine the multifaceted role of PDL1 in immunomodulation, growth, and fibrosis promotion. We discuss the challenges, mechanisms, and clinical observations related to PDL1, including the limitations of the PD1/PDL1 axis in treatment and PD1-independent intrinsic PDL1 signaling. Our study highlights the dynamic changes in PDL1 expression during the EMT process across various tumor types. Through interplay between PDL1 and EMT, we uncover co-directional alterations, regulatory pathways, and diverse changes resulting from PDL1 intervention in oncology. Additionally, our findings emphasize the dual role of PDL1 in promoting fibrosis and modulating immune responses across multiple diseases, with potential implications for therapeutic approaches. We particularly investigate the therapeutic potential of targeting PDL1 in type II EMT fibrosis: strike balance between fibrosis modulation and immune response regulation. This analysis provides valuable insights into the multifaceted functions of PDL1 and contributes to our understanding of its complex mechanisms and therapeutic implications.
Collapse
Affiliation(s)
- Yun-Chao Zhang
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu-Ting Zhang
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yi Wang
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ya Zhao
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, Xi'an, China
| | - Li-Jie He
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
15
|
Chen W, Wang Y, Gu H, Zhang Y, Chen C, Yu T, Chen T. Molecular characteristics, clinical significance, and immune landscape of extracellular matrix remodeling-associated genes in colorectal cancer. Front Oncol 2023; 13:1109181. [PMID: 37621680 PMCID: PMC10446763 DOI: 10.3389/fonc.2023.1109181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Background Extracellular matrix (ECM) remodeling is one of the hallmark events in cancer and has been shown to be closely related to tumor immunity. Immunotherapy has evolved as an important tool to treat various cancers and improve patient prognosis. The positive response to immunotherapy relies on the unique interaction between cancer and the tumor microenvironment (TME). However, the relationship between ECM remodeling and clinical outcomes, immune cell infiltration, and immunotherapy in colorectal cancer (CRC) remains unknown. Methods We systematically evaluated 69 ECM remodeling-associated genes (EAGs) and comprehensively identified interactions between ECM remodeling and prognosis and the immune microenvironment in CRC patients. The EAG_score was used to quantify the subtype of ECM remodeling in patients. We then assessed their value in predicting prognosis and responding to treatment in CRC. Results After elaborating the molecular characteristics of ECM remodeling-related genes in CRC patients, a model consisting of two ECM remodeling-related genes (MEIS2, SLC2A3) was developed for predicting the prognosis of CRC patients, Receiver Operating Characteristic (ROC) and Kaplan-Meier (K-M) analysis verified its reliable predictive ability. Furthermore, we created a highly reliable nomogram to enhance the clinical feasibility of the EAG_score. Significantly differences in TME and immune function, such as macrophages and CD8+ T cells, were observed between high- and low-risk CRC patients. In addition, drug sensitivity is also strongly related to EAG_score. Conclusion Overall, we developed a prognostic model associated with ECM remodeling, provided meaningful clinical implications for immunotherapy, and facilitated individualized treatment for CRC patients. Further studies are needed to reveal the underlying mechanisms of ECM remodeling in CRC.
Collapse
Affiliation(s)
- Wenlong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yiwen Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haitao Gu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cong Chen
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Yu
- Department of Medical Genetics, School of Basic Medical Science, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Tao Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Ahmad M, Weiswald LB, Poulain L, Denoyelle C, Meryet-Figuiere M. Involvement of lncRNAs in cancer cells migration, invasion and metastasis: cytoskeleton and ECM crosstalk. J Exp Clin Cancer Res 2023; 42:173. [PMID: 37464436 PMCID: PMC10353155 DOI: 10.1186/s13046-023-02741-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Cancer is the main cause of death worldwide and metastasis is a major cause of poor prognosis and cancer-associated mortality. Metastatic conversion of cancer cells is a multiplex process, including EMT through cytoskeleton remodeling and interaction with TME. Tens of thousands of putative lncRNAs have been identified, but the biological functions of most are still to be identified. However, lncRNAs have already emerged as key regulators of gene expression at transcriptional and post-transcriptional level to control gene expression in a spatio-temporal fashion. LncRNA-dependent mechanisms can control cell fates during development and their perturbed expression is associated with the onset and progression of many diseases including cancer. LncRNAs have been involved in each step of cancer cells metastasis through different modes of action. The investigation of lncRNAs different roles in cancer metastasis could possibly lead to the identification of new biomarkers and innovative cancer therapeutic options.
Collapse
Affiliation(s)
- Mohammad Ahmad
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
- Biochemistry Division, Chemistry Department, Faculty of Science, Damanhour University, Damanhour, 14000, Egypt
| | - Louis-Bastien Weiswald
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Laurent Poulain
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Christophe Denoyelle
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Matthieu Meryet-Figuiere
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France.
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France.
| |
Collapse
|
17
|
Minini M, Fouassier L. Cancer-Associated Fibroblasts and Extracellular Matrix: Therapeutical Strategies for Modulating the Cholangiocarcinoma Microenvironment. Curr Oncol 2023; 30:4185-4196. [PMID: 37185432 PMCID: PMC10137461 DOI: 10.3390/curroncol30040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
During the last decade, immunotherapy has radically changed perspectives on anti-tumor treatments. However, solid tumor treatment by immunotherapy has not met expectations. Indeed, poor clinical response to treatment has highlighted the need to understand and avoid immunotherapy resistance. Cholangiocarcinoma (CCA) is the second cause of hepatic cancer-related deaths because of drug inefficacy and chemo-resistance in a majority of patients. Thus, intense research is ongoing to better understand the mechanisms involved in the chemo-resistance processes. The tumor microenvironment (TME) may be involved in tumor therapy resistance by limiting drug access. Indeed, cells such as cancer-associated fibroblasts (CAFs) alter TME by producing in excess an aberrant extracellular matrix (ECM). Interestingly, CAFs are the dominant stromal component in CCA that secrete large amounts of stiff ECM. Stiff ECM could contribute to immune exclusion by limiting anti-tumor T-cells drop-in. Herein, we summarize features, functions, and interactions among CAFs, tumor-associated ECM, and immune cells in TME. Moreover, we discuss the strategies targeting CAFs and the remodeling of the ECM to improve immunotherapy and drug therapies.
Collapse
Affiliation(s)
- Mirko Minini
- Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, INSERM, 75012 Paris, France
| | - Laura Fouassier
- Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, INSERM, 75012 Paris, France
- Association Pour L'étude des Cancers et Affections des Voies Biliaires (ACABi), 75012 Paris, France
| |
Collapse
|
18
|
Dong L, Zhou S, Bai X, He X. Construction of a prognostic model for HCC based on ferroptosis-related lncRNAs expression and its potential to predict the response and irAEs of immunotherapy. Front Pharmacol 2023; 14:1090895. [PMID: 36992841 PMCID: PMC10040586 DOI: 10.3389/fphar.2023.1090895] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Ferroptosis is an iron-dependent programmed cell death process, and studies have confirmed that it plays an important regulatory role in the occurrence and development of various malignancies including hepatocellular carcinoma (HCC). In addition, the role of abnormally expressed long non-coding RNAs (lncRNAs) in regulating and driving the occurrence and development of HCC has attracted more and more attention. However, there is still a lack of research on the role of ferroptosis-related lncRNAs in the prognosis prediction of HCC patients.Method: In this study, we used the Pearson test method to analyze the association between differentially expressed lncRNAs and ferroptosis-related genes in HCC and normal tissues obtained from The Cancer Genome Atlas (TCGA), and found 68 aberrantly expressed and prognosis-related ferroptosis-related lncRNAs. Based on this, we established an HCC prognostic model composed of 12 ferroptosis-related lncRNAs. In addition, HCC patients were divided into a high-risk group and a low-risk group according to the risk score of this 12 ferroptosis-related lncRNAs prognostic model. Gene enrichment analysis indicated that ferroptosis-related lncRNA-based expression signatures may regulate HCC immune microenvironment signaling pathways through ferroptosis, chemical carcinogenesis-reactive oxygen species, and NK cell-mediated cytotoxicity pathways. In addition, immune cell correlation analysis showed that there were significant differences in immune infiltrating cell subtypes, such as Th cells, macrophages, monocytes, and Treg cells between the two groups. In addition, the expression of multiple immune checkpoint molecules was found to be significantly increased in the high-risk group (eg, PD1, CTLA-4, CD86, etc.).Results: Our research provides a new method for predicting prognosis using a ferroptosis-related lncRNA expression signature prognostic model in hepatocellular carcinoma. And it provides new tools for predicting patient response and adverse effects of immunotherapy.Conclusion: In conclusion, ferroptosis-related lncRNA expression signatures can be used to construct a prognostic prediction model to predict the overall survival of HCC patients, and can be used as an independent influencing factor for prognosis. Further analysis showed that ferroptosis-related lncRNAs may affect the efficacy of immunotherapy in patients with HCC by altering the tumor microenvironment, so this model may serve as a new indicator of the response and irAEs of HCC to immunotherapy.
