1
|
Quinn JP, Fisher K, Corbett N, Warwood S, Knight D, Kellett KAB, Hooper NM. Proteolysis of tau by granzyme A in tauopathies generates fragments that are aggregation prone. Biochem J 2024; 481:1255-1274. [PMID: 39248243 DOI: 10.1042/bcj20240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/10/2024]
Abstract
Tauopathies, including Alzheimer's disease, corticobasal degeneration and progressive supranuclear palsy, are characterised by the aggregation of tau into insoluble neurofibrillary tangles in the brain. Tau is subject to a range of post-translational modifications, including proteolysis, that can promote its aggregation. Neuroinflammation is a hallmark of tauopathies and evidence is growing for a role of CD8+ T cells in disease pathogenesis. CD8+ T cells release granzyme proteases but what role these proteases play in neuronal dysfunction is currently lacking. Here, we identified that granzyme A (GzmA) is present in brain tissue and proteolytically cleaves tau. Mass spectrometric analysis of tau fragments produced on digestion of tau with GzmA identified three cleavage sites at R194-S195, R209-S210 and K240-S241. Mutation of the critical Arg or Lys residues at the cleavage sites in tau or chemical inhibition of GzmA blocked the proteolysis of tau by GzmA. Development of a semi-targeted mass spectrometry approach identified peptides in tauopathy brain tissue corresponding to proteolysis by GzmA at R209-S210 and K240-S241 in tau. When expressed in cells the GzmA-cleaved C-terminal fragments of tau were highly phosphorylated and aggregated upon incubation of the cells with tauopathy brain seed. The C-terminal fragment tau195-441 was able to transfer between cells and promote aggregation of tau in acceptor cells, indicating the propensity for such tau fragments to propagate between cells. Collectively, these results raise the possibility that GzmA, released from infiltrating cytotoxic CD8+ T cells, proteolytically cleaves tau into fragments that may contribute to its pathological properties in tauopathies.
Collapse
Affiliation(s)
- James P Quinn
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Kate Fisher
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Nicola Corbett
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Stacey Warwood
- Biological Mass Spectrometry Core Research Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - David Knight
- Biological Mass Spectrometry Core Research Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Katherine A B Kellett
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Nigel M Hooper
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, U.K
| |
Collapse
|
2
|
Bagheri S, Saboury AA, Saso L. Sequence of Molecular Events in the Development of Alzheimer's Disease: Cascade Interactions from Beta-Amyloid to Other Involved Proteins. Cells 2024; 13:1293. [PMID: 39120323 PMCID: PMC11312137 DOI: 10.3390/cells13151293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Alzheimer's disease is the primary neurodegenerative disease affecting the elderly population. Despite the first description of its pathology over a century ago, its precise cause and molecular mechanism remain unknown. Numerous factors, including beta-amyloid, tau protein, the APOEε4 gene, and different metals, have been extensively investigated in relation to this disease. However, none of them have been proven to have a decisive causal relationship. Furthermore, no single theory has successfully integrated these puzzle pieces thus far. In this review article, we propose the most probable molecular mechanism for AD, which clearly shows the relationship between the main aspects of the disease, and addresses fundamental questions such as: Why is aging the major risk factor for the disease? Are amyloid plaques and tau tangles the causes or consequences of AD? Why are the distributions of senile plaques and tau tangles in the brain different and independent of each other? Why is the APOEε4 gene a risk factor for AD? Finally, why is the disease more prevalent in women?
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
3
|
Lantero-Rodriguez J, Camporesi E, Montoliu-Gaya L, Gobom J, Piotrowska D, Olsson M, Burmann IM, Becker B, Brinkmalm A, Burmann BM, Perkinton M, Ashton NJ, Fox NC, Lashley T, Zetterberg H, Blennow K, Brinkmalm G. Tau protein profiling in tauopathies: a human brain study. Mol Neurodegener 2024; 19:54. [PMID: 39026372 PMCID: PMC11264707 DOI: 10.1186/s13024-024-00741-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Abnormal accumulation of misfolded and hyperphosphorylated tau protein in brain is the defining feature of several neurodegenerative diseases called tauopathies, including Alzheimer's disease (AD). In AD, this pathological change is reflected by highly specific cerebrospinal fluid (CSF) tau biomarkers, including both phosphorylated and non-phosphorylated variants. Interestingly, despite tau pathology being at the core of all tauopathies, CSF tau biomarkers remain unchanged in certain tauopathies, e.g., progressive supranuclear palsy (PSP), Pick's disease (PiD), and corticobasal neurodegeneration (CBD). To better understand commonalities and differences between tauopathies, we report a multiplex assay combining immunoprecipitation and high-resolution mass spectrometry capable of detecting and quantifying peptides from different tau protein isoforms as well as non-phosphorylated and phosphorylated peptides, including those carrying multiple phosphorylations. We investigated the tau proteoforms in soluble and insoluble fractions of brain tissue from subjects with autopsy-confirmed tauopathies, including sporadic AD (n = 10), PSP (n = 11), PiD (n = 10), and CBD (n = 10), and controls (n = 10). Our results demonstrate that non-phosphorylated tau profiles differ across tauopathies, generally showing high abundance of microtubule-binding region (MTBR)-containing peptides in insoluble protein fractions compared with controls; the AD group showed 12-72 times higher levels of MTBR-containing aggregates. Quantification of tau isoforms showed the 3R being more abundant in PiD and the 4R isoform being more abundant in CBD and PSP in the insoluble fraction. Twenty-three different phosphorylated peptides were quantified. Most phosphorylated peptides were measurable in all investigated tauopathies. All phosphorylated peptides were significantly increased in AD insoluble fraction. However, doubly and triply phosphorylated peptides were significantly increased in AD even in the soluble fraction. Results were replicated using a validation cohort comprising AD (n = 10), CBD (n = 10), and controls (n = 10). Our study demonstrates that abnormal levels of phosphorylation and aggregation do indeed occur in non-AD tauopathies, however, both appear pronouncedly increased in AD, becoming a distinctive characteristic of AD pathology.
Collapse
Affiliation(s)
- Juan Lantero-Rodriguez
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Elena Camporesi
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Laia Montoliu-Gaya
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Johan Gobom
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Diana Piotrowska
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Maria Olsson
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Irena Matečko Burmann
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Bruno Becker
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ann Brinkmalm
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Björn M Burmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Michael Perkinton
- AstraZeneca Neuroscience Innovative Medicines, MedImmune Ltd, Cambridge, CB21 6GH, UK
| | - Nicholas J Ashton
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, Maurice, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Nick C Fox
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
| |
Collapse
|
4
|
Iyer AK, Vermunt L, Mirfakhar FS, Minaya M, Acquarone M, Koppisetti RK, Renganathan A, You SF, Danhash EP, Verbeck A, Galasso G, Lee SM, Marsh J, Nana AL, Spina S, Seeley WW, Grinberg LT, Temple S, Teunissen CE, Sato C, Karch CM. Cell autonomous microglia defects in a stem cell model of frontotemporal dementia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24307444. [PMID: 38798451 PMCID: PMC11118656 DOI: 10.1101/2024.05.15.24307444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Neuronal dysfunction has been extensively studied as a central feature of neurodegenerative tauopathies. However, across neurodegenerative diseases, there is strong evidence for active involvement of immune cells like microglia in driving disease pathophysiology. Here, we demonstrate that tau mRNA and protein are expressed in microglia in human brains and in human induced pluripotent stem cell (iPSC)-derived microglia like cells (iMGLs). Using iMGLs harboring the MAPT IVS10+16 mutation and isogenic controls, we demonstrate that a tau mutation is sufficient to alter microglial transcriptional states. We discovered that MAPT IVS10+16 microglia exhibit cytoskeletal abnormalities, stalled phagocytosis, disrupted TREM2/TYROBP networks, and altered metabolism. Additionally, we found that secretory factors from MAPT IVS10+16 iMGLs impact neuronal health, reducing synaptic density in neurons. Key features observed in vitro were recapitulated in human brain tissue and cerebrospinal fluid from MAPT mutations carriers. Together, our findings that MAPT IVS10+16 drives cell-intrinsic dysfunction in microglia that impacts neuronal health has major implications for development of therapeutic strategies.
Collapse
Affiliation(s)
- Abhirami K. Iyer
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University, Amsterdam UMC, The Netherlands
| | | | - Miguel Minaya
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Mariana Acquarone
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | | | - Arun Renganathan
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Shih-Feng You
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Emma P. Danhash
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Anthony Verbeck
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Grant Galasso
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Scott M. Lee
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Jacob Marsh
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Alissa L. Nana
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Salvatore Spina
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - William W. Seeley
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Lea T. Grinberg
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of Sao Paulo
| | | | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University, Amsterdam UMC, The Netherlands
| | - Chihiro Sato
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
- The Tracy Family Stable Isotope Labeling Quantitation Center, Washington University in St Louis, St Louis, MO, USA
| | - Celeste M. Karch
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
5
|
Meyer MR, Kirmess KM, Eastwood S, Wente‐Roth TL, Irvin F, Holubasch MS, Venkatesh V, Fogelman I, Monane M, Hanna L, Rabinovici GD, Siegel BA, Whitmer RA, Apgar C, Bateman RJ, Holtzman DM, Irizarry M, Verbel D, Sachdev P, Ito S, Contois J, Yarasheski KE, Braunstein JB, Verghese PB, West T. Clinical validation of the PrecivityAD2 blood test: A mass spectrometry-based test with algorithm combining %p-tau217 and Aβ42/40 ratio to identify presence of brain amyloid. Alzheimers Dement 2024; 20:3179-3192. [PMID: 38491912 PMCID: PMC11095426 DOI: 10.1002/alz.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND With the availability of disease-modifying therapies for Alzheimer's disease (AD), it is important for clinicians to have tests to aid in AD diagnosis, especially when the presence of amyloid pathology is a criterion for receiving treatment. METHODS High-throughput, mass spectrometry-based assays were used to measure %p-tau217 and amyloid beta (Aβ)42/40 ratio in blood samples from 583 individuals with suspected AD (53% positron emission tomography [PET] positive by Centiloid > 25). An algorithm (PrecivityAD2 test) was developed using these plasma biomarkers to identify brain amyloidosis by PET. RESULTS The area under the receiver operating characteristic curve (AUC-ROC) for %p-tau217 (0.94) was statistically significantly higher than that for p-tau217 concentration (0.91). The AUC-ROC for the PrecivityAD2 test output, the Amyloid Probability Score 2, was 0.94, yielding 88% agreement with amyloid PET. Diagnostic performance of the APS2 was similar by ethnicity, sex, age, and apoE4 status. DISCUSSION The PrecivityAD2 blood test showed strong clinical validity, with excellent agreement with brain amyloidosis by PET.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lucy Hanna
- Center for Statistical SciencesBrown University School of Public HealthProvidenceRhode IslandUSA
| | | | | | | | - Charles Apgar
- American College of RadiologyPhiladelphiaPennsylvaniaUSA
| | | | | | | | | | | | | | | | | | | | | | - Tim West
- C2N DiagnosticsSt. LouisMissouriUSA
| |
Collapse
|
6
|
Petersen SI, Okolicsanyi RK, Haupt LM. Exploring Heparan Sulfate Proteoglycans as Mediators of Human Mesenchymal Stem Cell Neurogenesis. Cell Mol Neurobiol 2024; 44:30. [PMID: 38546765 PMCID: PMC10978659 DOI: 10.1007/s10571-024-01463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/19/2024] [Indexed: 04/01/2024]
Abstract
Alzheimer's disease (AD) and traumatic brain injury (TBI) are major public health issues worldwide, with over 38 million people living with AD and approximately 48 million people (27-69 million) experiencing TBI annually. Neurodegenerative conditions are characterised by the accumulation of neurotoxic amyloid beta (Aβ) and microtubule-associated protein Tau (Tau) with current treatments focused on managing symptoms rather than addressing the underlying cause. Heparan sulfate proteoglycans (HSPGs) are a diverse family of macromolecules that interact with various proteins and ligands and promote neurogenesis, a process where new neural cells are formed from stem cells. The syndecan (SDC) and glypican (GPC) HSPGs have been implicated in AD pathogenesis, acting as drivers of disease, as well as potential therapeutic targets. Human mesenchymal stem cells (hMSCs) provide an attractive therapeutic option for studying and potentially treating neurodegenerative diseases due to their relative ease of isolation and subsequent extensive in vitro expansive potential. Understanding how HSPGs regulate protein aggregation, a key feature of neurodegenerative disorders, is essential to unravelling the underlying disease processes of AD and TBI, as well as any link between these two neurological disorders. Further research may validate HSPG, specifically SDCs or GPCs, use as neurodegenerative disease targets, either via driving hMSC stem cell therapy or direct targeting.
