1
|
Zhong S, Lian Y, Zhou B, Ren R, Duan L, Pan Y, Gong Y, Wu X, Cheng D, Zhang P, Lu B, Wang X, Ding J. Microglia contribute to polyG-dependent neurodegeneration in neuronal intranuclear inclusion disease. Acta Neuropathol 2024; 148:21. [PMID: 39150562 DOI: 10.1007/s00401-024-02776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/04/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder caused by the expansion of GGC trinucleotide repeats in NOTCH2NLC gene. Despite identifying uN2CpolyG, a toxic polyglycine (polyG) protein translated by expanded GGC repeats, the exact pathogenic mechanisms of NIID remain unclear. In this study, we investigated the role of polyG by expressing various forms of NOTCH2NLC in mice: the wild-type, the expanded form with 100 GGC repeats (either translating or not translating into uN2CpolyG), and the mutated form that encodes a pure polyG without GGC-repeat RNA and the C-terminal stretch (uN2CpolyG-dCT). Both uN2CpolyG and uN2CpolyG-dCT induced the formation of inclusions composed by filamentous materials and resulted in neurodegenerative phenotypes in mice, including impaired motor and cognitive performance, shortened lifespan, and pathologic lesions such as white-matter lesions, microgliosis, and astrogliosis. In contrast, expressing GGC-repeat RNA alone was non-pathogenic. Through bulk and single-nuclei RNA sequencing, we identified common molecular signatures linked to the expression of uN2CpolyG and uN2CpolyG-dCT, particularly the upregulation of inflammation and microglia markers, and the downregulation of immediate early genes and splicing factors. Importantly, microglia-mediated inflammation was visualized in NIID patients using positron emission tomography, correlating with levels of white-matter atrophy. Furthermore, microglia ablation ameliorated neurodegenerative phenotypes and transcriptional alterations in uN2CpolyG-expressing mice but did not affect polyG inclusions. Together, these results demonstrate that polyG is crucial for the pathogenesis of NIID and highlight the significant role of microglia in polyG-induced neurodegeneration.
Collapse
Affiliation(s)
- Shaoping Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yangye Lian
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Binbin Zhou
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Ruiqing Ren
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Lewei Duan
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuyin Pan
- Department of Neurology at Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuchen Gong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoling Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Puming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Boxun Lu
- Department of Neurology at Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| |
Collapse
|
2
|
Chi MH, Bourgeois JA, Santos E, Kim K, Ponzini MD, Mendoza G, Schneider A, Hessl D, Tassone F, Hagerman RJ. Psychiatric Manifestations in Early to Middle Stages of Fragile X-Associated Tremor-Ataxia Syndrome (FXTAS). J Neuropsychiatry Clin Neurosci 2024:appineuropsych20230215. [PMID: 39113493 DOI: 10.1176/appi.neuropsych.20230215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
OBJECTIVE The purpose of the present study was to assess the psychiatric manifestations of early to middle stages of fragile X-associated tremor-ataxia syndrome (FXTAS) and their relationship with executive function and FMR1 cytosine-guanine-guanine (CGG) repeat numbers across genders. METHODS Cross-sectional data from 100 participants (62 men, 38 women; mean±SD age=67.11±7.90 years) with FXTAS stage 1, 2, or 3 were analyzed, including demographic information, cognitive measures, psychiatric assessments (Symptom Checklist-90-Revised and Behavioral Dyscontrol Scale-II [BDS-II]), and CGG repeat number. RESULTS Participants with FXTAS stage 3 exhibited significantly worse psychiatric outcomes compared with participants with either stage 1 or 2, with distinct gender-related differences. Men showed differences in anxiety and hostility between stage 3 and combined stages 1 and 2, whereas women exhibited differences in anxiety, depression, interpersonal sensitivity, obsessive-compulsive symptoms, and somatization, as well as in the Global Severity Index, the Positive Symptom Distress Index, and the Positive Symptom Total. Among male participants, negative correlations were observed between BDS-II total scores and obsessive-compulsive symptoms, as well as between anxiety and CGG repeat number. CONCLUSIONS These findings suggest that even at early FXTAS stages, patients have significant cognitive and other psychiatric symptoms, with notable gender-specific differences. This study underscores the clinical and prognostic relevance of comorbid psychiatric conditions in FXTAS, highlighting the need for early intervention and targeted support for individuals with relatively mild motor deficits.
Collapse
Affiliation(s)
- Mei Hung Chi
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis Health, Sacramento (Chi, Santos, Kim, Ponzini, Schneider, Hessl, Tassone, Hagerman); Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan (Chi); Departments of Psychiatry and Behavioral Sciences (Bourgeois, Hessl), Pediatrics (Santos, Schneider, Hagerman), Public Health Sciences (Kim, Ponzini), and Biochemistry and Molecular Medicine (Mendoza, Tassone), University of California, Davis School of Medicine, Sacramento
| | - James A Bourgeois
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis Health, Sacramento (Chi, Santos, Kim, Ponzini, Schneider, Hessl, Tassone, Hagerman); Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan (Chi); Departments of Psychiatry and Behavioral Sciences (Bourgeois, Hessl), Pediatrics (Santos, Schneider, Hagerman), Public Health Sciences (Kim, Ponzini), and Biochemistry and Molecular Medicine (Mendoza, Tassone), University of California, Davis School of Medicine, Sacramento
| | - Ellery Santos
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis Health, Sacramento (Chi, Santos, Kim, Ponzini, Schneider, Hessl, Tassone, Hagerman); Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan (Chi); Departments of Psychiatry and Behavioral Sciences (Bourgeois, Hessl), Pediatrics (Santos, Schneider, Hagerman), Public Health Sciences (Kim, Ponzini), and Biochemistry and Molecular Medicine (Mendoza, Tassone), University of California, Davis School of Medicine, Sacramento
| | - Kyoungmi Kim
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis Health, Sacramento (Chi, Santos, Kim, Ponzini, Schneider, Hessl, Tassone, Hagerman); Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan (Chi); Departments of Psychiatry and Behavioral Sciences (Bourgeois, Hessl), Pediatrics (Santos, Schneider, Hagerman), Public Health Sciences (Kim, Ponzini), and Biochemistry and Molecular Medicine (Mendoza, Tassone), University of California, Davis School of Medicine, Sacramento
| | - Matt Dominic Ponzini
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis Health, Sacramento (Chi, Santos, Kim, Ponzini, Schneider, Hessl, Tassone, Hagerman); Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan (Chi); Departments of Psychiatry and Behavioral Sciences (Bourgeois, Hessl), Pediatrics (Santos, Schneider, Hagerman), Public Health Sciences (Kim, Ponzini), and Biochemistry and Molecular Medicine (Mendoza, Tassone), University of California, Davis School of Medicine, Sacramento
| | - Guadalupe Mendoza
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis Health, Sacramento (Chi, Santos, Kim, Ponzini, Schneider, Hessl, Tassone, Hagerman); Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan (Chi); Departments of Psychiatry and Behavioral Sciences (Bourgeois, Hessl), Pediatrics (Santos, Schneider, Hagerman), Public Health Sciences (Kim, Ponzini), and Biochemistry and Molecular Medicine (Mendoza, Tassone), University of California, Davis School of Medicine, Sacramento
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis Health, Sacramento (Chi, Santos, Kim, Ponzini, Schneider, Hessl, Tassone, Hagerman); Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan (Chi); Departments of Psychiatry and Behavioral Sciences (Bourgeois, Hessl), Pediatrics (Santos, Schneider, Hagerman), Public Health Sciences (Kim, Ponzini), and Biochemistry and Molecular Medicine (Mendoza, Tassone), University of California, Davis School of Medicine, Sacramento
| | - David Hessl
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis Health, Sacramento (Chi, Santos, Kim, Ponzini, Schneider, Hessl, Tassone, Hagerman); Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan (Chi); Departments of Psychiatry and Behavioral Sciences (Bourgeois, Hessl), Pediatrics (Santos, Schneider, Hagerman), Public Health Sciences (Kim, Ponzini), and Biochemistry and Molecular Medicine (Mendoza, Tassone), University of California, Davis School of Medicine, Sacramento
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis Health, Sacramento (Chi, Santos, Kim, Ponzini, Schneider, Hessl, Tassone, Hagerman); Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan (Chi); Departments of Psychiatry and Behavioral Sciences (Bourgeois, Hessl), Pediatrics (Santos, Schneider, Hagerman), Public Health Sciences (Kim, Ponzini), and Biochemistry and Molecular Medicine (Mendoza, Tassone), University of California, Davis School of Medicine, Sacramento
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis Health, Sacramento (Chi, Santos, Kim, Ponzini, Schneider, Hessl, Tassone, Hagerman); Department of Psychiatry, National Cheng Kung University Hospital, Tainan, Taiwan (Chi); Departments of Psychiatry and Behavioral Sciences (Bourgeois, Hessl), Pediatrics (Santos, Schneider, Hagerman), Public Health Sciences (Kim, Ponzini), and Biochemistry and Molecular Medicine (Mendoza, Tassone), University of California, Davis School of Medicine, Sacramento
| |
Collapse
|
3
|
Kul E, Stork O. Trehalose consumption ameliorates pathogenesis in an inducible mouse model of the Fragile X-associated tremor/ataxia syndrome. Nutr Neurosci 2024; 27:826-835. [PMID: 37776526 DOI: 10.1080/1028415x.2023.2261682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
Trehalose is a naturally occurring sugar found in various food and pharmaceutical preparations with the ability to enhance cellular proteostasis and reduce the formation of toxic intracellular protein aggregates, making it a promising therapeutic candidate for various neurodegenerative disorders. OBJECTIVES Here, we explored the effectiveness of nutritional trehalose supplementation in ameliorating symptoms in a mouse model of Fragile X-associated tremor/ataxia syndrome (FXTAS), an incurable late onset manifestation of moderately expanded trinucleotide CGG repeat expansion mutations in the 5' untranslated region of the fragile X messenger ribonucleoprotein 1 gene (FMR1). METHODS An inducible mouse model of FXTAS expressing 90 CGG repeats in the brain had been previously developed, which faithfully captures hallmarks of the disorder, the formation of intracellular inclusions, and the disturbance of motor function. Taking advantage of the inducible nature of the model, we investigated the therapeutic potential of orally administered trehalose under two regimens, modelling disease prevention and disease treatment. RESULTS AND DISCUSSION Trehalose's effectiveness in combating protein aggregation is frequently attributed to its ability to induce autophagy. Accordingly, trehalose supplementation under the prevention regimen ameliorated the formation of intranuclear inclusions and improved the motor deficiencies resulting from the induced expression of 90 CGG repeats, but it failed to reverse the existing nuclear pathology as a treatment strategy. Given the favorable safety profile of trehalose, it is promising to further explore the potential of this agent for early stage FXTAS.
