1
|
Rexach JE, Cheng Y, Chen L, Polioudakis D, Lin LC, Mitri V, Elkins A, Han X, Yamakawa M, Yin A, Calini D, Kawaguchi R, Ou J, Huang J, Williams C, Robinson J, Gaus SE, Spina S, Lee EB, Grinberg LT, Vinters H, Trojanowski JQ, Seeley WW, Malhotra D, Geschwind DH. Cross-disorder and disease-specific pathways in dementia revealed by single-cell genomics. Cell 2024; 187:5753-5774.e28. [PMID: 39265576 DOI: 10.1016/j.cell.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 05/29/2024] [Accepted: 08/09/2024] [Indexed: 09/14/2024]
Abstract
The development of successful therapeutics for dementias requires an understanding of their shared and distinct molecular features in the human brain. We performed single-nuclear RNA-seq and ATAC-seq in Alzheimer's disease (AD), frontotemporal dementia (FTD), and progressive supranuclear palsy (PSP), analyzing 41 participants and ∼1 million cells (RNA + ATAC) from three brain regions varying in vulnerability and pathological burden. We identify 32 shared, disease-associated cell types and 14 that are disease specific. Disease-specific cell states represent glial-immune mechanisms and selective neuronal vulnerability impacting layer 5 intratelencephalic neurons in AD, layer 2/3 intratelencephalic neurons in FTD, and layer 5/6 near-projection neurons in PSP. We identify disease-associated gene regulatory networks and cells impacted by causal genetic risk, which differ by disorder. These data illustrate the heterogeneous spectrum of glial and neuronal compositional and gene expression alterations in different dementias and identify therapeutic targets by revealing shared and disease-specific cell states.
Collapse
Affiliation(s)
- Jessica E Rexach
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Yuyan Cheng
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lawrence Chen
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Damon Polioudakis
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Li-Chun Lin
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Vivianne Mitri
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andrew Elkins
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xia Han
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mai Yamakawa
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anna Yin
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniela Calini
- Neuroscience and Rare Diseases, Roche Pharma Research and Early Development, F. Hoffman-LaRoche Ltd., Basel, Switzerland
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jing Ou
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jerry Huang
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher Williams
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - John Robinson
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie E Gaus
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Salvatore Spina
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Edward B Lee
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lea T Grinberg
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Harry Vinters
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - John Q Trojanowski
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Dheeraj Malhotra
- Neuroscience and Rare Diseases, Roche Pharma Research and Early Development, F. Hoffman-LaRoche Ltd., Basel, Switzerland
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Botella Lucena P, Heneka MT. Inflammatory aspects of Alzheimer's disease. Acta Neuropathol 2024; 148:31. [PMID: 39196440 DOI: 10.1007/s00401-024-02790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Alzheimer´s disease (AD) stands out as the most common chronic neurodegenerative disorder. AD is characterized by progressive cognitive decline and memory loss, with neurodegeneration as its primary pathological feature. The role of neuroinflammation in the disease course has become a focus of intense research. While microglia, the brain's resident macrophages, have been pivotal to study central immune inflammation, recent evidence underscores the contributions of other cellular entities to the neuroinflammatory process. In this article, we review the inflammatory role of microglia and astrocytes, focusing on their interactions with AD's core pathologies, amyloid beta deposition, and tau tangle formation. Additionally, we also discuss how different modes of regulated cell death in AD may impact the chronic neuroinflammatory environment. This review aims to highlight the evolving landscape of neuroinflammatory research in AD and underscores the importance of considering multiple cellular contributors when developing new therapeutic strategies.
Collapse
Affiliation(s)
- Pablo Botella Lucena
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, Avenue du Swing, Belvaux, L-4367, Esch-Belval, Luxembourg
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, Avenue du Swing, Belvaux, L-4367, Esch-Belval, Luxembourg.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
3
|
Kadam PS, Yang Z, Lu Y, Zhu H, Atiyas Y, Shah N, Fisher S, Nordgren E, Kim J, Issadore D, Eberwine J. Single-mitochondrion sequencing uncovers distinct mutational patterns and heteroplasmy landscape in mouse astrocytes and neurons. BMC Biol 2024; 22:162. [PMID: 39075589 PMCID: PMC11287894 DOI: 10.1186/s12915-024-01953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Mitochondrial (mt) heteroplasmy can cause adverse biological consequences when deleterious mtDNA mutations accumulate disrupting "normal" mt-driven processes and cellular functions. To investigate the heteroplasmy of such mtDNA changes, we developed a moderate throughput mt isolation procedure to quantify the mt single-nucleotide variant (SNV) landscape in individual mouse neurons and astrocytes. In this study, we amplified mt-genomes from 1645 single mitochondria isolated from mouse single astrocytes and neurons to (1) determine the distribution and proportion of mt-SNVs as well as mutation pattern in specific target regions across the mt-genome, (2) assess differences in mtDNA SNVs between neurons and astrocytes, and (3) study co-segregation of variants in the mouse mtDNA. RESULTS (1) The data show that specific sites of the mt-genome are permissive to SNV presentation while others appear to be under stringent purifying selection. Nested hierarchical analysis at the levels of mitochondrion, cell, and mouse reveals distinct patterns of inter- and intra-cellular variation for mt-SNVs at different sites. (2) Further, differences in the SNV incidence were observed between mouse neurons and astrocytes for two mt-SNV 9027:G > A and 9419:C > T showing variation in the mutational propensity between these cell types. Purifying selection was observed in neurons as shown by the Ka/Ks statistic, suggesting that neurons are under stronger evolutionary constraint as compared to astrocytes. (3) Intriguingly, these data show strong linkage between the SNV sites at nucleotide positions 9027 and 9461. CONCLUSIONS This study suggests that segregation as well as clonal expansion of mt-SNVs is specific to individual genomic loci, which is important foundational data in understanding of heteroplasmy and disease thresholds for mutation of pathogenic variants.
Collapse
Affiliation(s)
- Parnika S Kadam
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zijian Yang
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Youtao Lu
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hua Zhu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yasemin Atiyas
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nishal Shah
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephen Fisher
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Erik Nordgren
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Junhyong Kim
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Issadore
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - James Eberwine
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Pereira MF, Shyti R, Testa G. In and out: Benchmarking in vitro, in vivo, ex vivo, and xenografting approaches for an integrative brain disease modeling pipeline. Stem Cell Reports 2024; 19:767-795. [PMID: 38865969 PMCID: PMC11390705 DOI: 10.1016/j.stemcr.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 06/14/2024] Open
Abstract
Human cellular models and their neuronal derivatives have afforded unprecedented advances in elucidating pathogenic mechanisms of neuropsychiatric diseases. Notwithstanding their indispensable contribution, animal models remain the benchmark in neurobiological research. In an attempt to harness the best of both worlds, researchers have increasingly relied on human/animal chimeras by xenografting human cells into the animal brain. Despite the unparalleled potential of xenografting approaches in the study of the human brain, literature resources that systematically examine their significance and advantages are surprisingly lacking. We fill this gap by providing a comprehensive account of brain diseases that were thus far subjected to all three modeling approaches (transgenic rodents, in vitro human lineages, human-animal xenografting) and provide a critical appraisal of the impact of xenografting approaches for advancing our understanding of those diseases and brain development. Next, we give our perspective on integrating xenografting modeling pipeline with recent cutting-edge technological advancements.
Collapse
Affiliation(s)
- Marlene F Pereira
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Neurogenomics Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| | - Reinald Shyti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy; Neurogenomics Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Neurogenomics Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| |
Collapse
|
5
|
Ma L, Wu Q, You Y, Zhang P, Tan D, Liang M, Huang Y, Gao Y, Ban Y, Chen Y, Yuan J. Neuronal small extracellular vesicles carrying miR-181c-5p contribute to the pathogenesis of epilepsy by regulating the protein kinase C-δ/glutamate transporter-1 axis in astrocytes. Glia 2024; 72:1082-1095. [PMID: 38385571 DOI: 10.1002/glia.24517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Information exchange between neurons and astrocytes mediated by extracellular vesicles (EVs) is known to play a key role in the pathogenesis of central nervous system diseases. A key driver of epilepsy is the dysregulation of intersynaptic excitatory neurotransmitters mediated by astrocytes. Thus, we investigated the potential association between neuronal EV microRNAs (miRNAs) and astrocyte glutamate uptake ability in epilepsy. Here, we showed that astrocytes were able to engulf epileptogenic neuronal EVs, inducing a significant increase in the glutamate concentration in the extracellular fluid of astrocytes, which was linked to a decrease in glutamate transporter-1 (GLT-1) protein expression. Using sequencing and gene ontology (GO) functional analysis, miR-181c-5p was found to be the most significantly upregulated miRNA in epileptogenic neuronal EVs and was linked to glutamate metabolism. Moreover, we found that neuronal EV-derived miR-181c-5p interacted with protein kinase C-delta (PKCδ), downregulated PKCδ and GLT-1 protein expression and increased glutamate concentrations in astrocytes both in vitro and in vivo. Our findings demonstrated that epileptogenic neuronal EVs carrying miR-181c-5p decrease the glutamate uptake ability of astrocytes, thus promoting susceptibility to epilepsy.
Collapse
Affiliation(s)
- Limin Ma
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qingyuan Wu
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yu You
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dandan Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Minxue Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunyi Huang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Gao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuenan Ban
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinxian Yuan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Santiago-Balmaseda A, Aguirre-Orozco A, Valenzuela-Arzeta IE, Villegas-Rojas MM, Pérez-Segura I, Jiménez-Barrios N, Hurtado-Robles E, Rodríguez-Hernández LD, Rivera-German ER, Guerra-Crespo M, Martinez-Fong D, Ledesma-Alonso C, Diaz-Cintra S, Soto-Rojas LO. Neurodegenerative Diseases: Unraveling the Heterogeneity of Astrocytes. Cells 2024; 13:921. [PMID: 38891053 PMCID: PMC11172252 DOI: 10.3390/cells13110921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The astrocyte population, around 50% of human brain cells, plays a crucial role in maintaining the overall health and functionality of the central nervous system (CNS). Astrocytes are vital in orchestrating neuronal development by releasing synaptogenic molecules and eliminating excessive synapses. They also modulate neuronal excitability and contribute to CNS homeostasis, promoting neuronal survival by clearance of neurotransmitters, transporting metabolites, and secreting trophic factors. Astrocytes are highly heterogeneous and respond to CNS injuries and diseases through a process known as reactive astrogliosis, which can contribute to both inflammation and its resolution. Recent evidence has revealed remarkable alterations in astrocyte transcriptomes in response to several diseases, identifying at least two distinct phenotypes called A1 or neurotoxic and A2 or neuroprotective astrocytes. However, due to the vast heterogeneity of these cells, it is limited to classify them into only two phenotypes. This review explores the various physiological and pathophysiological roles, potential markers, and pathways that might be activated in different astrocytic phenotypes. Furthermore, we discuss the astrocyte heterogeneity in the main neurodegenerative diseases and identify potential therapeutic strategies. Understanding the underlying mechanisms in the differentiation and imbalance of the astrocytic population will allow the identification of specific biomarkers and timely therapeutic approaches in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Alberto Santiago-Balmaseda
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Annai Aguirre-Orozco
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Irais E. Valenzuela-Arzeta
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Marcos M. Villegas-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Isaac Pérez-Segura
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Natalie Jiménez-Barrios
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Ernesto Hurtado-Robles
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Luis Daniel Rodríguez-Hernández
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Erick R. Rivera-German
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Magdalena Guerra-Crespo
- Laboratorio de Medicina Regenerativa, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico;
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Carlos Ledesma-Alonso
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro 76230, Mexico;
| | - Sofía Diaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro 76230, Mexico;
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| |
Collapse
|
7
|
Sidoryk-Węgrzynowicz M, Adamiak K, Strużyńska L. Astrocyte-Neuron Interaction via the Glutamate-Glutamine Cycle and Its Dysfunction in Tau-Dependent Neurodegeneration. Int J Mol Sci 2024; 25:3050. [PMID: 38474295 DOI: 10.3390/ijms25053050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Astroglia constitute the largest group of glial cells and are involved in numerous actions that are critical to neuronal development and functioning, such as maintaining the blood-brain barrier, forming synapses, supporting neurons with nutrients and trophic factors, and protecting them from injury. These properties are deeply affected in the course of many neurodegenerative diseases, including tauopathies, often before the onset of the disease. In this respect, the transfer of essential amino acids such as glutamate and glutamine between neurons and astrocytes in the glutamate-glutamine cycle (GGC) is one example. In this review, we focus on the GGC and the disruption of this cycle in tau-dependent neurodegeneration. A profound understanding of the complex functions of the GGC and, in the broader context, searching for dysfunctions in communication pathways between astrocytes and neurons via GGC in health and disease, is of critical significance for the development of novel mechanism-based therapies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Marta Sidoryk-Węgrzynowicz
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland
| | - Kamil Adamiak
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland
| | - Lidia Strużyńska
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland
| |
Collapse
|
8
|
Batenburg KL, Scheper W. Neuron-to-astrocyte proteostatic stress signaling in response to tau pathology. Neural Regen Res 2024; 19:505-506. [PMID: 37721275 PMCID: PMC10581557 DOI: 10.4103/1673-5374.377609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 09/19/2023] Open
Affiliation(s)
- Kevin Llewelyn Batenburg
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Amsterdam Neuroscience - Neurodegeneration, Amsterdam, The Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience - Neurodegeneration, Amsterdam, The Netherlands
| | - Wiep Scheper
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Amsterdam Neuroscience - Neurodegeneration, Amsterdam, The Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience - Neurodegeneration, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Eltom K, Mothes T, Libard S, Ingelsson M, Erlandsson A. Astrocytic accumulation of tau fibrils isolated from Alzheimer's disease brains induces inflammation, cell-to-cell propagation and neuronal impairment. Acta Neuropathol Commun 2024; 12:34. [PMID: 38409026 PMCID: PMC10898102 DOI: 10.1186/s40478-024-01745-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/17/2024] [Indexed: 02/28/2024] Open
Abstract
Accumulating evidence highlights the involvement of astrocytes in Alzheimer's disease (AD) progression. We have previously demonstrated that human iPSC-derived astrocytes ingest and modify synthetic tau fibrils in a way that enhances their seeding efficiency. However, synthetic tau fibrils differ significantly from in vivo formed fibrils. To mimic the situation in the brain, we here analyzed astrocytes' processing of human brain-derived tau fibrils and its consequences for cellular physiology. Tau fibrils were extracted from both AD and control brains, aiming to examine any potential differences in astrocyte response depending on the origin of fibrils. Our results show that human astrocytes internalize, but fail to degrade, both AD and control tau fibrils. Instead, pathogenic, seeding capable tau proteoforms are spread to surrounding cells via tunneling nanotubes and exocytosis. Notably, accumulation of AD tau fibrils induces a stronger reactive state in astrocytes, compared to control fibrils, evident by the augmented expression of vimentin and GFAP, as well as by an increased secretion of the pro-inflammatory cytokines IL-8 and MCP-1. Moreover, conditioned media from astrocytes with AD tau fibril deposits induce synapse and metabolic impairment in human iPSC-derived neurons. Taken together, our data suggest that the accumulation of brain-derived AD tau fibrils induces a more robust inflammatory and neurotoxic phenotype in human astrocytes, accentuating the nature of tau fibrils as an important contributing factor to inflammation and neurodegeneration in AD.