Collapse
Affiliation(s)
- Sofia I Petersen
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Rachel K Okolicsanyi
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Kelvin Grove, Australia
| | - Larisa M Haupt
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia.
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Kelvin Grove, Australia.
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Kelvin Grove, Australia.
| |
Collapse
|
7
|
Meeker KL, Luckett PH, Barthélemy NR, Hobbs DA, Chen C, Bollinger J, Ovod V, Flores S, Keefe S, Henson RL, Herries EM, McDade E, Hassenstab JJ, Xiong C, Cruchaga C, Benzinger TLS, Holtzman DM, Schindler SE, Bateman RJ, Morris JC, Gordon BA, Ances BM. Comparison of cerebrospinal fluid, plasma and neuroimaging biomarker utility in Alzheimer's disease. Brain Commun 2024; 6:fcae081. [PMID: 38505230 PMCID: PMC10950051 DOI: 10.1093/braincomms/fcae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/01/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024] Open
Abstract
Alzheimer's disease biomarkers are crucial to understanding disease pathophysiology, aiding accurate diagnosis and identifying target treatments. Although the number of biomarkers continues to grow, the relative utility and uniqueness of each is poorly understood as prior work has typically calculated serial pairwise relationships on only a handful of markers at a time. The present study assessed the cross-sectional relationships among 27 Alzheimer's disease biomarkers simultaneously and determined their ability to predict meaningful clinical outcomes using machine learning. Data were obtained from 527 community-dwelling volunteers enrolled in studies at the Charles F. and Joanne Knight Alzheimer Disease Research Center at Washington University in St Louis. We used hierarchical clustering to group 27 imaging, CSF and plasma measures of amyloid beta, tau [phosphorylated tau (p-tau), total tau t-tau)], neuronal injury and inflammation drawn from MRI, PET, mass-spectrometry assays and immunoassays. Neuropsychological and genetic measures were also included. Random forest-based feature selection identified the strongest predictors of amyloid PET positivity across the entire cohort. Models also predicted cognitive impairment across the entire cohort and in amyloid PET-positive individuals. Four clusters emerged reflecting: core Alzheimer's disease pathology (amyloid and tau), neurodegeneration, AT8 antibody-associated phosphorylated tau sites and neuronal dysfunction. In the entire cohort, CSF p-tau181/Aβ40lumi and Aβ42/Aβ40lumi and mass spectrometry measurements for CSF pT217/T217, pT111/T111, pT231/T231 were the strongest predictors of amyloid PET status. Given their ability to denote individuals on an Alzheimer's disease pathological trajectory, these same markers (CSF pT217/T217, pT111/T111, p-tau/Aβ40lumi and t-tau/Aβ40lumi) were largely the best predictors of worse cognition in the entire cohort. When restricting analyses to amyloid-positive individuals, the strongest predictors of impaired cognition were tau PET, CSF t-tau/Aβ40lumi, p-tau181/Aβ40lumi, CSF pT217/217 and pT205/T205. Non-specific CSF measures of neuronal dysfunction and inflammation were poor predictors of amyloid PET and cognitive status. The current work utilized machine learning to understand the interrelationship structure and utility of a large number of biomarkers. The results demonstrate that, although the number of biomarkers has rapidly expanded, many are interrelated and few strongly predict clinical outcomes. Examining the entire corpus of available biomarkers simultaneously provides a meaningful framework to understand Alzheimer's disease pathobiological change as well as insight into which biomarkers may be most useful in Alzheimer's disease clinical practice and trials.
Collapse
Affiliation(s)
- Karin L Meeker
- Department of Neurology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Patrick H Luckett
- Department of Neurosurgery, Washington University in St Louis, St Louis, MO 63110, USA
| | - Nicolas R Barthélemy
- Department of Neurology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Diana A Hobbs
- Department of Radiology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Charles Chen
- Department of Radiology, Washington University in St Louis, St Louis, MO 63110, USA
| | - James Bollinger
- Department of Neurology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Vitaliy Ovod
- Department of Neurology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Shaney Flores
- Department of Radiology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Sarah Keefe
- Department of Radiology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Rachel L Henson
- Department of Neurology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Elizabeth M Herries
- Department of Neurology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Eric McDade
- Department of Neurology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Jason J Hassenstab
- Department of Neurology, Washington University in St Louis, St Louis, MO 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Chengjie Xiong
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO 63110, USA
- Division of Biostatistics, Washington University in St Louis, St Louis, MO 63110, USA
| | - Carlos Cruchaga
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University in St Louis, St Louis, MO 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Washington University in St Louis, St Louis, MO 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Suzanne E Schindler
- Department of Neurology, Washington University in St Louis, St Louis, MO 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Randall J Bateman
- Department of Neurology, Washington University in St Louis, St Louis, MO 63110, USA
| | - John C Morris
- Department of Neurology, Washington University in St Louis, St Louis, MO 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Brian A Gordon
- Department of Radiology, Washington University in St Louis, St Louis, MO 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Beau M Ances
- Department of Neurology, Washington University in St Louis, St Louis, MO 63110, USA
- Department of Radiology, Washington University in St Louis, St Louis, MO 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
8
|
Malik N, Miah MU, Galgani A, McAleese K, Walker L, LeBeau FE, Attems J, Outeiro TF, Thomas A, Koss DJ. Regional AT-8 reactive tau species correlate with intracellular Aβ levels in cases of low AD neuropathologic change. Acta Neuropathol 2024; 147:40. [PMID: 38353753 PMCID: PMC10866780 DOI: 10.1007/s00401-024-02691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
The amyloid cascade hypothesis states that Aβ aggregates induce pathological changes in tau, leading to neurofibrillary tangles (NFTs) and cell death. A caveat with this hypothesis is the spatio-temporal divide between plaques and NFTs. This has been addressed by the inclusion of soluble Aβ and tau species in the revised amyloid cascade hypothesis. Nevertheless, despite the potential for non-plaque Aβ to contribute to tau pathology, few studies have examined relative correlative strengths between total Aβ, plaque Aβ and intracellular Aβ with tau pathology within a single tissue cohort. Employing frozen and fixed frontal cortex grey and white matter tissue from non-AD controls (Con; n = 39) and Alzheimer's disease (AD) cases (n = 21), biochemical and immunohistochemical (IHC) measures of Aβ and AT-8 phosphorylated tau were assessed. Biochemical native-state dot blots from crude tissue lysates demonstrated robust correlations between total Aβ and AT-8 tau, when considered as a combined cohort (Con and AD) and when as Con and AD cases, separately. In contrast, no associations between Aβ plaques and AT-8 were reported when using IHC measurements in either Con or AD cases. However, when intracellular Aβ was measured via the Aβ specific antibody MOAB-2, a correlative relationship with AT-8 tau was reported in non-AD controls but not in AD cases. Collectively the data suggests that accumulating intracellular Aβ may influence AT-8 pathology, early in AD-related neuropathological change. Despite the lower levels of phospho-tau and Aβ in controls, the robust correlative relationships observed suggest a physiological association of Aβ production and tau phosphorylation, which may be modified during disease. This study is supportive of a revised amyloid cascade hypothesis and demonstrates regional associative relationships between tau pathology and intracellular Aβ, but not extracellular Aβ plaques.
Collapse
Affiliation(s)
- Nauman Malik
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Mohi-Uddin Miah
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Alessandro Galgani
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Kirsty McAleese
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Lauren Walker
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Fiona E LeBeau
- Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Johannes Attems
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Tiago F Outeiro
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alan Thomas
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - David J Koss
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
9
|
Kimura T, Sato H, Kano M, Tatsumi L, Tomita T. Novel aspects of the phosphorylation and structure of pathological tau: implications for tauopathy biomarkers. FEBS Open Bio 2024; 14:181-193. [PMID: 37391389 PMCID: PMC10839341 DOI: 10.1002/2211-5463.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/02/2023] Open
Abstract
The deposition of highly phosphorylated and aggregated tau is a characteristic of tauopathies, including Alzheimer's disease. It has long been known that different isoforms of tau are aggregated in different cell types and brain regions in each tauopathy. Recent advances in analytical techniques revealed the details of the biochemical and structural biological differences of tau specific to each tauopathy. In this review, we explain recent advances in the analysis of post-translational modifications of tau, particularly phosphorylation, brought about by the development of mass-spectrometry and Phos-tag technology. We then discuss the structure of tau filaments in each tauopathy revealed by the advent of cryo-EM. Finally, we describe the progress in biofluid and imaging biomarkers for tauopathy. This review summarizes current efforts to elucidate the characteristics of pathological tau and the landscape of the use of tau as a biomarker to diagnose and determine the pathological stage of tauopathy.