Collapse
Affiliation(s)
- Emre Kul
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
4
|
Chang KH, Chen CM. The Role of NRF2 in Trinucleotide Repeat Expansion Disorders. Antioxidants (Basel) 2024; 13:649. [PMID: 38929088 PMCID: PMC11200942 DOI: 10.3390/antiox13060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Trinucleotide repeat expansion disorders, a diverse group of neurodegenerative diseases, are caused by abnormal expansions within specific genes. These expansions trigger a cascade of cellular damage, including protein aggregation and abnormal RNA binding. A key contributor to this damage is oxidative stress, an imbalance of reactive oxygen species that harms cellular components. This review explores the interplay between oxidative stress and the NRF2 pathway in these disorders. NRF2 acts as the master regulator of the cellular antioxidant response, orchestrating the expression of enzymes that combat oxidative stress. Trinucleotide repeat expansion disorders often exhibit impaired NRF2 signaling, resulting in inadequate responses to excessive ROS production. NRF2 activation has been shown to upregulate antioxidative gene expression, effectively alleviating oxidative stress damage. NRF2 activators, such as omaveloxolone, vatiquinone, curcumin, sulforaphane, dimethyl fumarate, and resveratrol, demonstrate neuroprotective effects by reducing oxidative stress in experimental cell and animal models of these diseases. However, translating these findings into successful clinical applications requires further research. In this article, we review the literature supporting the role of NRF2 in the pathogenesis of these diseases and the potential therapeutics of NRF2 activators.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
5
|
Zhang Y, Liu X, Li Z, Li H, Miao Z, Wan B, Xu X. Advances on the Mechanisms and Therapeutic Strategies in Non-coding CGG Repeat Expansion Diseases. Mol Neurobiol 2024:10.1007/s12035-024-04239-9. [PMID: 38780719 DOI: 10.1007/s12035-024-04239-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Non-coding CGG repeat expansions within the 5' untranslated region are implicated in a range of neurological disorders, including fragile X-associated tremor/ataxia syndrome, oculopharyngeal myopathy with leukodystrophy, and oculopharyngodistal myopathy. This review outlined the general characteristics of diseases associated with non-coding CGG repeat expansions, detailing their clinical manifestations and neuroimaging patterns, which often overlap and indicate shared pathophysiological traits. We summarized the underlying molecular mechanisms of these disorders, providing new insights into the roles that DNA, RNA, and toxic proteins play. Understanding these mechanisms is crucial for the development of targeted therapeutic strategies. These strategies include a range of approaches, such as antisense oligonucleotides, RNA interference, genomic DNA editing, small molecule interventions, and other treatments aimed at correcting the dysregulated processes inherent in these disorders. A deeper understanding of the shared mechanisms among non-coding CGG repeat expansion disorders may hold the potential to catalyze the development of innovative therapies, ultimately offering relief to individuals grappling with these debilitating neurological conditions.
Collapse
Affiliation(s)
- Yutong Zhang
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Xuan Liu
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Zeheng Li
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Hao Li
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China
- Department of Neurology, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215124, China
| | - Zhigang Miao
- The Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Bo Wan
- The Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Xingshun Xu
- Departments of Neurology, The First Affiliated Hospital of Soochow University, Suzhou City, China.
- The Institute of Neuroscience, Soochow University, Suzhou City, China.
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
6
|
Lakhani DA, Agarwal AK, Middlebrooks EH. Ultra-high-field 7-Tesla magnetic resonance imaging in fragile X tremor/ataxia syndrome (FXTAS). Neuroradiol J 2024:19714009241247464. [PMID: 38644331 DOI: 10.1177/19714009241247464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024] Open
Abstract
Fragile X tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder characterized by premutation expansion of fragile X mental retardation 1 (FMR1) gene. It is a common single-gene cause of tremor, ataxia, and cognitive decline in adults. FXTAS affects the central, peripheral and autonomic nervous systems, leading to a range of neurological symptoms from dementia to dysautonomia. A characteristic imaging feature of FXTAS is symmetric T2 hyperintensity in the deep white matter of the cerebellar hemispheres and middle cerebral peduncle. However, recent studies have reported additional findings on diffusion weighted images (DWI), such as a symmetric high-intensity band-like signal at the cerebral corticomedullary junction. These findings, along with the characteristic cerebellar signal alterations, overlap with imaging findings seen in adult-onset neuronal intranuclear inclusion disease (NIID). Importantly, recent pathology studies have shown that both FXTAS and NIID can manifest intranuclear inclusion bodies, posing a diagnostic challenge and potential for misdiagnosis. We describe a 58-year-old man with FXTAS who received an erroneous diagnosis based on imaging and histopathology results. We emphasize the potential pitfalls in distinguishing NIID from FXTAS and stress the importance of genetic analysis in all cases with suspected NIID and FXTAS for confirmation. Additionally, we present the 7T MRI brain findings of FXTAS.
Collapse
Affiliation(s)
- Dhairya A Lakhani
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, USA
- Department of Radiology, Mayo Clinic, USA
| | | | | |
Collapse
|
7
|
Alvarez-Mora MI, Garrabou G, Molina-Porcel L, Grillo-Risco R, Garcia-Garcia F, Barcos T, Cantó-Santos J, Rodriguez-Revenga L. Exploration of SUMO2/3 Expression Levels and Autophagy Process in Fragile X-Associated Tremor/Ataxia Syndrome: Addressing Study Limitations and Insights for Future Research. Cells 2023; 12:2364. [PMID: 37830578 PMCID: PMC10571773 DOI: 10.3390/cells12192364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder that appears in adult FMR1 premutation carriers. The neuropathological hallmark of FXTAS is an intranuclear inclusion in neurons and astrocytes. Nearly 200 different proteins have been identified in FXTAS inclusions, being the small ubiquitin-related modifier 2 (SUMO2), ubiquitin and p62 the most highly abundant. These proteins are components of the protein degradation machinery. This study aimed to characterize SUMO2/3 expression levels and autophagy process in human postmortem brain samples and skin fibroblast cultures from FXTAS patients. Results revealed that FXTAS postmortem brain samples are positive for SUMO2/3 conjugates and supported the idea that SUMO2/3 accumulation is involved in inclusion formation. Insights from RNA-sequencing data indicated that SUMOylation processes are significantly upregulated in FXTAS samples. In addition, the analysis of the autophagy flux showed the accumulation of p62 protein levels and autophagosomes in skin fibroblasts from FXTAS patients. Similarly, gene set analysis evidenced a significant downregulation in gene ontology terms related to autophagy in FXTAS samples. Overall, this study provides new evidence supporting the role of SUMOylation and autophagic processes in the pathogenic mechanisms underlying FXTAS.
Collapse
Affiliation(s)
- Maria Isabel Alvarez-Mora
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (M.I.A.-M.); (T.B.)
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, 08036 Barcelona, Spain; (G.G.)
- Fundacio de Recerca Clínic Barcelona-Institut d’Investigacions Biomediques August Pi i Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain;
| | - Glòria Garrabou
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, 08036 Barcelona, Spain; (G.G.)
- Inherited Metabolic Diseases and Muscle Disorders’ Research Laboratory (U722), Cellex-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, Internal Medicine Department––Hospital Clínic Clinic of Barcelona, 08036 Barcelona, Spain
| | - Laura Molina-Porcel
- Fundacio de Recerca Clínic Barcelona-Institut d’Investigacions Biomediques August Pi i Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain;
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, 08036 Barcelona, Spain
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-FCRB-IDIBAPS, 08036 Barcelona, Spain
| | - Ruben Grillo-Risco
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain; (R.G.-R.); (F.G.-G.)
| | - Francisco Garcia-Garcia
- Bioinformatics and Biostatistics Unit, Principe Felipe Research Center (CIPF), 46012 Valencia, Spain; (R.G.-R.); (F.G.-G.)
| | - Tamara Barcos
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (M.I.A.-M.); (T.B.)
| | - Judith Cantó-Santos
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, 08036 Barcelona, Spain; (G.G.)
- Inherited Metabolic Diseases and Muscle Disorders’ Research Laboratory (U722), Cellex-IDIBAPS, Faculty of Medicine and Health Sciences, University of Barcelona, Internal Medicine Department––Hospital Clínic Clinic of Barcelona, 08036 Barcelona, Spain
| | - Laia Rodriguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain; (M.I.A.-M.); (T.B.)
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, 08036 Barcelona, Spain; (G.G.)
- Fundacio de Recerca Clínic Barcelona-Institut d’Investigacions Biomediques August Pi i Sunyer (FRCB-IDIBAPS), 08036 Barcelona, Spain;
| |
Collapse
|
8
|
Tassone F, Protic D, Allen EG, Archibald AD, Baud A, Brown TW, Budimirovic DB, Cohen J, Dufour B, Eiges R, Elvassore N, Gabis LV, Grudzien SJ, Hall DA, Hessl D, Hogan A, Hunter JE, Jin P, Jiraanont P, Klusek J, Kooy RF, Kraan CM, Laterza C, Lee A, Lipworth K, Losh M, Loesch D, Lozano R, Mailick MR, Manolopoulos A, Martinez-Cerdeno V, McLennan Y, Miller RM, Montanaro FAM, Mosconi MW, Potter SN, Raspa M, Rivera SM, Shelly K, Todd PK, Tutak K, Wang JY, Wheeler A, Winarni TI, Zafarullah M, Hagerman RJ. Insight and Recommendations for Fragile X-Premutation-Associated Conditions from the Fifth International Conference on FMR1 Premutation. Cells 2023; 12:2330. [PMID: 37759552 PMCID: PMC10529056 DOI: 10.3390/cells12182330] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.
Collapse
Affiliation(s)
- Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia;
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11040 Belgrade, Serbia
| | - Emily Graves Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Alison D. Archibald
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Genomics in Society Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Anna Baud
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Ted W. Brown
- Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia;
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
- NYS Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jonathan Cohen
- Fragile X Alliance Clinic, Melbourne, VIC 3161, Australia;
| | - Brett Dufour
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel;
| | - Nicola Elvassore
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Lidia V. Gabis
- Keshet Autism Center Maccabi Wolfson, Holon 5822012, Israel;
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Samantha J. Grudzien
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA;
| | - David Hessl
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Abigail Hogan
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - Jessica Ezzell Hunter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Poonnada Jiraanont
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Jessica Klusek
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Claudine M. Kraan
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Diagnosis and Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Cecilia Laterza
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Andrea Lee
- Fragile X New Zealand, Nelson 7040, New Zealand;
| | - Karen Lipworth
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60201, USA;
| | - Danuta Loesch
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Reymundo Lozano
- Departments of Genetics and Genomic Sciences and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Marsha R. Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Apostolos Manolopoulos
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA;
| | - Veronica Martinez-Cerdeno
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Yingratana McLennan
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | | | - Federica Alice Maria Montanaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Matthew W. Mosconi
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS 66045, USA;
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS 66045, USA
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Nelson Potter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Melissa Raspa
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Susan M. Rivera
- Department of Psychology, University of Maryland, College Park, MD 20742, USA;
| | - Katharine Shelly
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Peter K. Todd
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48105, USA
| | - Katarzyna Tutak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Jun Yi Wang
- Center for Mind and Brain, University of California Davis, Davis, CA 95618, USA;
| | - Anne Wheeler
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Tri Indah Winarni
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang 502754, Central Java, Indonesia;
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Randi J. Hagerman
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
9
|
Zafarullah M, Li J, Salemi MR, Phinney BS, Durbin-Johnson BP, Hagerman R, Hessl D, Rivera SM, Tassone F. Blood Proteome Profiling Reveals Biomarkers and Pathway Alterations in Fragile X PM at Risk for Developing FXTAS. Int J Mol Sci 2023; 24:13477. [PMID: 37686279 PMCID: PMC10488017 DOI: 10.3390/ijms241713477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) is a neurodegenerative disorder associated with the FMR1 premutation. Currently, it is not possible to determine when and if individual premutation carriers will develop FXTAS. Thus, with the aim to identify biomarkers for early diagnosis, development, and progression of FXTAS, along with associated dysregulated pathways, we performed blood proteomic profiling of premutation carriers (PM) who, as part of an ongoing longitudinal study, emerged into two distinct groups: those who developed symptoms of FXTAS (converters, CON) over time (at subsequent visits) and those who did not (non-converters, NCON). We compared these groups to age-matched healthy controls (HC). We assessed CGG repeat allele size by Southern blot and PCR analysis. The proteomic profile was obtained by liquid chromatography mass spectrometry (LC-MS/MS). We identified several significantly differentiated proteins between HC and the PM groups at Visit 1 (V1), Visit 2 (V2), and between the visits. We further reported the dysregulated protein pathways, including sphingolipid and amino acid metabolism. Our findings are in agreement with previous studies showing that pathways involved in mitochondrial bioenergetics, as observed in other neurodegenerative disorders, are significantly altered and appear to contribute to the development of FXTAS. Lastly, we compared the blood proteome of the PM who developed FXTAS over time with the CSF proteome of the FXTAS patients recently reported and found eight significantly differentially expressed proteins in common. To our knowledge, this is the first report of longitudinal proteomic profiling and the identification of unique biomarkers and dysregulated protein pathways in FXTAS.