Collapse
Affiliation(s)
- Khalid Eltom
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, 751 85, Sweden
| | - Tobias Mothes
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, 751 85, Sweden
| | - Sylwia Libard
- Department of Immunology, Genetics and Pathology, Neuro-Oncology and Neurodegeneration, Uppsala University, Uppsala, Sweden
- Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, 751 85, Sweden
- University Health Network, Krembil Brain Institute, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Anna Erlandsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, 751 85, Sweden.
| |
Collapse
|
10
|
Hartnell IJ, Woodhouse D, Jasper W, Mason L, Marwaha P, Graffeuil M, Lau LC, Norman JL, Chatelet DS, Buee L, Nicoll JAR, Blum D, Dorothee G, Boche D. Glial reactivity and T cell infiltration in frontotemporal lobar degeneration with tau pathology. Brain 2024; 147:590-606. [PMID: 37703311 PMCID: PMC10834257 DOI: 10.1093/brain/awad309] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/23/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023] Open
Abstract
Frontotemporal lobar degeneration with tau (FTLD-tau) is a group of tauopathies that underlie ∼50% of FTLD cases. Identification of genetic risk variants related to innate/adaptive immunity have highlighted a role for neuroinflammation and neuroimmune interactions in FTLD. Studies have shown microglial and astrocyte activation together with T cell infiltration in the brain of THY-Tau22 tauopathy mice. However, this remains to be confirmed in FTLD-tau patients. We conducted a detailed post-mortem study of FTLD-tau cases including 45 progressive supranuclear palsy with clinical frontotemporal dementia, 33 Pick's disease, 12 FTLD-MAPT and 52 control brains to characterize the link between phosphorylated tau (pTau) epitopes and the innate and adaptive immunity. Tau pathology was assessed in the cerebral cortex using antibodies directed against: Tau-2 (phosphorylated and unphosphorylated tau), AT8 (pSer202/pThr205), AT100 (pThr212/pSer214), CP13 (pSer202), PHF1 (pSer396/pSer404), pThr181 and pSer356. The immunophenotypes of microglia and astrocytes were assessed with phenotypic markers (Iba1, CD68, HLA-DR, CD64, CD32a, CD16 for microglia and GFAP, EAAT2, glutamine synthetase and ALDH1L1 for astrocytes). The adaptive immune response was explored via CD4+ and CD8+ T cell quantification and the neuroinflammatory environment was investigated via the expression of 30 inflammatory-related proteins using V-Plex Meso Scale Discovery. As expected, all pTau markers were increased in FTLD-tau cases compared to controls. pSer356 expression was greatest in FTLD-MAPT cases versus controls (P < 0.0001), whereas the expression of other markers was highest in Pick's disease. Progressive supranuclear palsy with frontotemporal dementia consistently had a lower pTau protein load compared to Pick's disease across tau epitopes. The only microglial marker increased in FTLD-tau was CD16 (P = 0.0292) and specifically in FTLD-MAPT cases (P = 0.0150). However, several associations were detected between pTau epitopes and microglia, supporting an interplay between them. GFAP expression was increased in FTLD-tau (P = 0.0345) with the highest expression in Pick's disease (P = 0.0019), while ALDH1L1 was unchanged. Markers of astrocyte glutamate cycling function were reduced in FTLD-tau (P = 0.0075; Pick's disease: P < 0.0400) implying astrocyte reactivity associated with a decreased glutamate cycling activity, which was further associated with pTau expression. Of the inflammatory proteins assessed in the brain, five chemokines were upregulated in Pick's disease cases (P < 0.0400), consistent with the recruitment of CD4+ (P = 0.0109) and CD8+ (P = 0.0014) T cells. Of note, the CD8+ T cell infiltration was associated with pTau epitopes and microglial and astrocytic markers. Our results highlight that FTLD-tau is associated with astrocyte reactivity, remarkably little activation of microglia, but involvement of adaptive immunity in the form of chemokine-driven recruitment of T lymphocytes.
Collapse
Affiliation(s)
- Iain J Hartnell
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Declan Woodhouse
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - William Jasper
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Luke Mason
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Pavan Marwaha
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Manon Graffeuil
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Laurie C Lau
- Clinical and Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome Laboratories, University of Southampton, Southampton O16 6YD, UK
| | - Jeanette L Norman
- Histochemistry Research Unit, Clinical and Experimental Sciences, Faculty of Medicine University of Southampton, Southampton SO16 6YD, UK
| | - David S Chatelet
- Biomedical Imaging Unit, University Hospital Southampton NHS Trust, Southampton SO16 6YD, UK
| | - Luc Buee
- University of Lille, Inserm, CHU Lille, UMR-S1172—Lille Neurosciences and Cognition, Lille 59045, France
- Alzheimer and Tauopathies, LabEX DISTALZ, Lille 59000, France
| | - James A R Nicoll
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Department of Cellular Pathology, University Hospital Southampton NHS Trust, Southampton SO16 6YD, UK
| | - David Blum
- University of Lille, Inserm, CHU Lille, UMR-S1172—Lille Neurosciences and Cognition, Lille 59045, France
- Alzheimer and Tauopathies, LabEX DISTALZ, Lille 59000, France
| | - Guillaume Dorothee
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris 75012, France
| | - Delphine Boche
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
11
|
Giusti V, Kaur G, Giusto E, Civiero L. Brain clearance of protein aggregates: a close-up on astrocytes. Mol Neurodegener 2024; 19:5. [PMID: 38229094 DOI: 10.1186/s13024-024-00703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
Protein misfolding and accumulation defines a prevailing feature of many neurodegenerative disorders, finally resulting in the formation of toxic intra- and extracellular aggregates. Intracellular aggregates can enter the extracellular space and be subsequently transferred among different cell types, thus spreading between connected brain districts.Although microglia perform a predominant role in the removal of extracellular aggregated proteins, mounting evidence suggests that astrocytes actively contribute to the clearing process. However, the molecular mechanisms used by astrocytes to remove misfolded proteins are still largely unknown.Here we first provide a brief overview of the progressive transition from soluble monomers to insoluble fibrils that characterizes amyloid proteins, referring to α-Synuclein and Tau as archetypical examples. We then highlight the mechanisms at the basis of astrocyte-mediated clearance with a focus on their potential ability to recognize, collect, internalize and digest extracellular protein aggregates. Finally, we explore the potential of targeting astrocyte-mediated clearance as a future therapeutic approach for the treatment of neurodegenerative disorders characterized by protein misfolding and accumulation.
Collapse
Affiliation(s)
| | - Gurkirat Kaur
- Department of Biology, University of Padova, Padua, Italy
| | | | - Laura Civiero
- IRCCS San Camillo Hospital, Venice, Italy.
- Department of Biology, University of Padova, Padua, Italy.
| |
Collapse
|
12
|
Eisenbaum M, Pearson A, Ortiz C, Mullan M, Crawford F, Ojo J, Bachmeier C. ApoE4 expression disrupts tau uptake, trafficking, and clearance in astrocytes. Glia 2024; 72:184-205. [PMID: 37668005 DOI: 10.1002/glia.24469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/07/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
Tauopathies are a collection of neurodegenerative diseases characterized by the accumulation of pathogenic aggregates of the microtubule-associated protein tau. Despite the prevalence and diversity of tau astrogliopathy in tauopathies, the interactions between astrocytes and tau in the brain, and the influence of neurodegenerative genetic risk factors like the apolipoprotein E4 (apoE4) isoform, are largely unknown. Here, we leveraged primary and immortalized astrocytes expressing humanized apoE isoforms to characterize the mechanisms by which astrocytes interact with and eliminate extracellular tau, and the influence of apoE genotype on these processes. Our work indicates that astrocytes rapidly internalize, process, and release tau via an exosomal secretory mechanism under physiological conditions. However, we found that apoE4 disrupted these processes in comparison to apoE3, resulting in an astrocytic phenotype prone to intracellular tau accumulation. Furthermore, exposure to repetitive mild traumatic brain injuries exacerbated the apoE4-induced impairments in tau processing and elimination by astrocytes in apoE4 targeted-replacement mice. The diminished ability of apoE4 astrocytes to eliminate extracellular tau can lead to an accumulation of pathogenic tau, which induces mitochondrial dysfunction, as demonstrated by our studies. In total, our findings suggest that the apoE4 isoform lowers the threshold of astrocytic resilience to pathogenic tau, rendering them susceptible to bioenergetic deficits in the early stages of neurodegenerative diseases such as traumatic brain injury, potentially contributing to neurological decline.
