1
|
Singh SL, Bhat R. Cyclic-NDGA Effectively Inhibits Human γ-Synuclein Fibrillation, Forms Nontoxic Off-Pathway Species, and Disintegrates Preformed Mature Fibrils. ACS Chem Neurosci 2024; 15:1770-1786. [PMID: 38637513 DOI: 10.1021/acschemneuro.3c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Parkinson's disease arises from protein misfolding, aggregation, and fibrillation and is characterized by LB (Lewy body) deposits, which contain the protein α-synuclein (α-syn) as their major component. Another synuclein, γ-synuclein (γ-syn), coexists with α-syn in Lewy bodies and is also implicated in various types of cancers, especially breast cancer. It is known to seed α-syn fibrillation after its oxidation at methionine residue, thereby contributing in synucleinopathy. Despite its involvement in synucleinopathy, the search for small molecule inhibitors and modulators of γ-syn fibrillation remains largely unexplored. This work reveals the modulatory properties of cyclic-nordihydroguaiaretic acid (cNDGA), a natural polyphenol, on the structural and aggregational properties of human γ-syn employing various biophysical and structural tools, namely, thioflavin T (ThT) fluorescence, Rayleigh light scattering, 8-anilinonaphthalene-1-sulfonic acid binding, far-UV circular dichroism (CD), Fourier transform infrared spectroscopy (FTIR) spectroscopy, atomic force microscopy, ITC, molecular docking, and MTT-toxicity assay. cNDGA was observed to modulate the fibrillation of γ-syn to form off-pathway amorphous species that are nontoxic in nature at as low as 75 μM concentration. The modulation is dependent on oxidizing conditions, with cNDGA weakly interacting (Kd ∼10-5 M) with the residues at the N-terminal of γ-syn protein as investigated by isothermal titration calorimetry and molecular docking, respectively. Increasing cNDGA concentration results in an increased recovery of monomeric γ-syn as shown by sodium dodecyl sulfate and native-polyacrylamide gel electrophoresis. The retention of native structural properties of γ-syn in the presence of cNDGA was further confirmed by far-UV CD and FTIR. In addition, cNDGA is most effective in suppression of fibrillation when added at the beginning of the fibrillation kinetics and is also capable of disintegrating the preformed mature fibrils. These findings could, therefore, pave the ways for further exploring cNDGA as a potential therapeutic against γ-synucleinopathies.
Collapse
Affiliation(s)
- Sneh Lata Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajiv Bhat
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
2
|
Cheshire WP, Koga S, Tipton PW, Sekiya H, Ross OA, Uitti RJ, Josephs KA, Dickson DW. Cancer in pathologically confirmed multiple system atrophy. Clin Auton Res 2023; 33:451-458. [PMID: 37178348 PMCID: PMC10529111 DOI: 10.1007/s10286-023-00946-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
PURPOSE The aim of this study was to assess whether cancer occurs with increased frequency in multiple system atrophy (MSA). The pathological hallmark of MSA is glial cytoplasmic inclusions containing aggregated α-synuclein, and the related protein γ-synuclein correlates with invasive cancer. We investigated whether these two disorders are associated clinically. METHODS Medical records of 320 patients with pathologically confirmed MSA seen between 1998 and 2022 were reviewed. After excluding those with insufficient medical histories, the remaining 269 and an equal number of controls matched for age and sex were queried for personal and family histories of cancer recorded on standardized questionnaires and in clinical histories. Additionally, age-adjusted rates of breast cancer were compared with US population incidence data. RESULTS Of 269 cases in each group, 37 with MSA versus 45 of controls had a personal history of cancer. Reported cases of cancer in parents were 97 versus 104 and in siblings 31 versus 44 for MSA and controls, respectively. Of 134 female cases in each group, 14 MSA versus 10 controls had a personal history of breast cancer. The age-adjusted rate of breast cancer in MSA was 0.83%, as compared with 0.67% in controls and 2.0% in the US population. All comparisons were nonsignificant. CONCLUSION The evidence from this retrospective cohort found no significant clinical association of MSA with breast cancer or other cancers. These results do not exclude the possibility that knowledge about synuclein pathology at the molecular level in cancer may lead to future discoveries and potential therapeutic targets for MSA.
Collapse
Affiliation(s)
- William P Cheshire
- Division of Autonomic Disorders, Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL, 32224, USA.
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Philip W Tipton
- Division of Movement Disorders, Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Ryan J Uitti
- Division of Movement Disorders, Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Keith A Josephs
- Division of Movement Disorders, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
3
|
Li Y, Pan Q, Cheng M, Wu Z. Identification and validation of anoikis-associated gene SNCG as a prognostic biomarker in gastric cancer. Aging (Albany NY) 2023; 15:2541-2553. [PMID: 36996495 PMCID: PMC10120907 DOI: 10.18632/aging.204626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/20/2023] [Indexed: 04/01/2023]
Abstract
Anoikis is a newly discovered form of apoptosis that was originally identified in the extracellular matrix (ECM). Recent studies have reported that anoikis is central to cancer metastasis. Here, SNCG was identified as hub anoikis-associated gene in GC and associated with prognosis of patients with GC. To screen the hub anoikis-associated genes connected to GC, the database of Cancer Genome Atlas (TCGA) was employed. For further validating these identified genes, the Gene Expression Omnibus (GEO) dataset was applied, and Western blotting and quantitative Real-Time PCR were carried out. To identify hub genes, we conducted the analyses of univariate Cox regression, differential expression, and weighted gene co-expression network analysis (WGCNA). According to the identified hub genes, we constructed a model of prognosis. Following complex analysis, SNCG was finally identified as hub anoikis-associated gene in GC. Indeed, K-M and receiver operating characteristic analyses suggested that the expression patterns of SNCG can be used as prognostic factors for GC survival. The expression and survival trends of SNCG were verified in the validation cohort and in vitro experimental analyses. The analysis of immune cell infiltration showed that the infiltrated immune cells varied among patients with GC and gene SNCG. Furthermore, due to the significant association of the constructed risk signature with patient age and survival, this risk signature can be used to predict the prognosis of GC. We suggest that SNCG was served as hub anoikis-associated gene in GC. Meanwhile, SNCG may have prognostic potential for overall patient survival.