Collapse
Affiliation(s)
- Liangbo Dong
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, China
| | - Shengnan Zhou
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, China
| | - Xuesong Bai
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, China
| | - Xiaodong He
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, China
- *Correspondence: Xiaodong He,
| |
Collapse
|
19
|
Chai R, Su Z, Zhao Y, Liang W. Extracellular matrix-based gene signature for predicting prognosis in colon cancer and immune microenvironment. Transl Cancer Res 2023; 12:321-339. [PMID: 36915600 PMCID: PMC10007896 DOI: 10.21037/tcr-22-2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/08/2022] [Indexed: 02/17/2023]
Abstract
Background The extracellular matrix (ECM) plays a vital role in progression, expansion, and prognosis of malignancies. In this study, we aimed to explore a novel ECM-based prognostic model for patients with colon cancer (CC). Methods ECM-related genes were obtained from Molecular Signatures database. Differential expression analysis was performed using the CC dataset from The Cancer Genome Atlas (TCGA) database. Four ECM-related genes related to overall survival were identified using the Cox regression and LASSO analysis. Then an ECM-related signature was developed and verified in three independent CC cohorts (GSE33882, GSE39582 and GSE29621) from the Gene Expression Omnibus (GEO). A prognostic nomogram was developed incorporating the ECM-related gene signature with clinical risk factors. CIBERSORT was used to explore the immune cell infiltration level. Human Protein Atlas (HPA) database was utilized to validate the expression levels of identified prognostic ECM genes. Results Four ECM-related genes (CXCL13, CXCL14, SFRP5 and THBS4) were identified to develop an ECM-based gene signature and demarcated CC patients into the high- and low-risk groups. In training and validation datasets, patients in the low-risk group had better overall survival outcomes than those in the high-risk group (log-rank P<0.001). In addition, ECM-related signature was significantly associated with consensus molecular subtype 4 (CMS4) as well as other known clinical risk factors such as a higher Tumor, Nodal Involvement, Metastasis (TNM) stage. Moreover, the risk score derived from the ECM-based gene signature could be utilized as an independent prognostic factor for CC patients. A nomogram including the ECM-related gene signature, age and stage was developed to serve clinical practice. CIBERSORT analysis showed immune cell infiltration was different between high- and low-risk groups. The immunohistochemical results derived from HPA indicated differential expression of prognosis-related ECM genes in CC and normal tissues. Conclusions In the present study, a novel risk model based on ECM-signature could effectively reflect individual risk classification and provide potential therapeutic targets for CC patients. Moreover, the prognostic nomogram may help predict individualized survival.
Collapse
Affiliation(s)
- Ruoyang Chai
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengjia Su
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yajie Zhao
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Liang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Pei L, Liu Y, Liu L, Gao S, Gao X, Feng Y, Sun Z, Zhang Y, Wang C. Roles of cancer-associated fibroblasts (CAFs) in anti- PD-1/PD-L1 immunotherapy for solid cancers. Mol Cancer 2023; 22:29. [PMID: 36759842 PMCID: PMC9912573 DOI: 10.1186/s12943-023-01731-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
In recent years, breakthroughs have been made in tumor immunotherapy. However, tumor immunotherapy, particularly anti-PD-1/PD-L1 immune checkpoint inhibitors, is effective in only a small percentage of patients in solid cancer. How to improve the efficiency of cancer immunotherapy is an urgent problem to be solved. As we all know, the state of the tumor microenvironment (TME) is an essential factor affecting the effectiveness of tumor immunotherapy, and the cancer-associated fibroblasts (CAFs) in TME have attracted much attention in recent years. As one of the main components of TME, CAFs interact with cancer cells and immune cells by secreting cytokines and vesicles, participating in ECM remodeling, and finally affecting the immune response process. With the in-depth study of CAFs heterogeneity, new strategies are provided for finding targets of combination immunotherapy and predicting immune efficacy. In this review, we focus on the role of CAFs in the solid cancer immune microenvironment, and then further elaborate on the potential mechanisms and pathways of CAFs influencing anti-PD-1/PD-L1 immunotherapy. In addition, we summarize the potential clinical application value of CAFs-related targets and markers in solid cancers.
Collapse
Affiliation(s)
- Liping Pei
- grid.412633.10000 0004 1799 0733Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yang Liu
- grid.414008.90000 0004 1799 4638Department of Radiotherapy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Lin Liu
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Shuochen Gao
- grid.412633.10000 0004 1799 0733Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Xueyan Gao
- grid.412633.10000 0004 1799 0733Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yudi Feng
- grid.412633.10000 0004 1799 0733Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Zhenqiang Sun
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yan Zhang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Chengzeng Wang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
21
|
Aleman J, Young CD, Karam SD, Wang XJ. Revisiting laminin and extracellular matrix remodeling in metastatic squamous cell carcinoma: What have we learned after more than four decades of research? Mol Carcinog 2023; 62:5-23. [PMID: 35596706 PMCID: PMC9676410 DOI: 10.1002/mc.23417] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023]
Abstract
Patients with squamous cell carcinoma (SCC) have significantly lower survival upon the development of distant metastases. The extracellular matrix (ECM) is a consistent yet dynamic influence on the metastatic capacity of SCCs. The ECM encompasses a milieu of structural proteins, signaling molecules, and enzymes. Just over 40 years ago, the fibrous ECM glycoprotein laminin was identified. Roughly four decades of research have revealed a pivotal role of laminins in metastasis. However, trends in ECM alterations in some cancers have been applied broadly to all metastatic diseases, despite evidence that these characteristics vary by tumor type. We will summarize how laminins influence the SCC metastatic process exclusively. Enhanced laminin protein deposition occurs at the invasive edge of SCC tumors, which correlates with elevated levels of laminin-binding β1 integrins on SCC cells, increased MMP-3 presence, worse prognosis, and lymphatic dissemination. Although these findings are significant, gaps in knowledge of the formation of a premetastatic niche, the processes of intra- and extravasation, and the contributions of the ECM to SCC metastatic cell dormancy persist. Bridging these gaps requires novel in vitro systems and animal models that reproduce tumor-stromal interactions and spontaneous metastasis seen in the clinic. These advances will allow accurate assessment of laminins to predict responders to transforming growth factor-β inhibitors and immunotherapy, as well as potential combinatorial therapies with the standard of care. Such clinical interventions may drastically improve quality of life and patient survival by explicitly targeting SCC metastasis.
Collapse
Affiliation(s)
- John Aleman
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christian D. Young
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado, USA
| |
Collapse
|
22
|
Marangio A, Biccari A, D’Angelo E, Sensi F, Spolverato G, Pucciarelli S, Agostini M. The Study of the Extracellular Matrix in Chronic Inflammation: A Way to Prevent Cancer Initiation? Cancers (Basel) 2022; 14:cancers14235903. [PMID: 36497384 PMCID: PMC9741172 DOI: 10.3390/cancers14235903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Bidirectional communication between cells and their microenvironment has a key function in normal tissue homeostasis, and in disease initiation, progression and a patient's prognosis, at the very least. The extracellular matrix (ECM), as an element of all tissues and cellular microenvironment, is a frequently overlooked component implicated in the pathogenesis and progression of several diseases. In the inflammatory microenvironment (IME), different alterations resulting from remodeling processes can affect ECM, progressively inducing cancer initiation and the passage toward a tumor microenvironment (TME). Indeed, it has been demonstrated that altered ECM components interact with a variety of surface receptors triggering intracellular signaling that affect cellular pathways in turn. This review aims to support the notion that the ECM and its alterations actively participate in the promotion of chronic inflammation and cancer initiation. In conclusion, some data obtained in cancer research with the employment of decellularized ECM (dECM) models are described. The reported results encourage the application of dECM models to investigate the short circuits contributing to the creation of distinct IME, thus representing a potential tool to avoid the progression toward a malignant lesion.
Collapse
Affiliation(s)
- Asia Marangio
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Andrea Biccari
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Edoardo D’Angelo
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Francesca Sensi
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy
| | - Gaya Spolverato
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Salvatore Pucciarelli
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Marco Agostini
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
- Correspondence: ; Tel.: +39-049-964-0160
| |
Collapse
|
23
|
STEAP3 can predict the prognosis and shape the tumor microenvironment of clear cell renal cell carcinoma. BMC Cancer 2022; 22:1204. [PMID: 36424540 PMCID: PMC9686107 DOI: 10.1186/s12885-022-10313-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common malignant tumor of the urinary system characterized by poor prognosis and difficult treatment. It has been reported that iron metabolism dysregulation is a common phenomenon in ccRCC and is closely related to the process of ccRCC. But still now, the exact function and underlying mechanisms of iron metabolism dysregulation in ccRCC have not been fully elucidated. In this study, we comprehensively investigated the prognostic value and potential role of STEAP3 (an iron metabolism-related gene) in ccRCC. STEAP3 is significantly up-regulated in ccRCC. High STEAP3 expression is associated with gender, hemoglobin level, pathological grade, tumor stage and significantly predicts an unfavorable prognosis of ccRCC patients. Functional enrichment analysis and evaluation of the tumor microenvironment indicated that STEAP3 was involved in the remodeling of tumor extracellular matrix and the shaping of an immune-suppressive tumor microenvironment to promote tumor metastasis and evade immune killing. Besides, the expression of STEAP3 is also associated with the expression of various immune checkpoint molecules and the IC50 of targeted drugs. Finally, we verified STEAP3 by RT-qPCR and IHC staining. In conclusion, we found that STEAP3 can serve as a candidate prognostic biomarker for ccRCC, and targeting STEAP3 and its biological processes may provide new references for the individualized treatment of ccRCC.