Collapse
Affiliation(s)
| | | | | | | | - Fiona Crawford
- The Roskamp Institute, Sarasota, Florida, USA
- James A. Haley Veterans' Hospital, Tampa, Florida, USA
| | - Joseph Ojo
- The Roskamp Institute, Sarasota, Florida, USA
| | - Corbin Bachmeier
- The Roskamp Institute, Sarasota, Florida, USA
- Bay Pines VA Healthcare System, Bay Pines, Florida, USA
| |
Collapse
|
13
|
Matthews I, Birnbaum A, Gromova A, Huang AW, Liu K, Liu EA, Coutinho K, McGraw M, Patterson DC, Banks MT, Nobles AC, Nguyen N, Merrihew GE, Wang L, Baeuerle E, Fernandez E, Musi N, MacCoss MJ, Miranda HC, La Spada AR, Cortes CJ. Skeletal muscle TFEB signaling promotes central nervous system function and reduces neuroinflammation during aging and neurodegenerative disease. Cell Rep 2023; 42:113436. [PMID: 37952157 PMCID: PMC10841857 DOI: 10.1016/j.celrep.2023.113436] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/12/2023] [Accepted: 10/28/2023] [Indexed: 11/14/2023] Open
Abstract
Skeletal muscle has recently arisen as a regulator of central nervous system (CNS) function and aging, secreting bioactive molecules known as myokines with metabolism-modifying functions in targeted tissues, including the CNS. Here, we report the generation of a transgenic mouse with enhanced skeletal muscle lysosomal and mitochondrial function via targeted overexpression of transcription factor E-B (TFEB). We discovered that the resulting geroprotective effects in skeletal muscle reduce neuroinflammation and the accumulation of tau-associated pathological hallmarks in a mouse model of tauopathy. Muscle-specific TFEB overexpression significantly ameliorates proteotoxicity, reduces neuroinflammation, and promotes transcriptional remodeling of the aged CNS, preserving cognition and memory in aged mice. Our results implicate the maintenance of skeletal muscle function throughout aging in direct regulation of CNS health and disease and suggest that skeletal muscle originating factors may act as therapeutic targets against age-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Ian Matthews
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Allison Birnbaum
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Anastasia Gromova
- Department of Pathology and Laboratory Medicine, UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA
| | - Amy W Huang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Kailin Liu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Eleanor A Liu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA
| | - Kristen Coutinho
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Megan McGraw
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dalton C Patterson
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Macy T Banks
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Amber C Nobles
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nhat Nguyen
- Department of Pathology and Laboratory Medicine, UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA
| | - Gennifer E Merrihew
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Eric Baeuerle
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care Network, San Antonio, TX 78229, USA
| | - Elizabeth Fernandez
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care Network, San Antonio, TX 78229, USA
| | - Nicolas Musi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Helen C Miranda
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; RNA Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Albert R La Spada
- Department of Pathology and Laboratory Medicine, UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology and Department of Biological Chemistry, UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA.
| | - Constanza J Cortes
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90007, USA.
| |
Collapse
|
14
|
Emmerson JT, Do Carmo S, Liu Y, Shalhoub A, Liu A, Bonomo Q, Malcolm JC, Breuillaud L, Cuello AC. Progressive human-like tauopathy with downstream neurodegeneration and neurovascular compromise in a transgenic rat model. Neurobiol Dis 2023; 184:106227. [PMID: 37454780 DOI: 10.1016/j.nbd.2023.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Tauopathies, including frontotemporal dementia (FTD) and Alzheimer's disease (AD), clinically present with progressive cognitive decline and the deposition of neurofibrillary tangles (NFTs) in the brain. Neurovascular compromise is also prevalent in AD and FTD however the relationship between tau and the neurovascular unit is less understood relative to other degenerative phenotypes. Current animal models confer the ability to recapitulate aspects of the CNS tauopathies, however, existing models either display overaggressive phenotypes, or do not develop neuronal loss or genuine neurofibrillary lesions. In this report, we communicate the longitudinal characterization of brain tauopathy in a novel transgenic rat model, coded McGill-R955-hTau. The model expresses the longest isoform of human P301S tau. Homozygous R955-hTau rats displayed a robust, progressive accumulation of mutated human tau leading to the detection of tau hyperphosphorylation and cognitive deficits accelerating from 14 months of age. This model features extensive tau hyperphosphorylation with endogenous tau recruitment, authentic neurofibrillary lesions, and tau-associated neuronal loss, ventricular dilation, decreased brain volume, and gliosis in aged rats. Further, we demonstrate how neurovascular integrity becomes compromised at aged life stages using a combination of electron microscopy, injection of the tracer horseradish peroxidase and immunohistochemical approaches.
Collapse
Affiliation(s)
- Joshua T Emmerson
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G1Y6, Canada
| | - Sonia Do Carmo
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G1Y6, Canada
| | - Yingying Liu
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G1Y6, Canada
| | - Ali Shalhoub
- Department of Biochemistry, McGill University, Montreal H3A 0C7, Canada
| | - Ai Liu
- Integrated Program in Neuroscience, McGill University, Montreal H3A 1A1, Canada
| | - Quentin Bonomo
- Integrated Program in Neuroscience, McGill University, Montreal H3A 1A1, Canada
| | - Janice C Malcolm
- Department of Anatomy and Cell Biology, McGill University, Montreal H3A 0C7, Canada
| | - Lionel Breuillaud
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G1Y6, Canada
| | - A Claudio Cuello
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G1Y6, Canada; Integrated Program in Neuroscience, McGill University, Montreal H3A 1A1, Canada; Department of Pharmacology, Oxford University, Oxford OX13QT, UK.
| |
Collapse
|
15
|
Kofman S, Sun X, Ogbolu VC, Ibric L, Qiang L. Vascularized Brain Assembloids with Enhanced Cellular Complexity Provide Insights into The Cellular Deficits of Tauopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547293. [PMID: 37425812 PMCID: PMC10327194 DOI: 10.1101/2023.06.30.547293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Advanced technologies have enabled the engineering of self-organized 3-dimensional (3D) cellular structures from human induced pluripotent stem cells (hiPSCs), namely organoids, which recapitulate some key features of tissue development and functions of the human central nervous system (CNS). While hiPSC-derived 3D CNS organoids hold promise in providing a human-specific platform for studying CNS development and diseases, most of them do not incorporate the full range of implicated cell types, including vascular cell components and microglia, limiting their ability to accurately recreate the CNS environment and their utility in the study of certain aspects of the disease. Here we've developed a novel approach, called vascularized brain assembloids, for constructing hiPSC-derived 3D CNS structures with a higher level of cellular complexity. This is achieved by integrating forebrain organoids with common myeloid progenitors and phenotypically stabilized human umbilical vein endothelial cells (VeraVecs™), which can be cultured and expanded in serum-free conditions. Compared with organoids, these assembloids exhibited enhanced neuroepithelial proliferation, advanced astrocytic maturation, and increased synapse numbers. Strikingly, the assembloids derived from hiPSCs harboring the tau P301S mutation exhibited increased levels of total tau and phosphorylated tau, along with a higher proportion of rod-like microglia-like cells and enhanced astrocytic activation, when compared to the assembloids derived from isogenic hiPSCs. Additionally, they showed an altered profile of neuroinflammatory cytokines. This innovative assembloid technology serves as a compelling proof-of-concept model, opening new avenues for unraveling the intricate complexities of the human brain and accelerating progress in the development of effective treatments for neurological disorders. Significance Statement Modeling neurodegeneration in human in vitro systems has proved challenging and requires innovative tissue engineering techniques to create systems that can accurately capture the physiological features of the CNS to enable the study of disease processes. The authors develop a novel assembloid model which integrates neuroectodermal cells with endothelial cells and microglia, two critical cell types that are commonly missing from traditional organoid models. They then apply this model to investigate early manifestations of pathology in the context of tauopathy and uncover early astrocyte and microglia reactivity as a result of the tau P301S mutation.
Collapse
|
16
|
Sidoryk-Węgrzynowicz M, Dąbrowska-Bouta B, Sulkowski G, Strużyńska L. Mutant Tau protein-induced abnormalities in the Na +-dependent glutamine translocation and recycling and their impact on astrocyte-neuron integrity in vitro. Neurochem Int 2023; 168:105551. [PMID: 37295680 DOI: 10.1016/j.neuint.2023.105551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Tau-dependent neurodegeneration is accompanied by astrocytosis in a mouse trans-genic model, which replicates the neuropathological characteristic of tauopathy and other human neurodegenerative disorders where astrocyte activation precedes neuronal loss and is associated with disease progression. This indicates an important role of astrocytes in the development of the disease. Astrocytes derived from a transgenic mouse model expressing human Tau, exhibit changes in cellular markers of astrocyte neuroprotective function related to the glutamate-glutamine cycle (GGC), representing a key part of astrocyte-neuron integrity. Here, we focused on investigating the functional properties of key GGC components involved in the astrocyte-neuron network associated with Tau pathology in vitro. Mutant recombinant Tau (rTau) carrying the P301L mutation was added to the neuronal cultures, with or without control astrocyte-conditioned medium (ACM), to study glutamine translocation through the GGC. We demonstrated that mutant Tau in vitro induces neuronal degeneration, while control astrocytes response in neuroprotective way by preventing neurodegeneration. In parallel with this observation, we noticed the Tau-dependent decline of neuronal microtubule associated protein 2 (MAP2), followed by changes in glutamine (Gln) transport. Exposure to rTau decreases sodium-dependent Gln uptake in neurons and that effect was reversed when cells were co-incubated with control ACM after induction of rTau dependent pathology. Further, we found that neuronal Na+-dependent system A is the most specific system that is affected under rTau exposure. In addition, in rTau-treated astrocytes total Na+-dependent uptake of Gln, which is mediated by the N system, increases. Altogether, our study suggest mechanisms operating in Tau pathology may be related to the alterations in glutamine transport and recycling that affect neuronal-astrocytic integrity.
Collapse
Affiliation(s)
- Marta Sidoryk-Węgrzynowicz
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego str, 02-106, Warsaw, Poland.
| | - Beata Dąbrowska-Bouta
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego str, 02-106, Warsaw, Poland
| | - Grzegorz Sulkowski
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego str, 02-106, Warsaw, Poland
| | - Lidia Strużyńska
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego str, 02-106, Warsaw, Poland
| |
Collapse
|
17
|
Bowles KR, Pugh DA, Pedicone C, Oja L, Weitzman SA, Liu Y, Chen JL, Disney MD, Goate AM. Development of MAPT S305 mutation models exhibiting elevated 4R tau expression, resulting in altered neuronal and astrocytic function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543224. [PMID: 37333200 PMCID: PMC10274740 DOI: 10.1101/2023.06.02.543224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Due to the importance of 4R tau in the pathogenicity of primary tauopathies, it has been challenging to model these diseases in iPSC-derived neurons, which express very low levels of 4R tau. To address this problem we have developed a panel of isogenic iPSC lines carrying the MAPT splice-site mutations S305S, S305I or S305N, derived from four different donors. All three mutations significantly increased the proportion of 4R tau expression in iPSC-neurons and astrocytes, with up to 80% 4R transcripts in S305N neurons from as early as 4 weeks of differentiation. Transcriptomic and functional analyses of S305 mutant neurons revealed shared disruption in glutamate signaling and synaptic maturity, but divergent effects on mitochondrial bioenergetics. In iPSC-astrocytes, S305 mutations induced lysosomal disruption and inflammation and exacerbated internalization of exogenous tau that may be a precursor to the glial pathologies observed in many tauopathies. In conclusion, we present a novel panel of human iPSC lines that express unprecedented levels of 4R tau in neurons and astrocytes. These lines recapitulate previously characterized tauopathy-relevant phenotypes, but also highlight functional differences between the wild type 4R and mutant 4R proteins. We also highlight the functional importance of MAPT expression in astrocytes. These lines will be highly beneficial to tauopathy researchers enabling a more complete understanding of the pathogenic mechanisms underlying 4R tauopathies across different cell types.
Collapse
Affiliation(s)
- KR Bowles
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - DA Pugh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - C Pedicone
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - L Oja
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - SA Weitzman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Y Liu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - JL Chen
- Department of Chemistry, Scripps Research Institute, Jupiter, FL, United States of America
| | - MD Disney
- Department of Chemistry, Scripps Research Institute, Jupiter, FL, United States of America
| | - AM Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| |
Collapse
|
18
|
Kecheliev V, Boss L, Maheshwari U, Konietzko U, Keller A, Razansky D, Nitsch RM, Klohs J, Ni R. Aquaporin 4 is differentially increased and dislocated in association with tau and amyloid-beta. Life Sci 2023; 321:121593. [PMID: 36934970 DOI: 10.1016/j.lfs.2023.121593] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
AIMS Neurovascular-glymphatic dysfunction plays an important role in Alzheimer's disease and has been analysed mainly in relation to amyloid-beta (Aβ) pathology. Here, we aim to investigate the neurovascular alterations and mapping of aquaporin 4 (AQP4) distribution and dislocation associated with tau and Aβ. MATERIALS AND METHODS Perfusion, susceptibility weighted imaging and structural magnetic resonance imaging (MRI) were performed in the pR5 mouse model of 4-repeat tau and the arcAβ mouse model of amyloidosis. Immunofluorescence staining was performed using antibodies against AQP4, vessel, astroglia, microglia, phospho-tau and Aβ in brain tissue slices from pR5, arcAβ and non-transgenic mice. KEY FINDINGS pR5 mice showed regional atrophy, preserved cerebral blood flow, and reduced cerebral vessel density compared to non-transgenic mice, while arcAβ mice showed cerebral microbleeds and reduced cerebral vessel density. AQP4 dislocation and peri-tau enrichment in the hippocampus and increased AQP4 levels in the cortex and hippocampus were detected in pR5 mice compared to non-transgenic mice. In comparison, cortical AQP4 dislocation and cortical/hippocampal peri-plaque increases were observed in arcAβ mice. Increased expression of reactive astrocytes were detected around the tau inclusions in pR5 mice and Aβ plaques in arcAβ mice. SIGNIFICANCE We demonstrated the neurovascular alterations, microgliosis, astrogliosis and increased AQP4 regional expression in pR5 tau and arcAβ mice. We observed a divergent region-specific AQP4 dislocation and association with phospho-tau and Aβ pathologies.