Collapse
Affiliation(s)
- Yi Li
- Department of Operating Room, The First People’s Hospital of Linping District, Hangzhou, Zhejiang 311199, China
| | - Qin Pan
- Department of Anesthesiology, The First People’s Hospital of Linping District, Hangzhou, Zhejiang 311199, China
| | - Mingxia Cheng
- Department of Anesthesiology, The First People’s Hospital of Linping District, Hangzhou, Zhejiang 311199, China
| | - Zhengyuan Wu
- Department of Hand Plastic Surgery, The First People’s Hospital of Linping District, Hangzhou, Zhejiang 311199, China
| |
Collapse
|
4
|
Kim J, Daadi EW, Oh T, Daadi ES, Daadi MM. Human Induced Pluripotent Stem Cell Phenotyping and Preclinical Modeling of Familial Parkinson's Disease. Genes (Basel) 2022; 13:1937. [PMID: 36360174 PMCID: PMC9689743 DOI: 10.3390/genes13111937] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022] Open
Abstract
Parkinson's disease (PD) is primarily idiopathic and a highly heterogenous neurodegenerative disease with patients experiencing a wide array of motor and non-motor symptoms. A major challenge for understanding susceptibility to PD is to determine the genetic and environmental factors that influence the mechanisms underlying the variations in disease-associated traits. The pathological hallmark of PD is the degeneration of dopaminergic neurons in the substantia nigra pars compacta region of the brain and post-mortem Lewy pathology, which leads to the loss of projecting axons innervating the striatum and to impaired motor and cognitive functions. While the cause of PD is still largely unknown, genome-wide association studies provide evidence that numerous polymorphic variants in various genes contribute to sporadic PD, and 10 to 15% of all cases are linked to some form of hereditary mutations, either autosomal dominant or recessive. Among the most common mutations observed in PD patients are in the genes LRRK2, SNCA, GBA1, PINK1, PRKN, and PARK7/DJ-1. In this review, we cover these PD-related mutations, the use of induced pluripotent stem cells as a disease in a dish model, and genetic animal models to better understand the diversity in the pathogenesis and long-term outcomes seen in PD patients.
Collapse
Affiliation(s)
- Jeffrey Kim
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Cell Systems and Anatomy, San Antonio, TX 78229, USA
| | - Etienne W. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Thomas Oh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Elyas S. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Marcel M. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Cell Systems and Anatomy, San Antonio, TX 78229, USA
- Department of Radiology, Long School of Medicine, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
5
|
Increased Expression of Alpha-, Beta-, and Gamma-Synucleins in Brainstem Regions of a Non-Human Primate Model of Parkinson’s Disease. Int J Mol Sci 2022; 23:ijms23158586. [PMID: 35955716 PMCID: PMC9369189 DOI: 10.3390/ijms23158586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by cell loss in the substantia nigra and the presence of alpha-synuclein (α-syn)-containing neuronal Lewy bodies. While α-syn has received major interest in the pathogenesis of PD, the function of beta- and gamma-synucleins (β-syn and γ-syn, respectively) is not really known. Yet, these proteins are members of the same family and also concentrated in neuronal terminals. The current preclinical study investigated the expression levels of α-, β-, and γ-synucleins in brainstem regions involved in PD physiopathology. We analyzed synuclein expression in the substantia nigra, raphe nuclei, pedunculopontine nucleus, and locus coeruleus from control and parkinsonian (by MPTP) macaques. MPTP-intoxicated monkeys developed a more or less severe parkinsonian score and were sacrificed after a variable post-MPTP period ranging from 1 to 20 months. The expression of the three synucleins was increased in the substantia nigra after MPTP, and this increase correlates positively, although not very strongly, with cell loss and motor score and not with the time elapsed after intoxication. In the dorsal raphe nucleus, the expression of the three synucleins was also increased, but only α- and γ-Syn are linked to the motor score and associated cell loss. Finally, although no change in synuclein expression was demonstrated in the locus coeruleus after MPTP, we found increased expression levels of γ-Syn, which are only correlated with cell loss in the pedunculopontine nucleus. Altogether, our data suggest that these proteins may play a key role in brainstem regions and mesencephalic tegmentum. Given the involvement of these brain regions in non-motor symptoms of PD, these data also strengthen the relevance of the MPTP macaque model of PD, which exhibits pathological changes beyond nigral DA cell loss and α-synucleinopathy.
Collapse
|
6
|
Barba L, Paolini Paoletti F, Bellomo G, Gaetani L, Halbgebauer S, Oeckl P, Otto M, Parnetti L. Alpha and Beta Synucleins: From Pathophysiology to Clinical Application as Biomarkers. Mov Disord 2022; 37:669-683. [PMID: 35122299 PMCID: PMC9303453 DOI: 10.1002/mds.28941] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
The synuclein family includes three neuronal proteins, named α‐synuclein, β‐synuclein, and γ‐synuclein, that have peculiar structural features. α‐synuclein is largely known for being a key protein in the pathophysiology of Parkinson's disease (PD) and other synucleinopathies, namely, dementia with Lewy bodies and multisystem atrophy. The role of β‐synuclein and γ‐synuclein is less well understood in terms of physiological functions and potential contribution to human diseases. α‐synuclein has been investigated extensively in both cerebrospinal fluid (CSF) and blood as a potential biomarker for synucleinopathies. Recently, great attention has been also paid to β‐synuclein, whose CSF and blood levels seem to reflect synaptic damage and neurodegeneration independent of the presence of synucleinopathy. In this review, we aim to provide an overview on the pathophysiological roles of the synucleins. Because γ‐synuclein has been poorly investigated in the field of synucleinopathy and its pathophysiological roles are far from being clear, we focus on the interactions between α‐synuclein and β‐synuclein in PD. We also discuss the role of α‐synuclein and β‐synuclein as potential biomarkers to improve the diagnostic characterization of synucleinopathies, thus highlighting their potential application in clinical trials for disease‐modifying therapies. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Lorenzo Barba
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
- Department of Neurology University of Ulm Ulm Germany
- Department of Neurology Martin‐Luther‐University Halle‐Wittenberg Halle/Saale Germany
| | - Federico Paolini Paoletti
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| | - Giovanni Bellomo
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| | - Lorenzo Gaetani
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| | | | - Patrick Oeckl
- Department of Neurology University of Ulm Ulm Germany
- German Center for Neurodegenerative Disorders Ulm (DZNE e. V.) Ulm Germany
| | - Markus Otto
- Department of Neurology University of Ulm Ulm Germany
- Department of Neurology Martin‐Luther‐University Halle‐Wittenberg Halle/Saale Germany
| | - Lucilla Parnetti
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| |
Collapse
|
7
|
Pavia-Collado R, Rodríguez-Aller R, Alarcón-Arís D, Miquel-Rio L, Ruiz-Bronchal E, Paz V, Campa L, Galofré M, Sgambato V, Bortolozzi A. Up and Down γ-Synuclein Transcription in Dopamine Neurons Translates into Changes in Dopamine Neurotransmission and Behavioral Performance in Mice. Int J Mol Sci 2022; 23:ijms23031807. [PMID: 35163729 PMCID: PMC8836558 DOI: 10.3390/ijms23031807] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/15/2022] Open
Abstract
The synuclein family consists of α-, β-, and γ-Synuclein (α-Syn, β-Syn, and γ-Syn) expressed in the neurons and concentrated in synaptic terminals. While α-Syn is at the center of interest due to its implication in the pathogenesis of Parkinson's disease (PD) and other synucleinopathies, limited information exists on the other members. The current study aimed at investigating the biological role of γ-Syn controlling the midbrain dopamine (DA) function. We generated two different mouse models with: (i) γ-Syn overexpression induced by an adeno-associated viral vector and (ii) γ-Syn knockdown induced by a ligand-conjugated antisense oligonucleotide, in order to modify the endogenous γ-Syn transcription levels in midbrain DA neurons. The progressive overexpression of γ-Syn decreased DA neurotransmission in the nigrostriatal and mesocortical pathways. In parallel, mice evoked motor deficits in the rotarod and impaired cognitive performance as assessed by novel object recognition, passive avoidance, and Morris water maze tests. Conversely, acute γ-Syn knockdown selectively in DA neurons facilitated forebrain DA neurotransmission. Importantly, modifications in γ-Syn expression did not induce the loss of DA neurons or changes in α-Syn expression. Collectively, our data strongly suggest that DA release/re-uptake processes in the nigrostriatal and mesocortical pathways are partially dependent on substantia nigra pars compacta /ventral tegmental area (SNc/VTA) γ-Syn transcription levels, and are linked to modulation of DA transporter function, similar to α-Syn.