Collapse
Affiliation(s)
- Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Jie Li
- Genome Center, Bioinformatics Core, University of California Davis, Davis, CA 95616, USA;
| | - Michelle R. Salemi
- Genome Center, Proteomics Core, Genome and Biomedical Sciences Facility, University of California Davis, Davis, CA 95616, USA; (M.R.S.); (B.S.P.)
| | - Brett S. Phinney
- Genome Center, Proteomics Core, Genome and Biomedical Sciences Facility, University of California Davis, Davis, CA 95616, USA; (M.R.S.); (B.S.P.)
| | - Blythe P. Durbin-Johnson
- Division of Biostatistics, School of Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Randi Hagerman
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.H.); (D.H.); (S.M.R.)
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - David Hessl
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.H.); (D.H.); (S.M.R.)
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Susan M. Rivera
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.H.); (D.H.); (S.M.R.)
- Department of Psychology, University of California Davis, Davis, CA 95616, USA
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.H.); (D.H.); (S.M.R.)
| |
Collapse
|
10
|
Wright SE, Todd PK. Native functions of short tandem repeats. eLife 2023; 12:e84043. [PMID: 36940239 PMCID: PMC10027321 DOI: 10.7554/elife.84043] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/08/2023] [Indexed: 03/21/2023] Open
Abstract
Over a third of the human genome is comprised of repetitive sequences, including more than a million short tandem repeats (STRs). While studies of the pathologic consequences of repeat expansions that cause syndromic human diseases are extensive, the potential native functions of STRs are often ignored. Here, we summarize a growing body of research into the normal biological functions for repetitive elements across the genome, with a particular focus on the roles of STRs in regulating gene expression. We propose reconceptualizing the pathogenic consequences of repeat expansions as aberrancies in normal gene regulation. From this altered viewpoint, we predict that future work will reveal broader roles for STRs in neuronal function and as risk alleles for more common human neurological diseases.
Collapse
Affiliation(s)
- Shannon E Wright
- Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
- Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
- Department of Neuroscience, Picower InstituteCambridgeUnited States
| | - Peter K Todd
- Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
- VA Ann Arbor Healthcare SystemAnn ArborUnited States
| |
Collapse
|
11
|
Kurihara M, Mano T, Eto F, Yao I, Sato K, Ohtomo G, Bannai T, Shibata S, Ishiura H, Ikemura M, Matsubara T, Morishima M, Saito Y, Murayama S, Toda T, Setou M, Iwata A. Proteomic profile of nuclei containing p62-positive inclusions in a patient with neuronal intranuclear inclusion disease. Neurobiol Dis 2023; 177:105989. [PMID: 36621630 DOI: 10.1016/j.nbd.2023.105989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disease characterized by eosinophilic hyaline intranuclear inclusions in the neurons, glial cells, and other somatic cells. Although CGG repeat expansions in NOTCH2NLC have been identified in most East Asian patients with NIID, the pathophysiology of NIID remains unclear. Ubiquitin- and p62-positive intranuclear inclusions are the pathological hallmark of NIID. Targeted immunostaining studies have identified several other proteins present in these inclusions. However, the global molecular changes within nuclei with these inclusions remained unclear. Herein, we analyzed the proteomic profile of nuclei with p62-positive inclusions in a NIID patient with CGG repeat expansion in NOTCH2NLC to discover candidate proteins involved in the NIID pathophysiology. We used fluorescence-activated cell sorting and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantify each protein identified in the nuclei with p62-positive inclusions. The distribution of increased proteins was confirmed via immunofluorescence in autopsy brain samples from three patients with genetically confirmed NIID. Overall, 526 proteins were identified, of which 243 were consistently quantified using MS. A 1.4-fold increase was consistently observed for 20 proteins in nuclei with p62-positive inclusions compared to those without. Fifteen proteins identified with medium or high confidence in the LC-MS/MS analysis were further evaluated. Gene ontology enrichment analysis showed enrichment of several terms, including poly(A) RNA binding, nucleosomal DNA binding, and protein binding. Immunofluorescence studies confirmed that the fluorescent intensities of increased RNA-binding proteins identified by proteomic analysis, namely hnRNP A2/B1, hnRNP A3, and hnRNP C1/C2, were higher in the nuclei with p62-positive inclusions than in those without, which were not confined to the intranuclear inclusions. We identified several increased proteins in nuclei with p62-positive inclusions. Although larger studies are needed to validate our results, these proteomic data may form the basis for understanding the pathophysiology of NIID.
Collapse
Affiliation(s)
- Masanori Kurihara
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Neurology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Tatsuo Mano
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fumihiro Eto
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Ikuko Yao
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan; Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Kenichiro Sato
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Neuropathology, Graduate School of Medicine, The University of Tokyo. Tokyo, Japan
| | - Gaku Ohtomo
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taro Bannai
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shota Shibata
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masako Ikemura
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyasu Matsubara
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Maho Morishima
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Yuko Saito
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan; Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Atsushi Iwata
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Neurology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.
| |
Collapse
|
12
|
Screening for the FMR1 premutation in Greek patients with late-onset movement disorders. Parkinsonism Relat Disord 2023; 107:105253. [PMID: 36549234 DOI: 10.1016/j.parkreldis.2022.105253] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/06/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset, X-linked, neurodegenerative disorder that affects premutation carriers of the FMR1 gene. FXTAS is often misdiagnosed as spinocerebellar ataxia (SCA) or Parkinson's disease (PD). Herein, we sought to investigate the frequency, genotypic and phenotypic profile of FXTAS in two cohorts of Greek patients with late-onset movement disorders, one with cerebellar ataxia and the other with PD. In total, 90 index patients with late-onset cerebellar ataxia and 171 with PD were selected. None of the cases had male-to-male transmission. Genetic screening for the FMR1 premutation was performed using standard methodology. The FMR1 premutation was detected in two ataxia patients (2.2%) and two PD patients (1.2%). Additional clinical features in FXTAS patients from the ataxia cohort included neuropathy, mild parkinsonism, cognitive impairment and pyramidal signs. The FXTAS patients from the PD cohort had typical PD. We conclude that, in the Greek population, the FMR1 premutation is an important, albeit rare, cause of late-onset movement disorders. Routine premutation screening should be considered in SCA panel-negative late-onset ataxia cases. Directed premutation screening should be considered in all ataxia and PD cases with additional features suggestive of FXTAS. Our study highlights the importance of FMR1 genetic testing in the diagnosis of late-onset movement disorders.
Collapse
|
13
|
Kurokawa R, Kurokawa M, Mitsutake A, Nakaya M, Baba A, Nakata Y, Moritani T, Abe O. Clinical and neuroimaging review of triplet repeat diseases. Jpn J Radiol 2023; 41:115-130. [PMID: 36169768 PMCID: PMC9889482 DOI: 10.1007/s11604-022-01343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/18/2022] [Indexed: 02/04/2023]
Abstract
Triplet repeat diseases (TRDs) refer to a group of diseases caused by three nucleotide repeats elongated beyond a pathologic threshold. TRDs are divided into the following four groups depending on the pathomechanisms, although the pathomechanisms of several diseases remain unelucidated: polyglutamine disorders, caused by a pathologic repeat expansion of CAG (coding the amino acid glutamine) located within the exon; loss-of-function repeat disorders, characterized by the common feature of a loss of function of the gene within which they occur; RNA gain-of-function disorders, involving the production of a toxic RNA species; and polyalanine disorders, caused by a pathologic repeat expansion of GCN (coding the amino acid alanine) located within the exon. Many of these TRDs manifest through neurologic symptoms; moreover, neuroimaging, especially brain magnetic resonance imaging, plays a pivotal role in the detection of abnormalities, differentiation, and management of TRDs. In this article, we reviewed the clinical and neuroimaging features of TRDs. An early diagnosis of TRDs through clinical and imaging approaches is important and may contribute to appropriate medical intervention for patients and their families.
Collapse
Affiliation(s)
- Ryo Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan ,Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Mariko Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan ,Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Akihiko Mitsutake
- Department of Neurology, International University of Health and Welfare, Mita Hospital, 1-4-3 Mita, Minato-ku, Tokyo, 108-8329 Japan
| | - Moto Nakaya
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Akira Baba
- Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Yasuhiro Nakata
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo 183-0042 Japan
| | - Toshio Moritani
- Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| |
Collapse
|
14
|
Giulivi C, Wang JY, Hagerman RJ. Artificial neural network applied to fragile X-associated tremor/ataxia syndrome stage diagnosis based on peripheral mitochondrial bioenergetics and brain imaging outcomes. Sci Rep 2022; 12:21382. [PMID: 36496525 PMCID: PMC9741636 DOI: 10.1038/s41598-022-25615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
No proven prognosis is available for the neurodegenerative disorder fragile X-associated tremor/ataxia syndrome (FXTAS). Artificial neural network analyses (ANN) were used to predict FXTAS progression using data from 127 adults (noncarriers and FMR1 premutation carriers with and without FXTAS) with five outcomes from brain MRI imaging and 22 peripheral bioenergetic outcomes from two cell types. Diagnosis accuracy by ANN predictions ranged from 41.7 to 86.3% (depending on the algorithm used), and those misclassified usually presented a higher FXTAS stage. ANN prediction of FXTAS stages was based on a combination of two imaging findings (white matter hyperintensity and whole-brain volumes adjusted for intracranial volume) and four bioenergetic outcomes. Those at Stage 3 vs. 0-2 showed lower mitochondrial mass, higher oxidative stress, and an altered electron transfer consistent with mitochondrial unfolded protein response activation. Those at Stages 4-5 vs. 3 had higher oxidative stress and glycerol-3-phosphate-linked ATP production, suggesting that targeting mGPDH activity may prevent a worse prognosis. This was confirmed by the bioenergetic improvement of inhibiting mGPDH with metformin in affected fibroblasts. ANN supports the prospect of an unbiased molecular definition in diagnosing FXTAS stages while identifying potential targets for personalized medicine.
Collapse
Affiliation(s)
- Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
- MIND Institute, University of California at Davis Medical Center, Sacramento, CA, USA.
| | - Jun Yi Wang
- MIND Institute, University of California at Davis Medical Center, Sacramento, CA, USA
- Center for Mind and Brain, University of California Davis, Davis, CA, USA
| | - Randi J Hagerman
- MIND Institute, University of California at Davis Medical Center, Sacramento, CA, USA
- Department of Pediatrics, University of California at Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
15
|
Rosario R, Stewart HL, Choudhury NR, Michlewski G, Charlet‐Berguerand N, Anderson RA. Evidence for a fragile X messenger ribonucleoprotein 1 (FMR1) mRNA gain-of-function toxicity mechanism contributing to the pathogenesis of fragile X-associated premature ovarian insufficiency. FASEB J 2022; 36:e22612. [PMID: 36250920 PMCID: PMC9828574 DOI: 10.1096/fj.202200468rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/22/2022] [Accepted: 10/03/2022] [Indexed: 01/12/2023]
Abstract
Fragile X-associated premature ovarian insufficiency (FXPOI) is among a family of disorders caused by expansion of a CGG trinucleotide repeat sequence located in the 5' untranslated region (UTR) of the fragile X messenger ribonucleoprotein 1 (FMR1) gene on the X chromosome. Women with FXPOI have a depleted ovarian follicle population, resulting in amenorrhea, hypoestrogenism, and loss of fertility before the age of 40. FXPOI is caused by expansions of the CGG sequence to lengths between 55 and 200 repeats, known as a FMRI premutation, however the mechanism by which the premutation drives disease pathogenesis remains unclear. Two main hypotheses exist, which describe an mRNA toxic gain-of-function mechanism or a protein-based mechanism, where repeat-associated non-AUG (RAN) translation results in the production of an abnormal protein, called FMRpolyG. Here, we have developed an in vitro granulosa cell model of the FMR1 premutation by ectopically expressing CGG-repeat RNA and FMRpolyG protein. We show that expanded CGG-repeat RNA accumulated in intranuclear RNA structures, and these aggregates were able to cause significant granulosa cell death independent of FMRpolyG expression. Using an innovative RNA pulldown, mass spectrometry-based approach we have identified proteins that are specifically sequestered by CGG RNA aggregates in granulosa cells in vitro, and thus may be deregulated as consequence of this interaction. Furthermore, we have demonstrated reduced expression of three proteins identified via our RNA pulldown (FUS, PA2G4 and TRA2β) in ovarian follicles in a FMR1 premutation mouse model. Collectively, these data provide evidence for the contribution of an mRNA gain-of-function mechanism to FXPOI disease biology.