Collapse
Affiliation(s)
- Vasil Kecheliev
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Leo Boss
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Upasana Maheshwari
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, Zurich, Switzerland
| | - Uwe Konietzko
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, Zürich University Hospital, Zurich, Switzerland; Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, ETH Zurich & University of Zurich, Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, ETH Zurich & University of Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Expression analysis and targets prediction of microRNAs in OGD/R treated astrocyte-derived exosomes by smallRNA sequencing. Genomics 2023; 115:110594. [PMID: 36863417 DOI: 10.1016/j.ygeno.2023.110594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/03/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
Astrocytes activate and crosstalk with neurons influencing inflammatory responses following ischemic stroke. The distribution, abundance, and activity of microRNAs in astrocytes-derived exosomes after ischemic stroke remains largely unknown. In this study, exosomes were extracted from primary cultured mouse astrocytes via ultracentrifugation, and exposed to oxygen glucose deprivation/re‑oxygenation injury to mimic experimental ischemic stroke. SmallRNAs from astrocyte-derived exosomes were sequenced, and differentially expressed microRNAs were randomly selected and verified by stem-loop real time quantitative polymerase chain reaction. We found that 176 microRNAs, including 148 known and 28 novel microRNAs, were differentially expressed in astrocyte-derived exosomes following oxygen glucose deprivation/re‑oxygenation injury. In gene ontology enrichment, Kyoto encyclopedia of genes and genomes pathway analyses, and microRNA target gene prediction analyses, these alteration in microRNAs were associated to a broad spectrum of physiological functions including signaling transduction, neuroprotection and stress responses. Our findings warrant further investigating of these differentially expressed microRNAs in human diseases particularly ischemic stroke.
Collapse
|
20
|
Batenburg KL, Sestito C, Cornelissen-Steijger P, van Weering JRT, Price LS, Heine VM, Scheper W. A 3D human co-culture to model neuron-astrocyte interactions in tauopathies. Biol Proced Online 2023; 25:4. [PMID: 36814189 PMCID: PMC9948470 DOI: 10.1186/s12575-023-00194-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Intraneuronal tau aggregation is the major pathological hallmark of neurodegenerative tauopathies. It is now generally acknowledged that tau aggregation also affects astrocytes in a cell non-autonomous manner. However, mechanisms involved are unclear, partly because of the lack of models that reflect the situation in the human tauopathy brain. To accurately model neuron-astrocyte interaction in tauopathies, there is a need for a model that contains both human neurons and human astrocytes, intraneuronal tau pathology and mimics the three-dimensional architecture of the brain. RESULTS Here we established a novel 100-200 µm thick 3D human neuron/astrocyte co-culture model of tau pathology, comprising homogenous populations of hiPSC-derived neurons and primary human astrocytes in microwell format. Using confocal, electron and live microscopy, we validate the procedures by showing that neurons in the 3D co-culture form pre- and postsynapses and display spontaneous calcium transients within 4 weeks. Astrocytes in the 3D co-culture display bipolar and stellate morphologies with extensive processes that ensheath neuronal somas, spatially align with axons and dendrites and can be found perisynaptically. The complex morphology of astrocytes and the interaction with neurons in the 3D co-culture mirrors that in the human brain, indicating the model's potential to study physiological and pathological neuron-astrocyte interaction in vitro. Finally, we successfully implemented a methodology to introduce seed-independent intraneuronal tau aggregation in the 3D co-culture, enabling study of neuron-astrocyte interaction in early tau pathogenesis. CONCLUSIONS Altogether, these data provide proof-of-concept for the utility of this rapid, miniaturized, and standardized 3D model for cell type-specific manipulations, such as the intraneuronal pathology that is associated with neurodegenerative disorders.
Collapse
Affiliation(s)
- Kevin L. Batenburg
- grid.12380.380000 0004 1754 9227Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience - Neurodegeneration, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Claudia Sestito
- Crown Bioscience Netherlands B.V. (Formerly OcellO B.V.), Leiden, The Netherlands ,grid.484519.5Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Child and Adolescent Psychiatry, Amsterdam Neuroscience, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Paulien Cornelissen-Steijger
- grid.484519.5Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Child and Adolescent Psychiatry, Amsterdam Neuroscience, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands ,grid.484519.5Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Jan R. T. van Weering
- grid.12380.380000 0004 1754 9227Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience - Neurodegeneration, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands ,grid.484519.5Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Amsterdam Neuroscience - Neurodegeneration, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Leo S. Price
- Crown Bioscience Netherlands B.V. (Formerly OcellO B.V.), Leiden, The Netherlands
| | - Vivi M. Heine
- grid.484519.5Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Child and Adolescent Psychiatry, Amsterdam Neuroscience, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands ,grid.484519.5Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Wiep Scheper
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience - Neurodegeneration, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands. .,Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Amsterdam Neuroscience - Neurodegeneration, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Kim H, Kim Y, Lee CY, Kim DG, Cheon M. Investigation of early molecular alterations in tauopathy with generative adversarial networks. Sci Rep 2023; 13:732. [PMID: 36639689 PMCID: PMC9839697 DOI: 10.1038/s41598-023-28081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
The recent advances in deep learning-based approaches hold great promise for unravelling biological mechanisms, discovering biomarkers, and predicting gene function. Here, we deployed a deep generative model for simulating the molecular progression of tauopathy and dissecting its early features. We applied generative adversarial networks (GANs) for bulk RNA-seq analysis in a mouse model of tauopathy (TPR50-P301S). The union set of differentially expressed genes from four comparisons (two phenotypes with two time points) was used as input training data. We devised four-way transition curves for a virtual simulation of disease progression, clustered and grouped the curves by patterns, and identified eight distinct pattern groups showing different biological features from Gene Ontology enrichment analyses. Genes that were upregulated in early tauopathy were associated with vasculature development, and these changes preceded immune responses. We confirmed significant disease-associated differences in the public human data for the genes of the different pattern groups. Validation with weighted gene co-expression network analysis suggested that our GAN-based approach can be used to detect distinct patterns of early molecular changes during disease progression, which may be extremely difficult in in vivo experiments. The generative model is a valid systematic approach for exploring the sequential cascades of mechanisms and targeting early molecular events related to dementia.
Collapse
Affiliation(s)
- Hyerin Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Yongjin Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Chung-Yeol Lee
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Do-Geun Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Mookyung Cheon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea.
| |
Collapse
|
22
|
Ochoa E, Ramirez P, Gonzalez E, De Mange J, Ray WJ, Bieniek KF, Frost B. Pathogenic tau-induced transposable element-derived dsRNA drives neuroinflammation. SCIENCE ADVANCES 2023; 9:eabq5423. [PMID: 36608133 PMCID: PMC9821943 DOI: 10.1126/sciadv.abq5423] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Deposition of tau protein aggregates in the brain of affected individuals is a defining feature of "tauopathies," including Alzheimer's disease. Studies of human brain tissue and various model systems of tauopathy report that toxic forms of tau negatively affect nuclear and genomic architecture, identifying pathogenic tau-induced heterochromatin decondensation and consequent retrotransposon activation as a causal mediator of neurodegeneration. On the basis of their similarity to retroviruses, retrotransposons drive neuroinflammation via toxic intermediates, including double-stranded RNA (dsRNA). We find that dsRNA and dsRNA sensing machinery are elevated in astrocytes of postmortem brain tissue from patients with Alzheimer's disease and progressive supranuclear palsy and in brains of tau transgenic mice. Using a Drosophila model of tauopathy, we identify specific tau-induced retrotransposons that form dsRNA and find that pathogenic tau and heterochromatin decondensation causally drive dsRNA-mediated neurodegeneration and neuroinflammation. Our study suggests that pathogenic tau-induced heterochromatin decondensation and retrotransposon activation cause elevation of inflammatory, transposable element-derived dsRNA in the adult brain.
Collapse
Affiliation(s)
- Elizabeth Ochoa
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Paulino Ramirez
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Elias Gonzalez
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jasmine De Mange
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - William J. Ray
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin F. Bieniek
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Bess Frost
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
23
|
Brandebura AN, Paumier A, Onur TS, Allen NJ. Astrocyte contribution to dysfunction, risk and progression in neurodegenerative disorders. Nat Rev Neurosci 2023; 24:23-39. [PMID: 36316501 DOI: 10.1038/s41583-022-00641-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
There is increasing appreciation that non-neuronal cells contribute to the initiation, progression and pathology of diverse neurodegenerative disorders. This Review focuses on the role of astrocytes in disorders including Alzheimer disease, Parkinson disease, Huntington disease and amyotrophic lateral sclerosis. The important roles astrocytes have in supporting neuronal function in the healthy brain are considered, along with studies that have demonstrated how the physiological properties of astrocytes are altered in neurodegenerative disorders and may explain their contribution to neurodegeneration. Further, the question of whether in neurodegenerative disorders with specific genetic mutations these mutations directly impact on astrocyte function, and may suggest a driving role for astrocytes in disease initiation, is discussed. A summary of how astrocyte transcriptomic and proteomic signatures are altered during the progression of neurodegenerative disorders and may relate to functional changes is provided. Given the central role of astrocytes in neurodegenerative disorders, potential strategies to target these cells for future therapeutic avenues are discussed.
Collapse
Affiliation(s)
- Ashley N Brandebura
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Adrien Paumier
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tarik S Onur
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nicola J Allen
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
24
|
Emerging Roles of Extracellular Vesicles in Alzheimer's Disease: Focus on Synaptic Dysfunction and Vesicle-Neuron Interaction. Cells 2022; 12:cells12010063. [PMID: 36611856 PMCID: PMC9818402 DOI: 10.3390/cells12010063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is considered by many to be a synaptic failure. Synaptic function is in fact deeply affected in the very early disease phases and recognized as the main cause of AD-related cognitive impairment. While the reciprocal involvement of amyloid beta (Aβ) and tau peptides in these processes is under intense investigation, the crucial role of extracellular vesicles (EVs) released by different brain cells as vehicles for these molecules and as mediators of early synaptic alterations is gaining more and more ground in the field. In this review, we will summarize the current literature on the contribution of EVs derived from distinct brain cells to neuronal alterations and build a working model for EV-mediated propagation of synaptic dysfunction in early AD. A deeper understanding of EV-neuron interaction will provide useful targets for the development of novel therapeutic approaches aimed at hampering AD progression.
Collapse
|
25
|
Leggio L, L'Episcopo F, Magrì A, Ulloa‐Navas MJ, Paternò G, Vivarelli S, Bastos CAP, Tirolo C, Testa N, Caniglia S, Risiglione P, Pappalardo F, Serra A, García‐Tárraga P, Faria N, Powell JJ, Peruzzotti‐Jametti L, Pluchino S, García‐Verdugo JM, Messina A, Marchetti B, Iraci N. Small Extracellular Vesicles Secreted by Nigrostriatal Astrocytes Rescue Cell Death and Preserve Mitochondrial Function in Parkinson's Disease. Adv Healthc Mater 2022; 11:e2201203. [PMID: 35856921 PMCID: PMC11468249 DOI: 10.1002/adhm.202201203] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/05/2022] [Indexed: 01/28/2023]
Abstract
Extracellular vesicles (EVs) are emerging as powerful players in cell-to-cell communication both in healthy and diseased brain. In Parkinson's disease (PD)-characterized by selective dopaminergic neuron death in ventral midbrain (VMB) and degeneration of their terminals in striatum (STR)-astrocytes exert dual harmful/protective functions, with mechanisms not fully elucidated. Here, this study shows that astrocytes from the VMB-, STR-, and VMB/STR-depleted brains release a population of small EVs in a region-specific manner. Interestingly, VMB-astrocytes secreted the highest rate of EVs, which is further exclusively increased in response to CCL3, a chemokine that promotes robust dopaminergic neuroprotection in different PD models. The neuroprotective potential of nigrostriatal astrocyte-EVs is investigated in differentiated versus undifferentiated SH-SY5Y cells exposed to oxidative stress and mitochondrial toxicity. EVs from both VMB- and STR-astrocytes counteract H2 O2 -induced caspase-3 activation specifically in differentiated cells, with EVs from CCL3-treated astrocytes showing a higher protective effect. High resolution respirometry further reveals that nigrostriatal astrocyte-EVs rescue neuronal mitochondrial complex I function impaired by the neurotoxin MPP+ . Notably, only EVs from VMB-astrocyte fully restore ATP production, again specifically in differentiated SH-SY5Y. These results highlight a regional diversity in the nigrostriatal system for the secretion and activities of astrocyte-EVs, with neuroprotective implications for PD.