Collapse
Affiliation(s)
- Taeko Kimura
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Haruaki Sato
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Maria Kano
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Lisa Tatsumi
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical SciencesThe University of TokyoJapan
| |
Collapse
|
10
|
Bathla S, Datta D, Liang F, Barthelemy N, Wiseman R, Slusher BS, Asher J, Zeiss C, Ekanayake‐Alper D, Holden D, Terwilliger G, Duque A, Arellano J, van Dyck C, Bateman RJ, Xie Z, Nairn AC, Arnsten AFT. Chronic GCPII (glutamate-carboxypeptidase-II) inhibition reduces pT217Tau levels in the entorhinal and dorsolateral prefrontal cortices of aged macaques. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12431. [PMID: 37915375 PMCID: PMC10617575 DOI: 10.1002/trc2.12431] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 11/03/2023]
Abstract
Introduction Current approaches for treating sporadic Alzheimer's disease (sAD) focus on removal of amyloid beta 1-42 (Aβ1-42) or phosphorylated tau, but additional strategies are needed to reduce neuropathology at earlier stages prior to neuronal damage. Longstanding data show that calcium dysregulation is a key etiological factor in sAD, and the cortical neurons most vulnerable to tau pathology show magnified calcium signaling, for example in dorsolateral prefrontal cortex (dlPFC) and entorhinal cortex (ERC). In primate dlPFC and ERC, type 3 metabotropic glutamate receptors (mGluR3s) are predominately post-synaptic, on spines, where they regulate cAMP-calcium signaling, a process eroded by inflammatory glutamate carboxypeptidase II (GCPII) actions. The current study tested whether enhancing mGluR3 regulation of calcium via chronic inhibition of GCPII would reduce tau hyperphosphorylation in aged macaques with naturally-occurring tau pathology. Methods Aged rhesus macaques were treated daily with the GCPII inhibitor, 2-MPPA (2-3-mercaptopropyl-penanedioic acid (2-MPPA)),Aged rhesus macaques were treated daily with the GCPII inhibitor, 2-MPPA (2-3-mercaptopropyl-penanedioic acid (2-MPPA)). Results Aged macaques that received 2-MPPA had significantly lower pT217Tau levels in dlPFC and ERC, and had lowered plasma pT217Tau levels from baseline. pT217Tau levels correlated significantly with GCPII activity in dlPFC. Both 2-MPPA- and vehicle-treated monkeys showed cognitive improvement; 2-MPPA had no apparent side effects. Exploratory CSF analyses indicated reduced pS202Tau with 2-MPPA administration, confirmed in dlPFC samples. Discussion These data provide proof-of-concept support that GCPII inhibition can reduce tau hyperphosphorylation in the primate cortices most vulnerable in sAD. GCPII inhibition may be particularly helpful in reducing the risk of sAD caused by inflammation. These data in nonhuman primates should encourage future research on this promising mechanism. Highlights Inflammation is a key driver of sporadic Alzheimer's disease.GCPII inflammatory signaling in brain decreases mGluR3 regulation of calcium.Chronic inhibition of GCPII inflammatory signaling reduced pT217Tau in aged monkeys.GCPII inhibition is a novel strategy to help prevent tau pathology at early stages.
Collapse
Affiliation(s)
- Shveta Bathla
- Departments of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Dibyadeep Datta
- Departments of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
- Departments of NeuroscienceYale University School of MedicineNew HavenConnecticutUSA
| | - Feng Liang
- Department of AnesthesiologyHarvard University School of MedicineBostonMassachusettsUSA
| | - Nicolas Barthelemy
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Robyn Wiseman
- Department of Neurology, Johns Hopkins University Drug DiscoveryJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Barbara S Slusher
- Department of Neurology, Johns Hopkins University Drug DiscoveryJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Jennifer Asher
- Departments of Comparative MedicineYale University School of MedicineNew HavenConnecticutUSA
| | - Caroline Zeiss
- Departments of Comparative MedicineYale University School of MedicineNew HavenConnecticutUSA
| | - Dil Ekanayake‐Alper
- Departments of Comparative MedicineYale University School of MedicineNew HavenConnecticutUSA
| | - Daniel Holden
- Departments of RadiologyYale University School of MedicineNew HavenConnecticutUSA
| | - Gordon Terwilliger
- Departments of Comparative MedicineYale University School of MedicineNew HavenConnecticutUSA
| | - Alvaro Duque
- Departments of NeuroscienceYale University School of MedicineNew HavenConnecticutUSA
| | - Jon Arellano
- Departments of NeuroscienceYale University School of MedicineNew HavenConnecticutUSA
| | - Christopher van Dyck
- Departments of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Randall J. Bateman
- Departments of RadiologyYale University School of MedicineNew HavenConnecticutUSA
| | - Zhongcong Xie
- Departments of Comparative MedicineYale University School of MedicineNew HavenConnecticutUSA
| | - Angus C. Nairn
- Departments of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Amy F. T. Arnsten
- Departments of NeuroscienceYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
11
|
Ondrejcak T, Klyubin I, Hu NW, O'Malley TT, Corbett GT, Winters R, Perkinton MS, Billinton A, Prenderville JA, Walsh DM, Rowan MJ. Tau and Amyloid β Protein in Patient-Derived Aqueous Brain Extracts Act Concomitantly to Disrupt Long-Term Potentiation in Vivo. J Neurosci 2023; 43:5870-5879. [PMID: 37491315 PMCID: PMC10423043 DOI: 10.1523/jneurosci.0082-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/07/2023] [Accepted: 07/05/2023] [Indexed: 07/27/2023] Open
Abstract
Amyloid β protein (Aβ) and tau, the two main proteins implicated in causing Alzheimer's disease (AD), are posited to trigger synaptic dysfunction long before significant synaptic loss occurs in vulnerable circuits. Whereas soluble Aβ aggregates from AD brain are well recognized potent synaptotoxins, less is known about the synaptotoxicity of soluble tau from AD or other tauopathy patient brains. Minimally manipulated patient-derived aqueous brain extracts contain the more diffusible native forms of these proteins. Here, we explore how intracerebral injection of Aβ and tau present in such aqueous extracts of patient brain contribute to disruption of synaptic plasticity in the CA1 area of the male rat hippocampus. Aqueous extracts of certain AD brains acutely inhibited long-term potentiation (LTP) of synaptic transmission in a manner that required both Aβ and tau. Tau-containing aqueous extracts of a brain from a patient with Pick's disease (PiD) also impaired LTP, and diffusible tau from either AD or PiD brain lowered the threshold for AD brain Aβ to inhibit LTP. Remarkably, the disruption of LTP persisted for at least 2 weeks after a single injection. These findings support a critical role for diffusible tau in causing rapid onset, persistent synaptic plasticity deficits, and promoting Aβ-mediated synaptic dysfunction.SIGNIFICANCE STATEMENT The microtubule-associated protein tau forms relatively insoluble fibrillar deposits in the brains of people with neurodegenerative diseases including Alzheimer's and Pick's diseases. More soluble aggregates of disease-associated tau may diffuse between cells and could cause damage to synapses in vulnerable circuits. We prepared aqueous extracts of diseased cerebral cortex and tested their ability to interfere with synaptic function in the brains of live rats. Tau in these extracts rapidly and persistently disrupted synaptic plasticity and facilitated impairments caused by amyloid β protein, the other major pathologic protein in Alzheimer's disease. These findings show that certain diffusible forms of tau can mediate synaptic dysfunction and may be a target for therapy.
Collapse
Affiliation(s)
- Tomas Ondrejcak
- Department of Pharmacology & Therapeutics, School of Medicine and Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics, School of Medicine and Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Neng-Wei Hu
- Department of Pharmacology & Therapeutics, School of Medicine and Institute of Neuroscience, Trinity College, Dublin 2, Ireland
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tiernan T O'Malley
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, Massachusetts 02115
| | - Grant T Corbett
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, Massachusetts 02115
| | - Róisín Winters
- Transpharmation Ireland, Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Michael S Perkinton
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca UK, Cambridge, CB21 6GH, United Kingdom
| | - Andy Billinton
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca UK, Cambridge, CB21 6GH, United Kingdom
| | - Jack A Prenderville
- Transpharmation Ireland, Institute of Neuroscience, Trinity College, Dublin 2, Ireland
- Department of Physiology, School of Medicine, Trinity College, Dublin 2, Ireland
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, and Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, Massachusetts 02115
| | - Michael J Rowan
- Department of Pharmacology & Therapeutics, School of Medicine and Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| |
Collapse
|
12
|
Kyalu Ngoie Zola N, Balty C, Pyr Dit Ruys S, Vanparys AAT, Huyghe NDG, Herinckx G, Johanns M, Boyer E, Kienlen-Campard P, Rider MH, Vertommen D, Hanseeuw BJ. Specific post-translational modifications of soluble tau protein distinguishes Alzheimer's disease and primary tauopathies. Nat Commun 2023; 14:3706. [PMID: 37349319 PMCID: PMC10287718 DOI: 10.1038/s41467-023-39328-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
Tau protein aggregates in several neurodegenerative disorders, referred to as tauopathies. The tau isoforms observed in post mortem human brain aggregates is used to classify tauopathies. However, distinguishing tauopathies ante mortem remains challenging, potentially due to differences between insoluble tau in aggregates and soluble tau in body fluids. Here, we demonstrated that tau isoforms differ between tauopathies in insoluble aggregates, but not in soluble brain extracts. We therefore characterized post-translational modifications of both the aggregated and the soluble tau protein obtained from post mortem human brain tissue of patients with Alzheimer's disease, cortico-basal degeneration, Pick's disease, and frontotemporal lobe degeneration. We found specific soluble signatures for each tauopathy and its specific aggregated tau isoforms: including ubiquitination on Lysine 369 for cortico-basal degeneration and acetylation on Lysine 311 for Pick's disease. These findings provide potential targets for future development of fluid-based biomarker assays able to distinguish tauopathies in vivo.
Collapse
Affiliation(s)
- Nathalie Kyalu Ngoie Zola
- Universite catholique de Louvain (UCLouvain) and Institute of Neuroscience (IONS), 1200, Brussels, Belgium
- Universite catholique de Louvain (UCLouvain) and de Duve Institute (DDUV), Protein Phosphorylation (PHOS), 1200, Brussels, Belgium
| | - Clémence Balty
- Universite catholique de Louvain (UCLouvain) and de Duve Institute (DDUV), Protein Phosphorylation (PHOS), 1200, Brussels, Belgium
| | - Sébastien Pyr Dit Ruys
- Universite catholique de Louvain (UClouvain) and Louvain Drug Research Institute (LDRI), Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), 1200, Brussels, Belgium
| | - Axelle A T Vanparys
- Universite catholique de Louvain (UCLouvain) and Institute of Neuroscience (IONS), 1200, Brussels, Belgium
| | - Nicolas D G Huyghe
- Université catholique de Louvain (UCLouvain) and Institut de Recherche Expérimentale et Clinique (IREC), 1200, Brussels, Belgium
| | - Gaëtan Herinckx
- Universite catholique de Louvain (UCLouvain), de Duve Institute (DDUV), and MASSPROT Platform, 1200, Brussels, Belgium
| | - Manuel Johanns
- Universite catholique de Louvain (UCLouvain) and de Duve Institute (DDUV), Protein Phosphorylation (PHOS), 1200, Brussels, Belgium
| | - Emilien Boyer
- Universite catholique de Louvain (UCLouvain) and Institute of Neuroscience (IONS), 1200, Brussels, Belgium
- Cliniques universitaires Saint-Luc, Neurology Department, 1200, Brussels, Belgium
| | - Pascal Kienlen-Campard
- Universite catholique de Louvain (UCLouvain) and Institute of Neuroscience (IONS), 1200, Brussels, Belgium
| | - Mark H Rider
- Universite catholique de Louvain (UCLouvain) and de Duve Institute (DDUV), Protein Phosphorylation (PHOS), 1200, Brussels, Belgium
| | - Didier Vertommen
- Universite catholique de Louvain (UCLouvain), de Duve Institute (DDUV), and MASSPROT Platform, 1200, Brussels, Belgium
| | - Bernard J Hanseeuw
- Universite catholique de Louvain (UCLouvain) and Institute of Neuroscience (IONS), 1200, Brussels, Belgium.
