1
|
Patel S, Govindarajan V, Chakravarty S, Dubey N. From blood to brain: Exploring the role of fibrinogen in the pathophysiology of depression and other neurological disorders. Int Immunopharmacol 2024; 143:113326. [PMID: 39388892 DOI: 10.1016/j.intimp.2024.113326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Recent findings indicate that fibrinogen, a protein involved in blood clotting, plays a significant role in neuroinflammation and mood disorders. Elevated fibrinogen levels are consistently observed in individuals with depression, potentially contributing to microglial activation. This could impair fibrinolysis and contribute to a pro-inflammatory environment in the brain. This neuroinflammatory response can impair neuroplasticity, a key process for learning, memory, and mood regulation. Fibrinogen may also indirectly influence neurotransmitters like serotonin, which play a vital role in mood regulation. Furthermore, fibrinogen's interaction with astrocytes may trigger a cascade of events leading to demyelination, a process where the protective sheath around nerve fibers deteriorates. This can disrupt communication within the nervous system and contribute to depression symptoms. Intriguingly, targeting fibrinogen or related pathways holds promise for therapeutic interventions. For instance, modulating PAI-1 (Plasminogen activator inhibitor-1) activity or inhibiting fibrinogen's interaction with brain cells could be potential strategies. This review explores the multifaceted relationship between fibrinogen and neurological disorders with a focus on depression highlighting its potential as a therapeutic target. Further research is necessary to fully elucidate the mechanisms underlying this association and develop effective therapeutic strategies targeting the fibrinolytic system for mood disorders.
Collapse
Affiliation(s)
- Shashikant Patel
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, India
| | - Venkatesh Govindarajan
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India
| | - Sumana Chakravarty
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, Telangana, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, India.
| | - Neelima Dubey
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, Telangana, India.
| |
Collapse
|
2
|
Kajumba MM, Kakooza-Mwesige A, Nakasujja N, Koltai D, Canli T. Treatment-resistant depression: molecular mechanisms and management. MOLECULAR BIOMEDICINE 2024; 5:43. [PMID: 39414710 PMCID: PMC11485009 DOI: 10.1186/s43556-024-00205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/03/2024] [Indexed: 10/18/2024] Open
Abstract
Due to the heterogeneous nature of depression, the underlying etiological mechanisms greatly differ among individuals, and there are no known subtype-specific biomarkers to serve as precise targets for therapeutic efficacy. The extensive research efforts over the past decades have not yielded much success, and the currently used first-line conventional antidepressants are still ineffective for close to 66% of patients. Most clinicians use trial-and-error treatment approaches, which seem beneficial to only a fraction of patients, with some eventually developing treatment resistance. Here, we review evidence from both preclinical and clinical studies on the pathogenesis of depression and antidepressant treatment response. We also discuss the efficacy of the currently used pharmacological and non-pharmacological approaches, as well as the novel emerging therapies. The review reveals that the underlying mechanisms in the pathogenesis of depression and antidepressant response, are not specific, but rather involve an interplay between various neurotransmitter systems, inflammatory mediators, stress, HPA axis dysregulation, genetics, and other psycho-neurophysiological factors. None of the current depression hypotheses sufficiently accounts for the interactional mechanisms involved in both its etiology and treatment response, which could partly explain the limited success in discovering efficacious antidepressant treatment. Effective management of treatment-resistant depression (TRD) requires targeting several interactional mechanisms, using subtype-specific and/or personalized therapeutic modalities, which could, for example, include multi-target pharmacotherapies in augmentation with psychotherapy and/or other non-pharmacological approaches. Future research guided by interaction mechanisms hypotheses could provide more insights into potential etiologies of TRD, precision biomarker targets, and efficacious therapeutic modalities.
