1
|
Yu X, Li S, Mai W, Hua X, Sun M, Lai M, Zhang D, Xiao Z, Wang L, Shi C, Luo L, Cai L. Pediatric diffuse intrinsic pontine glioma radiotherapy response prediction: MRI morphology and T2 intensity-based quantitative analyses. Eur Radiol 2024; 34:7962-7972. [PMID: 38907098 PMCID: PMC11557687 DOI: 10.1007/s00330-024-10855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 06/23/2024]
Abstract
OBJECTIVES An easy-to-implement MRI model for predicting partial response (PR) postradiotherapy for diffuse intrinsic pontine glioma (DIPG) is lacking. Utilizing quantitative T2 signal intensity and introducing a visual evaluation method based on T2 signal intensity heterogeneity, and compared MRI radiomic models for predicting radiotherapy response in pediatric patients with DIPG. METHODS We retrospectively included patients with brainstem gliomas aged ≤ 18 years admitted between July 2011 and March 2023. Applying Response Assessment in Pediatric Neuro-Oncology criteria, we categorized patients into PR and non-PR groups. For qualitative analysis, tumor heterogeneity vision was classified into four grades based on T2-weighted images. Quantitative analysis included the relative T2 signal intensity ratio (rT2SR), extra pons volume ratio, and tumor ring-enhancement volume. Radiomic features were extracted from T2-weighted and T1-enhanced images of volumes of interest. Univariate analysis was used to identify independent variables related to PR. Multivariate logistic regression was performed using significant variables (p < 0.05) from univariate analysis. RESULTS Of 140 patients (training n = 109, and test n = 31), 64 (45.7%) achieved PR. The AUC of the predictive model with extrapontine volume ratio, rT2SRmax-min (rT2SRdif), and grade was 0.89. The AUCs of the T2-weighted and T1WI-enhanced models with radiomic signatures were 0.84 and 0.81, respectively. For the 31 DIPG test sets, the AUCs were 0.91, 0.83, and 0.81, for the models incorporating the quantitative features, radiomic model (T2-weighted images, and T1W1-enhanced images), respectively. CONCLUSION Combining T2-weighted quantification with qualitative and extrapontine volume ratios reliably predicted pediatric DIPG radiotherapy response. CLINICAL RELEVANCE STATEMENT Combining T2-weighted quantification with qualitative and extrapontine volume ratios can accurately predict diffuse intrinsic pontine glioma (DIPG) radiotherapy response, which may facilitate personalized treatment and prognostic assessment for patients with DIPG. KEY POINTS Early identification is crucial for radiotherapy response and risk stratification in diffuse intrinsic pontine glioma. The model using tumor heterogeneity and quantitative T2 signal metrics achieved an AUC of 0.91. Using a combination of parameters can effectively predict radiotherapy response in this population.
Collapse
Affiliation(s)
- Xiaojun Yu
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Shaoqun Li
- Department of Oncology, Guangdong sanjiu Brain Hospital, No. 578, Shatai South Road, Baiyun District, Guangzhou, 510510, Guangdong Province, China
| | - Wenfeng Mai
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Xiaoyu Hua
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Mengnan Sun
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Mingyao Lai
- Department of Oncology, Guangdong sanjiu Brain Hospital, No. 578, Shatai South Road, Baiyun District, Guangzhou, 510510, Guangdong Province, China
| | - Dong Zhang
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Zeyu Xiao
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China
| | - Lichao Wang
- Department of Oncology, Guangdong sanjiu Brain Hospital, No. 578, Shatai South Road, Baiyun District, Guangzhou, 510510, Guangdong Province, China
| | - Changzheng Shi
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China.
| | - Liangping Luo
- Department of Medical Imaging Center, Jinan University First Affiliated Hospital, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, Guangdong Province, China.
| | - Linbo Cai
- Department of Oncology, Guangdong sanjiu Brain Hospital, No. 578, Shatai South Road, Baiyun District, Guangzhou, 510510, Guangdong Province, China.
| |
Collapse
|
2
|
Bao Y, Tang Z, Chen R, Yu X, Qi X. Pan-cancer analysis identifies olfactory receptor family 7 subfamily A member 5 as a potential biomarker for glioma. PeerJ 2024; 12:e17631. [PMID: 39006026 PMCID: PMC11246023 DOI: 10.7717/peerj.17631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/04/2024] [Indexed: 07/16/2024] Open
Abstract
Background Human olfactory receptors (ORs) account for approximately 60% of all human G protein-coupled receptors. The functions of ORs extend beyond olfactory perception and have garnered significant attention in tumor biology. However, a comprehensive pan-cancer analysis of ORs in human cancers is lacking. Methods Using data from public databases, such as HPA, TCGA, GEO, GTEx, TIMER2, TISDB, UALCAN, GEPIA2, and GSCA, this study investigated the role of olfactory receptor family 7 subfamily A member 5 (OR7A5) in various cancers. Functional analysis of OR7A5 in LGG and GBM was performed using the CGGA database. Molecular and cellular experiments were performed to validate the expression and biological function of OR7A5 in gliomas. Results The results revealed heightened OR7A5 expression in certain tumors, correlating with the expression levels of immune checkpoints and immune infiltration. In patients with gliomas, the expression levels of OR7A5 were closely associated with adverse prognosis, 1p/19p co-deletion status, and wild-type IDH status. Finally, in vitro experiments confirmed the inhibitory effect of OR7A5 knockdown on the proliferative capacity of glioma cells and on the expression levels of proteins related to lipid metabolism. Conclusion This study establishes OR7A5 as a novel biomarker, potentially offering a novel therapeutic target for gliomas.
Collapse
Affiliation(s)
- Yanqiu Bao
- Department of Medical Research Center, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
| | - Ziqi Tang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Renli Chen
- Department of Neurosurgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Xuebin Yu
- Department of Neurosurgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Neurosurgery, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
| |
Collapse
|
3
|
Qi L, Du Y, Huang Y, Kogiso M, Zhang H, Xiao S, Abdallah A, Suarez M, Niu L, Liu ZG, Lindsay H, Braun FK, Stephen C, Davies PJ, Teo WY, Adenkunle A, Baxter P, Su JM, Li XN. CD57 defines a novel cancer stem cell that drive invasion of diffuse pediatric-type high grade gliomas. Br J Cancer 2024; 131:258-270. [PMID: 38834745 PMCID: PMC11263392 DOI: 10.1038/s41416-024-02724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Diffuse invasion remains a primary cause of treatment failure in pediatric high-grade glioma (pHGG). Identifying cellular driver(s) of pHGG invasion is needed for anti-invasion therapies. METHODS Ten highly invasive patient-derived orthotopic xenograft (PDOX) models of pHGG were subjected to isolation of matching pairs of invasive (HGGINV) and tumor core (HGGTC) cells. RESULTS pHGGINV cells were intrinsically more invasive than their matching pHGGTC cells. CSC profiling revealed co-positivity of CD133 and CD57 and identified CD57+CD133- cells as the most abundant CSCs in the invasive front. In addition to discovering a new order of self-renewal capacities, i.e., CD57+CD133- > CD57+CD133+ > CD57-CD133+ > CD57-CD133- cells, we showed that CSC hierarchy was impacted by their spatial locations, and the highest self-renewal capacities were found in CD57+CD133- cells in the HGGINV front (HGGINV/CD57+CD133- cells) mediated by NANOG and SHH over-expression. Direct implantation of CD57+ (CD57+/CD133- and CD57+/CD133+) cells into mouse brains reconstituted diffusely invasion, while depleting CD57+ cells (i.e., CD57-CD133+) abrogated pHGG invasion. CONCLUSION We revealed significantly increased invasive capacities in HGGINV cells, confirmed CD57 as a novel glioma stem cell marker, identified CD57+CD133- and CD57+CD133+ cells as a new cellular driver of pHGG invasion and suggested a new dual-mode hierarchy of HGG stem cells.
Collapse
Affiliation(s)
- Lin Qi
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 510080, China
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuchen Du
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yulun Huang
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neurosurgery and Brain and Nerve Research Laboratory, the First Affiliated Hospital, and Dushu Lake Hospital, Soochow University Medical School, Suzhou, 215007, China
| | - Mari Kogiso
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sophie Xiao
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Aalaa Abdallah
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Milagros Suarez
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Long Niu
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Zhi-Gang Liu
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Cancer Center, Affiliated Dongguan Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Holly Lindsay
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Frank K Braun
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Clifford Stephen
- Center for Epigenetics & Disease Prevention, Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Peter J Davies
- Center for Epigenetics & Disease Prevention, Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Wan Yee Teo
- The Laboratory of Pediatric Brain Tumor Research Office, SingHealth Duke-NUS Academic Medical Center, Singapore, 169856, Singapore
| | - Adesina Adenkunle
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Patricia Baxter
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jack Mf Su
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiao-Nan Li
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA.
- Robert H. Laurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
4
|
Vieira FG, Bispo R, Lopes MB. Integration of Multi-Omics Data for the Classification of Glioma Types and Identification of Novel Biomarkers. Bioinform Biol Insights 2024; 18:11779322241249563. [PMID: 38812741 PMCID: PMC11135104 DOI: 10.1177/11779322241249563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 04/09/2024] [Indexed: 05/31/2024] Open
Abstract
Glioma is currently one of the most prevalent types of primary brain cancer. Given its high level of heterogeneity along with the complex biological molecular markers, many efforts have been made to accurately classify the type of glioma in each patient, which, in turn, is critical to improve early diagnosis and increase survival. Nonetheless, as a result of the fast-growing technological advances in high-throughput sequencing and evolving molecular understanding of glioma biology, its classification has been recently subject to significant alterations. In this study, we integrate multiple glioma omics modalities (including mRNA, DNA methylation, and miRNA) from The Cancer Genome Atlas (TCGA), while using the revised glioma reclassified labels, with a supervised method based on sparse canonical correlation analysis (DIABLO) to discriminate between glioma types. We were able to find a set of highly correlated features distinguishing glioblastoma from lower-grade gliomas (LGGs) that were mainly associated with the disruption of receptor tyrosine kinases signaling pathways and extracellular matrix organization and remodeling. Concurrently, the discrimination of the LGG types was characterized primarily by features involved in ubiquitination and DNA transcription processes. Furthermore, we could identify several novel glioma biomarkers likely helpful in both diagnosis and prognosis of the patients, including the genes PPP1R8, GPBP1L1, KIAA1614, C14orf23, CCDC77, BVES, EXD3, CD300A, and HEPN1. Collectively, this comprehensive approach not only allowed a highly accurate discrimination of the different TCGA glioma patients but also presented a step forward in advancing our comprehension of the underlying molecular mechanisms driving glioma heterogeneity. Ultimately, our study also revealed novel candidate biomarkers that might constitute potential therapeutic targets, marking a significant stride toward personalized and more effective treatment strategies for patients with glioma.
Collapse
Affiliation(s)
- Francisca G Vieira
- Center for Mathematics and Applications (NOVA Math), NOVA School of Science and Technology, Caparica, Portugal
| | - Regina Bispo
- Center for Mathematics and Applications (NOVA Math), NOVA School of Science and Technology, Caparica, Portugal
- Department of Mathematics, NOVA School of Science and Technology, Caparica, Portugal
| | - Marta B Lopes
- Center for Mathematics and Applications (NOVA Math), NOVA School of Science and Technology, Caparica, Portugal
- Department of Mathematics, NOVA School of Science and Technology, Caparica, Portugal
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Caparica, Portugal
| |
Collapse
|
5
|
Onciul R, Brehar FM, Toader C, Covache-Busuioc RA, Glavan LA, Bratu BG, Costin HP, Dumitrascu DI, Serban M, Ciurea AV. Deciphering Glioblastoma: Fundamental and Novel Insights into the Biology and Therapeutic Strategies of Gliomas. Curr Issues Mol Biol 2024; 46:2402-2443. [PMID: 38534769 DOI: 10.3390/cimb46030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Gliomas constitute a diverse and complex array of tumors within the central nervous system (CNS), characterized by a wide range of prognostic outcomes and responses to therapeutic interventions. This literature review endeavors to conduct a thorough investigation of gliomas, with a particular emphasis on glioblastoma (GBM), beginning with their classification and epidemiological characteristics, evaluating their relative importance within the CNS tumor spectrum. We examine the immunological context of gliomas, unveiling the intricate immune environment and its ramifications for disease progression and therapeutic strategies. Moreover, we accentuate critical developments in understanding tumor behavior, focusing on recent research breakthroughs in treatment responses and the elucidation of cellular signaling pathways. Analyzing the most novel transcriptomic studies, we investigate the variations in gene expression patterns in glioma cells, assessing the prognostic and therapeutic implications of these genetic alterations. Furthermore, the role of epigenetic modifications in the pathogenesis of gliomas is underscored, suggesting that such changes are fundamental to tumor evolution and possible therapeutic advancements. In the end, this comparative oncological analysis situates GBM within the wider context of neoplasms, delineating both distinct and shared characteristics with other types of tumors.