Collapse
|
24
|
Xu M, Zhang T, Xia R, Wei Y, Wei X. Targeting the tumor stroma for cancer therapy. Mol Cancer 2022; 21:208. [PMID: 36324128 PMCID: PMC9628074 DOI: 10.1186/s12943-022-01670-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Tumors are comprised of both cancer cells and surrounding stromal components. As an essential part of the tumor microenvironment, the tumor stroma is highly dynamic, heterogeneous and commonly tumor-type specific, and it mainly includes noncellular compositions such as the extracellular matrix and the unique cancer-associated vascular system as well as a wide variety of cellular components including activated cancer-associated fibroblasts, mesenchymal stromal cells, pericytes. All these elements operate with each other in a coordinated fashion and collectively promote cancer initiation, progression, metastasis and therapeutic resistance. Over the past few decades, numerous studies have been conducted to study the interaction and crosstalk between stromal components and neoplastic cells. Meanwhile, we have also witnessed an exponential increase in the investigation and recognition of the critical roles of tumor stroma in solid tumors. A series of clinical trials targeting the tumor stroma have been launched continually. In this review, we introduce and discuss current advances in the understanding of various stromal elements and their roles in cancers. We also elaborate on potential novel approaches for tumor-stroma-based therapeutic targeting, with the aim to promote the leap from bench to bedside.
Collapse
Affiliation(s)
- Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Tao Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Ruolan Xia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China.
| |
Collapse
|
25
|
Li X, Li L, Zhou K, Zhang H, Maalim AA, Chen X, He X, Ding X, Xu C, Wang Y. Glioma Shapes Blood–Brain Barrier Integrity and Remodels the Tumor Microenvironment: Links with Clinical Features and Prognosis. J Clin Med 2022; 11:jcm11195863. [PMID: 36233730 PMCID: PMC9570525 DOI: 10.3390/jcm11195863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The presence of the blood–brain barrier (BBB) uniquely distinguishes the brain from other organs, and various brain pathologies, including cancer, can disrupt or breach the BBB. The specific implications of BBB alterations in glioma have not been sufficiently clarified. Methods: In this study, statistical analysis of the TCGA pan-glioma dataset and four other validation cohorts was used to investigate the infiltration of BBB constituent cells (endothelial cells, pericytes and astrocytes) in the glioma tumor microenvironment (TME). Results: We found that the infiltration proportions of the three BBB constituent cell types were highly collinear, which implied alteration of the BBB. Hence, we developed an index, the BBB score, which is calculated based on the infiltration proportion of BBB constituent cells. Furthermore, we observed that patients with higher BBB scores were more likely to be diagnosed with more malignant entities in the TCGA database according to significant molecular features, such as IDH mutation status and 1p/19q deletion. The BBB score was also strikingly positively correlated with WHO grade in other cohorts. More importantly, a higher BBB score correlated with shorter survival time and unfavorable prognosis in glioma patients. Finally, we showed that TME-related pathways may regulate BBB alterations and that coinhibitory immune checkpoints were enriched in samples with higher BBB scores. Conclusions: We showed that TME-related pathways may regulate BBB alterations and that coinhibitory immune checkpoints were enriched in samples with higher BBB scores. Assessing BBB alterations may help elucidate the complex role of the glioma TME and suggest new combination treatment strategies.
Collapse
Affiliation(s)
- Xiaokai Li
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guizhou Cancer Hospital, Guiyang 550008, China
| | - Lei Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Zhou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hanyang 3rd School, Wuhan Economic & Technological Development Zone, Wuhan 430030, China
| | - Huixiang Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ali Abdi Maalim
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xingyu Chen
- Department of Physiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ximiao He
- Department of Physiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinmin Ding
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Correspondence: (X.D.); (C.X.); (Y.W.)
| | - Chuanrui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (X.D.); (C.X.); (Y.W.)
| | - Yonghong Wang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Correspondence: (X.D.); (C.X.); (Y.W.)
| |
Collapse
|
26
|
Santiago-Sánchez GS, Hodge JW, Fabian KP. Tipping the scales: Immunotherapeutic strategies that disrupt immunosuppression and promote immune activation. Front Immunol 2022; 13:993624. [PMID: 36159809 PMCID: PMC9492957 DOI: 10.3389/fimmu.2022.993624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy has emerged as an effective therapeutic approach for several cancer types. However, only a subset of patients exhibits a durable response due in part to immunosuppressive mechanisms that allow tumor cells to evade destruction by immune cells. One of the hallmarks of immune suppression is the paucity of tumor-infiltrating lymphocytes (TILs), characterized by low numbers of effector CD4+ and CD8+ T cells in the tumor microenvironment (TME). Additionally, the proper activation and function of lymphocytes that successfully infiltrate the tumor are hampered by the lack of co-stimulatory molecules and the increase in inhibitory factors. These contribute to the imbalance of effector functions by natural killer (NK) and T cells and the immunosuppressive functions by myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) in the TME, resulting in a dysfunctional anti-tumor immune response. Therefore, therapeutic regimens that elicit immune responses and reverse immune dysfunction are required to counter immune suppression in the TME and allow for the re-establishment of proper immune surveillance. Immuno-oncology (IO) agents, such as immune checkpoint blockade and TGF-β trapping molecules, have been developed to decrease or block suppressive factors to enable the activity of effector cells in the TME. Therapeutic agents that target immunosuppressive cells, either by direct lysis or altering their functions, have also been demonstrated to decrease the barrier to effective immune response. Other therapies, such as tumor antigen-specific vaccines and immunocytokines, have been shown to activate and improve the recruitment of CD4+ and CD8+ T cells to the tumor, resulting in improved T effector to Treg ratio. The preclinical data on these diverse IO agents have led to the development of ongoing phase I and II clinical trials. This review aims to provide an overview of select therapeutic strategies that tip the balance from immunosuppression to immune activity in the TME.
Collapse
|
27
|
Wang X, Shi X, Lu H, Zhang C, Li X, Zhang T, Shen J, Wen J. Succinylation Inhibits the Enzymatic Hydrolysis of the Extracellular Matrix Protein Fibrillin 1 and Promotes Gastric Cancer Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200546. [PMID: 35901491 PMCID: PMC9507347 DOI: 10.1002/advs.202200546] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Extracellular matrix (ECM) remodeling is crucial in the regulation of gastric cancer (GC) progression. This work aims to reveal novel posttranslational modifications and their relevant mechanisms in GC. In 3D matrix culture and animal models, it is found that fibrillin 1 (FBN1) expression is increased in advanced GC and has succinylation modification. The succinylation modification of FBN1 blocks its degradation by matrix metalloproteinases (MMPs). The long-term accumulation and deposition of FBN1 enhance tumor progression by activating TGF-β1 and intracellular PI3K/Akt pathway. The FBN1 succinylation site monoclonal antibody can effectively intervene the effect of succinylation modification and inhibit GC progression. FBN1 is specifically upregulated in the progression of GC compared with other tumors. In conclusion, FBN1 is widely present in the form of K672-succinylated modifications in GC. Besides, the succinyl group of FBN1 blocks its binding to MMP2, inhibits its degradation by MMP2, and leads to the accumulation of FBN1, which poses a long-term risk to the poor prognosis of GC.
Collapse
Affiliation(s)
- Xingyun Wang
- Department of General SurgeryFirst Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
- Hongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineNo. 1111, XianXia RoadShanghai200336China
| | - Xiao Shi
- Department of GastroenterologyZhongda HospitalSchool of MedicineSoutheast UniversityNanjing210009China
| | - Hongcheng Lu
- Department of UrologyZhongda Hospital Affiliated to Southeastern China UniversityNanjing210029China
| | - Chen Zhang
- Department of BiotherapyMedical Center for Digestive DiseasesSecond Affiliated Hospital of Nanjing Medical UniversityNanjing210011China
| | - Xiang Li
- Department of Surgical OncologyJiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjing210029China
| | - Tiancheng Zhang
- Department of Surgical OncologyJiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjing210029China
| | - Jiajia Shen
- Department of General SurgeryFirst Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Jianfei Wen
- Department of General SurgeryFirst Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| |
Collapse
|
28
|
Deb G, Cicala A, Papadas A, Asimakopoulos F. Matrix proteoglycans in tumor inflammation and immunity. Am J Physiol Cell Physiol 2022; 323:C678-C693. [PMID: 35876288 PMCID: PMC9448345 DOI: 10.1152/ajpcell.00023.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022]
Abstract
Cancer immunoediting progresses through elimination, equilibrium, and escape. Each of these phases is characterized by breaching, remodeling, and rebuilding tissue planes and structural barriers that engage extracellular matrix (ECM) components, in particular matrix proteoglycans. Some of the signals emanating from matrix proteoglycan remodeling are readily co-opted by the growing tumor to sustain an environment of tumor-promoting and immune-suppressive inflammation. Yet other matrix-derived cues can be viewed as part of a homeostatic response by the host, aiming to eliminate the tumor and restore tissue integrity. These latter signals may be harnessed for therapeutic purposes to tip the polarity of the tumor immune milieu toward anticancer immunity. In this review, we attempt to showcase the importance and complexity of matrix proteoglycan signaling in both cancer-restraining and cancer-promoting inflammation. We propose that the era of matrix diagnostics and therapeutics for cancer is fast approaching the clinic.