Collapse
Affiliation(s)
- Mayanja M Kajumba
- Department of Mental Health and Community Psychology, Makerere University, P. O. Box 7062, Kampala, Uganda.
| | - Angelina Kakooza-Mwesige
- Department of Pediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Pediatrics and Child Health, Mulago National Referral Hospital, Kampala, Uganda
| | - Noeline Nakasujja
- Department of Psychiatry, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Deborah Koltai
- Duke Division of Global Neurosurgery and Neurology, Department of Neurosurgery, Durham, NC, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, USA
| | - Turhan Canli
- Department of Psychology, Stony Brook University, New York, USA
- Department of Psychiatry, Stony Brook University, New York, USA
| |
Collapse
|
3
|
Talaee N, Azadvar S, Khodadadi S, Abbasi N, Asli-Pashaki ZN, Mirabzadeh Y, Kholghi G, Akhondzadeh S, Vaseghi S. Comparing the effect of fluoxetine, escitalopram, and sertraline, on the level of BDNF and depression in preclinical and clinical studies: a systematic review. Eur J Clin Pharmacol 2024; 80:983-1016. [PMID: 38558317 DOI: 10.1007/s00228-024-03680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) dysfunction is one of the most important mechanisms underlying depression. It seems that selective serotonin reuptake inhibitors (SSRIs) improve depression via affecting BDNF level. In this systematic review, for the first time, we aimed to review the effect of three SSRIs including fluoxetine, escitalopram, and sertraline, on both depression and BDNF level in preclinical and clinical studies. PubMed electronic database was searched, and 193 articles were included in this study. After reviewing all manuscripts, only one important difference was found: subjects. We found that SSRIs induce different effects in animals vs. humans. Preclinical studies showed many controversial effects, while human studies showed only two effects: improvement of depression, with or without the improvement of BDNF. However, most studies used chronic SSRIs treatment, while acute SSRIs were not effectively used and evaluated. In conclusion, it seems that SSRIs are reliable antidepressants, and the improvement effect of SSRIs on depression is not dependent to BDNF level (at least in human studies).
Collapse
Affiliation(s)
- Nastaran Talaee
- Department of Psychology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shataw Azadvar
- Department of Power Electronic, Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Sanaz Khodadadi
- Student Research Committee, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nahal Abbasi
- Department of Health Psychology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Yasaman Mirabzadeh
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Department of Psychiatry, Faculty of Medicine, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, 1419815477, Iran.
| |
Collapse
|
4
|
Peña JE, Corbett BF, Tamminga CA, Bhatnagar S, Hitti FL. Investigating Resistance to Antidepressants in Animal Models. Neuroscience 2024; 548:69-80. [PMID: 38697464 DOI: 10.1016/j.neuroscience.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Major depressive disorder is one of the most prevalent psychiatric diseases, and up to 30-40% of patients remain symptomatic despite treatment. Novel therapies are sorely needed, and animal models may be used to elucidate fundamental neurobiological processes that contribute to human disease states. We conducted a systematic review of current preclinical approaches to investigating treatment resistance with the goal of describing a path forward for improving our understanding of treatment resistant depression. We conducted a broad literature search to identify studies relevant to the preclinical investigation of treatment resistant depression. We followed PRISMA (Preferred Reporting Items for Systemic Reviews and Meta-Analyses) guidelines and included all relevant studies. We identified 467 studies in our initial search. Of these studies, we included 69 in our systematic review after applying our inclusion/exclusion criteria. We identified 10 broad strategies for investigating treatment resistance in animal models. Stress hormone administration was the most commonly used model, and the most common behavioral test was the forced swim test. We systematically identified and reviewed current approaches for gaining insight into the neurobiology underlying treatment resistant depression using animal models. Each approach has its advantages and disadvantages, but all require careful consideration of their potential limitations regarding therapeutic translation. An enhanced understanding of treatment resistant depression is sorely needed given the burden of disease and lack of effective therapies.
Collapse
Affiliation(s)
- Julianna E Peña
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Brian F Corbett
- Department of Biology, Rutgers University, Camden, NJ, United States
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, United States
| | - Frederick L Hitti
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
5
|
Fu X, Wang Y, Zhao F, Cui R, Xie W, Liu Q, Yang W. Shared biological mechanisms of depression and obesity: focus on adipokines and lipokines. Aging (Albany NY) 2023; 15:5917-5950. [PMID: 37387537 PMCID: PMC10333059 DOI: 10.18632/aging.204847] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
Depression and obesity are both common disorders currently affecting public health, frequently occurring simultaneously within individuals, and the relationship between these disorders is bidirectional. The association between obesity and depression is highly co-morbid and tends to significantly exacerbate metabolic and related depressive symptoms. However, the neural mechanism under the mutual control of obesity and depression is largely inscrutable. This review focuses particularly on alterations in systems that may mechanistically explain the in vivo homeostatic regulation of the obesity and depression link, such as immune-inflammatory activation, gut microbiota, neuroplasticity, HPA axis dysregulation as well as neuroendocrine regulators of energy metabolism including adipocytokines and lipokines. In addition, the review summarizes potential and future treatments for obesity and depression and raises several questions that need to be answered in future research. This review will provide a comprehensive description and localization of the biological connection between obesity and depression to better understand the co-morbidity of obesity and depression.