Collapse
Affiliation(s)
- Razvan Onciul
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Emergency University Hospital, 050098 Bucharest, Romania
| | - Felix-Mircea Brehar
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Neurosurgery, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Corneliu Toader
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | | | - Luca-Andrei Glavan
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Horia Petre Costin
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Matei Serban
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
6
|
Arakelyan A, Avagyan S, Kurnosov A, Mkrtchyan T, Mkrtchyan G, Zakharyan R, Mayilyan KR, Binder H. Temporal changes of gene expression in health, schizophrenia, bipolar disorder, and major depressive disorder. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:19. [PMID: 38368435 PMCID: PMC10874418 DOI: 10.1038/s41537-024-00443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
The molecular events underlying the development, manifestation, and course of schizophrenia, bipolar disorder, and major depressive disorder span from embryonic life to advanced age. However, little is known about the early dynamics of gene expression in these disorders due to their relatively late manifestation. To address this, we conducted a secondary analysis of post-mortem prefrontal cortex datasets using bioinformatics and machine learning techniques to identify differentially expressed gene modules associated with aging and the diseases, determine their time-perturbation points, and assess enrichment with expression quantitative trait loci (eQTL) genes. Our findings revealed early, mid, and late deregulation of expression of functional gene modules involved in neurodevelopment, plasticity, homeostasis, and immune response. This supports the hypothesis that multiple hits throughout life contribute to disease manifestation rather than a single early-life event. Moreover, the time-perturbed functional gene modules were associated with genetic loci affecting gene expression, highlighting the role of genetic factors in gene expression dynamics and the development of disease phenotypes. Our findings emphasize the importance of investigating time-dependent perturbations in gene expression before the age of onset in elucidating the molecular mechanisms of psychiatric disorders.
Collapse
Affiliation(s)
- Arsen Arakelyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia.
- Armenian Bioinformatics Institute, Yerevan, Armenia.
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, Armenia.
| | | | | | - Tigran Mkrtchyan
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, Armenia
| | | | - Roksana Zakharyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, Armenia
| | - Karine R Mayilyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
- Department of Therapeutics, Faculty of General Medicine, University of Traditional Medicine, Yerevan, Armenia
| | - Hans Binder
- Armenian Bioinformatics Institute, Yerevan, Armenia
- Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| |
Collapse
|
7
|
Weller M, Felsberg J, Hentschel B, Gramatzki D, Kubon N, Wolter M, Reusche M, Roth P, Krex D, Herrlinger U, Westphal M, Tonn JC, Regli L, Maurage CA, von Deimling A, Pietsch T, Le Rhun E, Reifenberger G. Improved prognostic stratification of patients with isocitrate dehydrogenase-mutant astrocytoma. Acta Neuropathol 2024; 147:11. [PMID: 38183430 PMCID: PMC10771615 DOI: 10.1007/s00401-023-02662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/08/2024]
Abstract
Prognostic factors and standards of care for astrocytoma, isocitrate dehydrogenase (IDH)-mutant, CNS WHO grade 4, remain poorly defined. Here we sought to explore disease characteristics, prognostic markers, and outcome in patients with this newly defined tumor type. We determined molecular biomarkers and assembled clinical and outcome data in patients with IDH-mutant astrocytomas confirmed by central pathology review. Patients were identified in the German Glioma Network cohort study; additional cohorts of patients with CNS WHO grade 4 tumors were identified retrospectively at two sites. In total, 258 patients with IDH-mutant astrocytomas (114 CNS WHO grade 2, 73 CNS WHO grade 3, 71 CNS WHO grade 4) were studied. The median age at diagnosis was similar for all grades. Karnofsky performance status at diagnosis inversely correlated with CNS WHO grade (p < 0.001). Despite more intensive treatment upfront with higher grade, CNS WHO grade was strongly prognostic: median overall survival was not reached for grade 2 (median follow-up 10.4 years), 8.1 years (95% CI 5.4-10.8) for grade 3, and 4.7 years (95% CI 3.4-6.0) for grade 4. Among patients with CNS WHO grade 4 astrocytoma, median overall survival was 5.5 years (95% CI 4.3-6.7) without (n = 58) versus 1.8 years (95% CI 0-4.1) with (n = 12) homozygous CDKN2A deletion. Lower levels of global DNA methylation as detected by LINE-1 methylation analysis were strongly associated with CNS WHO grade 4 (p < 0.001) and poor outcome. MGMT promoter methylation status was not prognostic for overall survival. Histomolecular stratification based on CNS WHO grade, LINE-1 methylation level, and CDKN2A status revealed four subgroups of patients with significantly different outcomes. In conclusion, CNS WHO grade, global DNA methylation status, and CDKN2A homozygous deletion are prognostic in patients with IDH-mutant astrocytoma. Combination of these parameters allows for improved prediction of outcome. These data aid in designing upcoming trials using IDH inhibitors.
Collapse
Affiliation(s)
- Michael Weller
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland.
- Department of Neurology, University of Zurich, Zurich, Switzerland.
| | - Jörg Felsberg
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Bettina Hentschel
- Institute for Medical Informatics, Statistics and Epidemiology, University Leipzig, Leipzig, Germany
| | - Dorothee Gramatzki
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Nadezhda Kubon
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marietta Wolter
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Matthias Reusche
- Institute for Medical Informatics, Statistics and Epidemiology, University Leipzig, Leipzig, Germany
| | - Patrick Roth
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Dietmar Krex
- Faculty of Medicine, Department of Neurosurgery, Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | | | - Manfred Westphal
- Department of Neurosurgery, University of Hamburg, Hamburg, Germany
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Luca Regli
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Neurosurgery, University of Zurich, Zurich, Switzerland
| | - Claude-Alain Maurage
- Department of Pathology, Centre Biologie Pathologie, Lille University Hospital, Hopital Nord, Lille, France
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Center (DKFZ), and German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University of Bonn Medical Center, DGNN Brain Tumor Reference Center, Bonn, Germany
| | - Emilie Le Rhun
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Neurosurgery, University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, Lille University Hospital, Lille, France
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
8
|
Maimaiti A, Liu Y, Abulaiti A, Wang X, Feng Z, Wang J, Mijiti M, Turhon M, Alimu N, Wang Y, Liang W, Jiang L, Pei Y. Genomic Profiling of Lower-Grade Gliomas Subtype with Distinct Molecular and Clinicopathologic Characteristics via Altered DNA-Damage Repair Features. J Mol Neurosci 2023; 73:269-286. [PMID: 37067735 DOI: 10.1007/s12031-023-02116-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/30/2023] [Indexed: 04/18/2023]
Abstract
Lower WHO grade II and III gliomas (LGGs) exhibit significant genetic and transcriptional heterogeneity, and the heterogeneity of DNA damage repair (DDR) and its relationship to tumor biology, transcriptome, and tumor microenvironment (TME) remains poorly understood. In this study, we conducted multi-omics data integration to investigate DDR alterations in LGG. Based on clinical parameters and molecular characteristics, LGG patients were categorized into distinct DDR subtypes, namely, DDR-activated and DDR-suppressed subtypes. We compared gene mutation, immune spectrum, and immune cell infiltration between the two subtypes. DDR scores were generated to classify LGG patients based on DDR subtype features, and the results were validated using a multi-layer data cohort. We found that DDR activation was associated with poorer overall survival and that clinicopathological features of advanced age and higher grade were more common in the DDR-activated subtype. DDR-suppressed subtypes exhibited more frequent mutations in IDH1. In addition, we observed significant upregulation of activated immune cells in the DDR-activated subgroup, which suggests that immune cell infiltration significantly influences tumor progression and immunotherapeutic responses. Furthermore, we constructed a DDR signature for LGG using six DDR genes, which allowed for the division of patients into low- and high-risk groups. Quantitative real-time PCR results showed that CDK1, CDK2, TYMS, SMC4, and WEE1 were significantly upregulated in LGG samples compared to normal brain tissue samples. Overall, our study sheds light on DDR heterogeneity in LGG and provides insight into the molecular pathways of DDR involved in LGG development.
Collapse
Affiliation(s)
- Aierpati Maimaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Yanwen Liu
- Department of Medical Laboratory, Xinjiang Production and Construction Corps Hospital, 830002, Urumqi, Xinjiang, China
| | - Aimitaji Abulaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Xixian Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Zhaohai Feng
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Jiaming Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Maimaitili Mijiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Mirzat Turhon
- Department of Neurointerventional Surgery, Beijing Neurosurgical Institute, Capital Medical University, 100070, Beijing, China
- Department of Neurointerventional Surgery, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
| | - Nilipaer Alimu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Yongxin Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Wenbao Liang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Xinjiang Medical University, No. 116, Huanghe Road, Shaibak District, 830000, Urumqi, Xinjiang, China.
| | - Lei Jiang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China.
| | - Yinan Pei
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China.
| |
Collapse
|
9
|
Loeffler-Wirth H, Rade M, Arakelyan A, Kreuz M, Loeffler M, Koehl U, Reiche K, Binder H. Transcriptional states of CAR-T infusion relate to neurotoxicity – lessons from high-resolution single-cell SOM expression portraying. Front Immunol 2022; 13:994885. [PMID: 36248848 PMCID: PMC9558919 DOI: 10.3389/fimmu.2022.994885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022] Open
Abstract
Anti-CD19 CAR-T cell immunotherapy is a hopeful treatment option for patients with B cell lymphomas, however it copes with partly severe adverse effects like neurotoxicity. Single-cell resolved molecular data sets in combination with clinical parametrization allow for comprehensive characterization of cellular subpopulations, their transcriptomic states, and their relation to the adverse effects. We here present a re-analysis of single-cell RNA sequencing data of 24 patients comprising more than 130,000 cells with focus on cellular states and their association to immune cell related neurotoxicity. For this, we developed a single-cell data portraying workflow to disentangle the transcriptional state space with single-cell resolution and its analysis in terms of modularly-composed cellular programs. We demonstrated capabilities of single-cell data portraying to disentangle transcriptional states using intuitive visualization, functional mining, molecular cell stratification, and variability analyses. Our analysis revealed that the T cell composition of the patient’s infusion product as well as the spectrum of their transcriptional states of cells derived from patients with low ICANS grade do not markedly differ from those of cells from high ICANS patients, while the relative abundancies, particularly that of cycling cells, of LAG3-mediated exhaustion and of CAR positive cells, vary. Our study provides molecular details of the transcriptomic landscape with possible impact to overcome neurotoxicity.
Collapse
Affiliation(s)
- Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics (IZBI), Interdisciplinary Centre for Bioinformatics, Leipzig University, Leipzig, Germany
- *Correspondence: Henry Loeffler-Wirth,
| | - Michael Rade
- Bioinformatics Unit, Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Arsen Arakelyan
- Armenian Bioinformatics Institute (ABI), Yerevan, Armenia
- Research Group of Bioinformatics, Institute of Molecular Biology of the National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Markus Kreuz
- Bioinformatics Unit, Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Markus Loeffler
- Interdisciplinary Centre for Bioinformatics (IZBI), Interdisciplinary Centre for Bioinformatics, Leipzig University, Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Leipzig, Germany
| | - Ulrike Koehl
- Bioinformatics Unit, Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Kristin Reiche
- Bioinformatics Unit, Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics (IZBI), Interdisciplinary Centre for Bioinformatics, Leipzig University, Leipzig, Germany
- Armenian Bioinformatics Institute (ABI), Yerevan, Armenia
| |
Collapse
|
10
|
Rath S, Chakraborty D, Pradhan J, Imran Khan M, Dandapat J. Epigenomic interplay in tumor heterogeneity: Potential of epidrugs as adjunct therapy. Cytokine 2022; 157:155967. [PMID: 35905624 DOI: 10.1016/j.cyto.2022.155967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022]
Abstract
"Heterogeneity" in tumor mass has immense importance in cancer progression and therapy. The impact of tumor heterogeneity is an emerging field and not yet fully explored. Tumor heterogeneity is mainly considered as intra-tumor heterogeneity and inter-tumor heterogeneity based on their origin. Intra-tumor heterogeneity refers to the discrepancy within the same cancer mass while inter-tumor heterogeneity refers to the discrepancy between different patients having the same tumor type. Both of these heterogeneity types lead to variation in the histopathological as well as clinical properties of the cancer mass which drives disease resistance towards therapeutic approaches. Cancer stem cells (CSCs) act as pinnacle progenitors for heterogeneity development along with various other genetic and epigenetic parameters that are regulating this process. In recent times epigenetic factors are one of the most studied parameters that drive oxidative stress pathways essential during cancer progression. These epigenetic changes are modulated by various epidrugs and have an impact on tumor heterogeneity. The present review summarizes various aspects of epigenetic regulation in the tumor microenvironment, oxidative stress, and progression towards tumor heterogeneity that creates complications during cancer treatment. This review also explores the possible role of epidrugs in regulating tumor heterogeneity and personalized therapy against drug resistance.