Collapse
Affiliation(s)
- Roseanne Rosario
- MRC Centre for Reproductive Health, Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK,Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Hazel L. Stewart
- MRC Centre for Reproductive Health, Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | | | - Gracjan Michlewski
- Infection MedicineUniversity of EdinburghEdinburghUK,Zhejiang University‐University of Edinburgh InstituteZhejiang UniversityZhejiangP.R. China,Dioscuri Centre for RNA‐Protein Interactions in Human Health and DiseaseInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Nicholas Charlet‐Berguerand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)INSERM U 1258, CNRS UMR 7104, Université of StrasbourgIllkirchFrance
| | - Richard A. Anderson
- MRC Centre for Reproductive Health, Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|
16
|
Baud A, Derbis M, Tutak K, Sobczak K. Partners in crime: Proteins implicated in
RNA
repeat expansion diseases. WIRES RNA 2022; 13:e1709. [PMID: 35229468 PMCID: PMC9539487 DOI: 10.1002/wrna.1709] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Anna Baud
- Department of Gene Expression Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan Poland
| | - Magdalena Derbis
- Department of Gene Expression Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan Poland
| | - Katarzyna Tutak
- Department of Gene Expression Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan Poland
| | - Krzysztof Sobczak
- Department of Gene Expression Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan Poland
| |
Collapse
|
17
|
Bioenergetic and Autophagic Characterization of Skin Fibroblasts from C9orf72 Patients. Antioxidants (Basel) 2022; 11:antiox11061129. [PMID: 35740026 PMCID: PMC9219955 DOI: 10.3390/antiox11061129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
The objective of this study is to describe the alterations occurring during the neurodegenerative process in skin fibroblast cultures from C9orf72 patients. We characterized the oxidative stress, autophagy flux, small ubiquitin-related protein SUMO2/3 levels as well as the mitochondrial function in skin fibroblast cultures from C9orf72 patients. All metabolic and bioenergetic findings were further correlated with gene expression data obtained from RNA sequencing analysis. Fibroblasts from C9orf72 patients showed a 30% reduced expression of C9orf72, ~3-fold increased levels of oxidative stress and impaired mitochondrial function obtained by measuring the enzymatic activities of mitochondrial respiratory chain complexes, specifically of complex III activity. Furthermore, the results also reveal that C9orf72 patients showed an accumulation of p62 protein levels, suggesting the alteration of the autophagy process, and significantly higher protein levels of SUMO2/3 (p = 0.03). Our results provide new data reinforcing that C9orf72 cells suffer from elevated oxidative damage to biomolecules and organelles and from increased protein loads, leading to insufficient autophagy and an increase in SUMOylation processes.
Collapse
|
18
|
Boivin M, Charlet-Berguerand N. Trinucleotide CGG Repeat Diseases: An Expanding Field of Polyglycine Proteins? Front Genet 2022; 13:843014. [PMID: 35295941 PMCID: PMC8918734 DOI: 10.3389/fgene.2022.843014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
Microsatellites are repeated DNA sequences of 3–6 nucleotides highly variable in length and sequence and that have important roles in genomes regulation and evolution. However, expansion of a subset of these microsatellites over a threshold size is responsible of more than 50 human genetic diseases. Interestingly, some of these disorders are caused by expansions of similar sequences, sizes and localizations and present striking similarities in clinical manifestations and histopathological features, which suggest a common mechanism of disease. Notably, five identical CGG repeat expansions, but located in different genes, are the causes of fragile X-associated tremor/ataxia syndrome (FXTAS), neuronal intranuclear inclusion disease (NIID), oculopharyngodistal myopathy type 1 to 3 (OPDM1-3) and oculopharyngeal myopathy with leukoencephalopathy (OPML), which are neuromuscular and neurodegenerative syndromes with overlapping symptoms and similar histopathological features, notably the presence of characteristic eosinophilic ubiquitin-positive intranuclear inclusions. In this review we summarize recent finding in neuronal intranuclear inclusion disease and FXTAS, where the causing CGG expansions were found to be embedded within small upstream ORFs (uORFs), resulting in their translation into novel proteins containing a stretch of polyglycine (polyG). Importantly, expression of these polyG proteins is toxic in animal models and is sufficient to reproduce the formation of ubiquitin-positive intranuclear inclusions. These data suggest the existence of a novel class of human genetic pathology, the polyG diseases, and question whether a similar mechanism may exist in other diseases, notably in OPDM and OPML.
Collapse
|
19
|
Fan Y, Shen S, Yang J, Yao D, Li M, Mao C, Wang Y, Hao X, Ma D, Li J, Shi J, Guo M, Li S, Yuan Y, Liu F, Yang Z, Zhang S, Hu Z, Fan L, Liu H, Zhang C, Wang Y, Wang Q, Zheng H, He Y, Song B, Xu Y, Shi C. GIPC1
CGG
repeat expansion is associated with movement disorders. Ann Neurol 2022; 91:704-715. [PMID: 35152460 DOI: 10.1002/ana.26325] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yu Fan
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Si Shen
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Jing Yang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
- The Henan Medical Key Laboratory of Hereditary Neurodegenerative Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Dabao Yao
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Mengjie Li
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Chengyuan Mao
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Yunchao Wang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Xiaoyan Hao
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Dongrui Ma
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Jiadi Li
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Jingjing Shi
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Mengnan Guo
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Shuangjie Li
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Yanpeng Yuan
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Fen Liu
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Zhihua Yang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Shuo Zhang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Zhengwei Hu
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Liyuan Fan
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Academy of Medical Sciences of Zhengzhou University Zhengzhou 450000 Henan China
| | - Han Liu
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Chan Zhang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Yanlin Wang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Qingzhi Wang
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
| | - Hong Zheng
- Department of Cell Biology and Medical Genetics Basic Medical College of Zhengzhou University Zhengzhou 450052 Henan China
| | - Ying He
- Department of Cell Biology and Medical Genetics Basic Medical College of Zhengzhou University Zhengzhou 450052 Henan China
| | - Bo Song
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
- Institute of Neuroscience Zhengzhou University Zhengzhou 450000 Henan China
- The Key Laboratory of Cerebrovascular Diseases Prevention and Treatment The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Yuming Xu
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
- Institute of Neuroscience Zhengzhou University Zhengzhou 450000 Henan China
- The Henan Medical Key Laboratory of Hereditary Neurodegenerative Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- The Key Laboratory of Cerebrovascular Diseases Prevention and Treatment The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| | - Changhe Shi
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- Henan Key Laboratory of Cerebrovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450,000 Henan China
- Institute of Neuroscience Zhengzhou University Zhengzhou 450000 Henan China
- The Henan Medical Key Laboratory of Hereditary Neurodegenerative Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
- The Key Laboratory of Cerebrovascular Diseases Prevention and Treatment The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou 450000 Henan China
| |
Collapse
|
20
|
Zhang Y, Glineburg MR, Basrur V, Conlon K, Wright SE, Krans A, Hall DA, Todd PK. Mechanistic convergence across initiation sites for RAN translation in fragile X associated tremor ataxia syndrome. Hum Mol Genet 2022; 31:2317-2332. [PMID: 35137065 PMCID: PMC9307318 DOI: 10.1093/hmg/ddab353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Repeat associated non-AUG (RAN) translation of CGG repeats in the 5'UTR of FMR1 produces toxic proteins that contribute to fragile X-associated tremor/ataxia syndrome (FXTAS) pathogenesis. The most abundant RAN product, FMRpolyG, initiates predominantly at an ACG upstream of the repeat. Accurate FMRpolyG measurements in FXTAS patients are lacking. We used data-dependent acquisition and parallel reaction monitoring (PRM) mass spectrometry coupled with stable isotope labeled standard peptides to identify signature FMRpolyG fragments in patient samples. Following immunoprecipitation, PRM detected FMRpolyG signature peptides in transfected cells, and FXTAS tissues and cells, but not in controls. We identified two amino-terminal peptides: an ACG-initiated Ac-MEAPLPGGVR and a GUG-initiated Ac-TEAPLPGGVR, as well as evidence for RAN translation initiation within the CGG repeat itself in two reading frames. Initiation at all sites increased following cellular stress, decreased following eIF1 overexpression and was eIF4A and M7G cap-dependent. These data demonstrate that FMRpolyG is quantifiable in human samples and FMR1 RAN translation initiates via similar mechanisms for near-cognate codons and within the repeat through processes dependent on available initiation factors and cellular environment.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - M Rebecca Glineburg
- To whom correspondence should be addressed at: Todd Lab (ATTN: Drs Glineburg and Todd), 4005 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA. Tel: +1 7346155632; Fax: +1 7346479777; ;
| | | | - Kevin Conlon
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Shannon E Wright
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Deborah A Hall
- Department of Neurological Sciences, Rush University, Chicago, IL, USA
| | - Peter K Todd
- To whom correspondence should be addressed at: Todd Lab (ATTN: Drs Glineburg and Todd), 4005 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA. Tel: +1 7346155632; Fax: +1 7346479777; ;
| |
Collapse
|
21
|
Neurodegenerative diseases associated with non-coding CGG tandem repeat expansions. Nat Rev Neurol 2022; 18:145-157. [PMID: 35022573 DOI: 10.1038/s41582-021-00612-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Non-coding CGG repeat expansions cause multiple neurodegenerative disorders, including fragile X-associated tremor/ataxia syndrome, neuronal intranuclear inclusion disease, oculopharyngeal myopathy with leukodystrophy, and oculopharyngodistal myopathy. The underlying genetic causes of several of these diseases have been identified only in the past 2-3 years. These expansion disorders have substantial overlapping clinical, neuroimaging and histopathological features. The shared features suggest common mechanisms that could have implications for the development of therapies for this group of diseases - similar therapeutic strategies or drugs may be effective for various neurodegenerative disorders induced by non-coding CGG expansions. In this Review, we provide an overview of clinical and pathological features of these CGG repeat expansion diseases and consider the likely pathological mechanisms, including RNA toxicity, CGG repeat-associated non-AUG-initiated translation, protein aggregation and mitochondrial impairment. We then discuss future research needed to improve the identification and diagnosis of CGG repeat expansion diseases, to improve modelling of these diseases and to understand their pathogenesis. We also consider possible therapeutic strategies. Finally, we propose that CGG repeat expansion diseases may represent manifestations of a single underlying neuromyodegenerative syndrome in which different organs are affected to different extents depending on the gene location of the repeat expansion.