Collapse
Affiliation(s)
- Loredana Leggio
- Department of Biomedical and Biotechnological SciencesUniversity of CataniaCatania95123Italy
| | | | - Andrea Magrì
- Department of Biological, Geological and Environmental SciencesUniversity of CataniaCatania95125Italy
| | - María José Ulloa‐Navas
- Laboratory of Compared NeurobiologyUniversity of Valencia‐CIBERNEDPaterna46980Spain
- Department of NeuroscienceMayo ClinicJacksonvilleFL32257USA
| | - Greta Paternò
- Department of Biomedical and Biotechnological SciencesUniversity of CataniaCatania95123Italy
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological SciencesUniversity of CataniaCatania95123Italy
| | | | | | | | | | - Pierpaolo Risiglione
- Department of Biological, Geological and Environmental SciencesUniversity of CataniaCatania95125Italy
| | - Fabrizio Pappalardo
- Department of Biomedical and Biotechnological SciencesUniversity of CataniaCatania95123Italy
| | | | | | - Nuno Faria
- Department of Veterinary MedicineUniversity of CambridgeCambridgeCB3 0ESUK
| | - Jonathan J. Powell
- Department of Veterinary MedicineUniversity of CambridgeCambridgeCB3 0ESUK
| | | | - Stefano Pluchino
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
| | | | - Angela Messina
- Department of Biological, Geological and Environmental SciencesUniversity of CataniaCatania95125Italy
| | - Bianca Marchetti
- Department of Biomedical and Biotechnological SciencesUniversity of CataniaCatania95123Italy
- Oasi Research Institute‐IRCCSTroina94018Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological SciencesUniversity of CataniaCatania95123Italy
| |
Collapse
|
26
|
Taipala E, Pfitzer JC, Hellums M, Reed MN, Gramlich MW. rTg(TauP301L)4510 mice exhibit increased VGlut1 in hippocampal presynaptic glutamatergic vesicles and increased extracellular glutamate release. Front Synaptic Neurosci 2022; 14:925546. [PMID: 35989711 PMCID: PMC9383415 DOI: 10.3389/fnsyn.2022.925546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
The molecular pathways that contribute to the onset of symptoms in tauopathy models, including Alzheimer’s disease (AD), are difficult to distinguish because multiple changes can happen simultaneously at different stages of disease progression. Understanding early synaptic alterations and their supporting molecular pathways is essential to develop better pharmacological targets to treat AD. Here, we focus on an early onset rTg(TauP301L)4510 tauopathy mouse model that exhibits hyperexcitability in hippocampal neurons of adult mice that is correlated with presynaptic changes and increased extracellular glutamate levels. However, it is not clear if increased extracellular glutamate is caused by presynaptic changes alone, or if presynaptic changes are a contributing factor among other factors. To determine whether pathogenic tau alters presynaptic function and glutamate release, we studied cultured hippocampal neurons at 14–18 days in vitro (DIV) from animals of both sexes to measure presynaptic changes in tauP301L positive mice. We observed that presynaptic vesicles exhibit increased vesicular glutamate transporter 1 (VGlut1) using immunohistochemistry of fixed cells and an established pH-sensitive green fluorescent protein approach. We show that tauP301L positive neurons exhibit a 40% increase in VGlut1 per vesicle compared to tauP301L negative littermates. Further, we use the extracellular glutamate reporter iGluSnFR to show that increased VGlut1 per vesicle directly translates into a 40% increase in extracellular glutamate. Together, these results show that increased extracellular glutamate levels observed in tauP301L mice are not caused by increased vesicle exocytosis probability but rather are directly related to increased VGlut1 transporters per synaptic vesicle.
Collapse
Affiliation(s)
- Erika Taipala
- Department of Physics, Auburn University, Auburn, AL, United States
| | | | - Morgan Hellums
- Department of Physics, Auburn University, Auburn, AL, United States
| | - Miranda N. Reed
- Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Michael W. Gramlich
- Department of Physics, Auburn University, Auburn, AL, United States
- *Correspondence: Michael W. Gramlich,
| |
Collapse
|
27
|
Bluhm A, Schrempel S, Schilling S, von Hörsten S, Schulze A, Roßner S, Hartlage-Rübsamen M. Immunohistochemical Demonstration of the pGlu79 α-Synuclein Fragment in Alzheimer’s Disease and Its Tg2576 Mouse Model. Biomolecules 2022; 12:biom12071006. [PMID: 35883562 PMCID: PMC9312983 DOI: 10.3390/biom12071006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
The deposition of β-amyloid peptides and of α-synuclein proteins is a neuropathological hallmark in the brains of Alzheimer’s disease (AD) and Parkinson’s disease (PD) subjects, respectively. However, there is accumulative evidence that both proteins are not exclusive for their clinical entity but instead co-exist and interact with each other. Here, we investigated the presence of a newly identified, pyroglutamate79-modified α-synuclein variant (pGlu79-aSyn)—along with the enzyme matrix metalloproteinase-3 (MMP-3) and glutaminyl cyclase (QC) implicated in its formation—in AD and in the transgenic Tg2576 AD mouse model. In the human brain, pGlu79-aSyn was detected in cortical pyramidal neurons, with more distinct labeling in AD compared to control brain tissue. Using immunohistochemical double and triple labelings and confocal laser scanning microscopy, we demonstrate an association of pGlu79-aSyn, MMP-3 and QC with β-amyloid plaques. In addition, pGlu79-aSyn and QC were present in amyloid plaque-associated reactive astrocytes that were also immunoreactive for the chaperone heat shock protein 27 (HSP27). Our data are consistent for the transgenic mouse model and the human clinical condition. We conclude that pGlu79-aSyn can be generated extracellularly or within reactive astrocytes, accumulates in proximity to β-amyloid plaques and induces an astrocytic protein unfolding mechanism involving HSP27.
Collapse
Affiliation(s)
- Alexandra Bluhm
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (A.B.); (Sa.S.); (M.H.-R.)
| | - Sarah Schrempel
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (A.B.); (Sa.S.); (M.H.-R.)
| | - Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, 06120 Halle (Saale), Germany; (S.S.); (A.S.)
- Faculty of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, 06366 Köthen, Germany
| | - Stephan von Hörsten
- Department for Experimental Therapy, University Clinics Erlangen and Preclinical Experimental Center, University of Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Anja Schulze
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, 06120 Halle (Saale), Germany; (S.S.); (A.S.)
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (A.B.); (Sa.S.); (M.H.-R.)
- Correspondence: ; Tel.: +49-341-9725758
| | - Maike Hartlage-Rübsamen
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (A.B.); (Sa.S.); (M.H.-R.)
| |
Collapse
|
28
|
Sanchez-Varo R, Mejias-Ortega M, Fernandez-Valenzuela JJ, Nuñez-Diaz C, Caceres-Palomo L, Vegas-Gomez L, Sanchez-Mejias E, Trujillo-Estrada L, Garcia-Leon JA, Moreno-Gonzalez I, Vizuete M, Vitorica J, Baglietto-Vargas D, Gutierrez A. Transgenic Mouse Models of Alzheimer's Disease: An Integrative Analysis. Int J Mol Sci 2022; 23:5404. [PMID: 35628216 PMCID: PMC9142061 DOI: 10.3390/ijms23105404] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/10/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) constitutes the most prominent form of dementia among elderly individuals worldwide. Disease modeling using murine transgenic mice was first initiated thanks to the discovery of heritable mutations in amyloid precursor protein (APP) and presenilins (PS) genes. However, due to the repeated failure of translational applications from animal models to human patients, along with the recent advances in genetic susceptibility and our current understanding on disease biology, these models have evolved over time in an attempt to better reproduce the complexity of this devastating disease and improve their applicability. In this review, we provide a comprehensive overview about the major pathological elements of human AD (plaques, tauopathy, synaptic damage, neuronal death, neuroinflammation and glial dysfunction), discussing the knowledge that available mouse models have provided about the mechanisms underlying human disease. Moreover, we highlight the pros and cons of current models, and the revolution offered by the concomitant use of transgenic mice and omics technologies that may lead to a more rapid improvement of the present modeling battery.
Collapse
Affiliation(s)
- Raquel Sanchez-Varo
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Marina Mejias-Ortega
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Juan Jose Fernandez-Valenzuela
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Cristina Nuñez-Diaz
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Laura Caceres-Palomo
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Laura Vegas-Gomez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Elisabeth Sanchez-Mejias
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Laura Trujillo-Estrada
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Juan Antonio Garcia-Leon
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Ines Moreno-Gonzalez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Marisa Vizuete
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBIS)-Hospital Universitario Virgen del Rocio/CSIC, 41012 Seville, Spain
| | - Javier Vitorica
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBIS)-Hospital Universitario Virgen del Rocio/CSIC, 41012 Seville, Spain
| | - David Baglietto-Vargas
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| | - Antonia Gutierrez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (R.S.-V.); (M.M.-O.); (J.J.F.-V.); (C.N.-D.); (L.C.-P.); (L.V.-G.); (E.S.-M.); (L.T.-E.); (J.A.G.-L.); (I.M.-G.)
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain; (M.V.); (J.V.)
| |
Collapse
|
29
|
Song L, Oseid DE, Wells EA, Coaston T, Robinson AS. Heparan Sulfate Proteoglycans (HSPGs) Serve as the Mediator Between Monomeric Tau and Its Subsequent Intracellular ERK1/2 Pathway Activation. J Mol Neurosci 2022; 72:772-791. [PMID: 35040015 PMCID: PMC8763444 DOI: 10.1007/s12031-021-01943-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/06/2021] [Indexed: 12/15/2022]
Abstract
The conversion of soluble tau protein to insoluble, hyperphosphorylated neurofibrillary tangles (NFTs) is a major hallmark leading to neuronal death observed in neurodegenerative tauopathies. Unlike NFTs, the involvement of monomeric tau in the progression of tau pathology has been less investigated. Using live-cell confocal microscopy and flow cytometry, we demonstrate that soluble 0N4R monomers were rapidly endocytosed by SH-SY5Y and C6 glioma cells via actin-dependent macropinocytosis. Further, cellular endocytosis of monomeric tau has been demonstrated to be HSPG-dependent, as shown in C6 glial cells with genetic knockouts of xylosyltransferase-1-a key enzyme in HSPG synthesis-with a reduced level of tau uptake. Tau internalization subsequently triggers ERK1/2 activation and therefore, the upregulation of IL-6 and IL-1β. The role of ERK1/2 in regulating the levels of pro-inflammatory gene transcripts was confirmed by inhibiting the MEK-ERK1/2 signaling pathway, which led to the attenuated IL-6 and IL-1β expressions but not that of TNF-α. Moreover, as a key regulator of tau internalization, LRP1 (low-density lipoprotein receptor-related protein 1) levels were downregulated in response to monomeric tau added to C6 cells, while it was upregulated in HSPG-deficient cells, suggesting that the involvement of LRP1 in tau uptake depends on the presence of HSPGs on the cell surface. The subsequent LRP1 knockdown experiment we performed shows that LRP1 deficiency leads to an attenuated propensity for tau uptake and further elevated IL-6 gene expression. Collectively, our data suggest that tau has multiple extracellular binding partners that mediate its internalization through distinct mechanisms. Additionally, this study demonstrates the important role of both HSPGs and LRP1 in regulating cellular immune responses to tau protein monomers, providing a novel target for alleviating the neuroinflammatory environment before the formation of neurofibrillary tangles.
Collapse
Affiliation(s)
- Liqing Song
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Daniel E Oseid
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70118, USA
| | - Evan A Wells
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Troy Coaston
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70118, USA
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70118, USA.
| |
Collapse
|
30
|
Bouvier DS, Fixemer S, Heurtaux T, Jeannelle F, Frauenknecht KBM, Mittelbronn M. The Multifaceted Neurotoxicity of Astrocytes in Ageing and Age-Related Neurodegenerative Diseases: A Translational Perspective. Front Physiol 2022; 13:814889. [PMID: 35370777 PMCID: PMC8969602 DOI: 10.3389/fphys.2022.814889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
In a healthy physiological context, astrocytes are multitasking cells contributing to central nervous system (CNS) homeostasis, defense, and immunity. In cell culture or rodent models of age-related neurodegenerative diseases (NDDs), such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), numerous studies have shown that astrocytes can adopt neurotoxic phenotypes that could enhance disease progression. Chronic inflammatory responses, oxidative stress, unbalanced phagocytosis, or alteration of their core physiological roles are the main manifestations of their detrimental states. However, if astrocytes are directly involved in brain deterioration by exerting neurotoxic functions in patients with NDDs is still controversial. The large spectrum of NDDs, with often overlapping pathologies, and the technical challenges associated with the study of human brain samples complexify the analysis of astrocyte involvement in specific neurodegenerative cascades. With this review, we aim to provide a translational overview about the multi-facets of astrocyte neurotoxicity ranging from in vitro findings over mouse and human cell-based studies to rodent NDDs research and finally evidence from patient-related research. We also discuss the role of ageing in astrocytes encompassing changes in physiology and response to pathologic stimuli and how this may prime detrimental responses in NDDs. To conclude, we discuss how potentially therapeutic strategies could be adopted to alleviate or reverse astrocytic toxicity and their potential to impact neurodegeneration and dementia progression in patients.