Collapse
Affiliation(s)
- Suvasmita Rath
- Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| | - Diptesh Chakraborty
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Jyotsnarani Pradhan
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Mohammad Imran Khan
- Department of Biochemistry, King Abdulaziz University (KAU), Jeddah 21577, Saudi Arabia; Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jagneshwar Dandapat
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India; Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India.
| |
Collapse
|
11
|
Loeffler-Wirth H, Kreuz M, Schmidt M, Ott G, Siebert R, Binder H. Classifying Germinal Center Derived Lymphomas-Navigate a Complex Transcriptional Landscape. Cancers (Basel) 2022; 14:3434. [PMID: 35884496 PMCID: PMC9321060 DOI: 10.3390/cancers14143434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Classification of lymphoid neoplasms is based mainly on histologic, immunologic, and (rarer) genetic features. It has been supplemented by gene expression profiling (GEP) in the last decade. Despite the considerable success, particularly in associating lymphoma subtypes with specific transcriptional programs and classifier signatures of up- or downregulated genes, competing molecular classifiers were often proposed in the literature by different groups for the same classification tasks to distinguish, e.g., BL versus DLBCL or different DLBCL subtypes. Moreover, rarer sub-entities such as MYC and BCL2 "double hit lymphomas" (DHL), IRF4-rearranged large cell lymphoma (IRF4-LCL), and Burkitt-like lymphomas with 11q aberration pattern (mnBLL-11q) attracted interest while their relatedness regarding the major classes is still unclear in many respects. We explored the transcriptional landscape of 873 lymphomas referring to a wide spectrum of subtypes by applying self-organizing maps (SOM) machine learning. The landscape reveals a continuum of transcriptional states activated in the different subtypes without clear-cut borderlines between them and preventing their unambiguous classification. These states show striking parallels with single cell gene expression of the active germinal center (GC), which is characterized by the cyclic progression of B-cells. The expression patterns along the GC trajectory are discriminative for distinguishing different lymphoma subtypes. We show that the rare subtypes take intermediate positions between BL, DLBCL, and FL as considered by the 5th edition of the WHO classification of haemato-lymphoid tumors in 2022. Classifier gene signatures extracted from these states as modules of coregulated genes are competitive with literature classifiers. They provide functional-defined classifiers with the option of consenting redundant classifiers from the literature. We discuss alternative classification schemes of different granularity and functional impact as possible avenues toward personalization and improved diagnostics of GC-derived lymphomas.
Collapse
Affiliation(s)
- Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics, University Leipzig (IZBI), 04107 Leipzig, Germany; (H.L.-W.); (M.S.)
| | - Markus Kreuz
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany;
| | - Maria Schmidt
- Interdisciplinary Centre for Bioinformatics, University Leipzig (IZBI), 04107 Leipzig, Germany; (H.L.-W.); (M.S.)
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany;
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89073 Ulm, Germany;
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, University Leipzig (IZBI), 04107 Leipzig, Germany; (H.L.-W.); (M.S.)
| |
Collapse
|
12
|
Integrated Multi-Omics Maps of Lower-Grade Gliomas. Cancers (Basel) 2022; 14:cancers14112797. [PMID: 35681780 PMCID: PMC9179546 DOI: 10.3390/cancers14112797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Multi-omics high-throughput technologies produce data sets which are not restricted to only one but consist of multiple omics modalities, often as patient-matched tumour specimens. The integrative analysis of these omics modalities is essential to obtain a holistic view on the otherwise fragmented information hidden in this data. We present an intuitive method enabling the combined analysis of multi-omics data based on self-organizing maps machine learning. It "portrays" the expression, methylation and copy number variations (CNV) landscapes of each tumour using the same gene-centred coordinate system. It enables the visual evaluation and direct comparison of the different omics layers on a personalized basis. We applied this combined molecular portrayal to lower grade gliomas, a heterogeneous brain tumour entity. It classifies into a series of molecular subtypes defined by genetic key lesions, which associate with large-scale effects on DNA methylation and gene expression, and in final consequence, drive with cell fate decisions towards oligodendroglioma-, astrocytoma- and glioblastoma-like cancer cell lineages with different prognoses. Consensus modes of concerted changes of expression, methylation and CNV are governed by the degree of co-regulation within and between the omics layers. The method is not restricted to the triple-omics data used here. The similarity landscapes reflect partly independent effects of genetic lesions and DNA methylation with consequences for cancer hallmark characteristics such as proliferation, inflammation and blocked differentiation in a subtype specific fashion. It can be extended to integrate other omics features such as genetic mutation, protein expression data as well as extracting prognostic markers.
Collapse
|
13
|
Wu W, Wang Y, Xiang J, Li X, Wahafu A, Yu X, Bai X, Yan G, Wang C, Wang N, Du C, Xie W, Wang M, Wang J. A Novel Multi-Omics Analysis Model for Diagnosis and Survival Prediction of Lower-Grade Glioma Patients. Front Oncol 2022; 12:729002. [PMID: 35646656 PMCID: PMC9133344 DOI: 10.3389/fonc.2022.729002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/24/2022] [Indexed: 01/13/2023] Open
Abstract
Background Lower-grade gliomas (LGGs) are characterized by remarkable genetic heterogeneity and different clinical outcomes. Classification of LGGs is improved by the development of molecular stratification markers including IDH mutation and 1p/19q chromosomal integrity, which are used as a hallmark of survival and therapy sensitivity of LGG patients. However, the reproducibility and sensitivity of the current classification remain ambiguous. This study aimed to construct more accurate risk-stratification approaches. Methods According to bioinformatics, the sequencing profiles of methylation and transcription and imaging data derived from LGG patients were analyzed and developed predictable risk score and radiomics score. Moreover, the performance of predictable models was further validated. Results In this study, we determined a cluster of 6 genes that were correlated with IDH mutation/1p19q co-deletion status. Risk score model was calculated based on 6 genes and showed gratifying sensitivity and specificity for survival prediction and therapy response of LGG patients. Furthermore, a radiomics risk score model was established to noninvasively assist judgment of risk score in pre-surgery. Taken together, a predictable nomogram that combined transcriptional signatures and clinical characteristics was established and validated to be preferable to the histopathological classification. Our novel multi-omics nomograms showed a satisfying performance. To establish a user-friendly application, the nomogram was further developed into a web-based platform: https://drw576223193.shinyapps.io/Nomo/, which could be used as a supporting method in addition to the current histopathological-based classification of gliomas. Conclusions Our novel multi-omics nomograms showed the satisfying performance of LGG patients and assisted clinicians to draw up individualized clinical management.
Collapse
Affiliation(s)
- Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yichang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianyang Xiang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaodong Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Alafate Wahafu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao Yu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaobin Bai
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ge Yan
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chunbao Wang
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ning Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Changwang Du
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wanfu Xie
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center of Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Kit OI, Pushkin AA, Alliluyev IA, Timoshkina NN, Gvaldin DY, Rostorguev EE, Kuznetsova NS. Differential expression of microRNAs targeting genes associated with the development of high-grade gliomas. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00245-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Highly malignant high-grade gliomas are tumors of the central nervous system (CNS). They are solid tumors arising from transformed cells of the brain and/or the spinal cord. In recent years, the expression of genes and regulating miRNAs in glial brain tumors has been actively studied. The present study is devoted to assessing the expression levels of miR-215-5p, miR-22-3p, miR-122-5p, miR-107, miR-324-5p, miR-34a-5p, miR-155. -5p, miR-21-5p, miR-497-5p, miR-330-3p, miR-146a-5p, miR-92a-1-5p, miR-326 and target genes EGFR, SMAD4, SMAD7, SMO, NOTCH1, NOTCH2, HIF1A, EGLIN1/3, KDM1B, KDM1A, MSI1, MSI2, TET1 in high-grade glioma tissues.
Results
As a result of the analysis of the levels of relative expression of the studied genes, there are significant changes (p < 0.05) in tumor tissue for genes: EGFR, SMAD4, SMAD7, SMO, HIF1A, EGLN1/3. We obtained data on a significant change (p < 0.05) in the levels of relative expression for microRNA: hsa-miR-215-5p, hsa-miR-22-3p, hsa-miR-122-5p, hsa-miR-107, hsa-miR-324-5p, hsa-miR-155-5p, hsa-miR-21-5p, hsa-miR-330-3p, hsa-miR-326. Data on the association of overall survival in patients with high-grade glioma and the level of relative expression of the EGFR and HIF1A genes were obtained. The obtained data demonstrate the association of overall survival of patients with high-grade glioma and the level of relative expression of EGFR, HIF1A and hsa-miR-22-3p, hsa-miR-107 and hsa-miR-330-3p.
Conclusions
The obtained data on the expression of genes and microRNAs expand the understanding of the biology of the development of high-grade glial tumors. These data demonstrate new potential therapeutic and prognostic goals in high-grade gliomas.
Collapse
|
15
|
Zhou Q, Xue C, Ke X, Zhou J. Treatment Response and Prognosis Evaluation in High-Grade Glioma: An Imaging Review Based on MRI. J Magn Reson Imaging 2022; 56:325-340. [PMID: 35129845 DOI: 10.1002/jmri.28103] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
In recent years, the development of advanced magnetic resonance imaging (MRI) technology and machine learning (ML) have created new tools for evaluating treatment response and prognosis of patients with high-grade gliomas (HGG); however, patient prognosis has not improved significantly. This is mainly due to the heterogeneity between and within HGG tumors, resulting in standard treatment methods not benefitting all patients. Moreover, the survival of patients with HGG is not only related to tumor cells, but also to noncancer cells in the tumor microenvironment (TME). Therefore, during preoperative diagnosis and follow-up treatment of patients with HGG, noninvasive imaging markers are needed to characterize intratumoral heterogeneity, and then to evaluate treatment response and predict prognosis, timeously adjust treatment strategies, and achieve individualized diagnosis and treatment. In this review, we summarize the research progress of conventional MRI, advanced MRI technology, and ML in evaluation of treatment response and prognosis of patients with HGG. We further discuss the significance of the TME in the prognosis of HGG patients, associate imaging features with the TME, indirectly reflecting the heterogeneity within the tumor, and shifting treatment strategies from tumor cells alone to systemic therapy of the TME, which may be a major development direction in the future. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 4.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Second Clinical School, Lanzhou University, Lanzhou, Gansu, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.,Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Second Clinical School, Lanzhou University, Lanzhou, Gansu, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.,Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Xiaoai Ke
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.,Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.,Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| |
Collapse
|
16
|
Komori T. Grading of adult diffuse gliomas according to the 2021 WHO Classification of Tumors of the Central Nervous System. J Transl Med 2022; 102:126-133. [PMID: 34504304 DOI: 10.1038/s41374-021-00667-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
The grading of gliomas based on histological features has been a subject of debate for several decades. A consensus has not yet been reached because of technical limitations and inter-observer variations. While the traditional grading system has failed to stratify the risk of IDH-mutant astrocytoma, canonical histological and proliferative markers may be applicable to the risk stratification of IDH-wild-type astrocytoma. Numerous studies have examined molecular markers in order to obtain more clinically relevant information that will improve the risk stratification of gliomas. The CDKN2A/B homozygous deletion for IDH-mutant astrocytoma and the following three criteria for IDH-wild-type astrocytoma: the concurrent gain of whole chromosome 7 and loss of whole chromosome 10, TERT promoter mutations, and EGFR amplification, were identified as independent molecular markers of the worst clinical outcomes. Therefore, the 2021 World Health Organization (WHO) Classification of Tumors of the Central Nervous System adopted these molecular markers into the revised grading criteria of IDH-mutant and -wild-type astrocytoma, respectively, as a grading system within tumor types. Of note, several recent studies have shown that some low-grade IDH-wild-type astrocytoma lacking both the molecular glioblastoma signature and genetic alterations typical of pediatric-type gliomas may demonstrate a relatively indolent clinical course, suggesting the existence of lower-grade adult IDH-wild-type astrocytoma. In terms of oligodendroglioma, IDH-mutant, and 1p/19q codeleted, consistent makers that predict poor outcomes have not yet been identified, and, thus, the current criteria have remained unchanged. Molecular testing to fulfill the revised WHO criteria is, however, not always available worldwide, and in that case, an integrated diagnosis combining all available complementary information is highly recommended. This review discusses controversial issues surrounding legacy grading systems and newly identified potential genetic markers of adult diffuse gliomas and provides perspectives on future grading systems.