Collapse
Affiliation(s)
- Xiying Fu
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun 130041, P.R. China
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Yicun Wang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Ranji Cui
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Wei Xie
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Qianqian Liu
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Wei Yang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
- Department of Neurology, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| |
Collapse
|
6
|
Gao J, Zhao L, Cheng Y, Lei W, Wang Y, Liu X, Zheng N, Shao L, Chen X, Sun Y, Ling Z, Xu W. Probiotics for the treatment of depression and its comorbidities: A systemic review. Front Cell Infect Microbiol 2023; 13:1167116. [PMID: 37139495 PMCID: PMC10149938 DOI: 10.3389/fcimb.2023.1167116] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 05/05/2023] Open
Abstract
Depression is one of the most common psychiatric conditions, characterized by significant and persistent depressed mood and diminished interest, and often coexists with various comorbidities. The underlying mechanism of depression remain elusive, evidenced by the lack of an appreciate therapy. Recent abundant clinical trials and animal studies support the new notion that the gut microbiota has emerged as a novel actor in the pathophysiology of depression, which partakes in bidirectional communication between the gut and the brain through the neuroendocrine, nervous, and immune signaling pathways, collectively known as the microbiota-gut-brain (MGB) axis. Alterations in the gut microbiota can trigger the changes in neurotransmitters, neuroinflammation, and behaviors. With the transition of human microbiome research from studying associations to investigating mechanistic causality, the MGB axis has emerged as a novel therapeutic target in depression and its comorbidities. These novel insights have fueled idea that targeting on the gut microbiota may open new windows for efficient treatment of depression and its comorbidities. Probiotics, live beneficial microorganisms, can be used to modulate gut dysbiosis into a new eubiosis and modify the occurrence and development of depression and its comorbidities. In present review, we summarize recent findings regarding the MGB axis in depression and discuss the potential therapeutic effects of probiotics on depression and its comorbidities.
Collapse
Affiliation(s)
- Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Longyou Zhao
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yu Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Nengneng Zheng
- Department of Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Shao
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xulei Chen
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Yilai Sun
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Weijie Xu
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| |
Collapse
|
7
|
Lee SH, Shin C, Ko YH, Lee MS, Park MH, Pae CU, Yoon HK, Han C. Plasminogen Activator Inhibitor-1: Potential Inflammatory Marker in Late-life Depression. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:147-161. [PMID: 36700321 PMCID: PMC9889913 DOI: 10.9758/cpn.2023.21.1.147] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/27/2023]
Abstract
Objective Although several previous studies have examined the association between late-life depression and blood adipokine levels, a marker of chronic inflammation, no studies have comprehensively considered the effects of metabolic syndrome, which is known to affect blood adipokine levels. This study examined blood adipokine levels in geriatric depression after adjusting for the effects of metabolic syndrome. Methods Participants were selected from the Ansan Geriatric Study (depression group [n = 76] and control group [n = 76]). Blood concentrations of four adipokines (adiponectin, resistin, neutrophil-gelatinase-associated lipocalin [NGAL], and plasminogen activator inhibitor-1 [PAI-1]) were measured using immunoassays. The effects of blood adipokine concentration on the diagnosis of depression were analyzed using multivariate logistic regression to adjust for the effects of metabolic syndrome and potential confounding factors. Results When the effects of metabolic syndrome and potential confounding factors were adjusted, only PAI-1 could explain the diagnosis of depression among all the adipokines. The depression group showed a lower blood PAI-1 level than the control group. Adiponectin, resistin, and NGAL could not explain the diagnosis of depression when the effects of metabolic syndrome and potential confounding factors were adjusted. Conclusion This study suggests the possibility that the blood PAI-1 levels in clinically pathological late-life depression may show contrasting results to those with subclinical depressive symptoms. Additionally, considering that most previous studies have been conducted with pre-geriatric populations, the study suggests the possibility that geriatric depression may show inflammatory changes with patterns that are different from those of depression in the pre-geriatric population.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- Department of Psychiatry, Veterans Health Service Medical Center, Seoul, Korea