Collapse
Affiliation(s)
- Rubén Pavia-Collado
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (R.P.-C.); (D.A.-A.); (L.M.-R.); (E.R.-B.); (V.P.); (L.C.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, 28029 Madrid, Spain
- miCure Therapeutics Ltd., Tel Aviv 6423902, Israel
| | - Raquel Rodríguez-Aller
- CHU de Quebec Research Center, Axe Neurosciences, Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 4G2, Canada;
- CERVO Brain Research Centre, Quebec City, QC G1J 2G3, Canada
| | - Diana Alarcón-Arís
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (R.P.-C.); (D.A.-A.); (L.M.-R.); (E.R.-B.); (V.P.); (L.C.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, 28029 Madrid, Spain
| | - Lluís Miquel-Rio
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (R.P.-C.); (D.A.-A.); (L.M.-R.); (E.R.-B.); (V.P.); (L.C.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, 28029 Madrid, Spain
| | - Esther Ruiz-Bronchal
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (R.P.-C.); (D.A.-A.); (L.M.-R.); (E.R.-B.); (V.P.); (L.C.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, 28029 Madrid, Spain
| | - Verónica Paz
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (R.P.-C.); (D.A.-A.); (L.M.-R.); (E.R.-B.); (V.P.); (L.C.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, 28029 Madrid, Spain
| | - Leticia Campa
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (R.P.-C.); (D.A.-A.); (L.M.-R.); (E.R.-B.); (V.P.); (L.C.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, 28029 Madrid, Spain
| | - Mireia Galofré
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28029 Madrid, Spain
| | - Véronique Sgambato
- CNRS, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, 69675 Bron, France;
| | - Analia Bortolozzi
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (R.P.-C.); (D.A.-A.); (L.M.-R.); (E.R.-B.); (V.P.); (L.C.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-93-363-8313
| |
Collapse
|
8
|
Cavallieri F, Sellner J, Zedde M, Moro E. Neurologic complications of coronavirus and other respiratory viral infections. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:331-358. [PMID: 36031313 PMCID: PMC9418023 DOI: 10.1016/b978-0-323-91532-8.00004-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In humans, several respiratory viruses can have neurologic implications affecting both central and peripheral nervous system. Neurologic manifestations can be linked to viral neurotropism and/or indirect effects of the infection due to endothelitis with vascular damage and ischemia, hypercoagulation state with thrombosis and hemorrhages, systemic inflammatory response, autoimmune reactions, and other damages. Among these respiratory viruses, recent and huge attention has been given to the coronaviruses, especially the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic started in 2020. Besides the common respiratory symptoms and the lung tropism of SARS-CoV-2 (COVID-19), neurologic manifestations are not rare and often present in the severe forms of the infection. The most common acute and subacute symptoms and signs include headache, fatigue, myalgia, anosmia, ageusia, sleep disturbances, whereas clinical syndromes include mainly encephalopathy, ischemic stroke, seizures, and autoimmune peripheral neuropathies. Although the pathogenetic mechanisms of COVID-19 in the various acute neurologic manifestations are partially understood, little is known about long-term consequences of the infection. These consequences concern both the so-called long-COVID (characterized by the persistence of neurological manifestations after the resolution of the acute viral phase), and the onset of new neurological symptoms that may be linked to the previous infection.
Collapse
Affiliation(s)
- Francesco Cavallieri
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Johann Sellner
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria,Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
| | - Marialuisa Zedde
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Elena Moro
- Division of Neurology, CHU of Grenoble, Grenoble Alpes University, Grenoble Institute of Neurosciences, Grenoble, France,Correspondence to: Elena Moro, Service de neurologie, CHU de Grenoble (Hôpital Nord), Boulevard de la Chantourne, 38043 La Tronche, France. Tel: + 33-4-76-76-94-52, Fax: +33-4-76-76-56-31
| |
Collapse
|
9
|
Luise A, De Cecco E, Ponzini E, Sollazzo M, Mauri P, Sobott F, Legname G, Grandori R, Santambrogio C. Profiling Dopamine-Induced Oxidized Proteoforms of β-synuclein by Top-Down Mass Spectrometry. Antioxidants (Basel) 2021; 10:antiox10060893. [PMID: 34206096 PMCID: PMC8226665 DOI: 10.3390/antiox10060893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 01/16/2023] Open
Abstract
The formation of multiple proteoforms by post-translational modifications (PTMs) enables a single protein to acquire distinct functional roles in its biological context. Oxidation of methionine residues (Met) is a common PTM, involved in physiological (e.g., signaling) and pathological (e.g., oxidative stress) states. This PTM typically maps at multiple protein sites, generating a heterogeneous population of proteoforms with specific biophysical and biochemical properties. The identification and quantitation of the variety of oxidized proteoforms originated under a given condition is required to assess the exact molecular nature of the species responsible for the process under investigation. In this work, the binding and oxidation of human β-synuclein (BS) by dopamine (DA) has been explored. Native mass spectrometry (MS) has been employed to analyze the interaction of BS with DA. In a second step, top-down fragmentation of the intact protein from denaturing conditions has been performed to identify and quantify the distinct proteoforms generated by DA-induced oxidation. The analysis of isobaric proteoforms is approached by a combination of electron-transfer dissociation (ETD) at each extent of modification, quantitation of methionine-containing fragments and combinatorial analysis of the fragmentation products by multiple linear regression. This procedure represents a promising approach to systematic assessment of proteoforms variety and their relative abundance. The method can be adapted, in principle, to any protein containing any number of methionine residues, allowing for a full structural characterization of the protein oxidation states.