Collapse
Affiliation(s)
- Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan.
| |
Collapse
|
17
|
DLL3 expression and methylation are associated with lower-grade glioma immune microenvironment and prognosis. Genomics 2022; 114:110289. [DOI: 10.1016/j.ygeno.2022.110289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022]
|
18
|
Cao Y, Zhu H, Liu W, Wang L, Yin W, Tan J, Zhou Q, Xin Z, Huang H, Xie D, Zhao M, Jiang X, Peng J, Ren C. Multi-Omics Analysis Based on Genomic Instability for Prognostic Prediction in Lower-Grade Glioma. Front Genet 2022; 12:758596. [PMID: 35069679 PMCID: PMC8766732 DOI: 10.3389/fgene.2021.758596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Lower-grade gliomas (LGGs) are a heterogeneous set of gliomas. One of the primary sources of glioma heterogeneity is genomic instability, a novel characteristic of cancer. It has been reported that long noncoding RNAs (lncRNAs) play an essential role in regulating genomic stability. However, the potential relationship between genomic instability and lncRNA in LGGs and its prognostic value is unclear. Methods: In this study, the LGG samples from The Cancer Genome Atlas (TCGA) were divided into two clusters by integrating the lncRNA expression profile and somatic mutation data using hierarchical clustering. Then, with the differentially expressed lncRNAs between these two clusters, we identified genomic instability-related lncRNAs (GInLncRNAs) in the LGG samples and analyzed their potential function and pathway by co-expression network. Cox and least absolute shrinkage and selection operator (LASSO) regression analyses were conducted to establish a GInLncRNA prognostic signature (GInLncSig), which was assessed by internal and external verification, correlation analysis with somatic mutation, independent prognostic analysis, clinical stratification analysis, and model comparisons. We also established a nomogram to predict the prognosis more accurately. Finally, we performed multi-omics-based analyses to explore the relationship between risk scores and multi-omics data, including immune characteristics, N6-methyladenosine (m6A), stemness index, drug sensitivity, and gene set enrichment analysis (GSEA). Results: We identified 52 GInLncRNAs and screened five from them to construct the GInLncSig model (CRNDE, AC025171.5, AL390755.1, AL049749.1, and TGFB2-AS1), which could independently and accurately predict the outcome of patients with LGG. The GInLncSig model was significantly associated with somatic mutation and outperformed other published signatures. GSEA revealed that metabolic pathways, immune pathways, and cancer pathways were enriched in the high-risk group. Multi-omics-based analyses revealed that T-cell functions, m6A statuses, and stemness characteristics were significantly disparate between two risk subgroups, and immune checkpoints such as PD-L1, PDCD1LG2, and HAVCR2 were significantly highly expressed in the high-risk group. The expression of GInLncSig prognostic genes dramatically correlated with the sensitivity of tumor cells to chemotherapy drugs. Conclusion: A novel signature composed of five GInLncRNAs can be utilized to predict prognosis and impact the immune status, m6A status, and stemness characteristics in LGG. Furthermore, these lncRNAs may be potential and alternative therapeutic targets.
Collapse
Affiliation(s)
- Yudong Cao
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hecheng Zhu
- Changsha Kexin Cancer Hospital, Changsha, China
| | - Weidong Liu
- Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Cancer Research Institute, Central South University, Changsha, China
| | - Lei Wang
- Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Cancer Research Institute, Central South University, Changsha, China
| | - Wen Yin
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Tan
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Quanwei Zhou
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoqi Xin
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hailong Huang
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Dongcheng Xie
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhao
- Changsha Kexin Cancer Hospital, Changsha, China
| | - Xingjun Jiang
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiahui Peng
- Department of Medical Ultrasonics, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Caiping Ren
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
19
|
Huang LE. Impact of CDKN2A/B Homozygous Deletion on the Prognosis and Biology of IDH-Mutant Glioma. Biomedicines 2022; 10:biomedicines10020246. [PMID: 35203456 PMCID: PMC8869746 DOI: 10.3390/biomedicines10020246] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
Although hotspot mutations in isocitrate dehydrogenase (IDH) genes are associated with favorable clinical outcomes in glioma, CDKN2A/B homozygous deletion has been identified as an independent predicator of poor prognosis. Accordingly, the 2021 edition of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS) has adopted this molecular feature by upgrading IDH-mutant astrocytoma to CNS WHO grade IV, even in the absence of glioblastoma-specific histological features—necrosis and microvascular proliferation. This new entity of IDH-mutant astrocytoma not only signifies an exception to the generally favorable outcome of IDH-mutant glioma, but also brings into question whether, and, if so, how, CDKN2A/B homozygous deletion overrides the anti-tumor activity of IDH mutation by promoting the proliferation of stem/neural progenitor-like cells. Understanding the mechanism by which IDH mutation requires intact tumor-suppressor genes for conferring favorable outcome may improve therapeutics.
Collapse
Affiliation(s)
- L. Eric Huang
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT 84132, USA;
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
20
|
The Transcriptome and Methylome of the Developing and Aging Brain and Their Relations to Gliomas and Psychological Disorders. Cells 2022; 11:cells11030362. [PMID: 35159171 PMCID: PMC8834030 DOI: 10.3390/cells11030362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Mutually linked expression and methylation dynamics in the brain govern genome regulation over the whole lifetime with an impact on cognition, psychological disorders, and cancer. We performed a joint study of gene expression and DNA methylation of brain tissue originating from the human prefrontal cortex of individuals across the lifespan to describe changes in cellular programs and their regulation by epigenetic mechanisms. The analysis considers previous knowledge in terms of functional gene signatures and chromatin states derived from independent studies, aging profiles of a battery of chromatin modifying enzymes, and data of gliomas and neuropsychological disorders for a holistic view on the development and aging of the brain. Expression and methylation changes from babies to elderly adults decompose into different modes associated with the serial activation of (brain) developmental, learning, metabolic and inflammatory functions, where methylation in gene promoters mostly represses transcription. Expression of genes encoding methylome modifying enzymes is very diverse reflecting complex regulations during lifetime which also associates with the marked remodeling of chromatin between permissive and restrictive states. Data of brain cancer and psychotic disorders reveal footprints of pathophysiologies related to brain development and aging. Comparison of aging brains with gliomas supports the view that glioblastoma-like and astrocytoma-like tumors exhibit higher cellular plasticity activated in the developing healthy brain while oligodendrogliomas have a more stable differentiation hierarchy more resembling the aged brain. The balance and specific shifts between volatile and stable and between more irreversible and more plastic epigenomic networks govern the development and aging of healthy and diseased brain.
Collapse
|
21
|
Tian W, Chen K, Yan G, Han X, Liu Y, Zhang Q, Liu M. A Novel Prognostic Tool for Glioma Based on Enhancer RNA-Regulated Immune Genes. Front Cell Dev Biol 2022; 9:798445. [PMID: 35127714 PMCID: PMC8811171 DOI: 10.3389/fcell.2021.798445] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Gliomas are the most malignant tumors of the nervous system. Even though their survival outcome is closely affected by immune-related genes (IRGs) in the tumor microenvironment (TME), the corresponding regulatory mechanism remains poorly characterized. Methods: Specific enhancer RNAs (eRNAs) can be found in tumors, where they control downstream genes. The present study aimed to identify eRNA-regulated IRGs, evaluate their influence on the TME, and use them to construct a novel prognostic model for gliomas. Results: Thirteen target genes (ADCYAP1R1, BMP2, BMPR1A, CD4, DDX17, ELN, FGF13, MAPT, PDIA2, PSMB8, PTPN6, SEMA6C, and SSTR5) were identified and integrated into a comprehensive risk signature, which distinguished two risk subclasses. Discrepancies between these subclasses were compared to explore potential mechanisms attributed to eRNA-regulated genes, including immune cell infiltration, clinicopathological features, survival outcomes, and chemotherapeutic drug sensitivity. Furthermore, the risk signature was used to construct a prognostic tool that was evaluated by calibration curve, clinical utility, Harrell’s concordance index (0.87; 95% CI: 0.84–0.90), and time-dependent receiver operator characteristic curves (AUCs: 0.93 and 0.89 at 3 and 5 years, respectively). The strong reliability and robustness of the established prognostic tool were validated in another independent cohort. Finally, potential subtypes were explored in patients with grade III tumors. Conclusion: Overall, eRNAs were associated with immune-related dysfunctions in the TME. Targeting of IRGs regulated by eRNAs could improve immunotherapeutic/therapeutic outcomes.
Collapse
Affiliation(s)
- Wei Tian
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Kegong Chen
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangcan Yan
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Xinhao Han
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Yanlong Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qiuju Zhang
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Meina Liu
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Li G, Wu Z, Gu J, Zhu Y, Zhang T, Wang F, Huang K, Gu C, Xu K, Zhan R, Shen J. Metabolic Signature-Based Subtypes May Pave Novel Ways for Low-Grade Glioma Prognosis and Therapy. Front Cell Dev Biol 2021; 9:755776. [PMID: 34888308 PMCID: PMC8650219 DOI: 10.3389/fcell.2021.755776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/09/2021] [Indexed: 12/19/2022] Open
Abstract
Metabolic signatures are frequently observed in cancer and are starting to be recognized as important regulators for tumor progression and therapy. Because metabolism genes are involved in tumor initiation and progression, little is known about the metabolic genomic profiles in low-grade glioma (LGG). Here, we applied bioinformatics analysis to determine the metabolic characteristics of patients with LGG from the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). We also performed the ConsensusClusterPlus, the CIBERSORT algorithm, the Estimate software, the R package "GSVA," and TIDE to comprehensively describe and compare the characteristic difference between three metabolic subtypes. The R package WGCNA helped us to identify co-expression modules with associated metabolic subtypes. We found that LGG patients were classified into three subtypes based on 113 metabolic characteristics. MC1 patients had poor prognoses and MC3 patients obtained longer survival times. The different metabolic subtypes had different metabolic and immune characteristics, and may have different response patterns to immunotherapy. Based on the metabolic subtype, different patterns were exhibited that reflected the characteristics of each subtype. We also identified eight potential genetic markers associated with the characteristic index of metabolic subtypes. In conclusion, a comprehensive understanding of metabolism associated characteristics and classifications may improve clinical outcomes for LGG.
Collapse
Affiliation(s)
- Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhanxiong Wu
- School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
| | - Jun Gu
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zhu
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tiesong Zhang
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Wang
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kaiyuan Huang
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenjie Gu
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kangli Xu
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Renya Zhan
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Shen
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Bongaarts A, Mijnsbergen C, Anink JJ, Jansen FE, Spliet WGM, den Dunnen WFA, Coras R, Blümcke I, Paulus W, Gruber VE, Scholl T, Hainfellner JA, Feucht M, Kotulska K, Jozwiak S, Grajkowska W, Buccoliero AM, Caporalini C, Giordano F, Genitori L, Söylemezoğlu F, Pimentel J, Jones DTW, Scicluna BP, Schouten-van Meeteren AYN, Mühlebner A, Mills JD, Aronica E. Distinct DNA Methylation Patterns of Subependymal Giant Cell Astrocytomas in Tuberous Sclerosis Complex. Cell Mol Neurobiol 2021; 42:2863-2892. [PMID: 34709498 PMCID: PMC9560915 DOI: 10.1007/s10571-021-01157-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/12/2021] [Indexed: 10/28/2022]
Abstract
Tuberous sclerosis complex (TSC) is a monogenic disorder caused by mutations in either the TSC1 or TSC2 gene, two key regulators of the mechanistic target of the rapamycin complex pathway. Phenotypically, this leads to growth and formation of hamartomas in several organs, including the brain. Subependymal giant cell astrocytomas (SEGAs) are low-grade brain tumors commonly associated with TSC. Recently, gene expression studies provided evidence that the immune system, the MAPK pathway and extracellular matrix organization play an important role in SEGA development. However, the precise mechanisms behind the gene expression changes in SEGA are still largely unknown, providing a potential role for DNA methylation. We investigated the methylation profile of SEGAs using the Illumina Infinium HumanMethylation450 BeadChip (SEGAs n = 42, periventricular control n = 8). The SEGA methylation profile was enriched for the adaptive immune system, T cell activation, leukocyte mediated immunity, extracellular structure organization and the ERK1 & ERK2 cascade. More interestingly, we identified two subgroups in the SEGA methylation data and show that the differentially expressed genes between the two subgroups are related to the MAPK cascade and adaptive immune response. Overall, this study shows that the immune system, the MAPK pathway and extracellular matrix organization are also affected on DNA methylation level, suggesting that therapeutic intervention on DNA level could be useful for these specific pathways in SEGA. Moreover, we identified two subgroups in SEGA that seem to be driven by changes in the adaptive immune response and MAPK pathway and could potentially hold predictive information on target treatment response.