| | - Cheolmin Shin
- Department of Psychiatry, Korea University College of Medicine, Seoul, Korea
| | - Young-Hoon Ko
- Department of Psychiatry, Korea University College of Medicine, Seoul, Korea
| | - Moon-Soo Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, Korea
| | - Moon Ho Park
- Department of Neurology, Korea University College of Medicine, Seoul, Korea
| | - Chi-Un Pae
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ho-Kyoung Yoon
- Department of Psychiatry, Korea University College of Medicine, Seoul, Korea
| | - Changsu Han
- Department of Psychiatry, Korea University College of Medicine, Seoul, Korea,Address for correspondence: Changsu Han Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul 08308, Korea, E-mail: , ORCID: https://orcid.org/0000-0002-4021-8907
| |
Collapse
|
8
|
Glucocorticoid-Responsive Tissue Plasminogen Activator (tPA) and Its Inhibitor Plasminogen Activator Inhibitor-1 (PAI-1): Relevance in Stress-Related Psychiatric Disorders. Int J Mol Sci 2023; 24:ijms24054496. [PMID: 36901924 PMCID: PMC10003592 DOI: 10.3390/ijms24054496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Stressful events trigger a set of complex biological responses which follow a bell-shaped pattern. Low-stress conditions have been shown to elicit beneficial effects, notably on synaptic plasticity together with an increase in cognitive processes. In contrast, overly intense stress can have deleterious behavioral effects leading to several stress-related pathologies such as anxiety, depression, substance use, obsessive-compulsive and stressor- and trauma-related disorders (e.g., post-traumatic stress disorder or PTSD in the case of traumatic events). Over a number of years, we have demonstrated that in response to stress, glucocorticoid hormones (GCs) in the hippocampus mediate a molecular shift in the balance between the expression of the tissue plasminogen activator (tPA) and its own inhibitor plasminogen activator inhibitor-1 (PAI-1) proteins. Interestingly, a shift in favor of PAI-1 was responsible for PTSD-like memory induction. In this review, after describing the biological system involving GCs, we highlight the key role of tPA/PAI-1 imbalance observed in preclinical and clinical studies associated with the emergence of stress-related pathological conditions. Thus, tPA/PAI-1 protein levels could be predictive biomarkers of the subsequent onset of stress-related disorders, and pharmacological modulation of their activity could be a potential new therapeutic approach for these debilitating conditions.
Collapse
|
9
|
Ye F, Du L, Huang W, Wang S. Shared Genetic Regulatory Networks Contribute to Neuropathic and Inflammatory Pain: Multi-Omics Systems Analysis. Biomolecules 2022; 12:1454. [PMID: 36291662 PMCID: PMC9599593 DOI: 10.3390/biom12101454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
The mechanisms of chronic pain are complex, and genetic factors play an essential role in the development of chronic pain. Neuropathic pain (NP) and inflammatory pain (IP) are two primary components of chronic pain. Previous studies have uncovered some common biological processes in NP and IP. However, the shared genetic mechanisms remained poorly studied. We utilized multi-omics systematic analyses to investigate the shared genetic mechanisms of NP and IP. First, by integrating several genome-wide association studies (GWASs) with multi-omics data, we revealed the significant overlap of the gene co-expression modules in NP and IP. Further, we uncovered the shared biological pathways, including the previously reported mitochondrial electron transport and ATP metabolism, and stressed the role of genetic factors in chronic pain with neurodegenerative diseases. Second, we identified 24 conservative key drivers (KDs) contributing to NP and IP, containing two well-established pain genes, IL1B and OPRM1, and some novel potential pain genes, such as C5AR1 and SERPINE1. The subnetwork of those KDs highlighted the processes involving the immune system. Finally, gene expression analysis of the KDs in mouse models underlined two of the KDs, SLC6A15 and KCNQ5, with unidirectional regulatory functions in NP and IP. Our study provides strong evidence to support the current understanding of the shared genetic regulatory networks underlying NP and IP and potentially benefit the future common therapeutic avenues for chronic pain.