Collapse
Affiliation(s)
- Arianna Luise
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Elena De Cecco
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
- ELETTRA-Sincrotrone Trieste S.C.p.A, Basovizza, 34149 Trieste, Italy
| | - Erika Ponzini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milan, Italy
| | - Martina Sollazzo
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
- ELETTRA-Sincrotrone Trieste S.C.p.A, Basovizza, 34149 Trieste, Italy
| | - PierLuigi Mauri
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, 20090 Milan, Italy
| | - Frank Sobott
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
- ELETTRA-Sincrotrone Trieste S.C.p.A, Basovizza, 34149 Trieste, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| |
Collapse
|
10
|
Leggio L, Paternò G, Vivarelli S, L’Episcopo F, Tirolo C, Raciti G, Pappalardo F, Giachino C, Caniglia S, Serapide MF, Marchetti B, Iraci N. Extracellular Vesicles as Nanotherapeutics for Parkinson's Disease. Biomolecules 2020; 10:E1327. [PMID: 32948090 PMCID: PMC7563168 DOI: 10.3390/biom10091327] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are naturally occurring membranous structures secreted by normal and diseased cells, and carrying a wide range of bioactive molecules. In the central nervous system (CNS), EVs are important in both homeostasis and pathology. Through receptor-ligand interactions, direct fusion, or endocytosis, EVs interact with their target cells. Accumulating evidence indicates that EVs play crucial roles in the pathogenesis of many neurodegenerative disorders (NDs), including Parkinson's disease (PD). PD is the second most common ND, characterized by the progressive loss of dopaminergic (DAergic) neurons within the Substantia Nigra pars compacta (SNpc). In PD, EVs are secreted by both neurons and glial cells, with either beneficial or detrimental effects, via a complex program of cell-to-cell communication. The functions of EVs in PD range from their etiopathogenetic relevance to their use as diagnostic tools and innovative carriers of therapeutics. Because they can cross the blood-brain barrier, EVs can be engineered to deliver bioactive molecules (e.g., small interfering RNAs, catalase) within the CNS. This review summarizes the latest findings regarding the role played by EVs in PD etiology, diagnosis, prognosis, and therapy, with a particular focus on their use as novel PD nanotherapeutics.
Collapse
Affiliation(s)
- Loredana Leggio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| | - Greta Paternò
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| | - Francesca L’Episcopo
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Cataldo Tirolo
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Gabriele Raciti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| | - Fabrizio Pappalardo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| | - Carmela Giachino
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Salvatore Caniglia
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Maria Francesca Serapide
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| | - Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| |
Collapse
|
11
|
Mankhong S, Kim S, Moon S, Lee KH, Jeon HE, Hwang BH, Beak JW, Joa KL, Kang JH. Effects of Aerobic Exercise on Tau and Related Proteins in Rats with the Middle Cerebral Artery Occlusion. Int J Mol Sci 2020; 21:ijms21165842. [PMID: 32823945 PMCID: PMC7461507 DOI: 10.3390/ijms21165842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Although Alzheimer's disease (AD)-like pathology is frequently found in patients with post-stroke dementia, little is known about the effects of aerobic exercise on the modifications of tau and related proteins. Therefore, we evaluated the effects of aerobic exercise on the phosphorylation and acetylation of tau and the expressions of tau-related proteins, after middle cerebral artery occlusion (MCAO) stroke. Twenty-four Sprague-Dawley rats with MCAO infarction were used in this study. The rehabilitation group (RG) received treadmill training 40 min/day for 12 weeks, whereas the sedentary group (SG) did not receive any type of training. Functional tests, such as the single pellet reaching task, rotarod, and radial arm maze tests, were performed monthly for 3 months. In ipsilateral cortices in the RG and SG groups, level of Ac-tau was lower in the RG, whereas levels of p-tauS396, p-tauS262, and p-tauS202/T205 were not significantly lower in the RG. Level of phosphorylated glycogen synthase kinase 3-beta Tyr 216 (p-GSK3βY216) was lower in the RG, but levels of p-AMPK and phosphorylated glycogen synthase kinase 3-beta Ser 9 (p-GSK3βS9) were not significantly lower. Levels of COX-2 and BDNF were not significantly different between the two groups, while SIRT1 significantly decreased in ipsilateral cortices in RG. In addition, aerobic training also improved motor, balance, and memory functions. Rehabilitation with aerobic exercise inhibited tau modification, especially tau acetylation, following infarction in the rat MCAO model, which was accompanied with the improvement of motor and cognitive functions.
Collapse
Affiliation(s)
- Sakulrat Mankhong
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.); (S.M.)
- Hypoxia-Related Diseases Research Center, College of Medicine, Inha University, Incheon 22212, Korea
| | - Sujin Kim
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.); (S.M.)
- Hypoxia-Related Diseases Research Center, College of Medicine, Inha University, Incheon 22212, Korea
| | - Sohee Moon
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.); (S.M.)
- Hypoxia-Related Diseases Research Center, College of Medicine, Inha University, Incheon 22212, Korea
| | - Kyoung-Hee Lee
- Department of Occupational Therapy, Baekseok University, Chungnam 31065, Korea;
| | - Hyeong-Eun Jeon
- Department of Physical & Rehabilitation Medicine, College of Medicine, Inha University, Incheon 22332, Korea;
| | - Byeong-Hun Hwang
- Industry-Academia Cooperation Group, Baekseok University, Chungnam 31065, Korea; (B.-H.H.); (J.-W.B.)
| | - Jong-Won Beak
- Industry-Academia Cooperation Group, Baekseok University, Chungnam 31065, Korea; (B.-H.H.); (J.-W.B.)
| | - Kyung-Lim Joa
- Department of Physical & Rehabilitation Medicine, College of Medicine, Inha University, Incheon 22332, Korea;
- Correspondence: (K.-L.J.); (J.-H.K.); Tel.: +82-890-2480 (K.-L.J.); +82-32-860-9872 (J.-H.K.)
| | - Ju-Hee Kang
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.); (S.M.)
- Hypoxia-Related Diseases Research Center, College of Medicine, Inha University, Incheon 22212, Korea
- Correspondence: (K.-L.J.); (J.-H.K.); Tel.: +82-890-2480 (K.-L.J.); +82-32-860-9872 (J.-H.K.)
| |
Collapse
|
12
|
Iqbal UH, Zeng E, Pasinetti GM. The Use of Antimicrobial and Antiviral Drugs in Alzheimer's Disease. Int J Mol Sci 2020; 21:E4920. [PMID: 32664669 PMCID: PMC7404195 DOI: 10.3390/ijms21144920] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
The aggregation and accumulation of amyloid-β plaques and tau proteins in the brain have been central characteristics in the pathophysiology of Alzheimer's disease (AD), making them the focus of most of the research exploring potential therapeutics for this neurodegenerative disease. With success in interventions aimed at depleting amyloid-β peptides being limited at best, a greater understanding of the physiological role of amyloid-β peptides is needed. The development of amyloid-β plaques has been determined to occur 10-20 years prior to AD symptom manifestation, hence earlier interventions might be necessary to address presymptomatic AD. Furthermore, recent studies have suggested that amyloid-β peptides may play a role in innate immunity as an antimicrobial peptide. These findings, coupled with the evidence of pathogens such as viruses and bacteria in AD brains, suggests that the buildup of amyloid-β plaques could be a response to the presence of viruses and bacteria. This has led to the foundation of the antimicrobial hypothesis for AD. The present review will highlight the current understanding of amyloid-β, and the role of bacteria and viruses in AD, and will also explore the therapeutic potential of antimicrobial and antiviral drugs in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Giulio M. Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (U.H.I.); (E.Z.)