Collapse
Affiliation(s)
- Anika Bongaarts
- Department of Neuro Pathology, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, The Netherlands
| | - Caroline Mijnsbergen
- Department of Neuro Pathology, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, The Netherlands
| | - Jasper J Anink
- Department of Neuro Pathology, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, The Netherlands
| | - Floor E Jansen
- Department of Pediatric Neurology, Brain Center, University Medical Center, Utrecht, The Netherlands
| | - Wim G M Spliet
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Werner Paulus
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Victoria E Gruber
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Theresa Scholl
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Johannes A Hainfellner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Martha Feucht
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| | - Sergiusz Jozwiak
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland.,Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Wieslawa Grajkowska
- Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland
| | | | | | - Flavio Giordano
- Department of Neurosurgery, Anna Meyer Children's Hospital, Florence, Italy
| | - Lorenzo Genitori
- Department of Neurosurgery, Anna Meyer Children's Hospital, Florence, Italy
| | - Figen Söylemezoğlu
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - José Pimentel
- Laboratory of Neuropathology, Department of Neurology, Hospital de Santa Maria (CHULN), Lisbon, Portugal
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Brendon P Scicluna
- Center for Experimental & Molecular Medicine and Department of Clinical Epidemiology, Biostatistics & Bioinformatics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Antoinette Y N Schouten-van Meeteren
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Angelika Mühlebner
- Department of Neuro Pathology, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, The Netherlands.
| | - James D Mills
- Department of Neuro Pathology, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, The Netherlands.
| | - Eleonora Aronica
- Department of Neuro Pathology, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
24
|
Minhas R, Loeffler-Wirth H, Siddiqui YH, Obrębski T, Vashisht S, Abu Nahia K, Paterek A, Brzozowska A, Bugajski L, Piwocka K, Korzh V, Binder H, Winata CL. Transcriptome profile of the sinoatrial ring reveals conserved and novel genetic programs of the zebrafish pacemaker. BMC Genomics 2021; 22:715. [PMID: 34600492 PMCID: PMC8487553 DOI: 10.1186/s12864-021-08016-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Sinoatrial Node (SAN) is part of the cardiac conduction system, which controls the rhythmic contraction of the vertebrate heart. The SAN consists of a specialized pacemaker cell population that has the potential to generate electrical impulses. Although the SAN pacemaker has been extensively studied in mammalian and teleost models, including the zebrafish, their molecular nature remains inadequately comprehended. RESULTS To characterize the molecular profile of the zebrafish sinoatrial ring (SAR) and elucidate the mechanism of pacemaker function, we utilized the transgenic line sqet33mi59BEt to isolate cells of the SAR of developing zebrafish embryos and profiled their transcriptome. Our analyses identified novel candidate genes and well-known conserved signaling pathways involved in pacemaker development. We show that, compared to the rest of the heart, the zebrafish SAR overexpresses several mammalian SAN pacemaker signature genes, which include hcn4 as well as those encoding calcium- and potassium-gated channels. Moreover, genes encoding components of the BMP and Wnt signaling pathways, as well as members of the Tbx family, which have previously been implicated in pacemaker development, were also overexpressed in the SAR. Among SAR-overexpressed genes, 24 had human homologues implicated in 104 different ClinVar phenotype entries related to various forms of congenital heart diseases, which suggest the relevance of our transcriptomics resource to studying human heart conditions. Finally, functional analyses of three SAR-overexpressed genes, pard6a, prom2, and atp1a1a.2, uncovered their novel role in heart development and physiology. CONCLUSION Our results established conserved aspects between zebrafish and mammalian pacemaker function and revealed novel factors implicated in maintaining cardiac rhythm. The transcriptome data generated in this study represents a unique and valuable resource for the study of pacemaker function and associated heart diseases.
Collapse
Affiliation(s)
- Rashid Minhas
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Randall Centre of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Yusra H Siddiqui
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- School of Human Sciences, College of Science and Engineering, University of Derby, Derby, UK
| | - Tomasz Obrębski
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Shikha Vashisht
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Karim Abu Nahia
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Alexandra Paterek
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Angelika Brzozowska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Lukasz Bugajski
- Nencki Institute of Experimental Biology, Laboratory of Cytometry, Warsaw, Poland
| | - Katarzyna Piwocka
- Nencki Institute of Experimental Biology, Laboratory of Cytometry, Warsaw, Poland
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Cecilia Lanny Winata
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
25
|
Jenkins EPW, Finch A, Gerigk M, Triantis IF, Watts C, Malliaras GG. Electrotherapies for Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100978. [PMID: 34292672 PMCID: PMC8456216 DOI: 10.1002/advs.202100978] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Indexed: 05/08/2023]
Abstract
Non-thermal, intermediate frequency (100-500 kHz) electrotherapies present a unique therapeutic strategy to treat malignant neoplasms. Here, pulsed electric fields (PEFs) which induce reversible or irreversible electroporation (IRE) and tumour-treating fields (TTFs) are reviewed highlighting the foundations, advances, and considerations of each method when applied to glioblastoma (GBM). Several biological aspects of GBM that contribute to treatment complexity (heterogeneity, recurrence, resistance, and blood-brain barrier(BBB)) and electrophysiological traits which are suggested to promote glioma progression are described. Particularly, the biological responses at the cellular and molecular level to specific parameters of the electrical stimuli are discussed offering ways to compare these parameters despite the lack of a universally adopted physical description. Reviewing the literature, a disconnect is found between electrotherapy techniques and how they target the biological complexities of GBM that make treatment difficult in the first place. An attempt is made to bridge the interdisciplinary gap by mapping biological characteristics to different methods of electrotherapy, suggesting important future research topics and directions in both understanding and treating GBM. To the authors' knowledge, this is the first paper that attempts an in-tandem assessment of the biological effects of different aspects of intermediate frequency electrotherapy methods, thus offering possible strategies toward GBM treatment.
Collapse
Affiliation(s)
- Elise P. W. Jenkins
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Alina Finch
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - Magda Gerigk
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Iasonas F. Triantis
- Department of Electrical and Electronic EngineeringCity, University of LondonLondonEC1V 0HBUK
| | - Colin Watts
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - George G. Malliaras
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| |
Collapse
|
26
|
Zhou X, Liang T, Deng J, Ng K, Li M, Lv C, Chen J, Yang K, Ma Z, Ma W, Wang P. Differential and Prognostic Significance of HOXB7 in Gliomas. Front Cell Dev Biol 2021; 9:697086. [PMID: 34458259 PMCID: PMC8385304 DOI: 10.3389/fcell.2021.697086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Diffuse glioma is the most common primary tumor of the central nervous system. The prognosis of the individual tumor is heavily dependent on its grade and subtype. Homeobox B7 (HOXB7), a member of the homeobox family, is abnormally overexpressed in a variety of tumors. However, its function in glioma is unclear. In this study, HOXB7 mRNA and protein expression levels were analyzed in 401 gliomas from the CGGA RNA-seq database (325 cases) and our hospital (76 cases). HOXB7 expression, at both mRNA and protein levels, were upregulated in glioblastoma (GBM) and isocitrate dehydrogenase 1 (IDH1) wild-type glioma tissues. Kaplan–Meier with log-rank test showed that patients with high HOXB7 expression had a poor prognosis (p < 0.0001). Moreover, HOXB7 protein was deleted in 90.9% (20/22) of oligodendrogliomas and 13.0% (3/23) of astrocytomas. The sensitivity and specificity of HOXB7 protein deletion in oligodendroglioma were 90.9% (20/22) and 87.0% (20/23), respectively. To verify the reliability of using HOXB7 in differentiating oligodendroglioma, we used 1p/19q fluorescence in situ hybridization (FISH) testing as a positive control. The Cohen’s kappa coefficient of HOXB7 immunohistochemistry staining and 1p/19q FISH testing was 0.778 (95% CI: 0.594–0.962, p < 0.001). In conclusion, HOXB7 is an independent predictor of poor prognosis in all grade gliomas. Additionally, HOXB7 is also a highly sensitive and specific indicator to differentiate oligodendroglioma from astrocytoma.
Collapse
Affiliation(s)
- Xingang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Tingyu Liang
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jinhai Deng
- Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Center for Human Disease Genomics, Peking University Health Science Center, Beijing, China.,Richard Dimbleby Department of Cancer Research, Comprehensive Cancer Center, Kings College London, London, United Kingdom
| | - Kenrick Ng
- Department of Medical Oncology, University College London Cancer Institute, London, United Kingdom
| | - Man Li
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chunxin Lv
- Geriatric Department, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiamin Chen
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Kun Yang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhiyuan Ma
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wenping Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Wang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Zhang H, Xu L, Zhong Z, Liu Y, Long Y, Zhou S. Lower-Grade Gliomas: Predicting DNA Methylation Subtyping and its Consequences on Survival with MR Features. Acad Radiol 2021; 28:e199-e208. [PMID: 32241714 DOI: 10.1016/j.acra.2020.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVES To explore associations between MR imaging features, DNA methylation subtyping, and survival in lower-grade gliomas (LGG). MATERIALS AND METHODS The MR data from 170 patients generated with the Cancer Imaging Archive were reviewed. The correlation was evaluated by Fisher's Exact Test, Pearson Chi-Square and binary regression analysis. Survival analysis was conducted by using time-dependent ROC analysis and the Kaplan-Meier method (the worst prognosis subgroup). RESULTS Identified were 9 (5.3%) M1-subtype, 18 (10.6%) M2-subtype, 48 (28.2%) M3-subtype, 31 (18.2%) M4-subtype and 64 (37.6%) M5-subtype. Patients with M4-subtype had the shortest median OS (49.3 vs. 28.4) months(p < 0.05). The time-dependent ROC for the M4-subtype was 0.83 (95% confidence interval 0.72-0.95) for survival at 12 months, 0.82 (95% confidence interval 0.70-0.94) for survival at 24 months, and 0.74 (95% confidence interval 0.62-0.86) for survival at 36 months. After uni- and multivariate analysis, a nomogram was built based on proportion contrast-enhanced (CE) tumor, extranodular growth, volume_cutoff_median, and location. For the prediction of M4-subtype, the nomogram showed good discrimination, with an area under the curve (AUC) of 0.886 (95% CI: 0.820-952) and was well calibrated. On multivariate logistic regression analysis, volume ≥60cm3 (OR: 0.200; p < 0.001; 95%CI: 0.048-0.834) was associated with M1-subtype (AUC: 0.690). Hemorrhage (OR: 5.443; p = 0.002; 95%CI: 1.844-16.069) and volume > median (OR: 3.256; p = 0.05; 95%CI: 0.992-10.686) were associated with M2-subtype (AUC: 0.733). Proportion CE tumor<=5% (OR: 3.968; P=0.002; 95%CI: 1.634-9.635) was associated with M3-subtype (AUC: 0.632). Poorly-defined (OR: 2.258; p = 0.05; 95%CI: 1.000-5.101) and volume > median (OR: 2.447; p = 0.01; 95%CI: 1.244-4.813) were associated with M5-subtype (AUC: 0.645). Decision curve analysis indicated predictions for all models were clinically useful. CONCLUSION This preliminary radiogenomics analysis of lower-grade gliomas demonstrated associations between MR features and DNA methylation subtyping. The shortest survival was observed in patients with M4-subtype. And we have constructed nomogram that enables more accurate predictions of M4-subtype.
Collapse
|
28
|
Hu Z, Qu S. EVA1C Is a Potential Prognostic Biomarker and Correlated With Immune Infiltration Levels in WHO Grade II/III Glioma. Front Immunol 2021; 12:683572. [PMID: 34267752 PMCID: PMC8277382 DOI: 10.3389/fimmu.2021.683572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Background Immunotherapy is an effective therapeutic approach for multiple human cancer types. However, the correlations between EVA1C and patients’ prognosis as well as immune infiltration remain obscure. Herein, we employed transcriptomic and clinical data extracted from two independent databases to systematically investigate the role of EVA1C in the oncological context. Methods The differential expression of EVA1C was analyzed via TCGA and Oncomine databases. We evaluated the influence of EVA1C on clinical prognosis using Kaplan-Meier plotter. We then used the expression profiler to calculate stromal score, immune score, and ESTIMATE score based on the ESTIMATE algorithm. The abundance of infiltrating immune cells was calculated via TIMER. The correlations between EVA1C expression and immune infiltration levels were analyzed in two independent cohorts. Results In patients with World Health Organization (WHO) grade II/III glioma, high EVA1C expression was associated with malignant clinicopathological features and poor overall survival in both cohorts. EVA1C expression was positively associated with immune infiltration levels of B cell, CD4+ T cell, neutrophil, macrophage, and dendritic cells (DCs). Besides, EVA1C expression strongly correlated with diverse immune marker sets. And the predictive power of EVA1C was better than that of other indicators in predicting high immune infiltration levels in glioma. Conclusions For the first time, we identified the overexpression of EVA1C in glioma, which was tightly correlated with the high infiltration levels of multiple immune cells as well as poor prognosis. Meanwhile, EVA1C might be a potential biomarker for predicting high immune infiltration in WHO grade II/III gliomas.
Collapse
Affiliation(s)
- Zhicheng Hu
- Department of Burn Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shanqiang Qu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
29
|
Willscher E, Hopp L, Kreuz M, Schmidt M, Hakobyan S, Arakelyan A, Hentschel B, Jones DTW, Pfister SM, Loeffler M, Loeffler-Wirth H, Binder H. High-Resolution Cartography of the Transcriptome and Methylome Landscapes of Diffuse Gliomas. Cancers (Basel) 2021; 13:3198. [PMID: 34206856 PMCID: PMC8268631 DOI: 10.3390/cancers13133198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/01/2023] Open
Abstract
Molecular mechanisms of lower-grade (II-III) diffuse gliomas (LGG) are still poorly understood, mainly because of their heterogeneity. They split into astrocytoma- (IDH-A) and oligodendroglioma-like (IDH-O) tumors both carrying mutations(s) at the isocitrate dehydrogenase (IDH) gene and into IDH wild type (IDH-wt) gliomas of glioblastoma resemblance. We generated detailed maps of the transcriptomes and DNA methylomes, revealing that cell functions divided into three major archetypic hallmarks: (i) increased proliferation in IDH-wt and, to a lesser degree, IDH-O; (ii) increased inflammation in IDH-A and IDH-wt; and (iii) the loss of synaptic transmission in all subtypes. Immunogenic properties of IDH-A are diverse, partly resembling signatures observed in grade IV mesenchymal glioblastomas or in grade I pilocytic astrocytomas. We analyzed details of coregulation between gene expression and DNA methylation and of the immunogenic micro-environment presumably driving tumor development and treatment resistance. Our transcriptome and methylome maps support personalized, case-by-case views to decipher the heterogeneity of glioma states in terms of data portraits. Thereby, molecular cartography provides a graphical coordinate system that links gene-level information with glioma subtypes, their phenotypes, and clinical context.