Collapse
Affiliation(s)
- Fang Ye
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Li Du
- Vitalant Research Institute, San Francisco, CA 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Sheng Wang
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
10
|
Zhang W, Ding T, Zhang H, Chen Y, Liu L, Jiang J, Song S, Cheng H, Wu C, Sun J, Wu Q. Clostridium butyricum RH2 Alleviates Chronic Foot Shock Stress-Induced Behavioral Deficits in Rats via PAI-1. Front Pharmacol 2022; 13:845221. [PMID: 35462923 PMCID: PMC9019525 DOI: 10.3389/fphar.2022.845221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/23/2022] [Indexed: 12/02/2022] Open
Abstract
Recent investigations have demonstrated that the chronic stress-induced behavioral disorders can be ameliorated by probiotics including Clostridium butyricum (C. butyricum) via the gut-brain-axis. However, the molecular mechanisms underlying the beneficial effects of C. butyricum on brain remain largely unknown. Here, we investigated whether chronic foot shock stress (CFSS) paradigm used for a hypertensive animal model could induce mood disorders such as anxiety, depression and cognitive impairments. Then, we assessed the impact of C. butyricum RH2 on the behavior disorders and neurobiological alterations in the hippocampus. Male Sprague-Dawley (SD) rats received intermittent electric shocks for consecutive 14 days and were treated with C. butyricum RH2 for 17 days. Anxiety- or depression-like behaviors were evaluated by open field test (OFT), and elevated plus maze (EPM). The Morris water maze test (MWM) was used to evaluate the cognitive functions. CFSS intervention led to mild anxiety- or depression-like behavior or cognitive impairment and C. butyricum RH2 treatment reversed the CFSS-induced symptoms. The serum ACTH or CORT was increased following CFSS but was completely reversed by C. butyricum RH2 treatment. In the hippocampus of CFSS rats, the expressions of BDNF and TrkB were downregulated but proBDNF and P75NTR were upregulated. These expression changes were partially reversed by C. butyricum RH2, suggesting a mode of action on BDNF and proBDNF balance. CFSS exposure resulted in downregulation of tissue-type plasminogen activator (tPA) but upregulation of plasminogen activator inhibitor 1(PAI-1), which could contribute to the decrease in BDNF by reduced conversion from proBDNF to BDNF in the hippocampus. C. butyricum RH2 treatment reversed the upregulated PAI-1 but not the downregulated tPA, which was in parallel with the amelioration of behavioral abnormalities, suggesting a novel tPA independent mechanism for PAI-1 action. Our results demonstrate for the first time that C. butyricum RH2 attenuates stress-induced behavior disorders via inhibiting the expression of brain PAI-1.
Collapse
Affiliation(s)
- Wenying Zhang
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Tingyu Ding
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Hong Zhang
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Yuping Chen
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Liping Liu
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Jinjin Jiang
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Siyuan Song
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Hao Cheng
- Marketing Department, Hangzhou Grand Biologic Pharmaceutical Inc., Hangzhou, China
| | - Changhao Wu
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Jihu Sun
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Qin Wu
- Jiangsu Vocational College of Medicine, Yancheng, China
| |
Collapse
|
11
|
Bioinformatics and Network Pharmacology-Based Approaches to Explore the Potential Mechanism of the Antidepressant Effect of Cyperi Rhizoma through Soothing the Liver. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:8614963. [PMID: 35126596 PMCID: PMC8816580 DOI: 10.1155/2021/8614963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023]
Abstract
Major depressive disorder (MDD) has become the second most common disease worldwide, making it a threat to human health. Cyperi Rhizoma (CR) is a traditional herbal medicine with antidepressant properties. Traditional Chinese medicine theory states that CR relieves MDD by dispersing stagnated liver qi to soothe the liver, but the material basis and underlying mechanism have not been elucidated. In this study, we identified the active compounds and potential anti-MDD targets of CR by network pharmacology-based approaches. Through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, we hypothesized that the anti-MDD effect of CR may be mediated by an altered response of the liver to lipopolysaccharide (LPS) and glucose metabolism. Through bioinformatics analysis, comparing normal and MDD liver tissue in rats with spontaneous diabetes, we identified differentially expressed genes (DEGs) and selected PAI-1 (SERPINE1) as a target of CR in combating MDD. Molecular docking and molecular dynamics analysis also verified the binding of the active compound quercetin to PAI-1. It can be concluded that quercetin is the active compound of CR that acts against MDD by targeting PAI-1 to enhance the liver response to LPS and glucose metabolism. This study not only reveals the material basis and underlying mechanism of CR against MDD through soothing the liver but also provides evidence for PAI-1 as a potential target and quercetin as a potential agent for MDD treatment.