Collapse
Affiliation(s)
- Gauri Deb
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Alexander Cicala
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Athanasios Papadas
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego (UCSD), La Jolla, California
- Moores Cancer Center, University of California, San Diego (UCSD), La Jolla, California
| |
Collapse
|
29
|
Wu Y, Yu S, Qiao H. Understanding the functional inflammatory factors involved in therapeutic response to immune checkpoint inhibitors for pan-cancer. Front Pharmacol 2022; 13:990445. [PMID: 36120342 PMCID: PMC9474995 DOI: 10.3389/fphar.2022.990445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) fight tumor progression by activating immune conditions. The inflammatory factors are playing a functional role in programmed death-1 (PD-1) or other immune checkpoints. They are involved in regulating the expression of programmed death ligand-1 (PD-L1), the only predictor recognized by the guidelines in response to ICIs. In addition, abundant components of the tumor microenvironment (TME) all interact with various immune factors contributing to the response to ICIs, including infiltration of various immune cells, extracellular matrix, and fibroblasts. Notably, the occurrence of immune-related adverse events (irAEs) in patients receiving ICIs is increasingly observed in sundry organs. IrAEs are often regarded as an inflammatory factor-mediated positive feedback loop associated with better response to ICIs. It deserves attention because inflammatory factors were observed to be different when targeting different immune checkpoints or in the presence of different irAEs. In the present review, we address the research progresses on regulating inflammatory factors for an intentional controlling anti-cancer response with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Yanmeizhi Wu
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Shan Yu, ; Hong Qiao,
| | - Hong Qiao
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Shan Yu, ; Hong Qiao,
| |
Collapse
|
30
|
Chen L, Zhang D, Zheng S, Li X, Gao P. Stemness analysis in hepatocellular carcinoma identifies an extracellular matrix gene–related signature associated with prognosis and therapy response. Front Genet 2022; 13:959834. [PMID: 36110210 PMCID: PMC9468756 DOI: 10.3389/fgene.2022.959834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Tumor stemness is the stem-like phenotype of cancer cells, as a hallmark for multiple processes in the development of hepatocellular carcinoma (HCC). However, comprehensive functions of the regulators of tumor cell’s stemness in HCC remain unclear.Methods: Gene expression data and clinical information of HCC samples were downloaded from The Cancer Genome Atlas (TCGA) dataset as the training set, and three validation datasets were derived from Gene Expression Omnibus (GEO) and International Cancer Genome Consortium (ICGC). Patients were dichotomized according to median mRNA expression–based stemness index (mRNAsi) scores, and differentially expressed genes were further screened out. Functional enrichment analysis of these DEGs was performed to identify candidate extracellular matrix (ECM)–related genes in key pathways. A prognostic signature was constructed by applying least absolute shrinkage and selection operator (LASSO) to the candidate ECM genes. The Kaplan–Meier curve and receiver operating characteristic (ROC) curve were used to evaluate the prognostic value of the signature. Correlations between signatures and genomic profiles, tumor immune microenvironment, and treatment response were also explored using multiple bioinformatic methods.Results: A prognostic prediction signature was established based on 10 ECM genes, including TRAPPC4, RSU1, ILK, LAMA1, LAMB1, FLNC, ITGAV, AGRN, ARHGEF6, and LIMS2, which could effectively distinguish patients with different outcomes in the training and validation sets, showing a good prognostic prediction ability. Across different clinicopathological parameter stratifications, the ECMs signature still retains its robust efficacy in discriminating patient with different outcomes. Based on the risk score, vascular invasion, α-fetoprotein (AFP), T stage, and N stage, we further constructed a nomogram (C-index = 0.70; AUCs at 1-, 3-, and 5-year survival = 0.71, 0.75, and 0.78), which is more practical for clinical prognostic risk stratification. The infiltration abundance of macrophages M0, mast cells, and Treg cells was significantly higher in the high-risk group, which also had upregulated levels of immune checkpoints PD-1 and CTLA-4. More importantly, the ECMs signature was able to distinguish patients with superior responses to immunotherapy, transarterial chemoembolization, and sorafenib.Conclusion: In this study, we constructed an ECM signature, which is an independent prognostic biomarker for HCC patients and has a potential guiding role in treatment selection.
Collapse
Affiliation(s)
- Lei Chen
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing, China
| | - Dafang Zhang
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing, China
| | - Shengmin Zheng
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing, China
| | - Xinyu Li
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing, China
| | - Pengji Gao
- Department of General Surgery, Beijing Jishuitan Hospital, Beijing, China
- *Correspondence: Pengji Gao,
| |
Collapse
|
31
|
Liang J, Li T, Zhao J, Wang C, Sun H. Current understanding of the human microbiome in glioma. Front Oncol 2022; 12:781741. [PMID: 36003766 PMCID: PMC9393498 DOI: 10.3389/fonc.2022.781741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
There is mounting evidence that the human microbiome is highly associated with a wide variety of central nervous system diseases. However, the link between the human microbiome and glioma is rarely noticed. The exact mechanism of microbiota to affect glioma remains unclear. Recent studies have demonstrated that the microbiome may affect the development, progress, and therapy of gliomas, including the direct impacts of the intratumoral microbiome and its metabolites, and the indirect effects of the gut microbiome and its metabolites. Glioma-related microbiome (gut microbiome and intratumoral microbiome) is associated with both tumor microenvironment and tumor immune microenvironment, which ultimately influence tumorigenesis, progression, and responses to treatment. In this review, we briefly summarize current knowledge regarding the role of the glioma-related microbiome, focusing on its gut microbiome fraction and a brief description of the intratumoral microbiome, and put forward the prospects in which microbiome can be applied in the future and some challenges still need to be solved.
Collapse
Affiliation(s)
- Jianhao Liang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiajia Zhao
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cheng Wang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine, Clinical Biobank Center, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
- *Correspondence: Haitao Sun,
| |
Collapse
|
32
|
Holstein SA, Asimakopoulos F, Azab AK, Bianchi G, Bhutani M, Crews LA, Cupedo T, Giles H, Gooding S, Hillengass J, John L, Kaiser S, Lee L, Maclachlan K, Pasquini MC, Pichiorri F, Shah N, Shokeen M, Shy BR, Smith EL, Verona R, Usmani SZ, McCarthy PL. Proceedings from the Blood and Marrow Transplant Clinical Trials Network Myeloma Intergroup Workshop on Immune and Cellular Therapy in Multiple Myeloma. Transplant Cell Ther 2022; 28:446-454. [PMID: 35605882 PMCID: PMC9357156 DOI: 10.1016/j.jtct.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022]
Abstract
The Blood and Marrow Transplant Clinical Trials Network (BMT CTN) Myeloma Intergroup conducted a workshop on Immune and Cellular Therapy in Multiple Myeloma on January 7, 2022. This workshop included presentations by basic, translational, and clinical researchers with expertise in plasma cell dyscrasias. Four main topics were discussed: platforms for myeloma disease evaluation, insights into pathophysiology, therapeutic target and resistance mechanisms, and cellular therapy for multiple myeloma. Here we provide a comprehensive summary of these workshop presentations.
Collapse
Affiliation(s)
| | - Fotis Asimakopoulos
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | | | - Giada Bianchi
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Leslie A Crews
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Tom Cupedo
- ErasmusMC Cancer Institute Rotterdam, Rotterdam, The Netherlands
| | - Hannah Giles
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Sarah Gooding
- MRC Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Lukas John
- University Hospital Heidelberg, Heidelberg, Germany
| | | | - Lydia Lee
- University College London, London, United Kingdom
| | | | | | - Flavia Pichiorri
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California; Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope, Duarte, California
| | - Nina Shah
- University of California San Francisco, San Francisco, California
| | - Monica Shokeen
- Washington University School of Medicine, St. Louis, Missouri
| | - Brian R Shy
- University of California San Francisco, San Francisco, California
| | - Eric L Smith
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Raluca Verona
- Janssen Research & Development, Spring House, Pennsylvania
| | - Saad Z Usmani
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | |
Collapse
|
33
|
Xu C, Song L, Yang Y, Liu Y, Pei D, Liu J, Guo J, Liu N, Li X, Liu Y, Li X, Yao L, Kang Z. Clinical M2 Macrophage-Related Genes Can Serve as a Reliable Predictor of Lung Adenocarcinoma. Front Oncol 2022; 12:919899. [PMID: 35936688 PMCID: PMC9352953 DOI: 10.3389/fonc.2022.919899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundNumerous studies have found that infiltrating M2 macrophages play an important role in the tumor progression of lung adenocarcinoma (LUAD). However, the roles of M2 macrophage infiltration and M2 macrophage-related genes in immunotherapy and clinical outcomes remain obscure.MethodsSample information was extracted from TCGA and GEO databases. The TIME landscape was revealed using the CIBERSORT algorithm. Weighted gene co-expression network analysis (WGCNA) was used to find M2 macrophage-related gene modules. Through univariate Cox regression, lasso regression analysis, and multivariate Cox regression, the genes strongly associated with the prognosis of LUAD were screened out. Risk score (RS) was calculated, and all samples were divided into high-risk group (HRG) and low-risk group (LRG) according to the median RS. External validation of RS was performed using GSE68571 data information. Prognostic nomogram based on risk signatures and other clinical information were constructed and validated with calibration curves. Potential associations of tumor mutational burden (TMB) and risk signatures were analyzed. Finally, the potential association of risk signatures with chemotherapy efficacy was investigated using the pRRophetic algorithm.ResultsBased on 504 samples extracted from TCGA database, 183 core genes were identified using WGCNA. Through a series of screening, two M2 macrophage-related genes (GRIA1 and CLEC3B) strongly correlated with LUAD prognosis were finally selected. RS was calculated, and prognostic risk nomogram including gender, age, T, N, M stage, clinical stage, and RS were constructed. The calibration curve shows that our constructed model has good performance. HRG patients were suitable for new ICI immunotherapy, while LRG was more suitable for CTLA4-immunosuppressive therapy alone. The half-maximal inhibitory concentrations (IC50) of the four chemotherapeutic drugs (metformin, cisplatin, paclitaxel, and gemcitabine) showed significant differences in HRG/LRG.ConclusionsIn conclusion, a comprehensive analysis of the role of M2 macrophages in tumor progression will help predict prognosis and facilitate the advancement of therapeutic techniques.