| |
Collapse
|
13
|
Prolyl Endopeptidase-Like Facilitates the α-Synuclein Aggregation Seeding, and This Effect Is Reverted by Serine Peptidase Inhibitor PMSF. Biomolecules 2020; 10:biom10060962. [PMID: 32630529 PMCID: PMC7355856 DOI: 10.3390/biom10060962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
The aggregation of α-synuclein (α-Syn) is a characteristic of Parkinson’s disease (PD). α-Syn oligomerization/aggregation is accelerated by the serine peptidase, prolyl oligopeptidase (POP). Factors that affect POP conformation, including most of its inhibitors and an impairing mutation in its active site, influence the acceleration of α-Syn aggregation resulting from the interaction of these proteins. It is noteworthy, however, that α-Syn is not cleaved by POP. Prolyl endopeptidase-like (PREPL) protein is structurally related to the serine peptidases belonging to the POP family. Based on the α-Syn–POP studies and knowing that PREPL may contribute to the regulation of synaptic vesicle exocytosis, when this protein can encounter α-Syn, we investigated the α-Syn–PREPL interaction. The binding of these two human proteins was observed with an apparent affinity constant of about 5.7 μM and, as in the α-Syn assays with POP, the presence of PREPL accelerated the oligomerization/aggregation events, with no α-Syn cleavage. Furthermore, despite this lack of hydrolytic cleavage, the serine peptidase active site inhibitor phenylmethylsulfonyl fluoride (PMSF) abolished the enhancement of the α-Syn aggregation by PREPL. Therefore, given the attention to POP inhibitors as potential drugs to treat synucleinopathies, the present data point to PREPL as another potential target to be explored for this purpose.
Collapse
|
14
|
Marchetti B, Leggio L, L’Episcopo F, Vivarelli S, Tirolo C, Paternò G, Giachino C, Caniglia S, Serapide MF, Iraci N. Glia-Derived Extracellular Vesicles in Parkinson's Disease. J Clin Med 2020; 9:jcm9061941. [PMID: 32575923 PMCID: PMC7356371 DOI: 10.3390/jcm9061941] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
Glial cells are fundamental players in the central nervous system (CNS) development and homeostasis, both in health and disease states. In Parkinson’s disease (PD), a dysfunctional glia-neuron crosstalk represents a common final pathway contributing to the chronic and progressive death of dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNpc). Notably, glial cells communicating with each other by an array of molecules, can acquire a “beneficial” or “destructive” phenotype, thereby enhancing neuronal death/vulnerability and/or exerting critical neuroprotective and neuroreparative functions, with mechanisms that are actively investigated. An important way of delivering messenger molecules within this glia-neuron cross-talk consists in the secretion of extracellular vesicles (EVs). EVs are nano-sized membranous particles able to convey a wide range of molecular cargoes in a controlled way, depending on the specific donor cell and the microenvironmental milieu. Given the dual role of glia in PD, glia-derived EVs may deliver molecules carrying various messages for the vulnerable/dysfunctional DAergic neurons. Here, we summarize the state-of-the-art of glial-neuron interactions and glia-derived EVs in PD. Also, EVs have the ability to cross the blood brain barrier (BBB), thus acting both within the CNS and outside, in the periphery. In these regards, this review discloses the emerging applications of EVs, with a special focus on glia-derived EVs as potential carriers of new biomarkers and nanotherapeutics for PD.
Collapse
Affiliation(s)
- Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via S. Sofia 97, 95125 Catania, Italy; (L.L.); (S.V.); (G.P.); (M.F.S.)
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
- Correspondence: (B.M.); (N.I.)
| | - Loredana Leggio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via S. Sofia 97, 95125 Catania, Italy; (L.L.); (S.V.); (G.P.); (M.F.S.)
| | - Francesca L’Episcopo
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via S. Sofia 97, 95125 Catania, Italy; (L.L.); (S.V.); (G.P.); (M.F.S.)
| | - Cataldo Tirolo
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Greta Paternò
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via S. Sofia 97, 95125 Catania, Italy; (L.L.); (S.V.); (G.P.); (M.F.S.)
| | - Carmela Giachino
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Salvatore Caniglia
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Maria Francesca Serapide
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via S. Sofia 97, 95125 Catania, Italy; (L.L.); (S.V.); (G.P.); (M.F.S.)
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via S. Sofia 97, 95125 Catania, Italy; (L.L.); (S.V.); (G.P.); (M.F.S.)
- Correspondence: (B.M.); (N.I.)
| |
Collapse
|
15
|
Le T, Winham CL, Andromidas F, Silver AC, Jellison ER, Levesque AA, Koob AO. Chimera RNA interference knockdown of γ-synuclein in human cortical astrocytes results in mitotic catastrophe. Neural Regen Res 2020; 15:1894-1902. [PMID: 32246638 PMCID: PMC7513975 DOI: 10.4103/1673-5374.280329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Elevated levels of γ-synuclein (γ-syn) expression have been noted in the progression of glioblastomas, and also in the cerebrospinal fluid of patients diagnosed with neurodegenerative diseases. γ-Syn can be either internalized from the extracellular milieu or expressed endogenously by human cortical astrocytes. Internalized γ-syn results in increased cellular proliferation, brain derived neurotrophic factor release and astroprotection. However, the function of endogenous γ-syn in primary astrocytes, and the relationship to these two opposing disease states are unknown. γ-Syn is expressed by astrocytes in the human cortex, and to gain a better understanding of the role of endogenous γ-syn, primary human cortical astrocytes were treated with chimera RNA interference (RNAi) targeting γ-syn after release from cell synchronization. Quantitative polymerase chain reaction analysis demonstrated an increase in endogenous γ-syn expression 48 hours after release from cell synchronization, while RNAi reduced γ-syn expression to control levels. Immunocytochemistry of Ki67 and 5-bromodeoxyuridine showed chimera RNAi γ-syn knockdown reduced cellular proliferation at 24 and 48 hours after release from cell synchronization. To further investigate the consequence of γ-syn knockdown on the astrocytic cell cycle, phosphorylated histone H3 pSer10 (pHH3) and phosphorylated cyclin dependent kinase-2 pTyr15 (pCDK2) levels were observed via western blot analysis. The results revealed an elevated expression of pHH3, but not pCDK2, indicating γ-syn knockdown leads to disruption of the cell cycle and chromosomal compaction after 48 hours. Subsequently, flow cytometry with propidium iodide determined that increases in apoptosis coincided with γ-syn knockdown. Therefore, γ-syn exerts its effect to allow normal astrocytic progression through the cell cycle, as evidenced by decreased proliferation marker expression, increased pHH3, and mitotic catastrophe after knockdown. In this study, we demonstrated that the knockdown of γ-syn within primary human cortical astrocytes using chimera RNAi leads to cell cycle disruption and apoptosis, indicating an essential role for γ-syn in regulating normal cell division in astrocytes. Therefore, disruption to γ-syn function would influence astrocytic proliferation, and could be an important contributor to neurological diseases.