Collapse
|
12
|
Vascular and blood-brain barrier-related changes underlie stress responses and resilience in female mice and depression in human tissue. Nat Commun 2022; 13:164. [PMID: 35013188 PMCID: PMC8748803 DOI: 10.1038/s41467-021-27604-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Prevalence, symptoms, and treatment of depression suggest that major depressive disorders (MDD) present sex differences. Social stress-induced neurovascular pathology is associated with depressive symptoms in male mice; however, this association is unclear in females. Here, we report that chronic social and subchronic variable stress promotes blood-brain barrier (BBB) alterations in mood-related brain regions of female mice. Targeted disruption of the BBB in the female prefrontal cortex (PFC) induces anxiety- and depression-like behaviours. By comparing the endothelium cell-specific transcriptomic profiling of the mouse male and female PFC, we identify several pathways and genes involved in maladaptive stress responses and resilience to stress. Furthermore, we confirm that the BBB in the PFC of stressed female mice is leaky. Then, we identify circulating vascular biomarkers of chronic stress, such as soluble E-selectin. Similar changes in circulating soluble E-selectin, BBB gene expression and morphology can be found in blood serum and postmortem brain samples from women diagnosed with MDD. Altogether, we propose that BBB dysfunction plays an important role in modulating stress responses in female mice and possibly MDD.
Collapse
|
13
|
Elsayed M, Mohamed KA, Dardeer KT, Zaafar DK, Hassanin SO, Abdelnaby R, Schönfeldt-Lecuona C. Serum plasminogen activator inhibitor-1 levels in patients with major depressive disorder vs. healthy controls: a systematic review and meta-analysis. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2021; 45:e20230338. [PMID: 34798692 PMCID: PMC10597387 DOI: 10.47626/2237-6089-2021-0338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Major depressive disorder (MDD) is a severe mental health condition that affects millions of people worldwide. Etiologically, several factors may play a role in its development. Previous studies have reported elevated plasminogen activator inhibitor-1 (PAI-1) levels in patients with depression, suggesting that PAI-1 levels might be linked to the etiology of MDD. METHODS We systematically searched the following online databases: MEDLINE, Scopus, and Web of Science up to September 10, 2020, to identify studies in which PAI-1 levels were reported in subjects with MDD. Subsequently we used RevMan 5.3 to perform a meta-analysis of data extracted from the included studies using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and PICO criteria for the search and analysis. RESULTS Six studies that reported mean ± standard deviation (SD) were included in the analysis, with a total of 507 MDD patients and 3,453 controls. The overall standardized mean difference (SMD) was 0.27 (95% confidence interval [95% CI] 0.01-0.53). PAI-1 serum levels were 0.27 SDs higher in MDD patients than in controls. The test for overall effect was significant (z = 2.04, p = 0.04). Substantial heterogeneity was detected among the studies, demonstrated by the inconsistency test (I² = 72%) and the chi-square test (χ² = 18.32; p = 0.003). CONCLUSIONS This systematic review and meta-analysis showed that MDD might be related to elevated PAI-1 levels. We propose larger prospective clinical studies to further investigate this clinical correlation and validate the clinical significance of these observations.
Collapse
Affiliation(s)
- Mohamed Elsayed
- Department of Psychiatry and Psychotherapy IIIUniversity of UlmUlmGermany Department of Psychiatry and Psychotherapy III, University of Ulm, Ulm, Germany.
| | - Khaled A. Mohamed
- Faculty of MedicineCairo UniversityCairoEgypt Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Khaled T. Dardeer
- Faculty of MedicineCairo UniversityCairoEgypt Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Dalia K. Zaafar
- Faculty of PharmacyModern University for Technology and InformationCairoEgypt Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt.
| | - Soha Osama Hassanin
- Department of BiochemistryFaculty of PharmacyMTICairoEgypt Department of Biochemistry, Faculty of Pharmacy, MTI, Cairo, Egypt.
| | - Ramy Abdelnaby
- Department of NeurologyRWTH Aachen UniversityAachenGermany Department of Neurology, RWTH Aachen University, Aachen, Germany.
| | - Carlos Schönfeldt-Lecuona
- Department of Psychiatry and Psychotherapy IIIUniversity of UlmUlmGermany Department of Psychiatry and Psychotherapy III, University of Ulm, Ulm, Germany.
| |
Collapse
|