- Cliniques universitaires Saint-Luc, Neurology Department, 1200, Brussels, Belgium.
- Universite catholique de Louvain (UCLouvain), WELBIO department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium.
- Harvard Medical School, Massachusetts General Hospital, Department of Radiology, Gordon Center for Medical Imaging, Boston, MA, USA.
| |
Collapse
|
13
|
Horie K, Li Y, Barthélemy NR, Gordon BA, Hassenstab J, Benzinger TL, Fagan AM, Morris JC, Karch CM, Xiong C, Allegri R, Mendez PC, Ikeuchi T, Kasuga K, Noble J, Farlow M, Chhatwal J, Day GS, Schofield PR, Masters CL, Levin J, Jucker M, Lee JH, Hoon Roh J, Sato C, Sachdev P, Koyama A, Reyderman L, Bateman RJ, McDade E. Change in Cerebrospinal Fluid Tau Microtubule Binding Region Detects Symptom Onset, Cognitive Decline, Tangles, and Atrophy in Dominantly Inherited Alzheimer's Disease. Ann Neurol 2023; 93:1158-1172. [PMID: 36843330 PMCID: PMC10238659 DOI: 10.1002/ana.26620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/28/2023]
Abstract
OBJECTIVE Identifying cerebrospinal fluid measures of the microtubule binding region of tau (MTBR-tau) species that reflect tau aggregation could provide fluid biomarkers that track Alzheimer's disease related neurofibrillary tau pathological changes. We examined the cerebrospinal fluid (CSF) MTBR-tau species in dominantly inherited Alzheimer's disease (DIAD) mutation carriers to assess the association with Alzheimer's disease (AD) biomarkers and clinical symptoms. METHODS Cross-sectional and longitudinal CSF from 229 DIAD mutation carriers and 130 mutation non-carriers had sequential characterization of N-terminal/mid-domain phosphorylated tau (p-tau) followed by MTBR-tau species and tau positron emission tomography (tau PET), other soluble tau and amyloid biomarkers, comprehensive clinical and cognitive assessments, and brain magnetic resonance imaging of atrophy. RESULTS CSF MTBR-tau species located within the putative "border" region and one species corresponding to the "core" region of aggregates in neurofibrillary tangles (NFTs) increased during the presymptomatic stage and decreased during the symptomatic stage. The "border" MTBR-tau species were associated with amyloid pathology and CSF p-tau; whereas the "core" MTBR-tau species were associated stronger with tau PET and CSF measures of neurodegeneration. The ratio of the border to the core species provided a continuous measure of increasing amounts that tracked clinical progression and NFTs. INTERPRETATION Changes in CSF soluble MTBR-tau species preceded the onset of dementia, tau tangle increase, and atrophy in DIAD. The ratio of 4R-specific MTBR-tau (border) to the NFT (core) MTBR-tau species corresponds to the pathology of NFTs in DIAD and change with disease progression. The dynamics between different MTBR-tau species in the CSF may serve as a marker of tau-related disease progression and target engagement of anti-tau therapeutics. ANN NEUROL 2023;93:1158-1172.
Collapse
Affiliation(s)
- Kanta Horie
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Eisai Inc., Nutley, NJ, 07110, USA
- The Tracy Family SILQ Center, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Yan Li
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Nicolas R. Barthélemy
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- The Tracy Family SILQ Center, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Brian A. Gordon
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Tammie. L.S. Benzinger
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Anne M. Fagan
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - John C. Morris
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Celeste M. Karch
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Ricardo Allegri
- Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina
| | - Patricio Chrem Mendez
- Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI) Instituto de Investigaciones Neurológicas Raúl Correa, Buenos Aires, Argentina
| | | | | | - James Noble
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Martin Farlow
- Department of Neurology, Indiana University, Indianapolis, IN 46202, USA
| | - Jasmeer Chhatwal
- Massachusetts General Hospital, Harvard Medical School Boston, MA 02114, USA
| | - Gregory S. Day
- Department of Neurology, Mayo Clinic in Florida, Jacksonville, FL 32224, USA
| | - Peter R. Schofield
- Neuroscience Research Australia, Sydney, 2031 NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, 2052 NSW, Australia
| | - Colin L. Masters
- The Florey Institute and the University of Melbourne, Parkville, Victoria 3010, Australia
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE) Munich, Marchioninistr 15, D-83177 Munchen, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, Ludwig-Maximilians Universität München, Marchioninistr 15, 83177 Munich, Germany
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE) Tübingen; and Hertie-Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, Seoul 05505, Korea
| | - Jee Hoon Roh
- Departments of Biomedical Sciences, Physiology, and Neurology, Korea University College of Medicine, Seoul 02841, Korea
| | - Chihiro Sato
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- The Tracy Family SILQ Center, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | | | | | | | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- The Tracy Family SILQ Center, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Eric McDade
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | | |
Collapse
|
14
|
Sun Z, Kwon JS, Ren Y, Chen S, Cates K, Lu X, Walker CK, Karahan H, Sviben S, Fitzpatrick JAJ, Valdez C, Houlden H, Karch CM, Bateman RJ, Sato C, Mennerick SJ, Diamond MI, Kim J, Tanzi RE, Holtzman DM, Yoo AS. Endogenous recapitulation of Alzheimer's disease neuropathology through human 3D direct neuronal reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542155. [PMID: 37292658 PMCID: PMC10245934 DOI: 10.1101/2023.05.24.542155] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that primarily affects elderly individuals, and is characterized by hallmark neuronal pathologies including extracellular amyloid-β (Aβ) plaque deposition, intracellular tau tangles, and neuronal death. However, recapitulating these age-associated neuronal pathologies in patient-derived neurons has remained a significant challenge, especially for late-onset AD (LOAD), the most common form of the disorder. Here, we applied the high efficiency microRNA-mediated direct neuronal reprogramming of fibroblasts from AD patients to generate cortical neurons in three-dimensional (3D) Matrigel and self-assembled neuronal spheroids. Our findings indicate that neurons and spheroids reprogrammed from both autosomal dominant AD (ADAD) and LOAD patients exhibited AD-like phenotypes linked to neurons, including extracellular Aβ deposition, dystrophic neurites with hyperphosphorylated, K63-ubiquitin-positive, seed-competent tau, and spontaneous neuronal death in culture. Moreover, treatment with β- or γ-secretase inhibitors in LOAD patient-derived neurons and spheroids before Aβ deposit formation significantly lowered Aβ deposition, as well as tauopathy and neurodegeneration. However, the same treatment after the cells already formed Aβ deposits only had a mild effect. Additionally, inhibiting the synthesis of age-associated retrotransposable elements (RTEs) by treating LOAD neurons and spheroids with the reverse transcriptase inhibitor, lamivudine, alleviated AD neuropathology. Overall, our results demonstrate that direct neuronal reprogramming of AD patient fibroblasts in a 3D environment can capture age-related neuropathology and reflect the interplay between Aβ accumulation, tau dysregulation, and neuronal death. Moreover, miRNA-based 3D neuronal conversion provides a human-relevant AD model that can be used to identify compounds that can potentially ameliorate AD-associated pathologies and neurodegeneration.
Collapse
|
15
|
Saunders TS, Pozzolo FE, Heslegrave A, King D, McGeachan RI, Spires-Jones MP, Harris SE, Ritchie C, Muniz-Terrera G, Deary IJ, Cox SR, Zetterberg H, Spires-Jones TL. Predictive blood biomarkers and brain changes associated with age-related cognitive decline. Brain Commun 2023; 5:fcad113. [PMID: 37180996 PMCID: PMC10167767 DOI: 10.1093/braincomms/fcad113] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/28/2022] [Accepted: 04/05/2023] [Indexed: 04/08/2023] Open
Abstract
Growing evidence supports the use of plasma levels of tau phosphorylated at threonine 181, amyloid-β, neurofilament light and glial fibrillary acidic protein as promising biomarkers for Alzheimer's disease. While these blood biomarkers are promising for distinguishing people with Alzheimer's disease from healthy controls, their predictive validity for age-related cognitive decline without dementia remains unclear. Further, while tau phosphorylated at threonine 181 is a promising biomarker, the distribution of this phospho-epitope of tau in the brain is unknown. Here, we tested whether plasma levels of tau phosphorylated at threonine 181, amyloid-β, neurofilament light and fibrillary acidic protein predict cognitive decline between ages 72 and 82 in 195 participants in the Lothian birth cohorts 1936 study of cognitive ageing. We further examined post-mortem brain samples from temporal cortex to determine the distribution of tau phosphorylated at threonine 181 in the brain. Several forms of tau phosphorylated at threonine 181 have been shown to contribute to synapse degeneration in Alzheimer's disease, which correlates closely with cognitive decline in this form of dementia, but to date, there have not been investigations of whether tau phosphorylated at threonine 181 is found in synapses in Alzheimer's disease or healthy ageing brain. It was also previously unclear whether tau phosphorylated at threonine 181 accumulated in dystrophic neurites around plaques, which could contribute to tau leakage to the periphery due to impaired membrane integrity in dystrophies. Brain homogenate and biochemically enriched synaptic fractions were examined with western blot to examine tau phosphorylated at threonine 181 levels between groups (n = 10-12 per group), and synaptic and astrocytic localization of tau phosphorylated at threonine 181 were examined using array tomography (n = 6-15 per group), and localization of tau phosphorylated at threonine 181 in plaque-associated dystrophic neurites with associated gliosis were examined with standard immunofluorescence (n = 8-9 per group). Elevated baseline plasma tau phosphorylated at threonine 181, neurofilament light and fibrillary acidic protein predicted steeper general cognitive decline during ageing. Further, increasing tau phosphorylated at threonine 181 over time predicted general cognitive decline in females only. Change in plasma tau phosphorylated at threonine 181 remained a significant predictor of g factor decline when taking into account Alzheimer's disease polygenic risk score, indicating that the increase of blood tau phosphorylated at threonine 181 in this cohort was not only due to incipient Alzheimer's disease. Tau phosphorylated at threonine 181 was observed in synapses and astrocytes in both healthy ageing and Alzheimer's disease brain. We observed that a significantly higher proportion of synapses contain tau phosphorylated at threonine 181 in Alzheimer's disease relative to aged controls. Aged controls with pre-morbid lifetime cognitive resilience had significantly more tau phosphorylated at threonine 181 in fibrillary acidic protein-positive astrocytes than those with pre-morbid lifetime cognitive decline. Further, tau phosphorylated at threonine 181 was found in dystrophic neurites around plaques and in some neurofibrillary tangles. The presence of tau phosphorylated at threonine 181 in plaque-associated dystrophies may be a source of leakage of tau out of neurons that eventually enters the blood. Together, these data indicate that plasma tau phosphorylated at threonine 181, neurofilament light and fibrillary acidic protein may be useful biomarkers of age-related cognitive decline, and that efficient clearance of tau phosphorylated at threonine 181 by astrocytes may promote cognitive resilience.