Collapse
Affiliation(s)
- Timmy Le
- Graduate Program in Neuroscience, Biology Department, University of Hartford, West Hartford, CT, USA
| | - Cynthia L Winham
- Graduate Program in Neuroscience, Biology Department, University of Hartford, West Hartford, CT, USA
| | - Fotis Andromidas
- Graduate Program in Neuroscience, Biology Department, University of Hartford, West Hartford, CT, USA
| | - Adam C Silver
- Graduate Program in Neuroscience, Biology Department, University of Hartford, West Hartford, CT, USA
| | - Evan R Jellison
- Department of Immunology, UCONN Health Center, Farmington, CT, USA
| | - Aime A Levesque
- Graduate Program in Neuroscience, Biology Department, University of Hartford, West Hartford, CT, USA
| | - Andrew O Koob
- Graduate Program in Neuroscience, Biology Department, University of Hartford, West Hartford, CT, USA
| |
Collapse
|
16
|
Surguchev AA, Surguchov A. ABCA7-A Member of the ABC Transporter Family in Healthy and Ailing Brain. Brain Sci 2020; 10:brainsci10020121. [PMID: 32098344 PMCID: PMC7071517 DOI: 10.3390/brainsci10020121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/22/2023] Open
Abstract
Identification of genetic markers of a human disease, which is generally sporadic, may become an essential tool for the investigation of its molecular mechanisms. The role of ABCA7 in Alzheimer’s disease (AD) was discovered less than ten years ago when meta-analyses provided evidence that rs3764650 is a new AD susceptibility locus. Recent research advances in this locus and new evidence regarding ABCA7 contribution to the AD pathogenesis brought a new understanding of the underlying mechanisms of this disorder. An interesting, up-to-date review article "ABCA7 and Pathogenic Pathways of Alzheimer’s Disease" by Aikawa et al. (2018), outlines the ABCA7 role in AD and summarizes new findings in this exciting area. ABC transporters or ATP-binding cassette transporters are a superfamily of proteins belonging to a cell transport system. Currently, members of the family are the focus of attention because of their central role in drug pharmacokinetics. Two recent findings are the reason why much attention is drawn to the ABCA7 family. First, is the biochemical data showing a role of ABCA7 in amyloid pathology. Second, genetic data identifying ABCA7 gene variants as loci responsible for the late-onset AD. These results point to the ABCA7 as a significant new contributor to the pathogenesis of AD.
Collapse
Affiliation(s)
- Alexei A. Surguchev
- Department of Surgery, Section of Otolaryngology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA;
| | - Andrei Surguchov
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Correspondence: ; Tel.: +1-913-680-0771
| |
Collapse
|
17
|
Sun C, Zhao Z, Yu W, Mo M, Song C, Si Y, Liu Y. Abnormal subpopulations of peripheral blood lymphocytes are involved in Parkinson's disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:637. [PMID: 31930038 DOI: 10.21037/atm.2019.10.105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Abnormal immune responses are involved in the development of Parkinson's disease (PD), and also affect peripheral blood lymphocytes. The profile of lymphocyte subsets in peripheral blood and whether it is relevant to the clinical features of PD patients remains controversial. Methods To explore the role of peripheral blood lymphocytes (NK cells, B cells, CD3+ T cells, CD3+CD4+ T cells and CD3+CD8+ T cells) in the development of PD, a case-control study including 127 patients and 148 healthy controls was conducted, and peripheral blood lymphocyte subpopulations of participants were analysed by a FACSCalibur flow cytometer. Results PD patients had a significantly higher percentage of NK cells and a lower percentage of CD3+ T cells and CD3+CD4+ T cells than controls [16.4% (12.3%) vs. 12.6% (6.2%), 63.7% (14.2%) vs. 69.0% (6.6%), 33.1% (13.1%) vs. 38.9% (7.6%), P<0.05, respectively]. Through a binary logistic regression model adjusted for gender and age, we found that those who were outside of the reference range of peripheral blood lymphocytes (NK cell, B cell, CD3+ T cell and CD3+CD4+ T cell) had an increased risk of PD [odds ratio (OR): 2.3, 5.1, 3.1 and 4.1, P<0.05, respectively]. Through a multivariable linear regression model adjusted for gender, age and levodopa equivalent daily dose, we found that deviation from the reference range of CD3+CD8+ T cells (regression coefficient =3.474, P=0.015), course of disease (regression coefficient =0.411, P=0.004) and the Non-Motor Symptoms Scale (NMSS) scores (regression coefficient =0.553, P=5.92E-11) had a positive association with the Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS)-III score (adjusted R2=0.364, F=13.004). Conclusions Abnormal peripheral blood lymphocyte subpopulations have clinical relevance for PD.
Collapse
Affiliation(s)
- Congcong Sun
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Zhenxiang Zhao
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Wenfei Yu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Mingshu Mo
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Chengyuan Song
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Youfeng Si
- Department of Neurology, Feicheng Mining Central Hospital, Feicheng 271600, China
| | - Yiming Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
18
|
Motor and Nonmotor Symptoms of Parkinson's Disease: Antagonistic Pleiotropy Phenomena Derived from α-Synuclein Evolvability? PARKINSONS DISEASE 2018; 2018:5789424. [PMID: 30595837 PMCID: PMC6282124 DOI: 10.1155/2018/5789424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/01/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022]
Abstract
Lewy body diseases, such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), are associated with a wide range of nonmotor symptoms (NMS), including cognitive impairment, depression and anxiety, sleep disorders, gastrointestinal symptoms, and autonomic failure. The reason why such diverse and disabling NMS have not been weeded out but have persisted across evolution is unknown. As such, one possibility would be that the NMS might be somehow beneficial during development and/or reproductive stages, a possibility consistent with our recent view as to the evolvability of amyloidogenic proteins (APs) such as α-synuclein (αS) and amyloid-β (Aβ) in the brain. Based on the heterogeneity of protofibrillar AP forms in terms of structure and cytotoxicity, we recently proposed that APs might act as vehicles to deliver information regarding diverse internal and environmental stressors. Also, we defined evolvability to be an epigenetic phenomenon whereby APs are transgenerationally transmitted from parents to offspring to cope with future brain stressors in the offspring, likely benefitting the offspring. In this context, the main objective is to discuss whether NMS might be relevant to evolvability. According to this view, information regarding NMS may be transgenerationally transmitted by heterogeneous APs to offspring, preventing or attenuating the stresses related to such symptoms. On the other hand, NMS associated with Lewy body pathology might manifest through an aging-associated antagonistic pleiotropy mechanism. Given that NMS are not only specific to Lewy body diseases but also displayed in other disorders, including amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), these conditions might share common mechanisms related to evolvability. This might give insight into novel therapy strategies based on antagonistic pleiotropy rather than on individual NMS from which to develop disease-modifying therapies.