Collapse
Affiliation(s)
- Chaojie Xu
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lishan Song
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yubin Yang
- Peking University First Hospital, Peking University, Beijing, China
| | - Yi Liu
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Dongchen Pei
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jiabang Liu
- Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jianhua Guo
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Nan Liu
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiaoyong Li
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yuchen Liu
- Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- *Correspondence: Zhengjun Kang,
- Lin Yao,
- Xuesong Li,
- Yuchen Liu,
- Xiaoyong Li,
| | - Xuesong Li
- College of Pharmacy, Shantou University School of Medicine, Shantou, China
| | - Lin Yao
- College of Pharmacy, Shantou University School of Medicine, Shantou, China
| | - Zhengjun Kang
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Wang X, Shi Z, Luo J, Zeng Y, He L, Chen L, Yao J, Zhang T, Huang P. Ultrasound improved immune adjuvant delivery to induce DC maturation and T cell activation. J Control Release 2022; 349:18-31. [PMID: 35780954 DOI: 10.1016/j.jconrel.2022.06.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 01/04/2023]
Abstract
Tumor immunotherapy has emerged as a promising approach to tumor treatment. Currently, immune adjuvant-based therapeutic modalities are rarely curative in solid tumors owing to challenges including the low permeability and extremely poor water solubility of these adjuvants, limiting their ability to effectively promote dendritic cell (DC) maturation. Herein, we employed ultrasound-mediated cavitation (UMC) to promote the delivery of Toll-like receptor agonist (R837)-loaded pH-responsive liposomes (PEOz-Lip@R837) to tumors. The tumor-associated antigens (TAAs) produced by UMC treatment exhibited vaccinal activity, particularly in the presence of immune adjuvants, together promoting the maturation of DC and inducing cytokine production. Importantly, UMC can down-regulate immune checkpoint molecules, like Cd274, Foxp3 and Ctla4, synergistically stimulating the activation and proliferation of T cells in the body to facilitate tumor treatment. This UMC-enhanced PEOz-Lip@R837 approach was able to induce a robust antitumor immune response capable of arresting primary and distant tumor growth, while also developing immunological memory, protecting against tumor rechallenge following initial tumor clearance. Overall, these results highlight a promising UMC- and pH-sensitive immune adjuvant delivery-based treatment for tumors with the potential for clinical application.
Collapse
Affiliation(s)
- Xue Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China
| | - Zhan Shi
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China
| | - Jiali Luo
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China
| | - Yiqing Zeng
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China
| | - Liangcan He
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, PR China
| | - Libin Chen
- Department of Ultrasound in Medicine, Ningbo First Hospital, Ningbo 315010, PR China
| | - Jianting Yao
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China
| | - Tao Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China.
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China; Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou 310009, PR China.
| |
Collapse
|
35
|
Chen S, Ma S, Wang H, Shao X, Ding B, Guo Z, Chen X, Wang Y. Unraveling the mechanism of alkaloids from Sophora alopecuroides Linn combined with immune checkpoint blockade in the treatment of non-small cell lung cancer based on systems pharmacology. Bioorg Med Chem 2022; 64:116724. [PMID: 35468537 DOI: 10.1016/j.bmc.2022.116724] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 11/26/2022]
Abstract
Quinolizidine alkaloids, as essential active ingredients extracted from Sophora alopecuroides Linn (SAL), have been proven to be pharmacologically active in a variety of cancers including non-small cell lung cancer (NSCLC). However, whether these alkaloids have substantial benefits in combination with immune checkpoint blockade (ICB) for the treatment of NSCLC is unknown. Here, we explore the potential of these alkaloids in combination with ICB therapy based on a systems pharmacology and bioinformatics approach. We found that 37 alkaloids in SAL have highly similar characteristics in the molecular skeleton, pharmacological properties, and targets. The expression of targets of these alkaloids are significantly correlated with the infiltration level of tumor infiltrating lymphocytes and the expression levels of multiple immune checkpoints in NSCLC. They share similar molecular mechanisms in antitumor immunity. Sophocarpine (Sop) is one of the most representative constituents of these alkaloids. We demonstrated that the Sop promotes PD-L1 expression to improve the effects of PD-L1 blockade treatment via the ADORA1-ATF3 axis. In conclusion, our study identified these alkaloids as promising candidates for the treatment of NSCLC, either alone or in combination with ICB, with potential value for drug development and may provide a promising strategy for improving the survival of NSCLC patients.
Collapse
Affiliation(s)
- Sen Chen
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Shuangxin Ma
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Haiqing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Xuexue Shao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, Xinjiang 832002, China
| | - Bojiao Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Zihu Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Xuetong Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.
| | - Yonghua Wang
- Center of Bioinformatics, College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
36
|
Wang J, Ling S, Ni J, Wan Y. Novel γδ T cell-based prognostic signature to estimate risk and aid therapy in hepatocellular carcinoma. BMC Cancer 2022; 22:638. [PMID: 35681134 PMCID: PMC9185956 DOI: 10.1186/s12885-022-09662-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/12/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Numerous studies have revealed that gamma delta (γδ) T cell infiltration plays a crucial regulatory role in hepatocellular carcinoma (HCC) development. Nonetheless, a comprehensive analysis of γδ T cell infiltration in prognosis evaluation and therapeutic prediction remains unclear. METHODS Multi-omic data on HCC patients were obtained from public databases. The CIBERSORT algorithm was applied to decipher the tumor immune microenvironment (TIME) of HCC. Weighted gene co-expression network analysis (WGCNA) was performed to determine significant modules with γδ T cell-specific genes. Kaplan-Meier survival curves and receiver operating characteristic analyses were used to validate prognostic capability. Additionally, the potential role of RFESD inhibition by si-RFESD in vitro was investigated using EdU and CCK-8 assays. RESULTS A total of 16,421 genes from 746 HCC samples (616 cancer and 130 normal) were identified based on three distinct cohorts. Using WGCNA, candidate modules (brown) with 1755 significant corresponding genes were extracted as γδ T cell-specific genes. Next, a novel risk signature consisting of 11 hub genes was constructed using multiple bioinformatic analyses, which presented great prognosis prediction reliability. The risk score exhibited a significant correlation with ICI and chemotherapeutic targets. HCC samples with different risks experienced diverse signalling pathway activities. The possible interaction of risk score with tumor mutation burden (TMB) was further analyzed. Subsequently, the potential functions of the RFESD gene were explored in HCC, and knockdown of RFESD inhibited cell proliferation in HCC cells. Finally, a robust prognostic risk-clinical nomogram was developed and validated to quantify clinical outcomes. CONCLUSIONS Collectively, comprehensive analyses focusing on γδ T cell patterns will provide insights into prognosis prediction, the mechanisms of immune infiltration, and advanced therapy strategies in HCC.
Collapse
Affiliation(s)
- Jingrui Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261, Huansha Road, Zhejiang, Hangzhou, China
| | - Sunbin Ling
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261, Huansha Road, Zhejiang, Hangzhou, China
| | - Jie Ni
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261, Huansha Road, Zhejiang, Hangzhou, China
| | - Yafeng Wan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261, Huansha Road, Zhejiang, Hangzhou, China.
| |
Collapse
|
37
|
Qin X, Zhang M, Zhao Z, Du Q, Li Q, Jiang Y, Xue F, Luan Y. A carrier-free photodynamic nanodrug to enable regulation of dendritic cells for boosting cancer immunotherapy. Acta Biomater 2022; 147:366-376. [PMID: 35588995 DOI: 10.1016/j.actbio.2022.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 11/01/2022]
Abstract
Immune response is initiated by dendritic cells (DCs), where the cross-presentation of antigens by DCs determines the activating of cytotoxic T cells. However, the efficacy of DCs-initiated immune response is governed by multiple (cascade) steps of immunogenic cell death (ICD), recruitment of DCs, and cross-presentation of DCs. It is urgent but challenging to achieve a platform for simultaneously regulating these multiple steps, amplifying the immune response against tumors. Herein, we reported a photodynamic nanodrug enabling simultaneous regulation of these multiple steps for realizing powerful immune response. The nanodrug was designed by the co-assembling of chlorin e6 (Ce6), celecoxib and 6-thio-2'-deoxyguanosine (6-thio-dG). In our nanodrug, Ce6 enables induction of ICD, while celecoxib down-regulates the prostaglandin E2 (PGE2) for promoting recruitment of DCs enabled by chemokine CCL5 produced from natural killer (NK) cells. Moreover, 6-thio-dG triggers DNA damages in the tumor cells, which in turn activates STING/interferon I pathway for enhancing the cross-presentation ability of DCs. Therefore, an amplified immune therapeutic effect against tumors is achieved, thanks to the simultaneous regulation of these multiple steps. The nanodrug effectively inhibits tumor growth and postoperative recurrence, demonstrating a new approach for boosting immune response initiated by DCs in cancer therapy. STATEMENT OF SIGNIFICANCE: The dendritic cells (DCs)-initiated immune response against tumors is dominated by multiple (cascade) steps including the process of (I) immunogenic cell death (ICD), (II) recruitment of DCs, and (III) cross-presentation of antigens by DCs. Based on this, it is urgent to design a nanoplatform enabling simultaneous regulation of these multiple steps for achieving a potent therapeutic efficacy. A carrier-free photodynamic nanodrug, engineered by a co-assembling approach, was designed to regulate DCs for realizing a powerful DCs-initiated immune response against tumors, thanks to the simultaneous regulation of the above multiple steps. Our nanodrug demonstrated a boosted immune response against tumors, powerfully suppressing primary/abscopal tumor growth and postoperative recurrence, which offers a conceptually innovative strategy for amplifying immunity against tumors.