Collapse
Affiliation(s)
- David S. Bouvier
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Systems Biomedicine (LCSB), University of Luxembourg (UL), Belvaux, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- *Correspondence: David S. Bouvier,
| | - Sonja Fixemer
- Luxembourg Center of Systems Biomedicine (LCSB), University of Luxembourg (UL), Belvaux, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
| | - Tony Heurtaux
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Systems Biology Group, Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg
| | - Félicia Jeannelle
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
| | - Katrin B. M. Frauenknecht
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Institute of Neuropathology, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michel Mittelbronn
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Center of Systems Biomedicine (LCSB), University of Luxembourg (UL), Belvaux, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Department of Cancer Research (DOCR), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
- Faculty of Science, Technology, and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Michel Mittelbronn,
| |
Collapse
|
31
|
Ezerskiy LA, Schoch KM, Sato C, Beltcheva M, Horie K, Rigo F, Martynowicz R, Karch CM, Bateman RJ, Miller TM. Astrocytic 4R tau expression drives astrocyte reactivity and dysfunction. JCI Insight 2022; 7:152012. [PMID: 34874917 PMCID: PMC8765054 DOI: 10.1172/jci.insight.152012] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022] Open
Abstract
The protein tau and its isoforms are associated with several neurodegenerative diseases, many of which are characterized by greater deposition of the 4-repeat (4R) tau isoform; however, the role of 4R tau in disease pathogenesis remains unclear. We created antisense oligonucleotides (ASOs) that alter the ratio of 3R to 4R tau to investigate the role of specific tau isoforms in disease. Preferential expression of 4R tau in human tau-expressing (hTau-expressing) mice was previously shown to increase seizure severity and phosphorylated tau deposition without neuronal or synaptic loss. In this study, we observed strong colocalization of 4R tau within reactive astrocytes and increased expression of pan-reactive and neurotoxic genes following 3R to 4R tau splicing ASO treatment in hTau mice. Increasing 4R tau levels in primary astrocytes provoked a similar response, including a neurotoxic genetic profile and diminished homeostatic function, which was replicated in human induced pluripotent stem cell-derived (iPSC-derived) astrocytes harboring a mutation that exhibits greater 4R tau. Healthy neurons cultured with 4R tau-expressing human iPSC-derived astrocytes exhibited a higher firing frequency and hypersynchrony, which could be prevented by lowering tau expression. These findings support a potentially novel pathway by which astrocytic 4R tau mediates reactivity and dysfunction and suggest that astrocyte-targeted therapeutics against 4R tau may mitigate neurodegenerative disease progression.
Collapse
Affiliation(s)
| | | | | | - Mariana Beltcheva
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | | | - Celeste M. Karch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
32
|
Briel N, Ruf VC, Pratsch K, Roeber S, Widmann J, Mielke J, Dorostkar MM, Windl O, Arzberger T, Herms J, Struebing FL. Single-nucleus chromatin accessibility profiling highlights distinct astrocyte signatures in progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathol 2022; 144:615-635. [PMID: 35976433 PMCID: PMC9468099 DOI: 10.1007/s00401-022-02483-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 01/31/2023]
Abstract
Tauopathies such as progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) exhibit characteristic neuronal and glial inclusions of hyperphosphorylated Tau (pTau). Although the astrocytic pTau phenotype upon neuropathological examination is the most guiding feature in distinguishing both diseases, regulatory mechanisms controlling their transitions into disease-specific states are poorly understood to date. Here, we provide accessible chromatin data of more than 45,000 single nuclei isolated from the frontal cortex of PSP, CBD, and control individuals. We found a strong association of disease-relevant molecular changes with astrocytes and demonstrate that tauopathy-relevant genetic risk variants are tightly linked to astrocytic chromatin accessibility profiles in the brains of PSP and CBD patients. Unlike the established pathogenesis in the secondary tauopathy Alzheimer disease, microglial alterations were relatively sparse. Transcription factor (TF) motif enrichments in pseudotime as well as modeling of the astrocytic TF interplay suggested a common pTau signature for CBD and PSP that is reminiscent of an inflammatory immediate-early response. Nonetheless, machine learning models also predicted discriminatory features, and we observed marked differences in molecular entities related to protein homeostasis between both diseases. Predicted TF involvement was supported by immunofluorescence analyses in postmortem brain tissue for their highly correlated target genes. Collectively, our data expand the current knowledge on risk gene involvement (e.g., MAPT, MAPK8, and NFE2L2) and molecular pathways leading to the phenotypic changes associated with CBD and PSP.
Collapse
Affiliation(s)
- Nils Briel
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany ,German Center for Neurodegenerative Diseases, Feodor-Lynen-Str. 17, 81377 Munich, Germany ,Munich Medical Research School, Faculty of Medicine, Ludwig-Maximilians-University, Bavariaring 19, 80336 Munich, Germany
| | - Viktoria C. Ruf
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Katrin Pratsch
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany ,German Center for Neurodegenerative Diseases, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Sigrun Roeber
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Jeannine Widmann
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Janina Mielke
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Mario M. Dorostkar
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Otto Windl
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany ,German Center for Neurodegenerative Diseases, Feodor-Lynen-Str. 17, 81377 Munich, Germany ,Department of Psychiatry and Psychotherapy, University Hospital Munich, Ludwig-Maximilians-University, Nussbaumstr. 7, 80336 Munich, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany ,German Center for Neurodegenerative Diseases, Feodor-Lynen-Str. 17, 81377 Munich, Germany ,Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Felix L. Struebing
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig–Maximilians-University, Feodor-Lynen-Str. 23, 81377 Munich, Germany ,German Center for Neurodegenerative Diseases, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| |
Collapse
|
33
|
Tau aggregation and its relation to selected forms of neuronal cell death. Essays Biochem 2021; 65:847-857. [PMID: 34897457 PMCID: PMC8709892 DOI: 10.1042/ebc20210030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022]
Abstract
How neurons die in neurodegenerative diseases is still unknown. The distinction between apoptosis as a genetically controlled mechanism, and necrosis, which was viewed as an unregulated process, has blurred with the ever-increasing number of necrotic-like death subroutines underpinned by genetically defined pathways. It is therefore pertinent to ask whether any of them apply to neuronal cell death in tauopathies. Although Alzheimer's disease (AD) is the most prevalent tauopathy, tauopathies comprise an array of over 30 diseases in which the cytoplasmic protein tau aggregates in neurons, and also, in some diseases, in glia. Animal models have sought to distil the contribution of tau aggregation to the cell death process but despite intensive research, no one mechanism of cell death has been unequivocally defined. The process of tau aggregation, and the fibrillar structures that form, touch on so many cellular functions that there is unlikely to be a simple linear pathway of death; as one is blocked another is likely to take the lead. It is timely to ask how far we have advanced into defining whether any of the molecular players in the new death subroutines participate in the death process. Here we briefly review the currently known cell death routines and explore what is known about their participation in tau aggregation-related cell death. We highlight the involvement of cell autonomous and the more recent non-cell autonomous pathways that may enhance tau-aggregate toxicity, and discuss recent findings that implicate microglial phagocytosis of live neurons with tau aggregates as a mechanism of death.
Collapse
|
34
|
Hypoxia preconditioning improves structure and function of astrocytes mitochondria via PGC-1α/HIF signal. J Biosci 2021. [DOI: 10.1007/s12038-020-00132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Moreira GG, Cantrelle FX, Quezada A, Carvalho FS, Cristóvão JS, Sengupta U, Puangmalai N, Carapeto AP, Rodrigues MS, Cardoso I, Fritz G, Herrera F, Kayed R, Landrieu I, Gomes CM. Dynamic interactions and Ca 2+-binding modulate the holdase-type chaperone activity of S100B preventing tau aggregation and seeding. Nat Commun 2021; 12:6292. [PMID: 34725360 PMCID: PMC8560819 DOI: 10.1038/s41467-021-26584-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/15/2021] [Indexed: 11/21/2022] Open
Abstract
The microtubule-associated protein tau is implicated in the formation of oligomers and fibrillar aggregates that evade proteostasis control and spread from cell-to-cell. Tau pathology is accompanied by sustained neuroinflammation and, while the release of alarmin mediators aggravates disease at late stages, early inflammatory responses encompass protective functions. This is the case of the Ca2+-binding S100B protein, an astrocytic alarmin which is augmented in AD and which has been recently implicated as a proteostasis regulator, acting over amyloid β aggregation. Here we report the activity of S100B as a suppressor of tau aggregation and seeding, operating at sub-stoichiometric conditions. We show that S100B interacts with tau in living cells even in microtubule-destabilizing conditions. Structural analysis revealed that tau undergoes dynamic interactions with S100B, in a Ca2+-dependent manner, notably with the aggregation prone repeat segments at the microtubule binding regions. This interaction involves contacts of tau with a cleft formed at the interface of the S100B dimer. Kinetic and mechanistic analysis revealed that S100B inhibits the aggregation of both full-length tau and of the microtubule binding domain, and that this proceeds through effects over primary and secondary nucleation, as confirmed by seeding assays and direct observation of S100B binding to tau oligomers and fibrils. In agreement with a role as an extracellular chaperone and its accumulation near tau positive inclusions, we show that S100B blocks proteopathic tau seeding. Together, our findings establish tau as a client of the S100B chaperone, providing evidence for neuro-protective functions of this inflammatory mediator across different tauopathies. The calcium binding protein S100B is an abundantly expressed protein in the brain and has neuro-protective functions by inhibiting Aβ aggregation and metal ion toxicity. Here, the authors combine cell biology and biochemical experiments with chemical kinetics and NMR measurements and show that S100B protein is an extracellular Tau chaperone and further characterize the interactions between S100B and Tau.
Collapse
Affiliation(s)
- Guilherme G Moreira
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - François-Xavier Cantrelle
- CNRS ERL9002 Integrative Structural Biology, F-59000, Lille, France.,Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
| | - Andrea Quezada
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa S Carvalho
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Joana S Cristóvão
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX, 77555-1045, USA.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX, 77555-1045, USA.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ana P Carapeto
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mário S Rodrigues
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Isabel Cardoso
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 4050-013, Porto, Portugal
| | - Güenter Fritz
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Stuttgart, 70599, Germany
| | - Federico Herrera
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX, 77555-1045, USA.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Isabelle Landrieu
- CNRS ERL9002 Integrative Structural Biology, F-59000, Lille, France.,Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
| | - Cláudio M Gomes
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal. .,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
36
|
Do Carmo S, Spillantini MG, Cuello AC. Editorial: Tau Pathology in Neurological Disorders. Front Neurol 2021; 12:754669. [PMID: 34630315 PMCID: PMC8497747 DOI: 10.3389/fneur.2021.754669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022] Open
Affiliation(s)
- Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Maria Grazia Spillantini
- Department of Clinical Neurosciences, Clifford Allbutt Building, University of Cambridge, Cambridge, United Kingdom
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.,Department of Pharmacology, Oxford University, Oxford, United Kingdom
| |
Collapse
|
37
|
Amro Z, Yool AJ, Collins-Praino LE. The potential role of glial cells in driving the prion-like transcellular propagation of tau in tauopathies. Brain Behav Immun Health 2021; 14:100242. [PMID: 34589757 PMCID: PMC8474563 DOI: 10.1016/j.bbih.2021.100242] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
Dementia is one of the leading causes of death worldwide, with tauopathies, a class of diseases defined by pathology associated with the microtubule-enriched protein, tau, as the major contributor. Although tauopathies, such as Alzheimer's disease and Frontotemporal dementia, are common amongst the ageing population, current effective treatment options are scarce, primarily due to the incomplete understanding of disease pathogenesis. The mechanisms via which aggregated forms of tau are able to propagate from one anatomical area to another to cause disease spread and progression is yet unknown. The prion-like hypothesis of tau propagation proposes that tau can propagate along neighbouring anatomical areas in a similar manner to prion proteins in prion diseases, such as Creutzfeldt-Jacob disease. This hypothesis has been supported by a plethora of studies that note the ability of tau to be actively secreted by neurons, propagated and internalised by neighbouring neuronal cells, causing disease spread. Surfacing research suggests a role of reactive astrocytes and microglia in early pre-clinical stages of tauopathy through their inflammatory actions. Furthermore, both glial types are able to internalise and secrete tau from the extracellular space, suggesting a potential role in tau propagation; although understanding the physiological mechanisms by which this can occur remains poorly understood. This review will discuss the current literature around the prion-like propagation of tau, with particular emphasis on glial-mediated neuroinflammation and the contribution it may play in this propagation process.