Collapse
Affiliation(s)
- Edith Willscher
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (E.W.); (L.H.); (M.S.)
| | - Lydia Hopp
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (E.W.); (L.H.); (M.S.)
| | - Markus Kreuz
- IMISE, Institute for Medical Informatics, Statistics and Epidemiology, Universität of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.K.); (B.H.); (M.L.)
| | - Maria Schmidt
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (E.W.); (L.H.); (M.S.)
| | - Siras Hakobyan
- Research Group of Bioinformatics, Institute of Molecular Biology of the National Academy of Sciences of the Republic of Armenia, 7 Hasratyan Str., Yerevan 0014, Armenia; (S.H.); (A.A.)
- Armenian Bioinformatics Institute (ABI), 7 Hasratyan Str., Yerevan 0014, Armenia; (D.T.W.J.); (S.M.P.)
| | - Arsen Arakelyan
- Research Group of Bioinformatics, Institute of Molecular Biology of the National Academy of Sciences of the Republic of Armenia, 7 Hasratyan Str., Yerevan 0014, Armenia; (S.H.); (A.A.)
- Armenian Bioinformatics Institute (ABI), 7 Hasratyan Str., Yerevan 0014, Armenia; (D.T.W.J.); (S.M.P.)
| | - Bettina Hentschel
- IMISE, Institute for Medical Informatics, Statistics and Epidemiology, Universität of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.K.); (B.H.); (M.L.)
| | - David T. W. Jones
- Armenian Bioinformatics Institute (ABI), 7 Hasratyan Str., Yerevan 0014, Armenia; (D.T.W.J.); (S.M.P.)
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Stefan M. Pfister
- Armenian Bioinformatics Institute (ABI), 7 Hasratyan Str., Yerevan 0014, Armenia; (D.T.W.J.); (S.M.P.)
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Markus Loeffler
- IMISE, Institute for Medical Informatics, Statistics and Epidemiology, Universität of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.K.); (B.H.); (M.L.)
| | - Henry Loeffler-Wirth
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (E.W.); (L.H.); (M.S.)
| | - Hans Binder
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany; (E.W.); (L.H.); (M.S.)
- Armenian Bioinformatics Institute (ABI), 7 Hasratyan Str., Yerevan 0014, Armenia; (D.T.W.J.); (S.M.P.)
| |
Collapse
|
30
|
Zhao M, Liu Y, Ding G, Qu D, Qu H. Online database for brain cancer-implicated genes: exploring the subtype-specific mechanisms of brain cancer. BMC Genomics 2021; 22:458. [PMID: 34144671 PMCID: PMC8214279 DOI: 10.1186/s12864-021-07793-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/07/2021] [Indexed: 12/09/2022] Open
Abstract
Background Brain cancer is one of the eight most common cancers occurring in people aged 40+ and is the fifth-leading cause of cancer-related deaths for males aged 40–59. Accurate subtype identification is crucial for precise therapeutic treatment, which largely depends on understanding the biological pathways and regulatory mechanisms associated with different brain cancer subtypes. Unfortunately, the subtype-implicated genes that have been identified are scattered in thousands of published studies. So, systematic literature curation and cross-validation could provide a solid base for comparative genetic studies about major subtypes. Results Here, we constructed a literature-based brain cancer gene database (BCGene). In the current release, we have a collection of 1421 unique human genes gathered through an extensive manual examination of over 6000 PubMed abstracts. We comprehensively annotated those curated genes to facilitate biological pathway identification, cancer genomic comparison, and differential expression analysis in various anatomical brain regions. By curating cancer subtypes from the literature, our database provides a basis for exploring the common and unique genetic mechanisms among 40 brain cancer subtypes. By further prioritizing the relative importance of those curated genes in the development of brain cancer, we identified 33 top-ranked genes with evidence mentioned only once in the literature, which were significantly associated with survival rates in a combined dataset of 2997 brain cancer cases. Conclusion BCGene provides a useful tool for exploring the genetic mechanisms of and gene priorities in brain cancer. BCGene is freely available to academic users at http://soft.bioinfo-minzhao.org/bcgene/. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07793-x.
Collapse
Affiliation(s)
- Min Zhao
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Sippy Downs, Queensland, 4558, Australia
| | - Yining Liu
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Guiqiong Ding
- School of Computer Science & Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Dacheng Qu
- School of Computer Science & Technology, Beijing Institute of Technology, Beijing, 100081, China. .,Information Center, China Association for Science and Technology, Beijing, 100863, China.
| | - Hong Qu
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, P.R. China.
| |
Collapse
|
31
|
Zhang J, Yin J, Luo L, Huang D, Zhai D, Wang G, Xu N, Yang M, Song Y, Zheng G, Zhang Q. Integrative Analysis of DNA Methylation and Transcriptome Identifies a Predictive Epigenetic Signature Associated With Immune Infiltration in Gliomas. Front Cell Dev Biol 2021; 9:670854. [PMID: 34136486 PMCID: PMC8203203 DOI: 10.3389/fcell.2021.670854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Glioma is the most common primary brain tumor with poor prognosis and high mortality. The purpose of this study was to use the epigenetic signature to predict prognosis and evaluate the degree of immune infiltration in gliomas. We integrated gene expression profiles and DNA methylation data of lower-grade glioma and glioblastoma to explore epigenetic differences and associated differences in biological function. Cox regression and lasso analysis were used to develop an epigenetic signature based on eight DNA methylation sites to predict prognosis of glioma patients. Kaplan–Meier analysis showed that the overall survival time of high- and low-risk groups was significantly separated, and ROC analysis verified that the model had great predictive ability. In addition, we constructed a nomogram based on age, sex, 1p/19q status, glioma type, and risk score. The epigenetic signature was obviously associated with tumor purity, immune checkpoints, and tumor-immune infiltrating cells (CD8+ T cells, gamma delta T cells, M0 macrophages, M1 macrophages, M2 macrophages, activated NK cells, monocytes, and activated mast cells) and thus, it may find application as a guide for the evaluation of immune infiltration or in treatment decisions in immunotherapy.
Collapse
Affiliation(s)
- Jianlei Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, China
| | - Jiang Yin
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, China
| | - Liyun Luo
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, China
| | - Danqing Huang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, China
| | - Dongfeng Zhai
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, China
| | - Ge Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, China
| | - Ning Xu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, China
| | - Mingqiang Yang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, China
| | - Ying Song
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, China
| | - Guopei Zheng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, China
| | - Qiong Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, China
| |
Collapse
|
32
|
Wolf J, Willscher E, Loeffler-Wirth H, Schmidt M, Flemming G, Zurek M, Uhlig HH, Händel N, Binder H. Deciphering the Transcriptomic Heterogeneity of Duodenal Coeliac Disease Biopsies. Int J Mol Sci 2021; 22:ijms22052551. [PMID: 33806322 PMCID: PMC7961974 DOI: 10.3390/ijms22052551] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Coeliac disease (CD) is a clinically heterogeneous autoimmune disease with variable presentation and progression triggered by gluten intake. Molecular or genetic factors contribute to disease heterogeneity, but the reasons for different outcomes are poorly understood. Transcriptome studies of tissue biopsies from CD patients are scarce. Here, we present a high-resolution analysis of the transcriptomes extracted from duodenal biopsies of 24 children and adolescents with active CD and 21 individuals without CD but with intestinal afflictions as controls. The transcriptomes of CD patients divide into three groups-a mixed group presenting the control cases, and CD-low and CD-high groups referring to lower and higher levels of CD severity. Persistence of symptoms was weakly associated with subgroup, but the highest marsh stages were present in subgroup CD-high, together with the highest cell cycle rates as an indicator of virtually complete villous atrophy. Considerable variation in inflammation-level between subgroups was further deciphered into immune cell types using cell type de-convolution. Self-organizing maps portrayal was applied to provide high-resolution landscapes of the CD-transcriptome. We find asymmetric patterns of miRNA and long non-coding RNA and discuss the effect of epigenetic regulation. Expression of genes involved in interferon gamma signaling represent suitable markers to distinguish CD from non-CD cases. Multiple pathways overlay in CD biopsies in different ways, giving rise to heterogeneous transcriptional patterns, which potentially provide information about etiology and the course of the disease.
Collapse
Affiliation(s)
- Johannes Wolf
- Department of Laboratory Medicine at Hospital “St. Georg” Leipzig, 04129 Leipzig, Germany;
- Immuno Deficiency Centre Leipzig (IDCL) at Hospital St. Georg Leipzig, Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiency Diseases, 04129 Leipzig, Germany
| | - Edith Willscher
- IZBI, Interdisciplinary Centre for Bioinformatics, University Leipzig, Härtelstr. 16–18, 04107 Leipzig, Germany; (E.W.); (H.L.-W.); (M.S.)
| | - Henry Loeffler-Wirth
- IZBI, Interdisciplinary Centre for Bioinformatics, University Leipzig, Härtelstr. 16–18, 04107 Leipzig, Germany; (E.W.); (H.L.-W.); (M.S.)
| | - Maria Schmidt
- IZBI, Interdisciplinary Centre for Bioinformatics, University Leipzig, Härtelstr. 16–18, 04107 Leipzig, Germany; (E.W.); (H.L.-W.); (M.S.)
| | - Gunter Flemming
- Paediatric Gastroenterology Unit, University Hospital for Children and Adolescents, 04103 Leipzig, Germany;
| | - Marlen Zurek
- Children’s Hospital of the Clinical Centre “Sankt Georg”, 04129 Leipzig, Germany; (M.Z.); (N.H.)
| | - Holm H. Uhlig
- Translational Gastroenterology Unit, Oxford NIHR Biomedical Research Centre, Experimental Medicine, Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Oxford OX4 2PG, UK;
| | - Norman Händel
- Children’s Hospital of the Clinical Centre “Sankt Georg”, 04129 Leipzig, Germany; (M.Z.); (N.H.)
| | - Hans Binder
- IZBI, Interdisciplinary Centre for Bioinformatics, University Leipzig, Härtelstr. 16–18, 04107 Leipzig, Germany; (E.W.); (H.L.-W.); (M.S.)
- Correspondence:
| |
Collapse
|
33
|
Pang B, Chai RC, Zhang YW, Chang YZ, Liu WH, Jia WQ, Wang YZ. A comprehensive model including preoperative peripheral blood inflammatory markers for prediction of the prognosis of diffuse spinal cord astrocytoma following surgery. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:2857-2866. [PMID: 33495960 DOI: 10.1007/s00586-021-06724-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/27/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE Due to the rarity of diffuse spinal cord astrocytoma, an effective model is still lacking to stratify their prognosis. Here, we aimed to establish a prognostic model through comprehensively evaluating clinicopathological features and preoperative peripheral blood inflammatory markers in 89 cases. METHODS We performed univariate and multivariate Cox regression to identify prognosis factors. The Kaplan-Meier curves and ROC curves were employed to compare the prognostic value of selected factors. RESULTS In addition to clinicopathological factors, we revealed the preoperative peripheral blood leukocyte count, neutrophils-to-lymphocytes ratio (NLR), and platelet-to-lymphocyte ratio (PLR) were also significantly correlated with overall survival of spinal cord astrocytoma in univariate Cox regression, and NLR was still significant in multivariate Cox analysis. Further, we demonstrated that NLR ≤ 3.65 and preoperative McCormick score (MMS) ≤ 3 were independently correlated with better survival of WHO grade IV tumors. Meanwhile, Ki-67 < 10% and resection extent ≥ 90% were independent prognostic factors in WHO grade II/III tumors. Finally, we developed a prognostic model that had better predictive efficiencies than WHO grade and histological grade for 1-year (AUC = 76.6), 2- year (AUC = 80.9), and 3-year (AUC = 80.3) survival. This model could classify tumors into 4 classifications with increasingly poor prognosis: 1, WHO grade II/III, with Ki-67 < 10% and resection extent ≥ 90%; 2, WHO grade II/III, Ki-67 ≥ 10% or resection < 90%; 3, WHO grade IV, NLR ≤ 3.65 and MMS ≤ 3; 4, WHO grade IV, with NRL > 3.65 or MMS = 4. CONCLUSION We successfully constructed a comprehensive prognostic model including preoperative peripheral blood inflammatory markers, which can stratify diffuse spinal cord astrocytoma into 4 subgroups.