Collapse
|
38
|
Yang X, Mei M, Yang J, Guo J, Du F, Liu S. Ferroptosis-related long non-coding RNA signature predicts the prognosis of hepatocellular carcinoma. Aging (Albany NY) 2022; 14:4069-4084. [PMID: 35550563 PMCID: PMC9134948 DOI: 10.18632/aging.204073] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
Background: Hepatocellular Carcinoma (HCC) is a highly heterogeneous malignant tumor, and its prognostic prediction is extremely challenging. Ferroptosis is a cell mechanism dependent on iron, which is very significant for HCC development. Long non-coding RNA (lncRNA) is also linked to HCC progression. This work aimed to establish a prognosis risk model for HCC and to discover a possible biomarker and therapeutic target. Methods: The Cancer Genome Atlas (TCGA) database was used to obtain RNA-seq transcriptome data and clinic information of HCC patients. Firstly, univariate Cox was utilized to identify 66 prognostic ferroptosis-related lncRNAs. Then, the identified lncRNAs were further included in the multivariate Cox analysis to construct the prognostic model. Eventually, we performed quantitative polymerase chain reaction (q-PCR) to validate the risk model. Results: We established a prognostic seventeen-ferroptosis-related lncRNA signature model. The signature could categorize patients into two risk subgroups, with the low-risk subgroup associated with a better prognosis. Additionally, the area under the curve (AUC) of the lncRNAs signature was 0.801, indicating their reliability in forecasting HCC prognosis. Risk score was an independent prognostic factor by regression analyses. Gene set enrichment analysis (GSEA) analyses demonstrated a remarkable enrichment of cancer-related and immune-related pathways in the high-risk group. Besides, the immune status was decreased in the high-risk group. Eventually, three prognostic lncRNAs were validated in human HCCLM3 cell lines. Conclusions: The risk model based on seventeen-ferroptosis-related lncRNA has significant prognostic value for HCC and may be therapeutic targets associated with ferroptosis in clinical ways.
Collapse
Affiliation(s)
- Xin Yang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minhui Mei
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingze Yang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinlu Guo
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Du
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi Liu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Zhang X, Jiang M, Zhang X, Zhang J, Guo H, Wu C. An extracellular matrix-based signature associated with immune microenvironment predicts the prognosis of patients with hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2022; 46:101877. [PMID: 35257959 DOI: 10.1016/j.clinre.2022.101877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Increased data showed that genes related to extracellular matrix (ECM) are important to hepatocellular carcinoma (HCC) development. In contrast, no research was carried out that proposed that ECM-related genes should be reliable prognostic signature. METHODS This study used data from The Cancer Genome Atlas along with The International Cancer Genome Consortium to gather ECM-related gene expression as well as clinical information related to the extracellular matrix. The least absolute shrinkage, Cox analysis, along with selection operator Cox regression and random forest have been utilized for establishing an ECM-related prognostic models. RESULTS A series of investigations led us to identify 13 ECMs which we utilized to construct a prognostic signature with a larger area under the curve of 0.808. HCC patients have been categorized into 2 main groups based on the risk score formula: low risk along with high risk. The findings of the Kaplan-Meier curve revealed that there had been a statistically significant difference between these two groups. Our ECM-related signature can be utilized as independent predictor of survival in HCC. Low-risk patients stratified by the final model presented higher sensitivity to 8 targeted drugs (especially sorafenib) and 2 common chemo-drugs. Our gene set enrichment analysis outcomes recommended that high-risk group have been enriched in ECM, tumorigenesis, as well as immune-related pathways. Immune cell analysis showed that high-risk group had lower cell fraction of CD8+ T cells, Macrophages M1, B naïve cells, memory resting CD4+ T cells, Monocytes, resting Dendritic cells and activated Mast cells, along with higher PD-1 and CTLA4 expression levels as compared to low-risk group. CONCLUSION Our identified ECM-related signature can also give new insight into underlying mechanisms along with therapeutic strategies in order to treat HCC.
Collapse
Affiliation(s)
- Xinyun Zhang
- Department of Medical Oncology, The Third Central Hospital of Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China; Tianjin Institute of Hepatobiliary Disease, Tianjin, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases
| | - Mengmeng Jiang
- Department of Medical Oncology, The Third Central Hospital of Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China; Tianjin Institute of Hepatobiliary Disease, Tianjin, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases
| | - Xihao Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Department of Hepatobiliary Surgery, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer
| | - Jinliang Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Department of Hepatobiliary Surgery, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer
| | - Hongxing Guo
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, The Third Central Hospital of Tianjin, China.
| | - Chenxuan Wu
- Department of Medical Oncology, The Third Central Hospital of Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China; Tianjin Institute of Hepatobiliary Disease, Tianjin, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases.
| |
Collapse
|
40
|
Tang H, You T, Sun Z, Bai C, Wang Y. Extracellular Matrix-Based Gene Expression Signature Defines Two Prognostic Subtypes of Hepatocellular Carcinoma With Different Immune Microenvironment Characteristics. Front Mol Biosci 2022; 9:839806. [PMID: 35402515 PMCID: PMC8990864 DOI: 10.3389/fmolb.2022.839806] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Accumulating evidence has suggested that the extracellular matrix (ECM) plays a vital role in the development and progression of cancer, and could be recognized as a biomarker of the response to immunotherapy. However, the effect of the ECM signature in hepatocellular carcinoma (HCC) is not well understood. Methods: HCC patients derived from the TCGA-LIHC dataset were clustered according to the ECM signature. The differences in prognosis, functional enrichment, immune infiltration, and mutation characteristics between distinct molecular clusters were examined, and its predictive value on the sensitivities to chemotherapy and immunotherapy was further analyzed. Then, a prognostic model was built based on the ECM-related gene expression pattern. Results: HCC patients were assigned into two molecular subtypes. Approximately 80% of HCC patients were classified into cluster A with poor prognosis, more frequent TP53 mutation, and lower response rate to immunotherapy. In contrast, patients in cluster B had better survival outcomes and higher infiltration levels of dendritic cells, macrophages, and regulatory T cells. The prognostic risk score model based on the expression profiles of six ECM-related genes (SPP1, ADAMTS5, MMP1, BSG, LAMA2, and CDH1) demonstrated a significant association with higher histologic grade and advanced TNM stage. Moreover, the prognostic risk score showed good performance in both the training dataset and validation dataset, as well as improved prognostic capacity compared with TNM stage. Conclusions: We characterized two HCC subtypes with distinct clinical outcomes, immune infiltration, and mutation characteristics. A novel prognostic model based on the ECM signature was further developed, which may contribute to individualized prognostic prediction and aid in clinical decision-making.
Collapse
|
41
|
Fertal SA, Poterala JE, Ponik SM, Wisinski KB. Stromal Characteristics and Impact on New Therapies for Metastatic Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:1238. [PMID: 35267548 PMCID: PMC8909697 DOI: 10.3390/cancers14051238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/25/2022] Open
Abstract
The heterogenous nature of triple-negative breast cancer (TNBC) is an underlying factor in therapy resistance, metastasis, and overall poor patient outcome. The lack of hormone and growth factor receptors lends to the use of chemotherapy as the first-line treatment for TNBC. However, the failure of chemotherapy demonstrates the need to develop novel immunotherapies, antibody-drug conjugates (ADCs), and other tumor- and stromal-targeted therapeutics for TNBC patients. The potential for stromal-targeted therapy is driven by studies indicating that the interactions between tumor cells and the stromal extracellular matrix (ECM) activate mechanisms of therapy resistance. Here, we will review recent outcomes from clinical trials targeting metastatic TNBC with immunotherapies aimed at programed death ligand-receptor interactions, and ADCs specifically linked to trophoblast cell surface antigen 2 (Trop-2). We will discuss how biophysical and biochemical cues from the ECM regulate the pathophysiology of tumor and stromal cells toward a pro-tumor immune environment, therapy resistance, and poor TNBC patient outcome. Moreover, we will highlight how ECM-mediated resistance is motivating the development of new stromal-targeted therapeutics with potential to improve therapy for this disease.
Collapse
Affiliation(s)
- Shelby A. Fertal
- University of Wisconsin (UW) Carbone Cancer Center, Madison, WI 53705, USA; (S.A.F.); (J.E.P.); (S.M.P.)
- Department of Cell and Regenerative Biology, UW School of Medicine and Public Health, Madison, WI 53705, USA
| | - Johanna E. Poterala
- University of Wisconsin (UW) Carbone Cancer Center, Madison, WI 53705, USA; (S.A.F.); (J.E.P.); (S.M.P.)
- Department of Medicine, UW School of Medicine and Public Health, Madison, WI 53726, USA
| | - Suzanne M. Ponik
- University of Wisconsin (UW) Carbone Cancer Center, Madison, WI 53705, USA; (S.A.F.); (J.E.P.); (S.M.P.)