Collapse
Affiliation(s)
- Zein Amro
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | | |
Collapse
|
38
|
Hartnell IJ, Blum D, Nicoll JAR, Dorothee G, Boche D. Glial cells and adaptive immunity in frontotemporal dementia with tau pathology. Brain 2021; 144:724-745. [PMID: 33527991 DOI: 10.1093/brain/awaa457] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/06/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation is involved in the aetiology of many neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and motor neuron disease. Whether neuroinflammation also plays an important role in the pathophysiology of frontotemporal dementia is less well known. Frontotemporal dementia is a heterogeneous classification that covers many subtypes, with the main pathology known as frontotemporal lobar degeneration. The disease can be categorized with respect to the identity of the protein that causes the frontotemporal lobar degeneration in the brain. The most common subgroup describes diseases caused by frontotemporal lobar degeneration associated with tau aggregation, also known as primary tauopathies. Evidence suggests that neuroinflammation may play a role in primary tauopathies with genome-wide association studies finding enrichment of genetic variants associated with specific inflammation-related gene loci. These loci are related to both the innate immune system, including brain resident microglia, and the adaptive immune system through possible peripheral T-cell involvement. This review discusses the genetic evidence and relates it to findings in animal models expressing pathogenic tau as well as to post-mortem and PET studies in human disease. Across experimental paradigms, there seems to be a consensus regarding the involvement of innate immunity in primary tauopathies, with increased microglia and astrocyte density and/or activation, as well as increases in pro-inflammatory markers. Whilst it is less clear as to whether inflammation precedes tau aggregation or vice versa; there is strong evidence to support a microglial contribution to the propagation of hyperphosphorylated in tau frontotemporal lobar degeneration associated with tau aggregation. Experimental evidence-albeit limited-also corroborates genetic data pointing to the involvement of cellular adaptive immunity in primary tauopathies. However, it is still unclear whether brain recruitment of peripheral immune cells is an aberrant result of pathological changes or a physiological aspect of the neuroinflammatory response to the tau pathology.
Collapse
Affiliation(s)
- Iain J Hartnell
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - David Blum
- University of Lille, Inserm, CHU-Lille, UMR-S 1172-Lille Neuroscience and Cognition, Lille, France.,Alzheimer & Tauopathies, LabEx DISTALZ, France
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Guillaume Dorothee
- Inserm, Sorbonne University, UMRS 938 Saint-Antoine Research Center, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
39
|
Maté de Gérando A, d'Orange M, Augustin E, Joséphine C, Aurégan G, Gaudin-Guérif M, Guillermier M, Hérard AS, Stimmer L, Petit F, Gipchtein P, Jan C, Escartin C, Selingue E, Carvalho K, Blum D, Brouillet E, Hantraye P, Gaillard MC, Bonvento G, Bemelmans AP, Cambon K. Neuronal tau species transfer to astrocytes and induce their loss according to tau aggregation state. Brain 2021; 144:1167-1182. [PMID: 33842937 DOI: 10.1093/brain/awab011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/24/2020] [Accepted: 11/01/2020] [Indexed: 11/12/2022] Open
Abstract
Deposits of different abnormal forms of tau in neurons and astrocytes represent key anatomo-pathological features of tauopathies. Although tau protein is highly enriched in neurons and poorly expressed by astrocytes, the origin of astrocytic tau is still elusive. Here, we used innovative gene transfer tools to model tauopathies in adult mouse brains and to investigate the origin of astrocytic tau. We showed in our adeno-associated virus (AAV)-based models and in Thy-Tau22 transgenic mice that astrocytic tau pathology can emerge secondarily to neuronal pathology. By designing an in vivo reporter system, we further demonstrated bidirectional exchanges of tau species between neurons and astrocytes. We then determined the consequences of tau accumulation in astrocytes on their survival in models displaying various status of tau aggregation. Using stereological counting of astrocytes, we report that, as for neurons, soluble tau species are highly toxic to some subpopulations of astrocytes in the hippocampus, whereas the accumulation of tau aggregates does not affect their survival. Thus, astrocytes are not mere bystanders of neuronal pathology. Our results strongly suggest that tau pathology in astrocytes may significantly contribute to clinical symptoms.
Collapse
Affiliation(s)
- Anastasie Maté de Gérando
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Marie d'Orange
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Emma Augustin
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Charlène Joséphine
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Gwénaelle Aurégan
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Mylène Gaudin-Guérif
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Martine Guillermier
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Anne-Sophie Hérard
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Lev Stimmer
- MIRCen, INSERM-CEA, Platform for experimental pathology, U1169 and US27, F-92265 Fontenay-aux-Roses, France
| | - Fanny Petit
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Pauline Gipchtein
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Caroline Jan
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Carole Escartin
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Erwan Selingue
- Université Paris-Saclay, CEA, Neurospin, 91191, Gif-sur-Yvette, France
| | - Kévin Carvalho
- Université Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - David Blum
- Université Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, F-59000 Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Emmanuel Brouillet
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Philippe Hantraye
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Marie-Claude Gaillard
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Gilles Bonvento
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Alexis-Pierre Bemelmans
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Karine Cambon
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| |
Collapse
|
40
|
Bachstetter AD, Garrett FG, Jicha GA, Nelson PT. Space-occupying brain lesions, trauma-related tau astrogliopathy, and ARTAG: a report of two cases and a literature review. Acta Neuropathol Commun 2021; 9:49. [PMID: 33757579 PMCID: PMC7986305 DOI: 10.1186/s40478-021-01152-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Astrocytes with intracellular accumulations of misfolded phosphorylated tau protein have been observed in advanced-stage chronic traumatic encephalopathy (CTE) and in other neurodegenerative conditions. There is a growing awareness that astrocytic tau inclusions are also relatively common in the brains of persons over 70 years of age-affecting approximately one-third of autopsied individuals. The pathologic hallmarks of aging-related tau astrogliopathy (ARTAG) include phosphorylated tau protein within thorn-shaped astrocytes (TSA) in subpial, subependymal, perivascular, and white matter regions, whereas granular-fuzzy astrocytes are often seen in gray matter. CTE and ARTAG share molecular and histopathologic characteristics, suggesting that trauma-related mechanism(s) may predispose to the development of tau astrogliopathy. There are presently few experimental systems to study the pathobiology of astrocytic-tau aggregation, but human studies have made recent progress. For example, leucotomy (also referred to as lobotomy) is associated with a localized ARTAG-like neuropathology decades after the surgical brain injury, suggesting that chronic brain injury of any type may predispose to later life ARTAG. To examine this idea in a different context, we report clinical and pathologic features of two middle-aged men who came to autopsy with large (> 6 cm in greatest dimension) arachnoid cysts that had physically displaced and injured the subjects' left temporal lobes through chronic mechanical stress. Despite the similarity of the size and location of the arachnoid cysts, these individuals had dissimilar neurologic outcomes and neuropathologic findings. We review the evidence for ARTAG in response to brain injury, and discuss how the location and molecular properties of astroglial tau inclusions might alter the physiology of resident astrocytes. These cases and literature review point toward possible mechanism(s) of tau aggregation in astrocytes in response to chronic brain trauma.
Collapse
Affiliation(s)
- Adam D Bachstetter
- Spinal Cord and Brain Injury Research Center, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| | - Filip G Garrett
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
41
|
Reynolds KE, Wong CR, Scott AL. Astrocyte-mediated purinergic signaling is upregulated in a mouse model of Fragile X syndrome. Glia 2021; 69:1816-1832. [PMID: 33754385 DOI: 10.1002/glia.23997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Fragile X syndrome (FXS) is the leading monogenic cause of intellectual disability and autism spectrum disorders. With increasing investigation into the molecular mechanisms underlying FXS, there is growing evidence that perturbations in glial signaling are widely associated with neurological pathology. Purinergic signaling, which utilizes nucleoside triphosphates as signaling molecules, provides one of the most ubiquitous signaling systems for glial-neuronal and glial-glial crosstalk. Here, we sought to identify whether purinergic signaling is dysregulated within the FXS mouse cortex, and whether this dysregulation contributes to aberrant intercellular communication. In primary astrocyte cultures derived from the Fmr1 knockout (KO) mouse model of FXS, we found that application of exogenous ATP and UTP evoked elevated intracellular calcium responses compared to wildtype levels. Accordingly, purinergic P2Y2 and P2Y6 receptor expression was increased in Fmr1 KO astrocytes both in vitro and in acutely dissociated tissue, while P2Y antagonism via suramin prevented intracellular calcium elevations, suggesting a role for these receptors in aberrant FXS astrocyte activation. To investigate the impact of elevated purinergic signaling on astrocyte-mediated synaptogenesis, we quantified synaptogenic protein TSP-1, known to be regulated by P2Y activation. TSP-1 secretion and expression were both heightened in Fmr1 KO vs wildtype astrocytes following UTP application, while naïve TSP-1 cortical expression was also transiently elevated in vivo, indicating increased potential for excitatory TSP-1-mediated synaptogenesis in the FXS cortex. Together, our results demonstrate novel and significant purinergic signaling elevations in Fmr1 KO astrocytes, which may serve as a potential therapeutic target to mitigate the signaling aberrations observed in FXS.
Collapse
Affiliation(s)
- Kathryn E Reynolds
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | - Chloe R Wong
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Angela L Scott
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
42
|
Soni N, Medeiros R, Alateeq K, To XV, Nasrallah FA. Diffusion Tensor Imaging Detects Acute Pathology-Specific Changes in the P301L Tauopathy Mouse Model Following Traumatic Brain Injury. Front Neurosci 2021; 15:611451. [PMID: 33716645 PMCID: PMC7943881 DOI: 10.3389/fnins.2021.611451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/25/2021] [Indexed: 11/18/2022] Open
Abstract
Traumatic brain injury (TBI) has been linked with tauopathy. However, imaging methods that can non-invasively detect tau-protein abnormalities following TBI need further investigation. This study aimed to investigate the potential of diffusion tensor imaging (DTI) to detect tauopathy following TBI in P301L mutant-tau-transgenic-pR5-mice. A total of 24 9-month-old pR5 mice were randomly assigned to sham and TBI groups. Controlled cortical injuries/craniotomies were performed for TBI/sham groups followed by DTI data acquisition on days 1 and 7 post-injury. DTI data were analyzed by using voxelwise analysis and track-based spatial statistics for gray matter and white matter. Further, immunohistochemistry was performed for total-tau and phosphorylated-tau, astrocytes, and microglia. To detect the association of DTI with these pathological markers, a correlation analysis was performed between DTI and histology findings. At day 1 post-TBI, DTI revealed a widespread reduction in fractional anisotropy (FA) and axial diffusivity (AxD) in the TBI group compared to shams. On day 7, further reduction in FA, AxD, and mean diffusivity and increased radial diffusivity were observed. FA was significantly increased in the amygdala and cortex. Correlation results showed that in the ipsilateral hemisphere FA reduction was associated with increased phosphorylated-tau and glial-immunoreactivity, whereas in the contralateral regions, the FA increase was associated with increased immunostaining for astrocytes. This study is the first to exploit DTI to investigate the effect of TBI in tau-transgenic mice. We show that alterations in the DTI signal were associated with glial activity following TBI and would most likely reflect changes that co-occur with/without phosphorylated-tau. In addition, FA may be a promising measure to identify discrete pathological processes such as increased astroglia activation, tau-hyperphosphorylation or both in the brain following TBI.
Collapse
Affiliation(s)
- Neha Soni
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Rodrigo Medeiros
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Khawlah Alateeq
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Xuan Vinh To
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Fatima A Nasrallah
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
43
|
Song L, Wells EA, Robinson AS. Critical Molecular and Cellular Contributors to Tau Pathology. Biomedicines 2021; 9:190. [PMID: 33672982 PMCID: PMC7918468 DOI: 10.3390/biomedicines9020190] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Tauopathies represent a group of neurodegenerative diseases including Alzheimer's disease (AD) that are characterized by the deposition of filamentous tau aggregates in the brain. The pathogenesis of tauopathies starts from the formation of toxic 'tau seeds' from hyperphosphorylated tau monomers. The presence of specific phosphorylation sites and heat shock protein 90 facilitates soluble tau protein aggregation. Transcellular propagation of pathogenic tau into synaptically connected neuronal cells or adjacent glial cells via receptor-mediated endocytosis facilitate disease spread through the brain. While neuroprotective effects of glial cells-including phagocytotic microglial and astroglial phenotypes-have been observed at the early stage of neurodegeneration, dysfunctional neuronal-glial cellular communication results in a series of further pathological consequences as the disease progresses, including abnormal axonal transport, synaptic degeneration, and neuronal loss, accompanied by a pro-inflammatory microenvironment. Additionally, the discovery of microtubule-associated protein tau (MAPT) gene mutations and the strongest genetic risk factor of tauopathies-an increase in the presence of the ε2 allele of apolipoprotein E (ApoE)-provide important clues to understanding tau pathology progression. In this review, we describe the crucial signaling pathways and diverse cellular contributors to the progression of tauopathies. A systematic understanding of disease pathogenesis provides novel insights into therapeutic targets within altered signaling pathways and is of great significance for discovering effective treatments for tauopathies.