Collapse
Affiliation(s)
- Tyler S Saunders
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Edinburgh Dementia Prevention & Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Francesca E Pozzolo
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Amanda Heslegrave
- United Kingdom UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Declan King
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Robert I McGeachan
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Maxwell P Spires-Jones
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Sarah E Harris
- Lothian Birth Cohort studies, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9AD, UK
| | - Craig Ritchie
- Edinburgh Dementia Prevention & Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Graciela Muniz-Terrera
- Edinburgh Dementia Prevention & Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Department of Social Medicine, Ohio University, Athens, Ohio 45701, USA
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago 3485, Chile
| | - Ian J Deary
- Lothian Birth Cohort studies, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9AD, UK
| | - Simon R Cox
- Lothian Birth Cohort studies, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9AD, UK
| | - Henrik Zetterberg
- United Kingdom UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Molndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Molndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Tara L Spires-Jones
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| |
Collapse
|
16
|
Mukherjee S, Dubois C, Perez K, Varghese S, Birchall IE, Leckey M, Davydova N, McLean C, Nisbet RM, Roberts BR, Li QX, Masters CL, Streltsov VA. Quantitative proteomics of tau and Aβ in detergent fractions from Alzheimer's disease brains. J Neurochem 2023; 164:529-552. [PMID: 36271678 DOI: 10.1111/jnc.15713] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/16/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022]
Abstract
The two hallmarks of Alzheimer's disease (AD) are amyloid-β (Aβ) plaques and neurofibrillary tangles marked by phosphorylated tau. Increasing evidence suggests that aggregating Aβ drives tau accumulation, a process that involves synaptic degeneration leading to cognitive impairment. Conversely, there is a realization that non-fibrillar (oligomeric) forms of Aβ mediate toxicity in AD. Fibrillar (filamentous) aggregates of proteins across the spectrum of the primary and secondary tauopathies were the focus of recent structural studies with a filament structure-based nosologic classification, but less emphasis was given to non-filamentous co-aggregates of insoluble proteins in the fractions derived from post-mortem human brains. Here, we revisited sarkosyl-soluble and -insoluble extracts to characterize tau and Aβ species by quantitative targeted mass spectrometric proteomics, biochemical assays, and electron microscopy. AD brain sarkosyl-insoluble pellets were greatly enriched with Aβ42 at almost equimolar levels to N-terminal truncated microtubule-binding region (MTBR) isoforms of tau with multiple site-specific post-translational modifications (PTMs). MTBR R3 and R4 tau peptides were most abundant in the sarkosyl-insoluble materials with a 10-fold higher concentration than N-terminal tau peptides. This indicates that the major proportion of the enriched tau was the aggregation-prone N-terminal and proline-rich region (PRR) of truncated mixed 4R and 3R tau with more 4R than 3R isoforms. High concentration and occupancies of site-specific phosphorylation pT181 (~22%) and pT217 (~16%) (key biomarkers of AD) along with other PTMs in the PRR and MTBR indicated a regional susceptibility of PTMs in aggregated tau. Immunogold labelling revealed that tau may exist in globular non-filamentous form (N-terminal intact tau) co-localized with Aβ in the sarkosyl-insoluble pellets along with tau filaments (N-truncated MTBR tau). Our results suggest a model that Aβ and tau interact forming globular aggregates, from which filamentous tau and Aβ emerge. These characterizations contribute towards unravelling the sequence of events which lead to end-stage AD changes.
Collapse
Affiliation(s)
- Soumya Mukherjee
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Celine Dubois
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Keyla Perez
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Shiji Varghese
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Ian E Birchall
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Miranda Leckey
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Natalia Davydova
- National Deuteration Facility, Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales, Australia
| | - Catriona McLean
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia.,Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria, Australia
| | - Rebecca M Nisbet
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Blaine R Roberts
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Qiao-Xin Li
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Victor A Streltsov
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
17
|
Horie K, Barthélemy NR, Spina S, VandeVrede L, He Y, Paterson RW, Wright BA, Day GS, Davis AA, Karch CM, Seeley WW, Perrin RJ, Koppisetti RK, Shaikh F, Lago AL, Heuer HW, Ghoshal N, Gabelle A, Miller BL, Boxer AL, Bateman RJ, Sato C. CSF tau microtubule-binding region identifies pathological changes in primary tauopathies. Nat Med 2022; 28:2547-2554. [PMID: 36424467 PMCID: PMC9800273 DOI: 10.1038/s41591-022-02075-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/05/2022] [Indexed: 11/27/2022]
Abstract
Despite recent advances in fluid biomarker research in Alzheimer's disease (AD), there are no fluid biomarkers or imaging tracers with utility for diagnosis and/or theragnosis available for other tauopathies. Using immunoprecipitation and mass spectrometry, we show that 4 repeat (4R) isoform-specific tau species from microtubule-binding region (MTBR-tau275 and MTBR-tau282) increase in the brains of corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), frontotemporal lobar degeneration (FTLD)-MAPT and AD but decrease inversely in the cerebrospinal fluid (CSF) of CBD, FTLD-MAPT and AD compared to control and other FTLD-tau (for example, Pick's disease). CSF MTBR-tau measures are reproducible in repeated lumbar punctures and can be used to distinguish CBD from control (receiver operating characteristic area under the curve (AUC) = 0.889) and other FTLD-tau, such as PSP (AUC = 0.886). CSF MTBR-tau275 and MTBR-tau282 may represent the first affirmative biomarkers to aid in the diagnosis of primary tauopathies and facilitate clinical trial designs.
Collapse
Affiliation(s)
- Kanta Horie
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- The Tracy Family Stable Isotope Labeling Quantitation Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicolas R Barthélemy
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- The Tracy Family Stable Isotope Labeling Quantitation Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Salvatore Spina
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Lawren VandeVrede
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Yingxin He
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- The Tracy Family Stable Isotope Labeling Quantitation Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ross W Paterson
- Department of Neurology, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - Brenton A Wright
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Gregory S Day
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Albert A Davis
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, St. Louis, MO, USA
| | - Celeste M Karch
- Hope Center for Neurological Disorders, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - William W Seeley
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Richard J Perrin
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rama K Koppisetti
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Faris Shaikh
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Argentina Lario Lago
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Hilary W Heuer
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Nupur Ghoshal
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Audrey Gabelle
- Memory Research and Resources Center, Department of Neurology, University Hospital of Montpellier, Neurosciences Institute of Montpellier, University of Montpellier, Montpellier, France
| | - Bruce L Miller
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Adam L Boxer
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
- The Tracy Family Stable Isotope Labeling Quantitation Center, Washington University School of Medicine, St. Louis, MO, USA.
- Hope Center for Neurological Disorders, St. Louis, MO, USA.
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.
| | - Chihiro Sato
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
- The Tracy Family Stable Isotope Labeling Quantitation Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
18
|
Strain JF, Barthelemy N, Horie K, Gordon BA, Kilgore C, Aschenbrenner A, Cruchaga C, Xiong C, Joseph-Mathurin N, Hassenstab J, Fagan AM, Li Y, Karch CM, Perrin RJ, Berman SB, Chhatwal JP, Graff-Radford NR, Mori H, Levin J, Noble JM, Allegri R, Schofield PR, Marcus DS, Holtzman DM, Morris JC, Benzinger TLS, McDade EM, Bateman RJ, Ances BM. CSF Tau phosphorylation at Thr205 is associated with loss of white matter integrity in autosomal dominant Alzheimer disease. Neurobiol Dis 2022; 168:105714. [PMID: 35358703 PMCID: PMC9701560 DOI: 10.1016/j.nbd.2022.105714] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/26/2022] [Accepted: 03/25/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Hyperphosphorylation of tau leads to conformational changes that destabilize microtubules and hinder axonal transport in Alzheimer's disease (AD). However, it remains unknown whether white matter (WM) decline due to AD is associated with specific Tau phosphorylation site(s). METHODS In autosomal dominant AD (ADAD) mutation carriers (MC) and non-carriers (NC) we compared cerebrospinal fluid (CSF) phosphorylation at tau sites (pT217, pT181, pS202, and pT205) and total tau with WM measures, as derived from diffusion tensor imaging (DTI), and cognition. A WM composite metric, derived from a principal component analysis, was used to identify spatial decline seen in ADAD. RESULTS The WM composite explained over 70% of the variance in MC. WM regions that strongly contributed to the spatial topography were located in callosal and cingulate regions. Loss of integrity within the WM composite was strongly associated with AD progression in MC as defined by the estimated years to onset (EYO) and cognitive decline. A linear regression demonstrated that amyloid, gray matter atrophy and phosphorylation at CSF tau site pT205 each uniquely explained a reduction in the WM composite within MC that was independent of vascular changes (white matter hyperintensities), and age. Hyperphosphorylation of CSF tau at other sites and total tau did not significantly predict WM composite loss. CONCLUSIONS We identified a site-specific relationship between CSF phosphorylated tau and WM decline within MC. The presence of both amyloid deposition and Tau phosphorylation at pT205 were associated with WM composite loss. These findings highlight a primary AD-specific mechanism for WM dysfunction that is tightly coupled to symptom manifestation and cognitive decline.