Collapse
|
19
|
Maltsev AV, Borodina YV, Skuratovskaya LN, Kukharsky MS, Ovchinnikov RK, Razinskaya OD, Smirnov AP, Kovrazhkina EA, Ustyugov AA. [The association of gamma-synuclein autoantibodies with the polymorphism in exon 4 of the coding gene]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:68-70. [PMID: 30335075 DOI: 10.17116/jnevro201811809168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To analyze the polymorphism in exon 4 of the gamma-synuclein gene (SNCG) in patients with autoantibodies against the gamma-synuclein protein. MATERIAL AND METHODS To identify autoantibodies against gamma-synuclein, the serum from patients with chronic cerebral ischemia and cervical osteochondrosis was used. All patients were women of the Slavic ethnic group, mean age 61±5 years. The isolated genomic DNA was used to determine the point mutation in exon 4 by the restriction endonuclease HphI and subsequent sequencing of the resulting fragments to confirm the results. RESULTS AND CONCLUSION Antibodies against gamma-synuclein were identified in 2 patients with chronic cerebral ischemia and 3 with cervical osteochondrosis. All five patients had a T to A substitution at position 371, which was detected by the restriction endonuclease HphI resulting in a hydrolysis of the amplicon and the formation of two fragments. The subsequent sequencing of exon 4 of the SNCG revealed no other mutations and confirmed the T to A substitution. This single nucleotide polymorphism results in the amino acid substitution of glutamic acid to valine at position 110 (out of 127), changing its physicochemical properties and the ability to form aggregates as well as post-translational modifications. The obtained results provide grounds for further association studies of SNCG polymorphism in patients with various diseases of the nervous system.
Collapse
Affiliation(s)
- A V Maltsev
- Institute of Physiologically Active Compounds RAS, Chernogolovka, Russia
| | - Yu V Borodina
- Hospital Scentific Center RAS, Chernogolovka, Russia
| | - L N Skuratovskaya
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - M S Kukharsky
- Institute of Physiologically Active Compounds RAS, Chernogolovka, Russia
| | - R K Ovchinnikov
- Institute of Physiologically Active Compounds RAS, Chernogolovka, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - O D Razinskaya
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A P Smirnov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E A Kovrazhkina
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A A Ustyugov
- Institute of Physiologically Active Compounds RAS, Chernogolovka, Russia
| |
Collapse
|
20
|
Kovacs GG, Lee VM, Trojanowski JQ. Protein astrogliopathies in human neurodegenerative diseases and aging. Brain Pathol 2018; 27:675-690. [PMID: 28805003 DOI: 10.1111/bpa.12536] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are characterized by progressive dysfunction and loss of neurons associated with depositions of pathologically altered proteins showing hierarchical involvement of brain regions. The role of astrocytes in the pathogenesis of neurodegenerative diseases is explored as contributors to neuronal degeneration or neuroprotection pathways, and also as potential mediators of the transcellular spreading of disease-associated proteins. Protein astrogliopathy (PAG), including deposition of amyloid-β, prion protein, tau, α-synuclein, and very rarely transactive response DNA-binding protein 43 (TDP-43) is not unprecedented or unusual in neurodegenerative diseases. Morphological characterization of PAG is considered, however, only for the neuropathological diagnosis and classification of tauopathies. Astrocytic tau pathology is seen in primary frontotemporal lobar degeneration (FTLD) associated with tau pathologies (FTLD-Tau), and also in the form of aging-related tau astrogliopathy (ARTAG). Importantly, ARTAG shares common features with primary FTLD-Tau as well as with the astroglial tau pathologies that are thought to be hallmarks of a brain injury-related tauopathy known as chronic traumatic encephalopathy (CTE). Supported by experimental observations, the morphological variability of PAG might reflect distinct pathogenic involvement of different astrocytic populations. PAG might indicate astrocytic contribution to spreading or clearance of disease-associated proteins, however, this might lead to astrocytic dysfunction and eventually contribute to the degeneration of neurons. Here, we review recent advances in understanding ARTAG and other related forms of PAG.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Virginia M Lee
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology and Laboratory Medicine of the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology and Laboratory Medicine of the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
21
|
Roman AY, Kovrazhkina EA, Razinskaya OD, Kukharsky MS, Maltsev AV, Ovchinnikov RK, Lytkina OA, Smirnov AP, Moskovtsev AA, Borodina YV, Surguchov AP, Ustyugov AA, Ninkina NN, Skvortsova VI. Detection of autoantibodies to potentially amyloidogenic protein, gamma-synuclein, in the serum of patients with amyotrophic lateral sclerosis and cerebral circulatory disorders. DOKL BIOCHEM BIOPHYS 2017; 472:64-67. [PMID: 28421431 DOI: 10.1134/s1607672917010197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Indexed: 11/23/2022]
Abstract
In this study, we analyzed serum for the presence of antibodies to gamma-synuclein in patients with amyotrophic lateral sclerosis (ALS) compared to the control group of patients with other neurological diseases and healthy control donors. As a result, antibodies against gamma-synuclein are not an ALS-specific feature and have been identified in patients with ALS as well as in the control group patients. Patients with the impaired cerebral circulation showed increased incidence of autoantibodies to gamma-synuclein, yet the difference lacks statistical representativeness due to limited sample size.