Collapse
Affiliation(s)
| | | | - Anne Skaja Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (L.S.); (E.A.W.)
| |
Collapse
|
44
|
Li Z, Xin Z. Expression and significance of S-100β, CysC and NF-κB in patients with acute cerebral infarction. Exp Ther Med 2021; 21:149. [PMID: 33456516 PMCID: PMC7791921 DOI: 10.3892/etm.2020.9580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/20/2020] [Indexed: 01/21/2023] Open
Abstract
The present study aimed to explore the expression and significance of S100 protein β (S100β), cystatin C (CysC), and nuclear factor kappa B (NF-κB) in patients with acute cerebral infarction (ACI). ACI patients (n=120) were selected as the experimental group at Xuzhou Central Hospital from August 2016 to August 2018. Ninety healthy subjects who underwent a physical examination at Xuzhou Central Hospital during the same period were selected as the control group. The expression levels of S-100β, CysC and NF-κB were compared between the two groups. Serum S-100β, CysC and NF-κB levels were compared between ACI patients with different degree of nervous functional defects, different infarct size and different prognosis. ROC curve analysis was used for the diagnosis of ACI by serum S-100β, CysC and NF-κB levels. Serum S-100β, CysC and NF-κB levels in the experimental group were higher than those in the control group (P<0.05). The levels of serum S-100β, CysC and NF-κB in patients with different neurological deficits were significantly different. The levels of serum S-100β, CysC and NF-κB in the severe and medium type infarction group were significantly higher than those in the mild type infarction group (both P<0.05). The levels of serum S-100β, CysC and NF-κB in the severe type infarction group were higher than those in the medium type infarction group (P<0.05). There were significant differences in serum S-100β, CysC and NF-κB levels in patients with different infarct sizes. The levels of serum S-100β, CysC and NF-κB in patients with large and medium size infarction were higher than those in the small size infarction group (both P<0.05). The levels of serum S-100β, CysC and NF-κB in patients with large size infarction were higher than those in patients with medium size infarction (P<0.05). Serum S-100β, CysC and NF-κB levels in patients of the worsening group were significantly higher than those in patients of the non-worsening group. The levels of S-100β, CysC, NF-κB in ACI patients were significantly higher than those in healthy subjects. Increased levels of S-100β, CysC and NF-κB can be used as ideal indexes for diagnosing cerebral infarction and studying the condition.
Collapse
Affiliation(s)
- Zaili Li
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Zaie Xin
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
45
|
Acioglu C, Li L, Elkabes S. Contribution of astrocytes to neuropathology of neurodegenerative diseases. Brain Res 2021; 1758:147291. [PMID: 33516810 DOI: 10.1016/j.brainres.2021.147291] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/10/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023]
Abstract
Classically, the loss of vulnerable neuronal populations in neurodegenerative diseases was considered to be the consequence of cell autonomous degeneration of neurons. However, progress in the understanding of glial function, the availability of improved animal models recapitulating the features of the human diseases, and the development of new approaches to derive glia and neurons from induced pluripotent stem cells obtained from patients, provided novel information that altered this view. Current evidence strongly supports the notion that non-cell autonomous mechanisms contribute to the demise of neurons in neurodegenerative disorders, and glia causally participate in the pathogenesis and progression of these diseases. In addition to microglia, astrocytes have emerged as key players in neurodegenerative diseases and will be the focus of the present review. Under the influence of pathological stimuli present in the microenvironment of the diseased CNS, astrocytes undergo morphological, transcriptional, and functional changes and become reactive. Reactive astrocytes are heterogeneous and exhibit neurotoxic (A1) or neuroprotective (A2) phenotypes. In recent years, single-cell or single-nucleus transcriptome analyses unraveled new, disease-specific phenotypes beyond A1/A2. These investigations highlighted the complexity of the astrocytic responses to CNS pathology. The present review will discuss the contribution of astrocytes to neurodegenerative diseases with particular emphasis on Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and frontotemporal dementia. Some of the commonalties and differences in astrocyte-mediated mechanisms that possibly drive the pathogenesis or progression of the diseases will be summarized. The emerging view is that astrocytes are potential new targets for therapeutic interventions. A comprehensive understanding of astrocyte heterogeneity and disease-specific phenotypic complexity could facilitate the design of novel strategies to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Cigdem Acioglu
- The Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| | - Lun Li
- The Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| | - Stella Elkabes
- The Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| |
Collapse
|
46
|
Sidoryk-Wegrzynowicz M, Strużyńska L. Dysfunctional glia: contributors to neurodegenerative disorders. Neural Regen Res 2021; 16:218-222. [PMID: 32859767 PMCID: PMC7896233 DOI: 10.4103/1673-5374.290877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Astrocytes are integral components of the central nervous system, where they are involved in numerous functions critical for neuronal development and functioning, including maintenance of blood-brain barrier, formation of synapses, supporting neurons with nutrients and trophic factors, and protecting them from injury. These roles are markedly affected in the course of chronic neurodegenerative disorders, often before the onset of the disease. In this review, we summarize the recent findings supporting the hypothesis that astrocytes play a fundamental role in the processes contributing to neurodegeneration. We focus on α-synucleinopathies and tauopathies as the most common neurodegenerative diseases. The mechanisms implicated in the development and progression of these disorders appear not to be exclusively neuronal, but are often related to the astrocytic-neuronal integrity and the response of astrocytes to the altered microglial function. A profound understanding of the multifaceted functions of astrocytes and identification of their communication pathways with neurons and microglia in health and in the disease is of critical significance for the development of novel mechanism-based therapies against neurodegenerative disorders.
Collapse
Affiliation(s)
- Marta Sidoryk-Wegrzynowicz
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Lidia Strużyńska
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
47
|
Briel N, Pratsch K, Roeber S, Arzberger T, Herms J. Contribution of the astrocytic tau pathology to synapse loss in progressive supranuclear palsy and corticobasal degeneration. Brain Pathol 2020; 31:e12914. [PMID: 33089580 PMCID: PMC8412068 DOI: 10.1111/bpa.12914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Primary 4‐repeat tauopathies with frontotemporal lobar degeneration (FTLD) like Progressive Supranuclear Palsy (PSP) or Corticobasal Degeneration (CBD) show diverse cellular pathology in various brain regions. Besides shared characteristics of neuronal and oligodendroglial cytoplasmic inclusions of accumulated hyperphosphorylated tau protein (pTau), astrocytes in PSP and CBD contain pathognomonic pTau aggregates — hence, lending the designation tufted astrocytes (TA) or astrocytic plaques (AP), respectively. pTau toxicity is most commonly assigned to neurons, whereas the implications of astrocytic pTau for maintaining neurotransmission within the tripartite synapse of human brains is not well understood. We performed immunofluorescent synapse labeling and automated puncta quantification in the medial frontal gyrus (MFG) and striatal regions from PSP and CBD postmortem samples to capture morphometric synaptic alterations. This approach indicated general synaptic losses of both, excitatory and inhibitory bipartite synapses in the frontal cortex of PSP cases, whereas in CBD lower synapse densities were only related to astrocytic plaques. In contrast to tufted astrocytes in PSP, affected astrocytes in CBD could not preserve synaptic integrity within their spatial domains, when compared to non‐affected internal astrocytes or astrocytes in healthy controls. These findings suggest a pTau pathology‐associated role of astrocytes in maintaining connections within neuronal circuits, considered as the microscopic substrate of cognitive dysfunction in CBD. By contrasting astrocytic‐synaptic associations in both diseases, we hereby highlight astrocytic pTau as an important subject of prospective research and as a potential cellular target for therapeutic approaches in the primary tauopathies PSP and CBD.
Collapse
Affiliation(s)
- Nils Briel
- German Center for Neurodegenerative Diseases (DZNE) e.V., Site Munich, Munich, Germany.,Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.,Munich Medical Research School, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Katrin Pratsch
- German Center for Neurodegenerative Diseases (DZNE) e.V., Site Munich, Munich, Germany.,Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Sigrun Roeber
- Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE) e.V., Site Munich, Munich, Germany.,Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE) e.V., Site Munich, Munich, Germany.,Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
48
|
Peak SL, Gracia L, Lora G, Jinwal UK. Hsp90-interacting Co-chaperones and their Family Proteins in Tau Regulation: Introducing a Novel Role for Cdc37L1. Neuroscience 2020; 453:312-323. [PMID: 33246057 DOI: 10.1016/j.neuroscience.2020.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Tau is a microtubule-associated protein that serves as a promoter of microtubule assembly and stability in neuron cells. In a collective group of neurodegenerative diseases called tauopathies, tau processing is altered as a result of gene mutations and post-translational modifications. In particular, in Alzheimer's disease (AD) or AD-like conditions, tau becomes hyperphosphorylated and forms toxic aggregates inside the cell. The chaperone heat shock protein 90 (Hsp90) plays an important role in the proper folding, degradation, and recycling of tau proteins and tau kinases. Hsp90 has many co-chaperones that aid in tau processing. In particular, a few of these co-chaperones, such as FK506-binding protein (FKBP) 51, protein phosphatase (PP) 5, cell division cycle 37 (Cdc37), and S100A1 have family members that are reported to affect Hsp90-mediated tau processing in either a similar or an opposite manner. Here, we provide a holistic review of these selected co-chaperones and their family proteins and introduce a novel Hsp90-binding Cdc37 relative, Cdc37-like-1 (Cdc37L1 or L1) in tau regulation. Overall, the proteins discussed here highlight the importance of studying family proteins in order to fully understand the mechanism of tau pathogenesis and to establish drug targets for the treatment of tauopathies.
Collapse
Affiliation(s)
- Stephanie L Peak
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Liam Gracia
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA; Department of Orthopedic Surgery, Duke University, 308 Research Dr, Durham NC 27710, NC, USA
| | - Gabriella Lora
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Umesh K Jinwal
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
49
|
Astrocytes: News about Brain Health and Diseases. Biomedicines 2020; 8:biomedicines8100394. [PMID: 33036256 PMCID: PMC7600952 DOI: 10.3390/biomedicines8100394] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Astrocytes, the most numerous glial cells in the brains of humans and other mammalian animals, have been studied since their discovery over 100 years ago. For many decades, however, astrocytes were believed to operate as a glue, providing only mechanical and metabolic support to adjacent neurons. Starting from a "revolution" initiated about 25 years ago, numerous astrocyte functions have been reconsidered, some previously unknown, others attributed to neurons or other cell types. The knowledge of astrocytes has been continuously growing during the last few years. Based on these considerations, in the present review, different from single or general overviews, focused on six astrocyte functions, chosen due in their relevance in both brain physiology and pathology. Astrocytes, previously believed to be homogeneous, are now recognized to be heterogeneous, composed by types distinct in structure, distribution, and function; their cooperation with microglia is known to govern local neuroinflammation and brain restoration upon traumatic injuries; and astrocyte senescence is relevant for the development of both health and diseases. Knowledge regarding the role of astrocytes in tauopathies and Alzheimer's disease has grow considerably. The multiple properties emphasized here, relevant for the present state of astrocytes, will be further developed by ongoing and future studies.
Collapse
|
50
|
Reid MJ, Beltran-Lobo P, Johnson L, Perez-Nievas BG, Noble W. Astrocytes in Tauopathies. Front Neurol 2020; 11:572850. [PMID: 33071951 PMCID: PMC7542303 DOI: 10.3389/fneur.2020.572850] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Tauopathies are a group of neurodegenerative diseases characterized by the progressive accumulation across the brain of hyperphosphorylated aggregates of the microtubule-associated protein tau that vary in isoform composition, structural conformation and localization. Tau aggregates are most commonly deposited within neurons but can show differential association with astrocytes, depending on the disease. Astrocytes, the most abundant neural cells in the brain, play a major role in synapse and neuronal function, and are a key component of the glymphatic system and blood brain barrier. However, their contribution to tauopathy progression is not fully understood. Here we present a brief overview of the association of tau with astrocytes in tauopathies. We discuss findings that support a role for astrocytes in the uptake and spread of pathological tau, and we describe how alterations to astrocyte phenotype in tauopathies may cause functional alterations that impedes their ability to support neurons and/or cause neurotoxicity. The research reviewed here further highlights the importance of considering non-neuronal cells in neurodegeneration and suggests that astrocyte-directed targets that may have utility for therapeutic intervention in tauopathies.
Collapse
Affiliation(s)
- Matthew J Reid
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paula Beltran-Lobo
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Louisa Johnson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Beatriz Gomez Perez-Nievas
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|