Collapse
Affiliation(s)
- Bo Pang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, People's Republic of China
| | - Rui-Chao Chai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China. .,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China. .,China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China. .,Chinese Glioma Genome Atlas Network (CGGA), Beijing, People's Republic of China.
| | - Yao-Wu Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| | - Yu-Zhou Chang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| | - Wei-Hao Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| | - Wen-Qing Jia
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China. .,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China. .,China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China. .,Chinese Glioma Genome Atlas Network (CGGA), Beijing, People's Republic of China.
| | - Yong-Zhi Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China. .,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China. .,China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China. .,Chinese Glioma Genome Atlas Network (CGGA), Beijing, People's Republic of China.
| |
Collapse
|
34
|
Liang T, Zhou X, Li P, You G, Wang F, Wang P, Feng E. DZIP3 is a key factor to stratify IDH1 wild-type lower-grade gliomas. Aging (Albany NY) 2020; 12:24995-25004. [PMID: 33229627 PMCID: PMC7803555 DOI: 10.18632/aging.103817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 07/16/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Malignant glioma is the most common form of primary malignant brain cancer. Heterogeneity is the hallmark of glioma. DAZ-interacting zinc finger 3 (DZIP3), acts as an RNA-binding RING-type ubiquitin ligase; however, its function in glioma is yet unclear. RESULTS The DZIP3 expression was related to the World Health Organization (WHO) grade and isocitrate dehydrogenase 1(IDH1) status, as well as the clinical outcome. Malignant cases exhibit lower DZIP3 expression. DZIP3 was an independent predictive factor of good prognosis in all grade and lower grade gliomas (p < 0.0001). Gene enrichment analysis and immunohistochemistry indicated that DZIP3 affected the biological behavior of glioma through the angiogenesis pathway. Moreover, based on DZIP3 expression, IDH1 wild-type lower-grade gliomas could be divided into two groups with different survival time. CONCLUSION In conclusion, the loss of DZIP3 may be involved in the mechanism of angiogenesis in the invasive biological process of glioma. These findings laid an understanding of DZIP3-specific clinical features in glioma. METHODS A total of 325 glioma patients from the Chinese Glioma Genome Atlas (CGGA) RNA-seq cohort comprised the training cohort, while 265 patients from the GSE 16011 array cohort formed the validation cohort. The mRNA expression of DZIP3 and clinical characteristics was assessed. DZIP3 protein expression and microvessel density (MVD) were evaluated by immunohistochemistry (IHC).
Collapse
Affiliation(s)
- Tingyu Liang
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xingang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Peiliang Li
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Gan You
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Fang Wang
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Peng Wang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Enshan Feng
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| |
Collapse
|
35
|
Schmidt M, Hopp L, Arakelyan A, Kirsten H, Engel C, Wirkner K, Krohn K, Burkhardt R, Thiery J, Loeffler M, Loeffler-Wirth H, Binder H. The Human Blood Transcriptome in a Large Population Cohort and Its Relation to Aging and Health. Front Big Data 2020; 3:548873. [PMID: 33693414 PMCID: PMC7931910 DOI: 10.3389/fdata.2020.548873] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background: The blood transcriptome is expected to provide a detailed picture of an organism's physiological state with potential outcomes for applications in medical diagnostics and molecular and epidemiological research. We here present the analysis of blood specimens of 3,388 adult individuals, together with phenotype characteristics such as disease history, medication status, lifestyle factors, and body mass index (BMI). The size and heterogeneity of this data challenges analytics in terms of dimension reduction, knowledge mining, feature extraction, and data integration. Methods: Self-organizing maps (SOM)-machine learning was applied to study transcriptional states on a population-wide scale. This method permits a detailed description and visualization of the molecular heterogeneity of transcriptomes and of their association with different phenotypic features. Results: The diversity of transcriptomes is described by personalized SOM-portraits, which specify the samples in terms of modules of co-expressed genes of different functional context. We identified two major blood transcriptome types where type 1 was found more in men, the elderly, and overweight people and it upregulated genes associated with inflammation and increased heme metabolism, while type 2 was predominantly found in women, younger, and normal weight participants and it was associated with activated immune responses, transcriptional, ribosomal, mitochondrial, and telomere-maintenance cell-functions. We find a striking overlap of signatures shared by multiple diseases, aging, and obesity driven by an underlying common pattern, which was associated with the immune response and the increase of inflammatory processes. Conclusions: Machine learning applications for large and heterogeneous omics data provide a holistic view on the diversity of the human blood transcriptome. It provides a tool for comparative analyses of transcriptional signatures and of associated phenotypes in population studies and medical applications.
Collapse
Affiliation(s)
- Maria Schmidt
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Leipzig, Germany
| | - Lydia Hopp
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Leipzig, Germany
| | - Arsen Arakelyan
- BIG, Group of Bioinformatics, Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| | - Holger Kirsten
- IMISE, Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.,Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Christoph Engel
- IMISE, Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.,Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Kerstin Wirkner
- IMISE, Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.,Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Knut Krohn
- Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Ralph Burkhardt
- Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Joachim Thiery
- Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Markus Loeffler
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Leipzig, Germany.,IMISE, Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.,Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Henry Loeffler-Wirth
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Leipzig, Germany
| | - Hans Binder
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Leipzig, Germany.,Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| |
Collapse
|
36
|
Loeffler-Wirth H, Reikowski J, Hakobyan S, Wagner J, Binder H. oposSOM-Browser: an interactive tool to explore omics data landscapes in health science. BMC Bioinformatics 2020; 21:465. [PMID: 33076824 PMCID: PMC7574456 DOI: 10.1186/s12859-020-03806-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/13/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND oposSOM is a comprehensive, machine learning based open-source data analysis software combining functionalities such as diversity analyses, biomarker selection, function mining, and visualization. RESULTS These functionalities are now available as interactive web-browser application for a broader user audience interested in extracting detailed information from high-throughput omics data sets pre-processed by oposSOM. It enables interactive browsing of single-gene and gene set profiles, of molecular 'portrait landscapes', of associated phenotype diversity, and signalling pathway activation patterns. CONCLUSION The oposSOM-Browser makes available interactive data browsing for five transcriptome data sets of cancer (melanomas, B-cell lymphomas, gliomas) and of peripheral blood (sepsis and healthy individuals) at www.izbi.uni-leipzig.de/opossom-browser .
Collapse
Affiliation(s)
- Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107, Leipzig, Germany.
| | - Jasmin Reikowski
- Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Siras Hakobyan
- Group of Bioinformatics, Institute of Molecular Biology, National Academy of Sciences, 7 Hasratyan str, 0014, Yerevan, Armenia
| | - Jonas Wagner
- LIFE, Leipzig Research Center for Civilization Diseases, Leipzig University, Philipp-Rosenthal-Straße 27, 04103, Leipzig, Germany
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107, Leipzig, Germany
| |
Collapse
|
37
|
Zhang S, Wu S, Wan Y, Ye Y, Zhang Y, Ma Z, Guo Q, Zhang H, Xu L. Development of MR-based preoperative nomograms predicting DNA copy number subtype in lower grade gliomas with prognostic implication. Eur Radiol 2020; 31:2094-2105. [PMID: 33025175 DOI: 10.1007/s00330-020-07350-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/22/2020] [Accepted: 09/24/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES We aimed to determine the value of MR-based preoperative nomograms in predicting DNA copy number (CN) subtype in lower grade glioma (LGG) patients. METHODS The overall survival (OS) data were analyzed. MRI data of 170 subjects were retrospectively analyzed. The correlation was explored by univariate and multivariate regression analysis. RESULTS CN2 subtype was associated with shortest median OS (CN2 subtype vs. others: 46.8 vs. 221.7 months, p < 0.05). The time-dependent receiver operating characteristic for the CN2 subtype was 0.80 (95% CI: 0.74-0.85) for survival at 1 year, 0.80 (95% CI: 0.75-0.85) for survival at 2 years, and 0.77 (95% CI: 0.73-0.83) for survival at 3 years. On multivariate analysis, hemorrhage (OR: 0.118; p < 0.001; 95% CI: 0.037-0.376), poorly defined margin (OR: 4.592; p < 0.001; 95% CI: 1.965-10.730), extranodular growth (OR: 0.247; p = 0.006; 95% CI: 0.091-0.671), and volume ≥ 60 cm3 (OR: 4.734.256; p < 0.001; 95% CI: 2.051-10.924) were associated with CN1 subtype (AUC: 0.781). Proportion CE tumor (OR: 5.905; p = 0.007; 95% CI: 1.622-21.493), extranodular growth (OR: 9.047; p = 0.001; 95% CI: 2.349-34.846), width ≥ median (OR: 0.231; p = 0.049; 95% CI: 0.054-0.998), and depth ≥ median (OR: 0.192; p = 0.023; 95% CI: 0.046-0.799) were associated with CN2 subtype (AUC: 0.854). Necrosis/cystic (OR: 6.128; p = 0.007; 95% CI: 1.635-22.968), hemorrhage (OR: 5.752; p = 0.002; 95% CI: 1.953-16.942), poorly defined margin (OR: 0.164; p < 0.001; 95% CI: 0.063-0.427), and volume ≥ median (OR: 4.422; p < 0.001; 95% CI: 1.925-10.160) were associated with CN3 subtype (AUC: 0.808). All three nomograms showed good discrimination and calibration. Decision curve analysis supported that all nomograms were clinically useful. The average accuracy of the tenfold cross-validation was 0.680 (CN1), 0.794 (CN2), and 0.894 (CN3), respectively. CONCLUSIONS The shortest OS was observed in patients with CN2 subtype. This preliminary radiogenomics analysis revealed that the MR-based preoperative nomograms provide individualized prediction of DNA copy number subtype in LGG patients. KEY POINTS • This preliminary radiogenomics analysis of LGG revealed that the MR-based preoperative nomograms provide individualized prediction of DNA copy number subtype in LGG patients. • The AUC for the ROC curve was 0.781 for CN1 subtype, 0.854 for CN2 subtype, and 0.808 for CN3 subtype. Decision curve analysis supported that all nomograms were clinically useful. • The sensitivity was 0.779 (CN1), 0.731 (CN2), and 0.851 (CN3), respectively. The specificity was 0.664 (CN1), 0.872 (CN2), and 0.625 (CN3), respectively. And the accuracy was 0.717 (CN1), 0.849 (CN2), and 0.692 (CN3), respectively.
Collapse
Affiliation(s)
- Siwei Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & Guangdong Provincial Hospital of Chinese Medicine, 111 Da De Lu, Guangzhou, 510120, Guangdong Province, People's Republic of China
| | - Shanshan Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & Guangdong Provincial Hospital of Chinese Medicine, 111 Da De Lu, Guangzhou, 510120, Guangdong Province, People's Republic of China
| | - Yun Wan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & Guangdong Provincial Hospital of Chinese Medicine, 111 Da De Lu, Guangzhou, 510120, Guangdong Province, People's Republic of China
| | - Yongsong Ye
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & Guangdong Provincial Hospital of Chinese Medicine, 111 Da De Lu, Guangzhou, 510120, Guangdong Province, People's Republic of China
| | - Ying Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & Guangdong Provincial Hospital of Chinese Medicine, 111 Da De Lu, Guangzhou, 510120, Guangdong Province, People's Republic of China
| | - Zelan Ma
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & Guangdong Provincial Hospital of Chinese Medicine, 111 Da De Lu, Guangzhou, 510120, Guangdong Province, People's Republic of China
| | - Quanlan Guo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & Guangdong Provincial Hospital of Chinese Medicine, 111 Da De Lu, Guangzhou, 510120, Guangdong Province, People's Republic of China
| | - Hongdan Zhang
- Guangdong General Hospital, Guangzhou, People's Republic of China
| | - Li Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine & Guangdong Provincial Hospital of Chinese Medicine, 111 Da De Lu, Guangzhou, 510120, Guangdong Province, People's Republic of China.
| |
Collapse
|
38
|
Balaji E V, Kumar N, Satarker S, Nampoothiri M. Zinc as a plausible epigenetic modulator of glioblastoma multiforme. Eur J Pharmacol 2020; 887:173549. [PMID: 32926916 DOI: 10.1016/j.ejphar.2020.173549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023]
Abstract
Glioblastoma Multiforme (GBM) is an aggressive brain tumor (WHO grade 4 astrocytoma) with unknown causes and is associated with a reduced life expectancy. The available treatment options namely radiotherapy, surgery and chemotherapy have failed to improve life expectancy. Out of the various therapeutic approaches, epigenetic therapy is one of the most studied. Epigenetic therapy is involved in the effective treatment of GBM by inhibiting DNA methyltransferase, histone deacetylation and non-coding RNA. It also promotes the expression of the tumor suppressor gene and is involved in the suppression of the oncogene. Various targets are being studied to implement proper epigenetic regulation to control GBM effectively. Zinc is one of the micronutrients which is considered to maintain epigenetic regulation by promoting the proper DNA folding, protecting genetic material from the oxidative damage and controlling the enzyme activation involved in the epigenetic regulation. Here, we are discussing the importance of zinc in regulating the epigenetic modifications and assessing its role in glioblastoma research. The discussion also highlights the importance of artificial intelligence using epigenetics for envisaging the glioma progression, diagnosis and its management.