Collapse
Affiliation(s)
- Jeremy F Strain
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Nicolas Barthelemy
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Kanta Horie
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Brian A Gordon
- Department of Neurology, Washington University, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA; Department of Psychological & Brain Sciences, Washington University, St. Louis, MO 63110, USA
| | - Collin Kilgore
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | | | - Carlos Cruchaga
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Chengjie Xiong
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA; Osaka City University School of Medicine Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Nelly Joseph-Mathurin
- Department of Radiology, Washington University, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA; Osaka City University School of Medicine Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Anne M Fagan
- Department of Neurology, Washington University, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA
| | - Yan Li
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Celeste M Karch
- Department of Radiology, Washington University, St. Louis, MO 63110, USA
| | - Richard J Perrin
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Sarah B Berman
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jasmeer P Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Hiroshi Mori
- Osaka City University School of Medicine Asahimachi, Abenoku, Osaka 545-8585, Japan
| | - Johannes Levin
- German Center for Neurodegenerative Disease (DZNE) Munich, Munich, Germany
| | - James M Noble
- Department of Neurology, Columbia University, New York, NY 100310, USA
| | - Ricardo Allegri
- School of Medicine, Universidad de Buenos Aires, Viamonte 430, C1053 CABA, Argentina
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia; Hope Center for Neurological Disorders, Washington University, St. Louis, MO 63100, USA
| | - Daniel S Marcus
- Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Washington University, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA
| | - John C Morris
- Department of Neurology, Washington University, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA
| | - Eric M McDade
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Randall J Bateman
- Department of Neurology, Washington University, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA
| | - Beau M Ances
- Department of Neurology, Washington University, St. Louis, MO 63110, USA; Department of Radiology, Washington University, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
19
|
Capano LS, Sato C, Ficulle E, Yu A, Horie K, Kwon JS, Burbach KF, Barthélemy NR, Fox SG, Karch CM, Bateman RJ, Houlden H, Morimoto RI, Holtzman DM, Duff KE, Yoo AS. Recapitulation of endogenous 4R tau expression and formation of insoluble tau in directly reprogrammed human neurons. Cell Stem Cell 2022; 29:918-932.e8. [PMID: 35659876 PMCID: PMC9176216 DOI: 10.1016/j.stem.2022.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/21/2022] [Accepted: 04/27/2022] [Indexed: 01/07/2023]
Abstract
Tau is a microtubule-binding protein expressed in neurons, and the equal ratios between 4-repeat (4R) and 3-repeat (3R) isoforms are maintained in normal adult brain function. Dysregulation of 3R:4R ratio causes tauopathy, and human neurons that recapitulate tau isoforms in health and disease will provide a platform for elucidating pathogenic processes involving tau pathology. We carried out extensive characterizations of tau isoforms expressed in human neurons derived by microRNA-induced neuronal reprogramming of adult fibroblasts. Transcript and protein analyses showed that miR neurons expressed all six isoforms with the 3R:4R isoform ratio equivalent to that detected in human adult brains. Also, miR neurons derived from familial tauopathy patients with a 3R:4R ratio altering mutation showed increased 4R tau and the formation of insoluble tau with seeding activity. Our results collectively demonstrate the utility of miRNA-induced neuronal reprogramming to recapitulate endogenous tau regulation comparable with the adult brain in health and disease.
Collapse
Affiliation(s)
- Lucia S Capano
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Molecular and Cell Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chihiro Sato
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elena Ficulle
- UK Dementia Research Institute at University College London, London WC1E 6BT, UK
| | - Anan Yu
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | - Kanta Horie
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ji-Sun Kwon
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Computational and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kyle F Burbach
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Molecular Genetics and Genomics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicolas R Barthélemy
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan G Fox
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | - Celeste M Karch
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Knight ADRC, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Knight ADRC, St. Louis, MO 63110, USA
| | - Henry Houlden
- UK Dementia Research Institute at University College London, London WC1E 6BT, UK
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208, USA
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Knight ADRC, St. Louis, MO 63110, USA
| | - Karen E Duff
- UK Dementia Research Institute at University College London, London WC1E 6BT, UK.
| | - Andrew S Yoo
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Knight ADRC, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Li W, Yang D, Yan C, Chen M, Li Q, Zhu W, Wu G. Characterizing Network Selectiveness to the Dynamic Spreading of Neuropathological Events in Alzheimer's Disease. J Alzheimers Dis 2022; 86:1805-1816. [PMID: 35253761 PMCID: PMC9482760 DOI: 10.3233/jad-215596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Mounting evidence shows that the neuropathological burdens manifest preference in affecting brain regions during the dynamic progression of Alzheimer's disease (AD). Since the distinct brain regions are physically wired by white matter fibers, it is reasonable to hypothesize the differential spreading pattern of neuropathological burdens may underlie the wiring topology, which can be characterized using neuroimaging and network science technologies. OBJECTIVE To study the dynamic spreading patterns of neuropathological events in AD. METHODS We first examine whether hub nodes with high connectivity in the brain network (assemble of white matter wirings) are susceptible to a higher level of pathological burdens than other regions that are less involved in the process of information exchange in the network. Moreover, we propose a novel linear mixed-effect model to characterize the multi-factorial spreading process of neuropathological burdens from hub nodes to non-hub nodes, where age, sex, and APOE4 indicators are considered as confounders. We apply our statistical model to the longitudinal neuroimaging data of amyloid-PET and tau-PET, respectively. RESULTS Our meta-data analysis results show that 1) AD differentially affects hub nodes with a significantly higher level of pathology, and 2) the longitudinal increase of neuropathological burdens on non-hub nodes is strongly correlated with the connectome distance to hub nodes rather than the spatial proximity. CONCLUSION The spreading pathway of AD neuropathological burdens might start from hub regions and propagate through the white matter fibers in a prion-like manner.
Collapse
Affiliation(s)
- Wenchao Li
- Intelligent Information Processing Laboratory, Hangzhou Dianzi University, Hangzhou, China
| | - Defu Yang
- Intelligent Information Processing Laboratory, Hangzhou Dianzi University, Hangzhou, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Chenggang Yan
- Intelligent Information Processing Laboratory, Hangzhou Dianzi University, Hangzhou, China
| | - Minghan Chen
- Department of Computer Science, Wake Forest University, Winston-Salem, NC, USA
| | - Quefeng Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wentao Zhu
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Guorong Wu
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Lantero‐Rodriguez J, Snellman A, Benedet AL, Milà‐Alomà M, Camporesi E, Montoliu‐Gaya L, Ashton NJ, Vrillon A, Karikari TK, Gispert JD, Salvadó G, Shekari M, Toomey CE, Lashley TL, Zetterberg H, Suárez‐Calvet M, Brinkmalm G, Rosa Neto P, Blennow K. P-tau235: a novel biomarker for staging preclinical Alzheimer's disease. EMBO Mol Med 2021; 13:e15098. [PMID: 34725927 PMCID: PMC8649868 DOI: 10.15252/emmm.202115098] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/05/2022] Open
Abstract
Alzheimer's disease (AD) is characterised by a long preclinical phase. Although phosphorylated tau (p-tau) species such as p-tau217 and p-tau231 provide accurate detection of early pathological changes, other biomarkers capable of staging disease progression during preclinical AD are still needed. Combining exploratory and targeted mass spectrometry methods in neuropathologically confirmed brain tissue, we observed that p-tau235 is a prominent feature of AD pathology. In addition, p-tau235 seemed to be preceded by p-tau231, in what appeared to be a sequential phosphorylation event. To exploit its biomarker potential in cerebrospinal fluid (CSF), we developed and validated a new p-tau235 Simoa assay. Using three clinical cohorts, we demonstrated that (i) CSF p-235 increases early in AD continuum, and (ii) changes in CSF p-tau235 and p-tau231 levels during preclinical AD are consistent with the sequential phosphorylation evidence in AD brain. In conclusion, CSF p-tau235 appears to be not only a highly specific biomarker of AD but also a promising staging biomarker for the preclinical phase. Thus, it could prove useful tracking disease progression and help enriching clinical trial recruitment.
Collapse
|
22
|
Barthélemy NR, Toth B, Manser PT, Sanabria-Bohórquez S, Teng E, Keeley M, Bateman RJ, Weimer RM, Wildsmith KR. Site-Specific Cerebrospinal Fluid Tau Hyperphosphorylation in Response to Alzheimer's Disease Brain Pathology: Not All Tau Phospho-Sites are Hyperphosphorylated. J Alzheimers Dis 2021; 85:415-429. [PMID: 34806603 PMCID: PMC8842784 DOI: 10.3233/jad-210677] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Understanding patterns of association between CSF phosphorylated tau (p-tau) species and clinical disease severity will aid Alzheimer's disease (AD) diagnosis and treatment. OBJECTIVE To evaluate changes in tau phosphorylation ratios to brain imaging (amyloid PET, [18F]GTP1 PET, and MRI) and cognition across clinical stages of AD in two different cohorts. METHODS A mass spectrometry (MS)-based method was used to evaluate the relationship between p-tau/tau phosphorylation ratios on 11 sites in CSF and AD pathology measured by tau PET ([18F]GTP1) and amyloid PET ([18F]florbetapir or [18F]florbetaben). Cohort A included cognitively normal-amyloid negative (n = 6) and positive (n = 5) individuals, and amyloid positive prodromal (n = 13), mild (n = 12), and moderate AD patients (n = 10); and Cohort B included amyloid positive prodromal (n = 24) and mild (n = 40) AD patients. RESULTS In this cross-sectional analysis, we identified clusters of phosphosites with different profiles of phosphorylation ratios across stages of disease. Eight of 11 investigated sites were hyperphosphorylated and associated with the SUVR measures from [18F]GTP1 and amyloid PET. Novel sites 111, 153, and 208 may be relevant biomarkers for AD diagnosis to complement tau hyperphosphorylation measures on previously established sites 181, 205, 217, and 231. Hypophosphorylation was detected on residues 175, 199, and 202, and was inversely associated with [18F]GTP1 and amyloid PET. CONCLUSION Hyperphosphorylated and hypophosphorylated forms of tau are associated with AD pathologies, and due to their different site-specific profiles, they may be used in combination to assist with staging of disease.