Collapse
|
22
|
Guo S, Nguyen L, Ranum LPW. RAN proteins in neurodegenerative disease: Repeating themes and unifying therapeutic strategies. Curr Opin Neurobiol 2021; 72:160-170. [PMID: 34953315 DOI: 10.1016/j.conb.2021.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022]
Abstract
Microsatellite-expansion mutations cause >50 neurological diseases but there are no effective treatments. Mechanistic studies have historically focused on protein loss-of-function and protein or RNA gain-of-function effects. It is now clear that many expansion mutations are bidirectionally transcribed producing two toxic expansion RNAs, which can produce up to six mutant proteins by repeat associated non-AUG (RAN) translation. Multiple types of RAN proteins have been shown to be toxic in cell and animal models, to lead to common types of neuropathological changes, and to dysregulate key pathways. How RAN proteins are produced without the canonical AUG or close-cognate AUG-like initiation codons is not yet completely understood but RNA structure, flanking sequences and stress pathways have been shown to be important. Here, we summarize recent progress in understanding the role of RAN proteins, mechanistic insights into their production, and the identification of novel therapeutic strategies that may be applicable across these neurodegenerative disorders.
Collapse
Affiliation(s)
- Shu Guo
- Center for NeuroGenetics, College of Medicine, University of Florida, USA; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, USA
| | - Lien Nguyen
- Center for NeuroGenetics, College of Medicine, University of Florida, USA; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, USA.
| | - Laura P W Ranum
- Center for NeuroGenetics, College of Medicine, University of Florida, USA; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, USA; Genetics Institute, University of Florida, USA; McKnight Brain Institute, University of Florida, USA; Norman Fixel Institute for Neurological Diseases, University of Florida, USA.
| |
Collapse
|
23
|
Salcedo-Arellano MJ, Hagerman RJ. Recent research in fragile X-associated tremor/ataxia syndrome. Curr Opin Neurobiol 2021; 72:155-159. [PMID: 34890957 DOI: 10.1016/j.conb.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a cytosine-guanine-guanine repeat expansion neurological disease that occurs in a subset of aging carriers of the premutation (55-200 cytosine-guanine-guanine repeats) in the FMR1 gene located on the X chromosome. The clinical core involves intention tremor and gait ataxia. Current research seeks to clarify the pathophysiology and neuropathology of FXTAS, as well as the development of useful biomarkers to track the progression of FXTAS. Efforts to implement quantitative measures of clinical features, such as kinematics and cognitive measures, are of special interest, in addition to characterize the differences in progression in males compared with females and the efficacy of new treatments.
Collapse
Affiliation(s)
- Maria Jimena Salcedo-Arellano
- Department of Pediatrics, University of California Davis, Sacramento, CA, USA; Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA
| | - Randi J Hagerman
- Department of Pediatrics, University of California Davis, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
24
|
Malik I, Kelley CP, Wang ET, Todd PK. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat Rev Mol Cell Biol 2021; 22:589-607. [PMID: 34140671 PMCID: PMC9612635 DOI: 10.1038/s41580-021-00382-6] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 02/05/2023]
Abstract
The human genome contains over one million short tandem repeats. Expansion of a subset of these repeat tracts underlies over fifty human disorders, including common genetic causes of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (C9orf72), polyglutamine-associated ataxias and Huntington disease, myotonic dystrophy, and intellectual disability disorders such as Fragile X syndrome. In this Review, we discuss the four major mechanisms by which expansion of short tandem repeats causes disease: loss of function through transcription repression, RNA-mediated gain of function through gelation and sequestration of RNA-binding proteins, gain of function of canonically translated repeat-harbouring proteins, and repeat-associated non-AUG translation of toxic repeat peptides. Somatic repeat instability amplifies these mechanisms and influences both disease age of onset and tissue specificity of pathogenic features. We focus on the crosstalk between these disease mechanisms, and argue that they often synergize to drive pathogenesis. We also discuss the emerging native functions of repeat elements and how their dynamics might contribute to disease at a larger scale than currently appreciated. Lastly, we propose that lynchpins tying these disease mechanisms and native functions together offer promising therapeutic targets with potential shared applications across this class of human disorders.
Collapse
Affiliation(s)
- Indranil Malik
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Chase P Kelley
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
- Genetics and Genomics Graduate Program, University of Florida, Gainesville, FL, USA
| | - Eric T Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA.
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Zhao X, Usdin K. (Dys)function Follows Form: Nucleic Acid Structure, Repeat Expansion, and Disease Pathology in FMR1 Disorders. Int J Mol Sci 2021; 22:ijms22179167. [PMID: 34502075 PMCID: PMC8431139 DOI: 10.3390/ijms22179167] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022] Open
Abstract
Fragile X-related disorders (FXDs), also known as FMR1 disorders, are examples of repeat expansion diseases (REDs), clinical conditions that arise from an increase in the number of repeats in a disease-specific microsatellite. In the case of FXDs, the repeat unit is CGG/CCG and the repeat tract is located in the 5' UTR of the X-linked FMR1 gene. Expansion can result in neurodegeneration, ovarian dysfunction, or intellectual disability depending on the number of repeats in the expanded allele. A growing body of evidence suggests that the mutational mechanisms responsible for many REDs share several common features. It is also increasingly apparent that in some of these diseases the pathologic consequences of expansion may arise in similar ways. It has long been known that many of the disease-associated repeats form unusual DNA and RNA structures. This review will focus on what is known about these structures, the proteins with which they interact, and how they may be related to the causative mutation and disease pathology in the FMR1 disorders.
Collapse
Affiliation(s)
- Xiaonan Zhao
- Correspondence: (X.Z.); (K.U.); Tel.: +1-301-451-6322 (X.Z.); +1-301-496-2189 (K.U.)
| | - Karen Usdin
- Correspondence: (X.Z.); (K.U.); Tel.: +1-301-451-6322 (X.Z.); +1-301-496-2189 (K.U.)
| |
Collapse
|
26
|
Molecular Pathogenesis and Peripheral Monitoring of Adult Fragile X-Associated Syndromes. Int J Mol Sci 2021; 22:ijms22168368. [PMID: 34445074 PMCID: PMC8395059 DOI: 10.3390/ijms22168368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
Abnormal trinucleotide expansions cause rare disorders that compromise quality of life and, in some cases, lifespan. In particular, the expansions of the CGG-repeats stretch at the 5’-UTR of the Fragile X Mental Retardation 1 (FMR1) gene have pleiotropic effects that lead to a variety of Fragile X-associated syndromes: the neurodevelopmental Fragile X syndrome (FXS) in children, the late-onset neurodegenerative disorder Fragile X-associated tremor-ataxia syndrome (FXTAS) that mainly affects adult men, the Fragile X-associated primary ovarian insufficiency (FXPOI) in adult women, and a variety of psychiatric and affective disorders that are under the term of Fragile X-associated neuropsychiatric disorders (FXAND). In this review, we will describe the pathological mechanisms of the adult “gain-of-function” syndromes that are mainly caused by the toxic actions of CGG RNA and FMRpolyG peptide. There have been intensive attempts to identify reliable peripheral biomarkers to assess disease progression and onset of specific pathological traits. Mitochondrial dysfunction, altered miRNA expression, endocrine system failure, and impairment of the GABAergic transmission are some of the affectations that are susceptible to be tracked using peripheral blood for monitoring of the motor, cognitive, psychiatric and reproductive impairment of the CGG-expansion carriers. We provided some illustrative examples from our own cohort. Understanding the association between molecular pathogenesis and biomarkers dynamics will improve effective prognosis and clinical management of CGG-expansion carriers.
Collapse
|
27
|
Salcedo-Arellano MJ, Wang JY, McLennan YA, Doan M, Cabal-Herrera AM, Jimenez S, Wolf-Ochoa MW, Sanchez D, Juarez P, Tassone F, Durbin-Johnson B, Hagerman RJ, Martínez-Cerdeño V. Cerebral Microbleeds in Fragile X-Associated Tremor/Ataxia Syndrome. Mov Disord 2021; 36:1935-1943. [PMID: 33760253 PMCID: PMC10929604 DOI: 10.1002/mds.28559] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Fragile X-associated tremor/ataxia syndrome is a neurodegenerative disease of late onset developed by carriers of the premutation in the fragile x mental retardation 1 (FMR1) gene. Pathological features of neurodegeneration in fragile X-associated tremor/ataxia syndrome include toxic levels of FMR1 mRNA, ubiquitin-positive intranuclear inclusions, white matter disease, iron accumulation, and a proinflammatory state. OBJECTIVE The objective of this study was to analyze the presence of cerebral microbleeds in the brains of patients with fragile X-associated tremor/ataxia syndrome and investigate plausible causes for cerebral microbleeds in fragile X-associated tremor/ataxia syndrome. METHODS We collected cerebral and cerebellar tissue from 15 fragile X-associated tremor/ataxia syndrome cases and 15 control cases carrying FMR1 normal alleles. We performed hematoxylin and eosin, Perls and Congo red stains, ubiquitin, and amyloid β protein immunostaining. We quantified the number of cerebral microbleeds, amount of iron, presence of amyloid β within the capillaries, and number of endothelial cells containing intranuclear inclusions. We evaluated the relationships between pathological findings using correlation analysis. RESULTS We found intranuclear inclusions in the endothelial cells of capillaries and an increased number of cerebral microbleeds in the brains of those with fragile X-associated tremor/ataxia syndrome, both of which are indicators of cerebrovascular dysfunction. We also found a suggestive association between the amount of capillaries that contain amyloid β in the cerebral cortex and the rate of disease progression. CONCLUSION We propose microangiopathy as a pathologic feature of fragile X-associated tremor/ataxia syndrome. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- María Jimena Salcedo-Arellano
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Jun Yi Wang
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA
- Center for Mind and Brain, University of California Davis, Davis, CA, USA
| | - Yingratana A McLennan
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA
| | - Mai Doan
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Ana Maria Cabal-Herrera
- Group on Congenital Malformations and Dysmorphology, Faculty of Health, Universidad del Valle (MACOS), Cali, Colombia
| | - Sara Jimenez
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Marisol W Wolf-Ochoa
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Desiree Sanchez
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Pablo Juarez
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Blythe Durbin-Johnson
- Division of Biostatistics, Department of Public Health Sciences, UC Davis School of Medicine, Sacramento, CA, USA
| | - Randi J Hagerman
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA
| | - Verónica Martínez-Cerdeño
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
28
|
Di Lazzaro G, Magrinelli F, Estevez-Fraga C, Valente EM, Pisani A, Bhatia KP. X-Linked Parkinsonism: Phenotypic and Genetic Heterogeneity. Mov Disord 2021; 36:1511-1525. [PMID: 33960519 DOI: 10.1002/mds.28565] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
X-linked parkinsonism encompasses rare heterogeneous disorders mainly inherited as a recessive trait, therefore being more prevalent in males. Recent developments have revealed a complex underlying panorama, including a spectrum of disorders in which parkinsonism is variably associated with additional neurological and non-neurological signs. In particular, a childhood-onset encephalopathy with epilepsy and/or cognitive disability is the most common feature. Their genetic basis is also heterogeneous, with many causative genes and different mutation types ranging from "classical" coding variants to intronic repeat expansions. In this review, we provide an updated overview of the phenotypic and genetic spectrum of the most relevant X-linked parkinsonian syndromes, namely X-linked dystonia-parkinsonism (XDP, Lubag disease), fragile X-associated tremor/ataxia syndrome (FXTAS), beta-propeller protein-associated neurodegeneration (BPAN, NBIA/PARK-WDR45), Fabry disease, Waisman syndrome, methyl CpG-binding protein 2 (MeCP2) spectrum disorder, phosphoglycerate kinase-1 deficiency syndrome (PGK1) and X-linked parkinsonism and spasticity (XPDS). All clinical and radiological features reported in the literature have been reviewed. Epilepsy occasionally represents the symptom of onset, predating parkinsonism even by a few years; action tremor is another common feature along with akinetic-rigid parkinsonism. A focus on the genetic background and its pathophysiological implications is provided. The pathogenesis of these disorders ranges from well-defined metabolic alterations (PGK1) to non-specific lysosomal dysfunctions (XPDS) and vesicular trafficking alterations (Waisman syndrome). However, in other cases it still remains poorly defined. Recognition of the phenotypic and genetic heterogeneity of X-linked parkinsonism has important implications for diagnosis, management, and genetic counseling. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Giulia Di Lazzaro
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carlos Estevez-Fraga
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Enza M Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Antonio Pisani
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | |
Collapse
|
29
|
Storey E, Bui MQ, Stimpson P, Tassone F, Atkinson A, Loesch DZ. Relationships between motor scores and cognitive functioning in FMR1 female premutation X carriers indicate early involvement of cerebello-cerebral pathways. CEREBELLUM & ATAXIAS 2021; 8:15. [PMID: 34116720 PMCID: PMC8196444 DOI: 10.1186/s40673-021-00138-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/28/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Smaller expansions of CGG trinucleotide repeats in the FMR1 X-linked gene termed 'premutation' lead to a neurodegenerative disorder: Fragile X Associated Tremor/Ataxia Syndrome (FXTAS) in nearly half of aged carrier males, and 8-16% females. Core features include intention tremor, ataxia, and cognitive decline, and white matter lesions especially in cerebellar and periventricular locations. A 'toxic' role of elevated and expanded FMR1 mRNA has been linked to the pathogenesis of this disorder. The emerging issue concerns the trajectory of the neurodegenerative changes: is the pathogenetic effect confined to overt clinical manifestations? Here we explore the relationships between motor and cognitive scale scores in a sample of 57 asymptomatic adult female premutation carriers of broad age range. METHODS Three motor scale scores (ICARS-for tremor/ataxia, UPDRS-for parkinsonism, and Clinical Tremor) were related to 11 cognitive tests using Spearman's rank correlations. Robust regression, applied in relationships between all phenotypic measures, and genetic molecular and demographic data, identified age and educational levels as common correlates of these measures, which were then incorporated as confounders in correlation analysis. RESULTS Cognitive tests demonstrating significant correlations with motor scores were those assessing non-verbal reasoning on Matrix Reasoning (p-values from 0.006 to 0.011), and sequencing and alteration on Trails-B (p-values from 0.008 to 0.001). Those showing significant correlations with two motor scores-ICARS and Clinical Tremor- were psychomotor speed on Symbol Digit Modalities (p-values from 0.014 to 0.02) and working memory on Digit Span Backwards (p-values from 0.024 to 0.011). CONCLUSIONS Subtle motor impairments correlating with cognitive, particularly executive, deficits may occur in female premutation carriers not meeting diagnostic criteria for FXTAS. This pattern of cognitive deficits is consistent with those seen in other cerebellar disorders. Our results provide evidence that more than one category of clinical manifestation reflecting cerebellar changes - motor and cognitive - may be simultaneously affected by premutation carriage across a broad age range in asymptomatic carriers.