Collapse
Affiliation(s)
- Vignesh Balaji E
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
39
|
Xiong Z, Xiong Y, Liu H, Li C, Li X. Identification of purity and prognosis-related gene signature by network analysis and survival analysis in brain lower grade glioma. J Cell Mol Med 2020; 24:11607-11612. [PMID: 32869484 PMCID: PMC7576230 DOI: 10.1111/jcmm.15805] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 11/30/2022] Open
Abstract
Tumour microenvironment of brain lower grade glioma (LGG) consists of non‐tumour cells including stromal cells and immune cells mainly. These non‐tumour cells dilute the purity of LGG and play pivotal roles in tumour growth and development, thereby affecting patient prognosis. Tumour purity is also associated with molecular subtypes of LGG. In this study, we discovered the most relevant module to purity by weighted gene co‐expression network analysis (WGCNA) and afterwards performed consensus network analysis and survival analysis to filter 61 significant genes related to both purity and prognosis. In turn, we built a simplified model based on the calculation of purity score, and consensus measurement of purity estimation (CPE), with a satisfactory predictive performance by random forest regression. HLA‐E, MSN, GNG‐5, MYL12A, ITGB4, PDPN, AGTRAP, S100A4, PLSCR1, VAMP5 were selected as the most relevant genes correlating to both purity and prognosis. The risk score model based on the 10 genes could moderately predict patients’ overall survival. These 10 genes, respectively, were positively correlated positively to immunosuppressive cells like macrophage M2, but negatively correlated to patient prognosis, which may explain partially the poor prognosis with low‐purity group.
Collapse
Affiliation(s)
- Zujian Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, P. R. China.,Xiangya School of Medicine, Central South University, Changsha, P. R. China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Yi Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, P. R. China.,Xiangya School of Medicine, Central South University, Changsha, P. R. China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, P. R. China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Chang Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, P. R. China.,Xiangya School of Medicine, Central South University, Changsha, P. R. China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, P. R. China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, P. R. China
| |
Collapse
|
40
|
Zeng Y, Zhang P, Wang X, Wang K, Zhou M, Long H, Lin J, Wu Z, Gao L, Song Y. Identification of Prognostic Signatures of Alternative Splicing in Glioma. J Mol Neurosci 2020; 70:1484-1492. [PMID: 32602029 DOI: 10.1007/s12031-020-01581-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022]
Abstract
Alternative splicing (AS) is a ubiquitous mechanism in which pre-mRNA can be spliced into divergent variants and involved in carcinogenesis and progression in several cancers. In the present study, we systematically profiled prognostic AS signatures involving both low grade glioma (LGG) and glioblastoma (GBM) and investigated the association of AS signatures with tumor grade and IDH1 status in glioma. Percent spliced in (PSI) values and corresponding clinical data were obtained from TCGA SpliceSeq and TCGA data portal, respectively. Prognostic AS signatures were identified using univariate and stepwise multivariate Cox regression. Heatmap analysis was performed based on prognostic AS signatures. A prognostic signature was established with 69 and 88 AS events, including specific splicing events of MUTYH, STEAP3, and CTNNB1, in LGG and GBM cohorts, respectively. The area under the curve (AUC) of the prediction model was 0.968 at 2000 days of overall survival (OS) in the LGG cohort and 0.966 at 450 days of OS in the GBM cohort. In addition, these prognostic AS signatures could complement current molecular classification, such as IDH1 mutation, 1p/19q codeletion, and ATRX loss, of glioma and further identify potential subgroups of glioma with the same molecular features. In conclusion, our study systematically profiled prognostic AS events involving both low grade glioma and glioblastoma for the first time, which also shed light on the crosstalk between AS signatures and molecular features of glioma.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China.,Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Peidong Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Xizhao Wang
- Department of Neurosurgery, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian Province, People's Republic of China
| | - Ke Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
| | - Mingfeng Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Hao Long
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Jie Lin
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Zhiyong Wu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China.
| | - Ye Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.
| |
Collapse
|
41
|
Raviraj R, Nagaraja SS, Selvakumar I, Mohan S, Nagarajan D. The epigenetics of brain tumors and its modulation during radiation: A review. Life Sci 2020; 256:117974. [PMID: 32553924 DOI: 10.1016/j.lfs.2020.117974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/23/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Abstract
The brain tumor is the abnormal growth of heterogeneous cells around the central nervous system and spinal cord. Most clinically prominent brain tumors affecting both adult and pediatric are glioblastoma, medulloblastoma, and ependymoma and they are classified according to their origin of tissue. Chemotherapy, radiotherapy, and surgery are important treatments available to date. However, these treatments fail due to multiple reasons, including chemoresistance and radiation resistance of cancer cells. Thus, there is a need of new therapeutic designs to target cell signaling and molecular events which are responsible for this resistance. Recently epigenetic changes received increased attention because it helps in understanding chromatin-mediated disease mechanism. The epigenetic modification alters chromatin structure that affects the docking site of many drugs which cause chemo-resistance of cancer therapy. This review centers the mechanism of how epigenetic changes affect the transcription repression and activation of various genes including Polycomb gene, V-Myc avian myelocytomatosis viral oncogene (MYCN). This review also put forth the pathway of radiation-induced reactive oxygen species generation and its role in epigenetic changes in the cellular level and its impact on tissue physiology. Additionally, there is a strong relationship between the behavior of an individual and environment-induced epigenetic regulation of gene expression. The review also discusses Transcriptome heterogeneity and role of tumor microenvironment in glioblastoma. Overall, this review emphasis important and novel epigenetic targets that could be of therapeutic benefit, which helps in overcoming the unsolved chromatin alteration in brain cancer.
Collapse
Affiliation(s)
- Raghavi Raviraj
- Radiation Biology Lab, 206, ASK-II, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - SunilGowda Sunnaghatta Nagaraja
- Radiation Biology Lab, 206, ASK-II, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Ilakya Selvakumar
- Radiation Biology Lab, 206, ASK-II, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Suma Mohan
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Devipriya Nagarajan
- Radiation Biology Lab, 206, ASK-II, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India.
| |
Collapse
|
42
|
Wei B, Wang R, Wang L, Du C. Prognostic factor identification by analysis of the gene expression and DNA methylation data in glioma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2020; 17:3909-3924. [PMID: 32987560 DOI: 10.3934/mbe.2020217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Objective: This study was aimed to identify prognostic factors in glioma by analysis of the gene expression and DNA methylation data. Methods: The RNAseq and DNA methylation data associated with glioma were downloaded from GEO and TCGA databases to analyze the differentially expressed genes (DEGs) and methylated genes between tumor and normal tissues. Function and pathway analyses, co-expression network and survival analysis were performed based on these DEGs. The intersection genes of DEGs and differentially methylated genes were obtained followed by function analysis. Results: Total 2190 DEGs were identified between tumor and normal tissues, which were significantly enriched in neuron differentiation associated functions, as well as ribosome pathway. There were 6186 methylation sites (2834 up-regulated and 3352 down-regulated) with significant differences in tumor vs. normal. In the constructed co-expression network, DPP6, MAPK10 and RPL3 were hub genes. Survival analysis of 20 DEGs obtained 18 prognostic genes, among which 9 were differentially methylated, such as LHFPL tetraspan subfamily member 3 (LHFPL3), cadherin 20 (CDH20), complexin 2 (CPLX2), and tenascin R (TNR). The intersection of DEGs and differentially methylated genes (632 genes) were significantly enriched in functions of neuron differentiation. Conclusion: DPP6, MAPK10 and RPL3 may play important roles in tumorigenesis of glioma. Additionally, methylation of LHFPL3, CDH20, CPLX2, and TNR may serve as prognostic factors of glioma.
Collapse
Affiliation(s)
- Bo Wei
- Department of Neurosurgery, The Third Hospital of Jilin University, Changchun 130033, China
| | - Rui Wang
- Departments of Radiology, The Third Hospital of Jilin University, Changchun 130033, China
| | - Le Wang
- Departments of Ophthalmology, The Third Hospital of Jilin University, Changchun 130033, China
| | - Chao Du
- Department of Neurosurgery, The Third Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
43
|
Lin P, Peng YT, Gao RZ, Wei Y, Li XJ, Huang SN, Fang YY, Wei ZX, Huang ZG, Yang H, Chen G. Radiomic profiles in diffuse glioma reveal distinct subtypes with prognostic value. J Cancer Res Clin Oncol 2020; 146:1253-1262. [PMID: 32065261 DOI: 10.1007/s00432-020-03153-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/10/2020] [Indexed: 01/22/2023]
Abstract
PURPOSE To evaluate a radiomic approach for the stratification of diffuse gliomas with distinct prognosis and provide additional resolution of their clinicopathological and molecular characteristics. METHODS For this retrospective study, a total of 704 radiomic features were extracted from the multi-channel MRI data of 166 diffuse gliomas. Survival-associated radiomic features were identified and submitted to distinguish glioma subtypes using consensus clustering. Multi-layered molecular data were used to observe the different clinical and molecular characteristics between radiomic subtypes. The relative profiles of an array of immune cell infiltrations were measured gene set variation analysis approach to explore differences in tumor immune microenvironment. RESULTS A total of 6 categories, including 318 radiomic features were significantly correlated with the overall survival of glioma patients. Two subgroups with distinct prognosis were separated by consensus clustering of radiomic features that significantly associated with survival. Histological stage and molecular factors, including IDH status and MGMT promoter methylation status were significant differences between the two subtypes. Furthermore, gene functional enrichment analysis and immune infiltration pattern analysis also hinted that the inferior prognosis subtype may more response to immunotherapy. CONCLUSION A radiomic model derived from multi-parameter MRI of the gliomas was successful in the risk stratification of diffuse glioma patients. These data suggested that radiomics provided an alternative approach for survival estimation and may improve clinical decision-making.
Collapse
Affiliation(s)
- Peng Lin
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yu-Ting Peng
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Rui-Zhi Gao
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yan Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Jiao Li
- Department of PET-CT, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ye-Ying Fang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhu-Xin Wei
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hong Yang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
44
|
Zeng F, Wang K, Liu X, Zhao Z. Comprehensive profiling identifies a novel signature with robust predictive value and reveals the potential drug resistance mechanism in glioma. Cell Commun Signal 2020; 18:2. [PMID: 31907037 PMCID: PMC6943920 DOI: 10.1186/s12964-019-0492-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
Background Gliomas are the most common and malignant brain tumors. The standard therapy is surgery combined with radiotherapy, chemotherapy, and/or other comprehensive methods. However, the emergence of chemoresistance is the main obstacle in treatment and its mechanism is still unclear. Methods We firstly developed a multi-gene signature by integrated analysis of cancer stem cell and drug resistance related genes. The Chinese Glioma Genome Atlas (CGGA, 325 samples) and The Cancer Genome Atlas (TCGA, 699 samples) datasets were then employed to verify the efficacy of the risk signature and investigate its significance in glioma prognosis. GraphPad Prism, SPSS and R language were used for statistical analysis and graphical work. Results This signature could distinguish the prognosis of patients, and patients with high risk score exhibited short survival time. The Cox regression and Nomogram model indicated the independent prognostic performance and high prognostic accuracy of the signature for survival. Combined with a well-known chemotherapy impact factor-MGMT promoter methylation status, this risk signature could further subdivide patients with distinct survival. Functional analysis of associated genes revealed signature-related biological process of cell proliferation, immune response and cell stemness. These mechanisms were confirmed in patient samples. Conclusions The signature was an independent and powerful prognostic biomarker in glioma, which would improve risk stratification and provide a more accurate assessment of personalized treatment. Additional file 8 Video abstract
Collapse
Affiliation(s)
- Fan Zeng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No.119 South 4th Ring Road West, Fengtai District, Beijing, 100070, China
| | - Kuanyu Wang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Xiu Liu
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No.119 South 4th Ring Road West, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
45
|
Park JW, Turcan Ş. Epigenetic Reprogramming for Targeting IDH-Mutant Malignant Gliomas. Cancers (Basel) 2019; 11:cancers11101616. [PMID: 31652645 PMCID: PMC6826741 DOI: 10.3390/cancers11101616] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 12/24/2022] Open
Abstract
Targeting the epigenome has been considered a compelling treatment modality for several cancers, including gliomas. Nearly 80% of the lower-grade gliomas and secondary glioblastomas harbor recurrent mutations in isocitrate dehydrogenase (IDH). Mutant IDH generates high levels of 2-hydroxyglutarate (2-HG) that inhibit various components of the epigenetic machinery, including histone and DNA demethylases. The encouraging results from current epigenetic therapies in hematological malignancies have reinvigorated the interest in solid tumors and gliomas, both preclinically and clinically. Here, we summarize the recent advancements in epigenetic therapy for lower-grade gliomas and discuss the challenges associated with current treatment options. A particular focus is placed on therapeutic mechanisms underlying favorable outcome with epigenetic-based drugs in basic and translational research of gliomas. This review also highlights emerging bridges to combination treatment with respect to epigenetic drugs. Given that epigenetic therapies, particularly DNA methylation inhibitors, increase tumor immunogenicity and antitumor immune responses, appropriate drug combinations with immune checkpoint inhibitors may lead to improvement of treatment effectiveness of immunotherapy, ultimately leading to tumor cell eradication.
Collapse
Affiliation(s)
- Jong-Whi Park
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Şevin Turcan
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|