- Department of Cell and Regenerative Biology, UW School of Medicine and Public Health, Madison, WI 53705, USA
| | - Kari B. Wisinski
- University of Wisconsin (UW) Carbone Cancer Center, Madison, WI 53705, USA; (S.A.F.); (J.E.P.); (S.M.P.)
- Department of Medicine, UW School of Medicine and Public Health, Madison, WI 53726, USA
| |
Collapse
|
42
|
Pires A, Burnell S, Gallimore A. Exploiting ECM remodelling to promote immune-mediated tumour destruction. Curr Opin Immunol 2022; 74:32-38. [PMID: 34627015 DOI: 10.1016/j.coi.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
Cancer immunotherapy represents a significant breakthrough in cancer treatment mainly due to the ability to harness the activities of cancer-specific T cells. Despite this, most cancers remain resistant to T cell attack. Many reasons have been proposed to explain this, ranging from a lack of antigenicity through to the immunosuppressive effects of the tumour microenvironment. In this review, we examine the relationship between the immune system and a key component of the tumour microenvironment, namely the extracellular matrix (ECM). Specifically, we explore the reciprocal effects of immune cells and the tumour ECM and how the processes underpinning this relationship act to either promote or restrain tumour progression.
Collapse
Affiliation(s)
- Ana Pires
- Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Stephanie Burnell
- Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Awen Gallimore
- Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
43
|
Lee YE, Yuk CM, Lee M, Han KC, Jun E, Kim TS, Ku JL, Im SG, Lee E, Jang M. Facile discovery of a therapeutic agent for NK-mediated synergistic antitumor effects using a patient-derived 3D platform. Biomater Sci 2021; 10:678-691. [PMID: 34940764 DOI: 10.1039/d1bm01699g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite the essential roles of natural killer (NK) cells in cancer treatment, the physical barrier and biological cues of the tumor microenvironment (TME) may induce NK cell dysfunction, causing their poor infiltration into tumors. The currently available two-dimensional (2D) cancer-NK co-culture systems hardly represent the characteristics of TME and are not suitable for tracking the infiltration of immune cells and assessing the efficacy of immunotherapy. This study aims to monitor NK-mediated cancer cell killing using a polymer thin film-based, 3D assay platform that contains highly tumorigenic cancer spheroids. A poly(cyclohexyl methacrylate) (pCHMA)-coated surface enables the generation of tumorigenic spheroids from pancreatic cancer patient-derived cancer cells, showing considerable amounts of extracellular matrix (ECM) proteins and cancer stem cell (CSC)-like characteristics. The 3D spheroid-based assay platform allows rapid discovery of a therapeutic agent for synergistic NK-mediated cytotoxicity through imaging-based high-content screening. In detail, the small molecule C19, known as a multi-epithelial-mesenchymal transition pathway inhibitor, is shown to enhance NK activation and infiltration via modulation of the ECM, resulting in synergistic cytotoxicity against cancer spheroids. This 3D biomimetic co-culture assay platform provides promising applications for predicting patient-specific responses to immunotherapy through advanced therapeutic combinations involving a chemical drug and immune cells.
Collapse
Affiliation(s)
- Young Eun Lee
- Theragnosis Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul 02792, Republic of Korea. .,Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Chae Min Yuk
- Theragnosis Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul 02792, Republic of Korea.
| | - Minseok Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| | - Ki-Cheol Han
- Theragnosis Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul 02792, Republic of Korea.
| | - Eunsung Jun
- Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul 05505, Republic of Korea.,Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Tae Sung Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ja-Lok Ku
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sung G Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| | - Eunjung Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| | - Mihue Jang
- Theragnosis Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seongbuk-Gu, Seoul 02792, Republic of Korea. .,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
44
|
Zafar A, Hasan M, Tariq T, Dai Z. Enhancing Cancer Immunotherapeutic Efficacy with Sonotheranostic Strategies. Bioconjug Chem 2021; 33:1011-1034. [PMID: 34793138 DOI: 10.1021/acs.bioconjchem.1c00437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immunotherapy has revolutionized the modality for establishing a firm immune response and immunological memory. However, intrinsic limitations of conventional low responsive poor T cell infiltration and immune related adverse effects urge the coupling of cancer nanomedicines with immunotherapy for boosting antitumor response under ultrasound (US) sensitization to mimic dose-limiting toxicities for safe and effective therapy against advanced cancer. US is composed of high-frequency sound waves that mediate targeted spatiotemporal control over release and internalization of the drug. The unconventional US triggered immunogenic nanoengineered arena assists the limited immunogenic dose, limiting toxicities and efficacies. In this Review, we discuss current prospects of enhanced immunotherapy using nanomedicine under US. We highlight how nanotechnology designs and incorporates nanomedicines for the reprogramming of systematic immunity in the tumor microenvironment. We also emphasize the mechanical and biological potential of US, encompassing sonosensitizer activation for enhanced immunotherapeutic efficacies. Finally, the smartly converging combinational platform of US stimulated cancer nanomedicines for amending immunotherapy is summarized. This Review will widen scientists' ability to explore and understand the limiting factors for combating cancer in a precisely customized way.
Collapse
Affiliation(s)
- Ayesha Zafar
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Murtaza Hasan
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Tuba Tariq
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
45
|
Mason LD, Chava S, Reddi KK, Gupta R. The BRD9/7 Inhibitor TP-472 Blocks Melanoma Tumor Growth by Suppressing ECM-Mediated Oncogenic Signaling and Inducing Apoptosis. Cancers (Basel) 2021; 13:cancers13215516. [PMID: 34771678 PMCID: PMC8582741 DOI: 10.3390/cancers13215516] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Melanoma accounts for the majority of all skin cancer-related deaths and only 1/3rd of melanoma patients with distal metastasis survive beyond five years. However, current therapies including BRAF/MEK targeted therapies or immunotherapies only benefit a subset of melanoma patients due to the emergence of intrinsic or extrinsic resistance mechanisms. Effective treatment of melanoma will thus require new and more effective therapeutic agents. Towards the goal of identifying new therapeutic agents, we conducted an unbiased, druggable epigenetic drug screen using a library of 32 epigenetic inhibitors obtained from the Structural Genome Consortium that targets proteins encoding for epigenetic regulators. This chemical genetic screening identified TP-472, which targets bromodomain-7/9, as the strongest inhibitor of melanoma growth in both short- and long-term survival assays and in mouse models of melanoma tumor growth. Mechanistically, using a transcriptome-wide mRNA sequencing profile we identified TP-472 treatment downregulates genes encoding various extracellular matrix (ECM) proteins, including integrins, collagens, and fibronectins. Reactome-based functional pathway analyses revealed that many of the ECM proteins are involved in extracellular matrix interactions required for cancer cell growth and proliferation. TP-472 treatment also upregulated several pro-apoptotic genes that can inhibit melanoma growth. Collectively, our results identify BRD7/9 inhibitor TP-472 as a potentially useful therapeutic agent for melanoma therapy.
Collapse
Affiliation(s)
- Lawrence David Mason
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35322, USA; (L.D.M.); (S.C.); (K.K.R.)
| | - Suresh Chava
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35322, USA; (L.D.M.); (S.C.); (K.K.R.)
| | - Kiran Kumar Reddi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35322, USA; (L.D.M.); (S.C.); (K.K.R.)
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35322, USA; (L.D.M.); (S.C.); (K.K.R.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35322, USA
- Correspondence: ; Tel.: +1-205-934-6207
| |
Collapse
|
46
|
Xu Q, Chen S, Hu Y, Huang W. Clinical M2 macrophages-related genes to aid therapy in pancreatic ductal adenocarcinoma. Cancer Cell Int 2021; 21:582. [PMID: 34717651 PMCID: PMC8557582 DOI: 10.1186/s12935-021-02289-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/21/2021] [Indexed: 12/25/2022] Open
Abstract
Background Increasing evidence supports that infiltration M2 Macrophages act as pivotal player in tumor progression of pancreatic ductal adenocarcinoma (PDAC). Nonetheless, comprehensive analysis of M2 Macrophage infiltration and biological roles of hub genes (FAM53B) in clinical outcome and immunotherapy was lack. Method The multiomic data of PDAC samples were downloaded from distinct datasets. CIBERSORT algorithm was performed to uncover the landscape of TIME. Weighted gene co-expression network analysis (WGCNA) was performed to identify candidate module and significant genes associated with M2 Macrophages. Kaplan-Meier curve and receiver operating characteristic (ROC) curves were applied for prognosis value validation. Mutation data was analyzed by using “maftools” R package. Gene set variation analysis (GSVA) was employed to assign pathway activity estimates to individual sample. Immunophenoscore (IPS) was implemented to estimate immunotherapeutic significance of risk score. The half-maximal inhibitory concentration (IC50) of chemotherapeutic drugs was predicted by using the pRRophetic algorithm. Finally, quantitative real-time polymerase chain reaction was used to determine FAM53B mRNA expression and TIMER database was utilized to uncover its possible role in immune infiltration of PDAC. Results Herein, 17,932 genes in 234 samples (214 tumor and 20 normal) were extracted from three platforms. Taking advantage of WGCNA, significant module (royalblue) and 135 candidate genes were considered as M2 Macrophages-related genes. Subsequently, risk signature including 5 hub genes was developed by multiple analysis, which exhibited excellent prognostic performance. Besides, comprehensive prognostic nomogram was constructed to quantitatively estimate risk. Then, intrinsic link between risk score with tumor mutation burden (TMB) was explored. Additionally, risk score significantly correlated with diversity of tumor immune microenvironment (TIME). PDAC samples within different risk presented diverse signaling pathways activity and experienced significantly distinct sensitivity to administering chemotherapeutic or immunotherapeutic agents. Finally, the biological roles of FAM53B were revealed in PDAC. Conclusions Taken together, comprehensive analyses of M2 Macrophages profiling will facilitate prognostic prediction, delineating complexity of TIME, and contribute insight into precision therapy for PDAC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02289-w.