Collapse
Affiliation(s)
| | - Balazs Toth
- Clinical Biostatistics, Genentech, Inc., South San Francisco, CA, USA
| | - Paul T Manser
- Clinical Biostatistics, Genentech, Inc., South San Francisco, CA, USA
| | | | - Edmond Teng
- Early Clinical Development, Genentech, Inc., South San Francisco, CA, USA
| | - Michael Keeley
- Portfolio Management and Operations, Genentech, Inc., South San Francisco, CA, USA
| | - Randall J Bateman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Robby M Weimer
- Department of Biomedical Imaging, Genentech, Inc., South San Francisco, CA, USA
| | | |
Collapse
|
23
|
Leuzy A, Janelidze S, Mattsson-Carlgren N, Palmqvist S, Jacobs D, Cicognola C, Stomrud E, Vanmechelen E, Dage JL, Hansson O. Comparing the Clinical Utility and Diagnostic Performance of CSF P-Tau181, P-Tau217, and P-Tau231 Assays. Neurology 2021; 97:e1681-e1694. [PMID: 34493616 PMCID: PMC8605616 DOI: 10.1212/wnl.0000000000012727] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 08/19/2021] [Indexed: 12/30/2022] Open
Abstract
Background and Objectives Phosphorylated tau (p-tau) in CSF is considered an important biomarker in Alzheimer disease (AD) and has been incorporated in recent diagnostic criteria. Several variants exist, including p-tau at threonines 181 (p-tau181), 217 (p-tau217), and 231 (p-tau231). However, no studies have compared their diagnostic performance or association to β-amyloid (Aβ) and tau-PET. Understanding which p-tau variant to use remains an important yet answered question. We aimed to compare the diagnostic accuracy of p-tau181, p-tau217, and p-tau231 in CSF for AD and their association with Aβ and tau-PET. Methods A total of 629 participants in the Swedish BioFINDER-2 study were included (cognitively unimpaired, n = 334; Aβ-positive mild cognitive impairment, n = 84; AD dementia, n = 119; and non-AD disorders, n = 92). In addition to p-tau181 and p-tau217 measured using assays with the same detector antibodies from Eli Lilly (p-tau181Lilly, p-tau217Lilly) and p-tau231, we also included p-tau181 measurements from 2 commonly used assays (Innotest and Elecsys). Results Although all p-tau variants increased across the AD continuum, p-tau217Lilly showed the greatest dynamic range (13-fold increase vs 1.9–5.4-fold increase for other p-tau variants for AD dementia vs non-AD). P-Tau217Lilly showed stronger correlations with Aβ- and tau-PET (p < 0.0001). P-Tau217Lilly exhibited higher accuracy than other p-tau variants for separating AD dementia from non-AD (area under the curve [AUC], 0.98 vs 0.88 [p < 0.0001] - 0.96 [p < 0.05]) and for identifying Aβ-PET (AUC, 0.86 vs 0.74 [p < 0.0001] and 0.83 [p < 0.001]) and tau-PET positivity (AUC, 0.94 vs 0.80—0.92, p < 0.0001). Finally, p-Tau181Lilly generally performed better than the other p-tau181 assays (e.g., AD dementia vs non-AD, AUC, 0.96 vs 0.88 [p-tau181Innotest] and 0.89 [p-tau181Elecsys]; p < 0.0001). Discussion CSF p-tau217Lilly seems to be more useful than other included p-tau assays in the workup of AD. Varied results across p-tau181 assays highlights the importance of anti-tau antibodies for biomarker performance. Classification of Evidence This study provides Class II evidence that p-tau217 provides higher diagnostic accuracy for diagnosis of AD dementia than p-tau181 or p-tau231.
Collapse
Affiliation(s)
- Antoine Leuzy
- From the Clinical Memory Research Unit (A.L., S.J., N.M.-C., S.P., C.C., E.S., O.H.), Department of Clinical Sciences, Lund University, Malmö; Department of Neurology (N.M.-C.) and Memory Clinic (S.P., E.S., O.H.), Skåne University Hospital, Lund; Wallenberg Centre for Molecular Medicine (N.M.-C.), Lund University, Sweden; ADx NeuroSciences NV (D.J., E.V.), Ghent, Belgium; and Eli Lilly and Company (J.L.D.), Indianapolis, IN.
| | - Shorena Janelidze
- From the Clinical Memory Research Unit (A.L., S.J., N.M.-C., S.P., C.C., E.S., O.H.), Department of Clinical Sciences, Lund University, Malmö; Department of Neurology (N.M.-C.) and Memory Clinic (S.P., E.S., O.H.), Skåne University Hospital, Lund; Wallenberg Centre for Molecular Medicine (N.M.-C.), Lund University, Sweden; ADx NeuroSciences NV (D.J., E.V.), Ghent, Belgium; and Eli Lilly and Company (J.L.D.), Indianapolis, IN
| | - Niklas Mattsson-Carlgren
- From the Clinical Memory Research Unit (A.L., S.J., N.M.-C., S.P., C.C., E.S., O.H.), Department of Clinical Sciences, Lund University, Malmö; Department of Neurology (N.M.-C.) and Memory Clinic (S.P., E.S., O.H.), Skåne University Hospital, Lund; Wallenberg Centre for Molecular Medicine (N.M.-C.), Lund University, Sweden; ADx NeuroSciences NV (D.J., E.V.), Ghent, Belgium; and Eli Lilly and Company (J.L.D.), Indianapolis, IN
| | - Sebastian Palmqvist
- From the Clinical Memory Research Unit (A.L., S.J., N.M.-C., S.P., C.C., E.S., O.H.), Department of Clinical Sciences, Lund University, Malmö; Department of Neurology (N.M.-C.) and Memory Clinic (S.P., E.S., O.H.), Skåne University Hospital, Lund; Wallenberg Centre for Molecular Medicine (N.M.-C.), Lund University, Sweden; ADx NeuroSciences NV (D.J., E.V.), Ghent, Belgium; and Eli Lilly and Company (J.L.D.), Indianapolis, IN
| | - Dirk Jacobs
- From the Clinical Memory Research Unit (A.L., S.J., N.M.-C., S.P., C.C., E.S., O.H.), Department of Clinical Sciences, Lund University, Malmö; Department of Neurology (N.M.-C.) and Memory Clinic (S.P., E.S., O.H.), Skåne University Hospital, Lund; Wallenberg Centre for Molecular Medicine (N.M.-C.), Lund University, Sweden; ADx NeuroSciences NV (D.J., E.V.), Ghent, Belgium; and Eli Lilly and Company (J.L.D.), Indianapolis, IN
| | - Claudia Cicognola
- From the Clinical Memory Research Unit (A.L., S.J., N.M.-C., S.P., C.C., E.S., O.H.), Department of Clinical Sciences, Lund University, Malmö; Department of Neurology (N.M.-C.) and Memory Clinic (S.P., E.S., O.H.), Skåne University Hospital, Lund; Wallenberg Centre for Molecular Medicine (N.M.-C.), Lund University, Sweden; ADx NeuroSciences NV (D.J., E.V.), Ghent, Belgium; and Eli Lilly and Company (J.L.D.), Indianapolis, IN
| | - Erik Stomrud
- From the Clinical Memory Research Unit (A.L., S.J., N.M.-C., S.P., C.C., E.S., O.H.), Department of Clinical Sciences, Lund University, Malmö; Department of Neurology (N.M.-C.) and Memory Clinic (S.P., E.S., O.H.), Skåne University Hospital, Lund; Wallenberg Centre for Molecular Medicine (N.M.-C.), Lund University, Sweden; ADx NeuroSciences NV (D.J., E.V.), Ghent, Belgium; and Eli Lilly and Company (J.L.D.), Indianapolis, IN
| | - Eugeen Vanmechelen
- From the Clinical Memory Research Unit (A.L., S.J., N.M.-C., S.P., C.C., E.S., O.H.), Department of Clinical Sciences, Lund University, Malmö; Department of Neurology (N.M.-C.) and Memory Clinic (S.P., E.S., O.H.), Skåne University Hospital, Lund; Wallenberg Centre for Molecular Medicine (N.M.-C.), Lund University, Sweden; ADx NeuroSciences NV (D.J., E.V.), Ghent, Belgium; and Eli Lilly and Company (J.L.D.), Indianapolis, IN
| | - Jeffrey L Dage
- From the Clinical Memory Research Unit (A.L., S.J., N.M.-C., S.P., C.C., E.S., O.H.), Department of Clinical Sciences, Lund University, Malmö; Department of Neurology (N.M.-C.) and Memory Clinic (S.P., E.S., O.H.), Skåne University Hospital, Lund; Wallenberg Centre for Molecular Medicine (N.M.-C.), Lund University, Sweden; ADx NeuroSciences NV (D.J., E.V.), Ghent, Belgium; and Eli Lilly and Company (J.L.D.), Indianapolis, IN
| | - Oskar Hansson
- From the Clinical Memory Research Unit (A.L., S.J., N.M.-C., S.P., C.C., E.S., O.H.), Department of Clinical Sciences, Lund University, Malmö; Department of Neurology (N.M.-C.) and Memory Clinic (S.P., E.S., O.H.), Skåne University Hospital, Lund; Wallenberg Centre for Molecular Medicine (N.M.-C.), Lund University, Sweden; ADx NeuroSciences NV (D.J., E.V.), Ghent, Belgium; and Eli Lilly and Company (J.L.D.), Indianapolis, IN.
| |
Collapse
|
24
|
Sato C, Mallipeddi N, Ghoshal N, Wright BA, Day GS, Davis AA, Kim AH, Zipfel GJ, Bateman RJ, Gabelle A, Barthélemy NR. MAPT R406W increases tau T217 phosphorylation in absence of amyloid pathology. Ann Clin Transl Neurol 2021; 8:1817-1830. [PMID: 34342183 PMCID: PMC8419397 DOI: 10.1002/acn3.51435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 01/07/2023] Open
Abstract
Objective Tau hyperphosphorylation at threonine 217 (pT217) in cerebrospinal fluid (CSF) has recently been linked to early amyloidosis and could serve as a highly sensitive biomarker for Alzheimer’s disease (AD). However, it remains unclear whether other tauopathies induce pT217 modifications. To determine if pT217 modification is specific to AD, CSF pT217 was measured in AD and other tauopathies. Methods Using immunoprecipitation and mass spectrometry methods, we compared CSF T217 phosphorylation occupancy (pT217/T217) and amyloid‐beta (Aβ) 42/40 ratio in cognitively normal individuals and those with symptomatic AD, progressive supranuclear palsy, corticobasal syndrome, and sporadic and familial frontotemporal dementia. Results Individuals with AD had high CSF pT217/T217 and low Aβ42/40. In contrast, cognitively normal individuals and the majority of those with 4R tauopathies had low CSF pT217/T217 and normal Aβ 42/40. We identified a subgroup of individuals with increased CSF pT217/T217 and normal Aβ 42/40 ratio, most of whom were MAPT R406W mutation carriers. Diagnostic accuracies of CSF Aβ 42/40 and CSF pT217/T217, alone and in combination were compared. We show that CSF pT217/T217 × CSF Aβ 42/40 is a sensitive composite biomarker that can separate MAPT R406W carriers from cognitively normal individuals and those with other tauopathies. Interpretation MAPT R406W is a tau mutation that leads to 3R+4R tauopathy similar to AD, but without amyloid neuropathology. These findings suggest that change in CSF pT217/T217 ratio is not specific to AD and might reflect common downstream tau pathophysiology common to 3R+4R tauopathies.