Collapse
Affiliation(s)
- A Yu Roman
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia.,Aix-Marseille Université, Inserm, France
| | - E A Kovrazhkina
- Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, Moscow, 117997, Russia
| | - O D Razinskaya
- Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, Moscow, 117997, Russia
| | - M S Kukharsky
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia
| | - A V Maltsev
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia.
| | - R K Ovchinnikov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia
| | - O A Lytkina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia
| | - A P Smirnov
- Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, Moscow, 117997, Russia
| | - A A Moskovtsev
- Research Institute of General Pathology and Pathophysiology, Moscow, 125315, Russia
| | - Yu V Borodina
- Research Center Hospital, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
| | | | - A A Ustyugov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia
| | - N N Ninkina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia.,Research Institute of General Pathology and Pathophysiology, Moscow, 125315, Russia
| | - V I Skvortsova
- Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, Moscow, 117997, Russia
| |
Collapse
|
22
|
Surguchov A. Parkinson's Disease: Assay of Phosphorylated α-Synuclein in Skin Biopsy for Early Diagnosis and Association with Melanoma. Brain Sci 2016; 6:E17. [PMID: 27240409 PMCID: PMC4931494 DOI: 10.3390/brainsci6020017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is a degenerative disorder of the central nervous system, in which a small naturally unfolded protein α-synuclein plays an essential role. α-Synuclein belongs to a synuclein family comprising three members: α, β, and γ-synucleins associated with neurodegenerative and neoplastic diseases and involved in development. Several studies revealed that α-synuclein is present not only in the brain, but also in the skin and other peripheral tissues. This finding open a new approach to PD diagnosis based on the assay of α-synuclein from a biological sample of a living patient. Furthermore, PD is associated with an increased risk of skin melanoma. An important posttranslational modification of α-synuclein is phosphorylation at serine-129, which may convert the protein into pathological species both in PD and melanoma. Thus, analysis of phosphorylated α-synuclein might be an important diagnostic test for both diseases providing additional information about the mechanism of pathology.
Collapse
Affiliation(s)
- Andrei Surguchov
- Department of Neurology, Kansas University Medical Center, Kansas City, 3901, Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
23
|
Mohn TC, Koob AO. Adult Astrogenesis and the Etiology of Cortical Neurodegeneration. J Exp Neurosci 2015; 9:25-34. [PMID: 26568684 PMCID: PMC4634839 DOI: 10.4137/jen.s25520] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 01/09/2023] Open
Abstract
As more evidence points to a clear role for astrocytes in synaptic processing, synaptogenesis and cognition, continuing research on astrocytic function could lead to strategies for neurodegenerative disease prevention. Reactive astrogliosis results in astrocyte proliferation early in injury and disease states and is considered neuroprotective, indicating a role for astrocytes in disease etiology. This review describes the different types of human cortical astrocytes and the current evidence regarding adult cortical astrogenesis in injury and degenerative disease. A role for disrupted astrogenesis as a cause of cortical degeneration, with a focus on the tauopathies and synucleinopathies, will also be considered.
Collapse
Affiliation(s)
- Tal C. Mohn
- Biology Department, University of Wisconsin—River Falls, River Falls, Wisconsin, USA
| | - Andrew O. Koob
- Biology Department, University of Wisconsin—River Falls, River Falls, Wisconsin, USA
| |
Collapse
|
24
|
Xu S, Chan P. Interaction between Neuromelanin and Alpha-Synuclein in Parkinson's Disease. Biomolecules 2015; 5:1122-42. [PMID: 26057626 PMCID: PMC4496713 DOI: 10.3390/biom5021122] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/29/2015] [Indexed: 12/27/2022] Open
Abstract
Parkinson's disease (PD) is a very common neurodegenerative disorder characterized by the accumulation of α-synuclein (α-syn) into Lewy body (LB) inclusions and the loss of neuronmelanin (NM) containing dopamine (DA) neurons in the substantia nigra (SN). Pathological α-syn and NM are two prominent hallmarks in this selective and progressive neurodegenerative disease. Pathological α-syn can induce dopaminergic neuron death by various mechanisms, such as inducing oxidative stress and inhibiting protein degradation systems. Therefore, to explore the factors that trigger α-syn to convert from a non-toxic protein to toxic one is a pivotal question to clarify the mechanisms of PD pathogenesis. Many triggers for pathological α-syn aggregation have been identified, including missense mutations in the α-syn gene, higher concentration, and posttranslational modifications of α-Syn. Recently, the role of NM in inducing α-syn expression and aggregation has been suggested as a mechanism for this pigment to modulate neuronal vulnerability in PD. NM may be responsible for PD and age-associated increase and aggregation in α-syn. Here, we reviewed our previous study and other recent findings in the area of interaction between NM and α-syn.
Collapse
Affiliation(s)
- Shengli Xu
- Beijing Institute of Geriatrics, Xuanwu Hospital of Capital University of Medical Sciences, No.45 changchun St., Xicheng District, Beijing 100053, China.
- Parkinson's disease Center of Beijing Institute for Brain Disorders, Beijing 100053, China.
| | - Piu Chan
- Beijing Institute of Geriatrics, Xuanwu Hospital of Capital University of Medical Sciences, No.45 changchun St., Xicheng District, Beijing 100053, China.
- Parkinson's disease Center of Beijing Institute for Brain Disorders, Beijing 100053, China.
| |
Collapse
|
25
|
Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int J Mol Sci 2014; 16:193-217. [PMID: 25547488 PMCID: PMC4307243 DOI: 10.3390/ijms16010193] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 12/05/2014] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen and nitrogen species have been implicated in diverse pathophysiological conditions, including inflammation, neurodegenerative diseases and cancer. Accumulating evidence indicates that oxidative damage to biomolecules including lipids, proteins and DNA, contributes to these diseases. Previous studies suggest roles of lipid peroxidation and oxysterols in the development of neurodegenerative diseases and inflammation-related cancer. Our recent studies identifying and characterizing carbonylated proteins reveal oxidative damage to heat shock proteins in neurodegenerative disease models and inflammation-related cancer, suggesting dysfunction in their antioxidative properties. In neurodegenerative diseases, DNA damage may not only play a role in the induction of apoptosis, but also may inhibit cellular division via telomere shortening. Immunohistochemical analyses showed co-localization of oxidative/nitrative DNA lesions and stemness markers in the cells of inflammation-related cancers. Here, we review oxidative stress and its significant roles in neurodegenerative diseases and cancer.
Collapse
|
26
|
Zhao J, Xing N. Identification of γ-synuclein as a stage-specific marker in bladder cancer by immunohistochemistry. Med Sci Monit 2014; 20:2550-5. [PMID: 25479371 PMCID: PMC4266204 DOI: 10.12659/msm.892927] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Previous studies have shown that the expression level of γ-synuclein (SNCG) is associated with progression of many different malignant tumors. In this study, we discuss and assess the prognostic ability of SNCG in bladder cancer. Material/Methods Medical records (2005–2013) were retrospectively reviewed for the population of interest. SNCG expression was identified immunohistochemically from bladder cancer tissues of 113 bladder cancer patients. The survival rate was calculated by the Kaplan-Meier method. Cox proportional hazard regression model was used for analysis of predictors of bladder cancer. Results SNCG was overexpressed in bladder cancer tissues compared with the normal bladder tissues (p<0.0001). SNCG expression in bladder cancer tissue was strongly related to tumor stage. However, SNCG level was not a prognostic factor of survival. Conclusions Our results demonstrate that SNCG is highly expressed in bladder cancer tissue and its expression is stage-specific, but it is not helpful for predicting outcome in bladder cancer patients.
Collapse
Affiliation(s)
- Jiyu Zhao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China (mainland)
| | - Nianzeng Xing
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China (mainland)
| |
Collapse
|