Collapse
Affiliation(s)
- Elsdon Storey
- Department of Medicine (Neuroscience), Monash University, 5th Floor, Centre Block, Alfred Hospital Campus, Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Minh Q Bui
- Centre for Molecular, Environmental, Genetic and Analytic, Epidemiology, University of Melbourne, Parkville, Victoria, Australia
| | - Paige Stimpson
- Wellness and Recovery Centre, Monash Medical Centre, Clayton, Victoria, Australia
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine and M.I.N.D. Institute, University of California Davis Medical Center, Davis, California, USA
| | - Anna Atkinson
- School of Psychology and Public Health, La Trobe University, Melbourne, Bundoora, Victoria, Australia
| | - Danuta Z Loesch
- School of Psychology and Public Health, La Trobe University, Melbourne, Bundoora, Victoria, Australia
| |
Collapse
|
30
|
Abbasi DA, Nguyen TTA, Hall DA, Robertson-Dick E, Berry-Kravis E, Cologna SM. Characterization of the Cerebrospinal Fluid Proteome in Patients with Fragile X-Associated Tremor/Ataxia Syndrome. THE CEREBELLUM 2021; 21:86-98. [PMID: 34046842 DOI: 10.1007/s12311-021-01262-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 01/11/2023]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS), first described in 2001, is a neurodegenerative and movement disorder, caused by a premutation in the fragile X mental retardation 1 (FMR1) gene. To date, the biological mechanisms causing this condition are still not well understood, as not all premutation carriers develop FXTAS. To further understand this syndrome, we quantitatively compared the cerebrospinal fluid (CSF) proteome of FXTAS patients with age-matched controls using mass spectrometry. We identified 415 proteins of which 97 were altered in FXTAS patients. These proteins suggest changes in acute phase response signaling, liver X receptor/ retinoid X receptor (LXR/RXR) activation, and farnesoid X receptor (FXR)/RXR activation, which are the main pathways found to be affected. Additionally, we detected changes in many other proteins including amyloid-like protein 2, contactin-1, afamin, cell adhesion molecule 4, NPC intracellular cholesterol transporter 2, and cathepsin B, that had been previously noted to hold important roles in other movement disorders. Specific to RXR pathways, several apolipoproteins (APOA1, APOA2, APOA4, APOC2, and APOD) showed significant changes in the CSF of FXTAS patients. Lastly, CSF parameters were analyzed to investigate abnormalities in blood brain barrier function. Correlations were observed between patient albumin quotient values, a measure of permeability, and CGG repeat length as well as FXTAS rating scale scores.
Collapse
Affiliation(s)
- Diana A Abbasi
- Department of Pediatrics and Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Thu T A Nguyen
- Department of Chemistry, University of Illinois At Chicago, Chicago, IL, USA
| | - Deborah A Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Erin Robertson-Dick
- Department of Communication Sciences and Disorders, Northwestern University, Chicago, IL, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics and Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois At Chicago, Chicago, IL, USA.
- Laboratory of Integrated Neuroscience, University of Illinois At Chicago, 845 W Taylor Street, Room 4500, Chicago, IL, 60607, USA.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW The purpose of this paper is to review the prevalence, pathophysiology, and management of fragile X-associated tremor/ataxia syndrome (FXTAS). RECENT FINDINGS The pathophysiology of FXTAS involves ribonucleic acid (RNA) toxicity due to elevated levels of the premutation-expanded CGG (eoxycytidylate-deoxyguanylate-deoxyguanylate)-repeat FMR1 mRNA, which can sequester a variety of proteins important for neuronal function. A recent analysis of the inclusions in FXTAS demonstrates elevated levels of several proteins, including small ubiquitin-related modifiers 1/2 (SUMO1/2), that target molecules for the proteasome, suggesting that some aspect(s) of proteasomal function may be altered in FXTAS. Recent neuropathological studies show that Parkinson disease and Alzheimer disease can sometimes co-occur with FXTAS. Lewy bodies can be found in 10% of the brains of patients with FXTAS. Microbleeds and iron deposition are also common in the neuropathology, in addition to white matter disease (WMD) and atrophy. SUMMARY The premutation occurs in 1:200 females and 1:400 males. Penetrance for FXTAS increases with age, though lower in females (16%) compared to over 60% of males by age 70. To diagnose FXTAS, an MRI is essential to document the presence of WMD, a primary component of the diagnostic criteria. Pain can be a significant feature of FXTAS and is seen in approximately 50% of patients.
Collapse
|
32
|
Usdin K, Rodriguez-Revenga L, Willemsen R, Hukema R, Giulivi C. Editorial: Proceedings of the "Fourth International Conference of the FMR1 Premutation: Basic Mechanisms, Clinical Involvement and Therapy". Front Mol Biosci 2021; 8:671875. [PMID: 33987206 PMCID: PMC8111284 DOI: 10.3389/fmolb.2021.671875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/29/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Karen Usdin
- Gene Structure and Disease Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Laia Rodriguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona and CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Renate Hukema
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,The MIND Institute, University of California, Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|
33
|
Holm KN, Herren AW, Taylor SL, Randol JL, Kim K, Espinal G, Martiínez-Cerdeño V, Pessah IN, Hagerman RJ, Hagerman PJ. Human Cerebral Cortex Proteome of Fragile X-Associated Tremor/Ataxia Syndrome. Front Mol Biosci 2021; 7:600840. [PMID: 33585555 PMCID: PMC7879451 DOI: 10.3389/fmolb.2020.600840] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/27/2020] [Indexed: 01/10/2023] Open
Abstract
Background: Fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder associated with premutation CGG-repeat expansions (55–200 repeats) in the 5′ non-coding portion of the fragile X mental retardation 1 (FMR1) gene. Core features of FXTAS include progressive tremor/ataxia, cognitive decline, variable brain volume loss, and white matter disease. The principal histopathological feature of FXTAS is the presence of central nervous system (CNS) and non-CNS intranuclear inclusions. Objective: To further elucidate the molecular underpinnings of FXTAS through the proteomic characterization of human FXTAS cortexes. Results: Proteomic analysis of FXTAS brain cortical tissue (n = 8) identified minor differences in protein abundance compared to control brains (n = 6). Significant differences in FXTAS relative to control brain predominantly involved decreased abundance of proteins, with the greatest decreases observed for tenascin-C (TNC), cluster of differentiation 38 (CD38), and phosphoserine aminotransferase 1 (PSAT1); proteins typically increased in other neurodegenerative diseases. Proteins with the greatest increased abundance include potentially novel neurodegeneration-related proteins and small ubiquitin-like modifier 1/2 (SUMO1/2). The FMRpolyG peptide, proposed in models of FXTAS pathogenesis but only identified in trace amounts in the earlier study of FXTAS inclusions, was not identified in any of the FXTAS or control brains in the current study. Discussion: The observed proteomic shifts, while generally relatively modest, do show a bias toward decreased protein abundance with FXTAS. Such shifts in protein abundance also suggest altered RNA binding as well as loss of cell–cell adhesion/structural integrity. Unlike other neurodegenerative diseases, the proteome of end-stage FXTAS does not suggest a strong inflammation-mediated degenerative response.
Collapse
Affiliation(s)
- Katharine Nichole Holm
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, CA, United States
| | - Anthony W Herren
- Mass Spectrometry Research Core, University of California Davis, Davis, CA, United States
| | - Sandra L Taylor
- Department of Public Health Sciences, Division of Biostatistics, University of California Davis School of Medicine, Davis, CA, United States
| | - Jamie L Randol
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, CA, United States
| | - Kyoungmi Kim
- Department of Public Health Sciences, Division of Biostatistics, University of California Davis School of Medicine, Davis, CA, United States.,Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis School of Medicine, Davis, CA, United States
| | - Glenda Espinal
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, CA, United States
| | - Verónica Martiínez-Cerdeño
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis School of Medicine, Davis, CA, United States.,Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Davis, CA, United States
| | - Isaac N Pessah
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis School of Medicine, Davis, CA, United States.,Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, CA, United States
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis School of Medicine, Davis, CA, United States.,Department of Pediatrics, University of California Davis School of Medicine, Davis, CA, United States
| | - Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Davis, CA, United States.,Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis School of Medicine, Davis, CA, United States
| |
Collapse
|
34
|
Loesch DZ, Kemp BE, Bui MQ, Fisher PR, Allan CY, Sanislav O, Ngoei KRW, Atkinson A, Tassone F, Annesley SJ, Storey E. Cellular Bioenergetics and AMPK and TORC1 Signalling in Blood Lymphoblasts Are Biomarkers of Clinical Status in FMR1 Premutation Carriers. Front Psychiatry 2021; 12:747268. [PMID: 34880790 PMCID: PMC8645580 DOI: 10.3389/fpsyt.2021.747268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Fragile X Associated Tremor/Ataxia Syndrome (FXTAS) is a neurodegenerative disorder affecting carriers of premutation alleles (PM) of the X-linked FMR1 gene, which contain CGG repeat expansions of 55-200 range in a non-coding region. This late-onset disorder is characterised by the presence of tremor/ataxia and cognitive decline, associated with the white matter lesions throughout the brain, especially involving the middle cerebellar peduncles. Nearly half of older male and ~ 20% of female PM carriers develop FXTAS. While there is evidence for mitochondrial dysfunction in neural and some peripheral tissues from FXTAS patients (though less obvious in the non-FXTAS PM carriers), the results from peripheral blood mononuclear cells (PBMC) are still controversial. Motor, cognitive, and neuropsychiatric impairments were correlated with measures of mitochondrial and non-mitochondrial respiratory activity, AMPK, and TORC1 cellular stress-sensing protein kinases, and CGG repeat size, in a sample of adult FXTAS male and female carriers. Moreover, the levels of these cellular measures, all derived from Epstein- Barr virus (EBV)- transformed and easily accessible blood lymphoblasts, were compared between the FXTAS (N = 23) and non-FXTAS (n = 30) subgroups, and with baseline data from 33 healthy non-carriers. A significant hyperactivity of cellular bioenergetics components as compared with the baseline data, more marked in the non-FXTAS PMs, was negatively correlated with repeat numbers at the lower end of the CGG-PM distribution. Significant associations of these components with motor impairment measures, including tremor-ataxia and parkinsonism, and neuropsychiatric changes, were prevalent in the FXTAS subgroup. Moreover, a striking elevation of AMPK activity, and a decrease in TORC1 levels, especially in the non-FXTAS carriers, were related to the size of CGG expansion. The bioenergetics changes in blood lymphoblasts are biomarkers of the clinical status of FMR1 carriers. The relationship between these changes and neurological involvement in the affected carriers suggests that brain bioenergetic alterations are reflected in this peripheral tissue. A possible neuroprotective role of stress sensing kinase, AMPK, in PM carriers, should be addressed in future longitudinal studies. A decreased level of TORC1-the mechanistic target of the rapamycin complex, suggests a possible future approach to therapy in FXTAS.