Collapse
Affiliation(s)
- Chihiro Sato
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Nipun Mallipeddi
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Nupur Ghoshal
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.,Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Brenton A Wright
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, California
| | - Gregory S Day
- Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida
| | - Albert A Davis
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri
| | - Albert H Kim
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri.,Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Gregory J Zipfel
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri.,Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri.,Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri
| | - Audrey Gabelle
- Department of Neurology, Memory Research and Resources Center, University Hospital of Montpellier, Neurosciences Institute of Montpellier, University of Montpellier, Montpellier, France
| | - Nicolas R Barthélemy
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
25
|
Ashton NJ, Pascoal TA, Karikari TK, Benedet AL, Lantero-Rodriguez J, Brinkmalm G, Snellman A, Schöll M, Troakes C, Hye A, Gauthier S, Vanmechelen E, Zetterberg H, Rosa-Neto P, Blennow K. Plasma p-tau231: a new biomarker for incipient Alzheimer's disease pathology. Acta Neuropathol 2021; 141:709-724. [PMID: 33585983 PMCID: PMC8043944 DOI: 10.1007/s00401-021-02275-6] [Citation(s) in RCA: 299] [Impact Index Per Article: 99.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 01/31/2023]
Abstract
The quantification of phosphorylated tau in biofluids, either cerebrospinal fluid (CSF) or plasma, has shown great promise in detecting Alzheimer's disease (AD) pathophysiology. Tau phosphorylated at threonine 231 (p-tau231) is one such biomarker in CSF but its usefulness as a blood biomarker is currently unknown. Here, we developed an ultrasensitive Single molecule array (Simoa) for the quantification of plasma p-tau231 which was validated in four independent cohorts (n = 588) in different settings, including the full AD continuum and non-AD neurodegenerative disorders. Plasma p-tau231 was able to identify patients with AD and differentiate them from amyloid-β negative cognitively unimpaired (CU) older adults with high accuracy (AUC = 0.92-0.94). Plasma p-tau231 also distinguished AD patients from patients with non-AD neurodegenerative disorders (AUC = 0.93), as well as from amyloid-β negative MCI patients (AUC = 0.89). In a neuropathology cohort, plasma p-tau231 in samples taken on avergae 4.2 years prior to post-mortem very accurately identified AD neuropathology in comparison to non-AD neurodegenerative disorders (AUC = 0.99), this is despite all patients being given an AD dementia diagnosis during life. Plasma p-tau231 was highly correlated with CSF p-tau231, tau pathology as assessed by [18F]MK-6240 positron emission tomography (PET), and brain amyloidosis by [18F]AZD469 PET. Remarkably, the inflection point of plasma p-tau231, increasing as a function of continuous [18F]AZD469 amyloid-β PET standardized uptake value ratio, was shown to be earlier than standard thresholds of amyloid-β PET positivity and the increase of plasma p-tau181. Furthermore, plasma p-tau231 was significantly increased in amyloid-β PET quartiles 2-4, whereas CSF p-tau217 and plasma p-tau181 increased only at quartiles 3-4 and 4, respectively. Finally, plasma p-tau231 differentiated individuals across the entire Braak stage spectrum, including Braak staging from Braak 0 through Braak I-II, which was not observed for plasma p-tau181. To conclude, this novel plasma p-tau231 assay identifies the clinical stages of AD and neuropathology equally well as plasma p-tau181, but increases earlier, already with subtle amyloid-β deposition, prior to the threshold for amyloid-β PET positivity has been attained, and also in response to early brain tau deposition. Thus, plasma p-tau231 is a promising novel biomarker of emerging AD pathology with the potential to facilitate clinical trials to identify vulnerable populations below PET threshold of amyloid-β positivity or apparent entorhinal tau deposition.
Collapse
Affiliation(s)
- Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK.
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK.
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
- Department of Psychiatry and Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Anniina Snellman
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Abdul Hye
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Serge Gauthier
- Alzheimer's Disease Research Unit, The McGill University Research Centre for Studies in Aging, Montreal, McGill University, Montreal, QC, Canada
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Pedro Rosa-Neto
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Montreal Neurological Institute, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
| |
Collapse
|
26
|
Wegmann S, Biernat J, Mandelkow E. A current view on Tau protein phosphorylation in Alzheimer's disease. Curr Opin Neurobiol 2021; 69:131-138. [PMID: 33892381 DOI: 10.1016/j.conb.2021.03.003] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022]
Abstract
The functions of the neuronal microtubule-associated protein Tau in the central nervous system are regulated by manifold posttranslational modifications at more than 50 sites. Tau in healthy neurons carries multiple phosphate groups, mostly in its microtubule assembly domain. Elevated phosphorylation and aggregation of Tau are widely considered pathological hallmarks in Alzheimer's disease (AD) and other tauopathies, triggering the quest for Tau posttranslational modifications in the disease context. However, the phosphorylation patterns of physiological and pathological Tau are surprisingly similar and heterogenous, making it difficult to identify specific modifications as therapeutic targets and biomarkers for AD. We present a concise summary of - and view on - important previous and recent advances in Tau phosphorylation analysis in the context of AD.
Collapse
Affiliation(s)
- Susanne Wegmann
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.
| | - Jacek Biernat
- German Center for Neurodegenerative Diseases (DZNE) & CAESAR Research Center, Bonn, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE) & CAESAR Research Center, Bonn, Germany
| |
Collapse
|
27
|
Jain AP, Sathe G. Proteomics Landscape of Alzheimer's Disease. Proteomes 2021; 9:proteomes9010013. [PMID: 33801961 PMCID: PMC8005944 DOI: 10.3390/proteomes9010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent form of dementia, and the numbers of AD patients are expected to increase as human life expectancy improves. Deposition of β-amyloid protein (Aβ) in the extracellular matrix and intracellular neurofibrillary tangles are molecular hallmarks of the disease. Since the precise pathophysiology of AD has not been elucidated yet, effective treatment is not available. Thus, understanding the disease pathology, as well as identification and development of valid biomarkers, is imperative for early diagnosis as well as for monitoring disease progression and therapeutic responses. Keeping this goal in mind several studies using quantitative proteomics platform have been carried out on both clinical specimens including the brain, cerebrospinal fluid (CSF), plasma and on animal models of AD. In this review, we summarize the mass spectrometry (MS)-based proteomics studies on AD and discuss the discovery as well as validation stages in brief to identify candidate biomarkers.
Collapse
Affiliation(s)
- Ankit P. Jain
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India;
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India;
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
- Correspondence:
| |
Collapse
|
28
|
Morris SL, Tsai MY, Aloe S, Bechberger K, König S, Morfini G, Brady ST. Defined Tau Phosphospecies Differentially Inhibit Fast Axonal Transport Through Activation of Two Independent Signaling Pathways. Front Mol Neurosci 2021; 13:610037. [PMID: 33568975 PMCID: PMC7868336 DOI: 10.3389/fnmol.2020.610037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/28/2020] [Indexed: 12/30/2022] Open
Abstract
Tau protein is subject to phosphorylation by multiple kinases at more than 80 different sites. Some of these sites are associated with tau pathology and neurodegeneration, but other sites are modified in normal tau as well as in pathological tau. Although phosphorylation of tau at residues in the microtubule-binding repeats is thought to reduce tau association with microtubules, the functional consequences of other sites are poorly understood. The AT8 antibody recognizes a complex phosphoepitope site on tau that is detectable in a healthy brain but significantly increased in Alzheimer's disease (AD) and other tauopathies. Previous studies showed that phosphorylation of tau at the AT8 site leads to exposure of an N-terminal sequence that promotes activation of a protein phosphatase 1 (PP1)/glycogen synthase 3 (GSK3) signaling pathway, which inhibits kinesin-1-based anterograde fast axonal transport (FAT). This finding suggests that phosphorylation may control tau conformation and function. However, the AT8 includes three distinct phosphorylated amino acids that may be differentially phosphorylated in normal and disease conditions. To evaluate the effects of specific phosphorylation sites in the AT8 epitope, recombinant, pseudophosphorylated tau proteins were perfused into the isolated squid axoplasm preparation to determine their effects on axonal signaling pathways and FAT. Results from these studies suggest a mechanism where specific phosphorylation events differentially impact tau conformation, promoting activation of independent signaling pathways that differentially affect FAT. Implications of findings here to our understanding of tau function in health and disease conditions are discussed.
Collapse
Affiliation(s)
- Sarah L. Morris
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Ming-Ying Tsai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Sarah Aloe
- Marine Biological Laboratory, Woods Hole, MA, United States
| | | | - Svenja König
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Scott T. Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
- Marine Biological Laboratory, Woods Hole, MA, United States
| |
Collapse
|
29
|
Tennant JM, Henderson DM, Wisniewski TM, Hoover EA. RT-QuIC detection of tauopathies using full-length tau substrates. Prion 2020; 14:249-256. [PMID: 33171070 PMCID: PMC7671068 DOI: 10.1080/19336896.2020.1832946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 11/25/2022] Open
Abstract
Early detection and diagnosis of neurodegenerative diseases has been hampered by the lack of sensitive testing. Real-time quaking induced conversion (RT-QuIC) has been used for the early and sensitive detection of prion-induced neurologic disease, and has more recently been adapted to detect misfolded alpha-synuclein and tau as biomarkers for neurodegenerative disease. Here we use full-length recombinant tau substrates to detect tau seeding activity in Alzheimer's disease and other human tauopathies.
Collapse
Affiliation(s)
- Joanne M. Tennant
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Davin M. Henderson
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Thomas M. Wisniewski
- Center for Cognitive Neurology and Departments of Neurology, Pathology and Psychiatry, NYU School of Medicine, New York, NY, USA
| | - Edward A. Hoover
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
30
|
Kametani F, Yoshida M, Matsubara T, Murayama S, Saito Y, Kawakami I, Onaya M, Tanaka H, Kakita A, Robinson AC, Mann DMA, Hasegawa M. Comparison of Common and Disease-Specific Post-translational Modifications of Pathological Tau Associated With a Wide Range of Tauopathies. Front Neurosci 2020; 14:581936. [PMID: 33250706 PMCID: PMC7672045 DOI: 10.3389/fnins.2020.581936] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/28/2020] [Indexed: 01/14/2023] Open
Abstract
Tauopathies are the most common type of neurodegenerative proteinopathy, being characterized by cytoplasmic aggregates of hyperphosphorylated tau protein. The formation and morphologies of these tau inclusions, the distribution of the lesions and related metabolic changes in cytoplasm differ among different tauopathies. The aim of this study was to examine whether there are differences in the post-translational modifications (PTMs) in the pathological tau proteins. We analyzed sarkosyl-insoluble pathological tau proteins prepared from brains of patients with Alzheimer's disease, Pick's disease, progressive supranuclear palsy, corticobasal degeneration, globular glial tauopathy, and frontotemporal dementia and parkinsonisms linked to chromosome 17 with tau inclusions using liquid chromatography mass spectrometry. In pathological tau proteins associated with a wide range of tauopathies, 170 PTMs in total were identified including new PTMs. Among them, common PTMs were localized in the N- and C-terminal flanking regions of the microtubule binding repeats and PTMs, which were considered to be disease-specific, were found in microtubule binding repeats forming filament core. These suggested that the differences in PTMs reflected the differences in tau filament core structures in each disease.
Collapse
Affiliation(s)
- Fuyuki Kametani
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Tomoyasu Matsubara
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shigeo Murayama
- Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Yuko Saito
- Department of Pathology and Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ito Kawakami
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mitsumoto Onaya
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan
| | - Hidetomo Tanaka
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Andrew C. Robinson
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Salford, United Kingdom
| | - David M. A. Mann
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Salford, United Kingdom
| | - Masato Hasegawa
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|