Collapse
Affiliation(s)
- Qianhui Xu
- The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, No 109. Xueyuan West Road, Wenzhou, 325000, Zhejiang, China.,Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310009, China
| | - Shaohuai Chen
- The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, No 109. Xueyuan West Road, Wenzhou, 325000, Zhejiang, China
| | - Yuanbo Hu
- The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, No 109. Xueyuan West Road, Wenzhou, 325000, Zhejiang, China
| | - Wen Huang
- The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, No 109. Xueyuan West Road, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
47
|
Hosseini M, Habibi Z, Hosseini N, Abdoli S, Rezaei N. Preclinical studies of chimeric antigen receptor-modified natural killer cells in cancer immunotherapy: a review. Expert Opin Biol Ther 2021; 22:349-366. [PMID: 34541989 DOI: 10.1080/14712598.2021.1983539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION As one of the most efficacious methods of cancer immunotherapy, chimeric antigen receptor-modified immune cells have recently drawn enormous attention. After the great success achieved with CAR-T-cells in cancer treatment both in preclinical setting and in the clinic, other types of immune cells, including natural killer (NK)-cells and macrophages, have been evaluated for their anti-cancer effects along with their potential superiority against CAR-T-cells, especially in terms of safety. First introduced by Tran et al. almost 26 years ago, CAR-NK-cells are now being considered as efficient immunotherapeutic modalities in various types of cancers, not only in preclinical setting but also in numerous phase I and II clinical studies. AREAS COVERED In this review, we aim to provide a comprehensive survey of the preclinical studies on CAR-NK-cells' development, with an evolutional approach on CAR structures and their associated signaling moieties. Current NK-cell sources and modes of gene transfer are also reviewed. EXPERT OPINION CAR-NK-cells have appeared as safe and effective immunotherapeutic tools in preclinical settings; however, designing CAR structures with an eye on their specific biology, along with choosing the optimal cell source and gene transfer method require further investigation to support clinical studies.
Collapse
Affiliation(s)
- Mina Hosseini
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Habibi
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sina Abdoli
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Jensen C, Nissen NI, Von Arenstorff CS, Karsdal MA, Willumsen N. Serological assessment of collagen fragments and tumor fibrosis may guide immune checkpoint inhibitor therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:326. [PMID: 34656158 PMCID: PMC8520279 DOI: 10.1186/s13046-021-02133-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Despite the overall clinical success of immune checkpoint inhibitors (ICIs) for treating patients with solid tumors, a large number of patients do not benefit from this approach. Consequently, there is a need for predictive biomarkers. The most prevalent biomarkers such as PD-L1 expression and tumor mutational burden (TMB) do not reliably predict response to ICIs across different solid tumor types suggesting that a broader view of regulating factors in the tumor microenvironment is needed. Emerging evidence indicates that one central common denominator of resistance to ICIs may be fibrotic activity characterized by extracellular matrix (ECM) and collagen production by cancer-associated fibroblasts (CAFs). A fibroblast-and collagen-rich stroma attenuates immunotherapy response by contributing to inhibition and exclusion of T cells. Here we review opportunities and limitations in the utilization of the most prevalent biomarkers for ICIs and elaborate on the unique opportunities with biomarkers originating from the activated fibroblasts producing an impermeable ECM. We propose that ECM and collagen biomarkers measured non-invasively may be a novel and practical approach to optimize treatment strategies and improve patient selection for ICI therapy.
Collapse
Affiliation(s)
- Christina Jensen
- Biomarkers & Research, Nordic Bioscience, 2730, Herlev, Denmark.
| | - Neel I Nissen
- Biomarkers & Research, Nordic Bioscience, 2730, Herlev, Denmark
| | | | | | | |
Collapse
|
49
|
Ma P, Jin X, Fan Z, Wang Z, Yue S, Wu C, Chen S, Wu Y, Chen M, Gu D, Zhang S, Mao R, Fan Y. Super-enhancer receives signals from the extracellular matrix to induce PD-L1-mediated immune evasion via integrin/BRAF/TAK1/ERK/ETV4 signaling. Cancer Biol Med 2021; 19:j.issn.2095-3941.2021.0137. [PMID: 34623791 PMCID: PMC9196059 DOI: 10.20892/j.issn.2095-3941.2021.0137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE PD-L1 and PD-L2 expression levels determine immune evasion and the therapeutic efficacy of immune checkpoint blockade. The factors that drive inducible PD-L1 expression have been extensively studied, but mechanisms that result in constitutive PD-L1 expression in cancer cells are largely unknown. METHODS DNA elements were deleted in cells by CRISPR/Cas9-mediated knockout. Protein function was inhibited by chemical inhibitors. Protein levels were examined by Western blot, mRNA levels were examined by real-time RT-PCR, and surface protein expression was determined by cellular immunofluorescence and flow cytometry. Immune evasion was examined by in vitro T cell-mediated killing. RESULTS We determined the core regions (chr9: 5, 496, 378-5, 499, 663) of a previously identified PD-L1L2-super-enhancer (SE). Through systematic analysis, we found that the E26 transformation-specific (ETS) variant transcription factor (ETV4) bound to this core DNA region but not to DNA surrounding PD-L1L2SE. Genetic knockout of ETV4 dramatically reduced the expressions of both PD-L1 and PD-L2. ETV4 transcription was dependent on ERK activation, and BRAF/TAK1-induced ERK activation was dependent on extracellular signaling from αvβ3 integrin, which profoundly affected ETV4 transcription and PD-L1/L2 expression. Genetic silencing or pharmacological inhibition of components of the PD-L1L2-SE-associated pathway rendered cancer cells susceptible to T cell-mediated killing. CONCLUSIONS We identified a pathway originating from the extracellular matrix that signaled via integrin/BRAF/TAK1/ERK/ETV4 to PD-L1L2-SE to induce PD-L1-mediated immune evasion. These results provided new insights into PD-L1L2-SE activation and pathways associated with immune checkpoint regulation in cancer.
Collapse
Affiliation(s)
- Panpan Ma
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong 226001, China
- Department of Clinical Laboratory, Yancheng No. 1 People's Hospital, Yancheng 224005, China
| | - Xinxin Jin
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
| | - Zhiwei Fan
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
| | - Zhou Wang
- School of Life Sciences, Nantong University, Nantong 226001, China
| | - Suhui Yue
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
| | - Changyue Wu
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Shiyin Chen
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
| | - Yuanyuan Wu
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
| | - Miaomiao Chen
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
| | - Donghua Gu
- The Department of Urology, the Second Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Siliang Zhang
- The Department of Radiotherapy Oncology, Harbin Medical University Cancer Hospital, Harbin 150086, China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong 226001, China
| | - Yihui Fan
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong 226001, China
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong 226001, China
| |
Collapse
|
50
|
Xu Q, Chen S, Hu Y, Huang W. Prognostic Role of ceRNA Network in Immune Infiltration of Hepatocellular Carcinoma. Front Genet 2021; 12:739975. [PMID: 34589117 PMCID: PMC8473911 DOI: 10.3389/fgene.2021.739975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Increasing evidence supports that competing endogenous RNAs (ceRNAs) and tumor immune infiltration act as pivotal players in tumor progression of hepatocellular carcinoma (HCC). Nonetheless, comprehensive analysis focusing on ceRNAs and immune infiltration in HCC is lacking. Methods: RNA and miRNA sequencing information, corresponding clinical annotation, and mutation data of HCC downloaded from The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) project were employed to identify significant differentially expressed mRNAs (DEMs), miRNAs (DEMis), and lncRNAs (DELs) to establish a ceRNA regulatory network. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene ontology (GO) enrichment pathways were analyzed to functionally annotate these DEMs. A multigene-based risk signature was developed utilizing least absolute shrinkage and selection operator method (LASSO) algorithm. Moreover, survival analysis and receiver operating characteristic (ROC) analysis were applied for prognostic value validation. Seven algorithms (TIMER, XCELL, MCPcounter, QUANTISEQ, CIBERSORT, EPIC, and CIBERSORT-ABS) were utilized to characterize tumor immune microenvironment (TIME). Finally, the mutation data were analyzed by employing “maftools” package. Results: In total, 136 DELs, 128 DEMis, and 2,028 DEMs were recognized in HCC. A specific lncRNA–miRNA–mRNA network consisting of 3 lncRNAs, 12 miRNAs, and 21 mRNAs was established. A ceRNA-based prognostic signature was established to classify samples into two risk subgroups, which presented excellent prognostic performance. In additional, prognostic risk-clinical nomogram was delineated to assess risk of individual sample quantitatively. Besides, risk score was significantly associated with contexture of TIME and immunotherapeutic targets. Finally, potential interaction between risk score with tumor mutation burden (TMB) was revealed. Conclusion: In this work, comprehensive analyses of ceRNAs coexpression network will facilitate prognostic prediction, delineate complexity of TIME, and contribute insight into precision therapy for HCC.
Collapse
Affiliation(s)
- Qianhui Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shaohuai Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanbo Hu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wen Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|