Collapse
Affiliation(s)
- Danuta Z Loesch
- School of Psychology and Public Health, La Trobe University, Bundoora, VA, Australia
| | - Bruce E Kemp
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VA, Australia.,St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, VA, Australia
| | - Minh Q Bui
- Centre for Molecular, Environmental, Genetic and Analytic, Epidemiology, University of Melbourne, Parkville, VA, Australia
| | - Paul R Fisher
- Department of Physiology Anatomy and Microbiology, La Trobe University, Bundoora, VA, Australia
| | - Claire Y Allan
- Department of Physiology Anatomy and Microbiology, La Trobe University, Bundoora, VA, Australia
| | - Oana Sanislav
- Department of Physiology Anatomy and Microbiology, La Trobe University, Bundoora, VA, Australia
| | - Kevin R W Ngoei
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, VA, Australia
| | - Anna Atkinson
- School of Psychology and Public Health, La Trobe University, Bundoora, VA, Australia
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States.,Department of Biochemistry and Molecular Medicine M.I.N.D. Institute, University of California Davis Medical Center, Davis, Sacramento, CA, United States
| | - Sarah J Annesley
- Department of Physiology Anatomy and Microbiology, La Trobe University, Bundoora, VA, Australia
| | - Elsdon Storey
- Department of Medicine (Neuroscience), Monash University, Alfred Hospital Campus, Melbourne, VIC, Australia
| |
Collapse
|
35
|
Haify SN, Mankoe RSD, Boumeester V, van der Toorn EC, Verhagen RFM, Willemsen R, Hukema RK, Bosman LWJ. Lack of a Clear Behavioral Phenotype in an Inducible FXTAS Mouse Model Despite the Presence of Neuronal FMRpolyG-Positive Aggregates. Front Mol Biosci 2020; 7:599101. [PMID: 33381520 PMCID: PMC7768028 DOI: 10.3389/fmolb.2020.599101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/23/2020] [Indexed: 11/25/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a rare neurodegenerative disorder caused by a 55–200 CGG repeat expansion in the 5′ untranslated region of the Fragile X Mental Retardation 1 (FMR1) gene. FXTAS is characterized by progressive cerebellar ataxia, Parkinsonism, intention tremors and cognitive decline. The main neuropathological hallmark of FXTAS is the presence of ubiquitin-positive intranuclear inclusions in neurons and astrocytes throughout the brain. The molecular pathology of FXTAS involves the presence of 2 to 8-fold elevated levels of FMR1 mRNA, and of a repeat-associated non-AUG (RAN) translated polyglycine peptide (FMRpolyG). Increased levels of FMR1 mRNA containing an expanded CGG repeat can result in cellular toxicity by an RNA gain-of-function mechanism. The increased levels of CGG repeat-expanded FMR1 transcripts may create RNA foci that sequester important cellular proteins, including RNA-binding proteins and FMRpolyG, in intranuclear inclusions. To date, it is unclear whether the FMRpolyG-positive intranuclear inclusions are a cause or a consequence of FXTAS disease pathology. In this report we studied the relation between the presence of neuronal intranuclear inclusions and behavioral deficits using an inducible mouse model for FXTAS. Neuronal intranuclear inclusions were observed 4 weeks after dox-induction. After 12 weeks, high numbers of FMRpolyG-positive intranuclear inclusions could be detected in the hippocampus and striatum, but no clear signs of behavioral deficits related to these specific brain regions were found. In conclusion, the observations in our inducible mouse model for FXTAS suggest a lack of correlation between the presence of intranuclear FMRpolyG-positive aggregates in brain regions and specific behavioral phenotypes.
Collapse
Affiliation(s)
- Saif N Haify
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Ruchira S D Mankoe
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands.,Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | | | - Rob F M Verhagen
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands.,Department of Health Care Studies, Rotterdam University of Applied Sciences, Rotterdam, Netherlands
| | | |
Collapse
|
36
|
Schwartz JL, Jones KL, Yeo GW. Repeat RNA expansion disorders of the nervous system: post-transcriptional mechanisms and therapeutic strategies. Crit Rev Biochem Mol Biol 2020; 56:31-53. [PMID: 33172304 PMCID: PMC8192115 DOI: 10.1080/10409238.2020.1841726] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dozens of incurable neurological disorders result from expansion of short repeat sequences in both coding and non-coding regions of the transcriptome. Short repeat expansions underlie microsatellite repeat expansion (MRE) disorders including myotonic dystrophy (DM1, CUG50–3,500 in DMPK; DM2, CCTG75–11,000 in ZNF9), fragile X tremor ataxia syndrome (FXTAS, CGG50–200 in FMR1), spinal bulbar muscular atrophy (SBMA, CAG40–55 in AR), Huntington’s disease (HD, CAG36–121 in HTT), C9ORF72-amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD and C9-ALS/FTD, GGGGCC in C9ORF72), and many others, like ataxias. Recent research has highlighted several mechanisms that may contribute to pathology in this heterogeneous class of neurological MRE disorders – bidirectional transcription, intranuclear RNA foci, and repeat associated non-AUG (RAN) translation – which are the subject of this review. Additionally, many MRE disorders share similar underlying molecular pathologies that have been recently targeted in experimental and preclinical contexts. We discuss the therapeutic potential of versatile therapeutic strategies that may selectively target disrupted RNA-based processes and may be readily adaptable for the treatment of multiple MRE disorders. Collectively, the strategies under consideration for treatment of multiple MRE disorders include reducing levels of toxic RNA, preventing RNA foci formation, and eliminating the downstream cellular toxicity associated with peptide repeats produced by RAN translation. While treatments are still lacking for the majority of MRE disorders, several promising therapeutic strategies have emerged and will be evaluated within this review.
Collapse
Affiliation(s)
- Joshua L Schwartz
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Krysten Leigh Jones
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
37
|
Tassanakijpanich N, Cohen J, Cohen R, Srivatsa UN, Hagerman RJ. Cardiovascular Problems in the Fragile X Premutation. Front Genet 2020; 11:586910. [PMID: 33133171 PMCID: PMC7578382 DOI: 10.3389/fgene.2020.586910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
There is a dearth of information about cardiovascular problems in fragile X premutation carriers who have 55–200 CGG repeats in fragile X mental retardation 1 (FMR1) gene. The FMR1 expansion in the premutation range leads to toxic RNA gain-of-function resulting in cellular dysregulation. The mechanism of RNA toxicity underlies all of the premutation disorders including fragile X-associated tremor/ataxia syndrome, fragile X-associated primary ovarian insufficiency, and fragile X-associated neuropsychiatric disorder. Cardiovascular problems particularly autonomic dysfunction, hypertension, and cardiac arrhythmias are not uncommon in premutation carriers. Some arterial problems and valvular heart diseases have also been reported. This article reviews cardiovascular problems in premutation carriers and discusses possible contributing mechanisms including RNA toxicity and mild fragile X mental retardation protein deficiency. Further research studies are needed in order to prove a direct association of the cardiovascular problems in fragile X premutation carriers because such knowledge will lead to better preventative treatment.
Collapse
Affiliation(s)
- Nattaporn Tassanakijpanich
- UC Davis MIND Institute, UC Davis Health, Sacramento, CA, United States.,Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Jonathan Cohen
- Fragile X Alliance Clinic, Genetic Clinics Australia, Melbourne, VIC, Australia
| | - Rashelle Cohen
- Fragile X Alliance Clinic, Genetic Clinics Australia, Melbourne, VIC, Australia
| | - Uma N Srivatsa
- Division of Cardiovascular Medicine, Department of Internal Medicine, UC Davis Medical Center, Sacramento, CA, United States
| | - Randi J Hagerman
- UC Davis MIND Institute, UC Davis Health, Sacramento, CA, United States.,Department of Pediatrics, University of California, Davis, Davis, School of Medicine, Sacramento, CA, United States
| |
Collapse
|
38
|
Robinson AC, Bajaj N, Hadjivassiliou M, Minshull J, Mahmood A, Roncaroli F. Neuropathology of a case of fragile X-associated tremor ataxia syndrome without tremor. Neuropathology 2020; 40:611-619. [PMID: 32830366 DOI: 10.1111/neup.12674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/01/2022]
Abstract
Fragile X-associated tremor ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by a CGG trinucleotide expansion from 55 to 200 repeats in the non-coding region of the fragile X mental retardation 1 (FMR1) gene (FMR1). Clinical features include cognitive decline, progressive tremor, and gait ataxia. Neuropathologically, FXTAS shows white matter changes, hippocampal and cerebellar involvement, and p62-positive eosinophilic intranuclear inclusions in astrocytes and neurons. Here, we document the neuropathological findings from a subject who developed cognitive impairment but not tremor and was proved to have genetically confirmed FMR1 premutation. Microscopically, typical p62-postive intranuclear inclusions were present in all the regions examined. Neocortical regions demonstrated gliosis of layer I and mild degree of neuronal loss and atrophy across the other layers. The molecular, Purkinje's cell, and granule cell layers of the cerebellar folia demonstrated mild gliosis, and cerebellar white matter was mildly affected. Aside from p62-positive inclusions, the hippocampus was spared. Arteries in the deep white matter often showed changes consistent with moderate small vessel disease (SVD). Reactive gliosis and severe SVD were features of basal ganglia. Florid reactive astrocytosis was found in the white matter of all regions. Axonal loss and features of axonal damage were found in the white matter of the centrum semiovale. Microglial activation was widespread and evenly seen in both the white matter and grey matter, although the grey matter appeared more severely affected. Pathology associated with Alzheimer's disease was limited. Similarly, no abnormal accumulations of α-synuclein were present. We postulate that age at death and disease duration may play a role in the extent of the pathological features associated with FXTAS. The present results suggest that immunohistochemical staining for p62 can help with the diagnosis of cases with atypical phenotype. In addition, it is likely that the cognitive impairment observed was a result of white matter changes.
Collapse
Affiliation(s)
- Andrew C Robinson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Nin Bajaj
- Department of Neurology, University of Nottingham, Nottingham, UK
| | - Marios Hadjivassiliou
- Department of Neurology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - James Minshull
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Aiza Mahmood
- Neuropathology Unit, Salford Royal Hospital, Manchester, UK
| | - Federico Roncaroli
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, The University of Manchester, Salford Royal Hospital, Salford, UK.,Neuropathology Unit, Salford Royal Hospital, Manchester, UK
| |
Collapse
|
39
|
Malecki C, Hambly BD, Jeremy RW, Robertson EN. The RNA-binding fragile-X mental retardation protein and its role beyond the brain. Biophys Rev 2020; 12:903-916. [PMID: 32654068 DOI: 10.1007/s12551-020-00730-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
It is well-established that variations of a CGG repeat expansion in the gene FMR1, which encodes the fragile-X mental retardation protein (FMRP), cause the neurocognitive disorder, fragile-X syndrome (FXS). However, multiple observations suggest a general and complex regulatory role of FMRP in processes outside the brain: (1) FMRP is ubiquitously expressed in the body, suggesting it functions in multiple organ systems; (2) patients with FXS can exhibit a physical phenotype that is consistent with an underlying abnormality in connective tissue; (3) different CGG repeat expansion lengths in FMR1 result in different clinical outcomes due to different pathogenic mechanisms; (4) the function of FMRP as an RNA-binding protein suggests it has a general regulatory role. This review details the complex nature of FMRP and the different CGG repeat expansion lengths and the evidence supporting the essential role of the protein in a variety of biological and pathological processes.
Collapse
Affiliation(s)
- Cassandra Malecki
- Discipline of Pathology and Bosch Institute, The University of Sydney, Level 4 West, Charles Perkins Centre D17, Sydney, NSW, 2006, Australia.
| | - Brett D Hambly
- Discipline of Pathology and Bosch Institute, The University of Sydney, Level 4 West, Charles Perkins Centre D17, Sydney, NSW, 2006, Australia
| | - Richmond W Jeremy
- Discipline of Pathology and Bosch Institute, The University of Sydney, Level 4 West, Charles Perkins Centre D17, Sydney, NSW, 2006, Australia.,Cardiology Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Elizabeth N Robertson
- Discipline of Pathology and Bosch Institute, The University of Sydney, Level 4 West, Charles Perkins Centre D17, Sydney, NSW, 2006, Australia.,Cardiology Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
40
|
Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS): Pathophysiology and Clinical Implications. Int J Mol Sci 2020; 21:ijms21124391. [PMID: 32575683 PMCID: PMC7352421 DOI: 10.3390/ijms21124391] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
The fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder seen in older premutation (55-200 CGG repeats) carriers of FMR1. The premutation has excessive levels of FMR1 mRNA that lead to toxicity and mitochondrial dysfunction. The clinical features usually begin in the 60 s with an action or intention tremor followed by cerebellar ataxia, although 20% have only ataxia. MRI features include brain atrophy and white matter disease, especially in the middle cerebellar peduncles, periventricular areas, and splenium of the corpus callosum. Neurocognitive problems include memory and executive function deficits, although 50% of males can develop dementia. Females can be less affected by FXTAS because of a second X chromosome that does not carry the premutation. Approximately 40% of males and 16% of female carriers develop FXTAS. Since the premutation can occur in less than 1 in 200 women and 1 in 400 men, the FXTAS diagnosis should be considered in patients that present with tremor, ataxia, parkinsonian symptoms, neuropathy, and psychiatric problems. If a family history of a fragile X mutation is known, then FMR1 DNA testing is essential in patients with these symptoms.
Collapse
|
41
|
Ma L, Hagerman PJ. Autofluorescence-based analyses of intranuclear inclusions of Fragile X-associated tremor/ataxia syndrome. Biotechniques 2020; 69:414-420. [PMID: 32486839 DOI: 10.2144/btn-2019-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Intranuclear inclusions present in the brains of patients with Fragile X-associated tremor/ataxia syndrome (FXTAS) have historically been difficult to study due to their location and scarcity. The recent finding that these particles autofluoresce has complicated the use of immunofluorescence techniques, but also offers new opportunities for purification. We have ascertained the features of the autofluorescence, including its excitation/emission spectrum, similarities and differences compared with lipofuscin autofluorescence, and its presence/absence under various fixation, mounting and UV light exposure conditions. Immunofluorescence at various wavelengths was conducted to determine which conditions are ideal for minimizing autofluorescence confounds. We also present a technique for autofluorescence-based sorting of FXTAS inclusions using flow cytometry, which will allow researchers in the field to purify inclusions more successfully for unbiased analyses.
Collapse
Affiliation(s)
- Lisa Ma
- Department of Biochemistry & Molecular Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Paul J Hagerman
- Department of Biochemistry & Molecular Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA.,MIND Institute, University of California Davis Health, Sacramento, CA 95817, USA
| |
Collapse
|
42
|
An explanation of the mechanisms underlying fragile X-associated premature ovarian insufficiency. J Assist Reprod Genet 2020; 37:1313-1322. [PMID: 32377997 PMCID: PMC7311620 DOI: 10.1007/s10815-020-01774-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/01/2020] [Indexed: 12/22/2022] Open
Abstract
Fragile X and fragile X-associated tremor-ataxia syndrome (FXTAS) are caused by mutations of the FMR1 gene. The mutations causing FXTAS can expand in a generation to a "full mutation" causing fragile X syndrome. The mutations causing FXTAS and the phenotype, fragile X-associated premature ovarian insufficiency (FXPOI), are referred to as the FMR1 premutation (PM). The objective of this paper was to formulate a theory to explain the Mechanism for FXPOI.Recent research on fragile X syndrome and FXTAS has led to sophisticated theories about the mechanisms underlying these diseases. It has been proposed that similar mechanisms underlie FXPOI. Utilizing recent research on FXTAS, but a more detailed application of ovarian physiology, we present a more ovarian specific theory as to the primary mechanism explaining the development of FXPOI.The FXPOI phenotype may best be viewed as derivative of the observation that fragile X PM carriers experience menopause an average of 5 years earlier than non-carriers. Women carrying the PM experience an earlier menopause because of an accelerated activation of their primordial follicle pool. This acceleration of primordial follicle activation occurs, in part, because of diminished AMH production. AMH production is diminished because of accelerated atresia of early antral follicles. This accelerated atresia likely occurs because the fragile X PM leads to a slowing of the rate of granulosa cell mitosis in some follicles.
Collapse
|
43
|
La Rosa P, Petrillo S, Bertini ES, Piemonte F. Oxidative Stress in DNA Repeat Expansion Disorders: A Focus on NRF2 Signaling Involvement. Biomolecules 2020; 10:biom10050702. [PMID: 32369911 PMCID: PMC7277112 DOI: 10.3390/biom10050702] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
DNA repeat expansion disorders are a group of neuromuscular and neurodegenerative diseases that arise from the inheritance of long tracts of nucleotide repetitions, located in the regulatory region, introns, or inside the coding sequence of a gene. Although loss of protein expression and/or the gain of function of its transcribed mRNA or translated product represent the major pathogenic effect of these pathologies, mitochondrial dysfunction and imbalance in redox homeostasis are reported as common features in these disorders, deeply affecting their severity and progression. In this review, we examine the role that the redox imbalance plays in the pathological mechanisms of DNA expansion disorders and the recent advances on antioxidant treatments, particularly focusing on the expression and the activity of the transcription factor NRF2, the main cellular regulator of the antioxidant response.
Collapse
|
44
|
Salcedo-Arellano MJ, Dufour B, McLennan Y, Martinez-Cerdeno V, Hagerman R. Fragile X syndrome and associated disorders: Clinical aspects and pathology. Neurobiol Dis 2020; 136:104740. [PMID: 31927143 PMCID: PMC7027994 DOI: 10.1016/j.nbd.2020.104740] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 12/23/2022] Open
Abstract
This review aims to assemble many years of research and clinical experience in the fields of neurodevelopment and neuroscience to present an up-to-date understanding of the clinical presentation, molecular and brain pathology associated with Fragile X syndrome, a neurodevelopmental condition that develops with the full mutation of the FMR1 gene, located in the q27.3 loci of the X chromosome, and Fragile X-associated tremor/ataxia syndrome a neurodegenerative disease experienced by aging premutation carriers of the FMR1 gene. It is important to understand that these two syndromes have a very distinct clinical and pathological presentation while sharing the same origin: the mutation of the FMR1 gene; revealing the complexity of expansion genetics.
Collapse
Affiliation(s)
- Maria Jimena Salcedo-Arellano
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA; Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA.
| | - Brett Dufour
- Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA; Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Yingratana McLennan
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA
| | - Veronica Martinez-Cerdeno
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, Sacramento, CA, USA; Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| | - Randi Hagerman
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
45
|
Drozd M, Delhaye S, Maurin T, Castagnola S, Grossi M, Brau F, Jarjat M, Willemsen R, Capovilla M, Hukema RK, Lalli E, Bardoni B. Reduction of Fmr1 mRNA Levels Rescues Pathological Features in Cortical Neurons in a Model of FXTAS. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 18:546-553. [PMID: 31671347 PMCID: PMC6838541 DOI: 10.1016/j.omtn.2019.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/02/2019] [Accepted: 09/08/2019] [Indexed: 02/08/2023]
Abstract
Fragile X-associated tremor ataxia syndrome (FXTAS) is a rare disorder associated to the presence of the fragile X premutation, a 55–200 CGG repeat expansion in the 5′ UTR of the FMR1 gene. Two main neurological phenotypes have been described in carriers of the CGG premutation: (1) neurodevelopmental disorders characterized by anxiety, attention deficit hyperactivity disorder (ADHD), social deficits, or autism spectrum disorder (ASD); and (2) after 50 years old, the FXTAS phenotype. This neurodegenerative disorder is characterized by ataxia and a form of parkinsonism. The molecular pathology of this disorder is characterized by the presence of elevated levels of Fragile X Mental Retardation 1 (FMR1) mRNA, presence of a repeat-associated non-AUG (RAN) translated peptide, and FMR1 mRNA-containing nuclear inclusions. Whereas in the past FXTAS was mainly considered as a late-onset disorder, some phenotypes of patients and altered learning and memory behavior of a mouse model of FXTAS suggested that this disorder involves neurodevelopment. To better understand the physiopathological role of the increased levels of Fmr1 mRNA during neuronal differentiation, we used a small interfering RNA (siRNA) approach to reduce the abundance of this mRNA in cultured cortical neurons from the FXTAS mouse model. Morphological alterations of neurons were rescued by this approach. This cellular phenotype is associated to differentially expressed proteins that we identified by mass spectrometry analysis. Interestingly, phenotype rescue is also associated to the rescue of the abundance of 29 proteins that are involved in various pathways, which represent putative targets for early therapeutic approaches.
Collapse
Affiliation(s)
- Malgorzata Drozd
- Université Côte d'Azur, CNRS, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia Antipolis, France
| | - Sébastien Delhaye
- Université Côte d'Azur, CNRS, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia Antipolis, France
| | - Thomas Maurin
- Université Côte d'Azur, CNRS, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia Antipolis, France
| | - Sara Castagnola
- Université Côte d'Azur, CNRS, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia Antipolis, France
| | - Mauro Grossi
- Université Côte d'Azur, CNRS, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia Antipolis, France
| | - Frédéric Brau
- Université Côte d'Azur, CNRS, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia Antipolis, France
| | - Marielle Jarjat
- Université Côte d'Azur, CNRS, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia Antipolis, France
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Maria Capovilla
- Université Côte d'Azur, CNRS, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia Antipolis, France
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Enzo Lalli
- Université Côte d'Azur, INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia Antipolis, France
| | - Barbara Bardoni
- Université Côte d'Azur, INSERM, CNRS, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia Antipolis, France.
| |
Collapse
|