1
|
Ben Shaul T, Frenkel D, Gurevich T. The Interplay of Stress, Inflammation, and Metabolic Factors in the Course of Parkinson's Disease. Int J Mol Sci 2024; 25:12409. [PMID: 39596474 PMCID: PMC11594997 DOI: 10.3390/ijms252212409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative condition for which there are symptomatic treatments but no disease-modifying therapies (DMTs). Extensive research over the years has highlighted the need for a multi-target DMT approach in PD that recognizes the various risk factors and their intricate interplay in contributing to PD-related neurodegeneration. Widespread risk factors, such as emotional stress and metabolic factors, have increasingly become focal points of exploration. Our review aims to summarize interactions between emotional stress and selected key players in metabolism, such as insulin, as potential mechanisms underlying neurodegeneration in PD.
Collapse
Affiliation(s)
- Tal Ben Shaul
- Movement Disorders Center, Neurological Institute, Tel Aviv Medical Center, Tel Aviv 6423906, Israel;
- School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dan Frenkel
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Ramat-Aviv, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tanya Gurevich
- Movement Disorders Center, Neurological Institute, Tel Aviv Medical Center, Tel Aviv 6423906, Israel;
- School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Okkels N, Horsager J, Fedorova TD, Knudsen K, Skjærbæk C, Andersen KB, Labrador-Espinosa M, Vestergaard K, Mortensen JK, Klit H, Møller M, Danielsen EH, Johnsen EL, Bekan G, Hansen KV, Munk OL, Damholdt MF, Kjeldsen PL, Hansen AK, Gottrup H, Grothe MJ, Borghammer P. Impaired cholinergic integrity of the colon and pancreas in dementia with Lewy bodies. Brain 2024; 147:255-266. [PMID: 37975822 DOI: 10.1093/brain/awad391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/20/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023] Open
Abstract
Dementia with Lewy bodies is characterized by a high burden of autonomic dysfunction and Lewy pathology in peripheral organs and components of the sympathetic and parasympathetic nervous system. Parasympathetic terminals may be quantified with 18F-fluoroetoxybenzovesamicol, a PET tracer that binds to the vesicular acetylcholine transporter in cholinergic presynaptic terminals. Parasympathetic imaging may be useful for diagnostics, improving our understanding of autonomic dysfunction and for clarifying the spatiotemporal relationship of neuronal degeneration in prodromal disease. Therefore, we aimed to investigate the cholinergic parasympathetic integrity in peripheral organs and central autonomic regions of subjects with dementia with Lewy bodies and its association with subjective and objective measures of autonomic dysfunction. We hypothesized that organs with known parasympathetic innervation, especially the pancreas and colon, would have impaired cholinergic integrity. To achieve these aims, we conducted a cross-sectional comparison study including 23 newly diagnosed non-diabetic subjects with dementia with Lewy bodies (74 ± 6 years, 83% male) and 21 elderly control subjects (74 ± 6 years, 67% male). We obtained whole-body images to quantify PET uptake in peripheral organs and brain images to quantify PET uptake in regions of the brainstem and hypothalamus. Autonomic dysfunction was assessed with questionnaires and measurements of orthostatic blood pressure. Subjects with dementia with Lewy bodies displayed reduced cholinergic tracer uptake in the pancreas (32% reduction, P = 0.0003) and colon (19% reduction, P = 0.0048), but not in organs with little or no parasympathetic innervation. Tracer uptake in a region of the medulla oblongata overlapping the dorsal motor nucleus of the vagus correlated with autonomic symptoms (rs = -0.54, P = 0.0077) and changes in orthostatic blood pressure (rs = 0.76, P < 0.0001). Tracer uptake in the pedunculopontine region correlated with autonomic symptoms (rs = -0.52, P = 0.0104) and a measure of non-motor symptoms (rs = -0.47, P = 0.0230). In conclusion, our findings provide the first imaging-based evidence of impaired cholinergic integrity of the pancreas and colon in dementia with Lewy bodies. The observed changes may reflect parasympathetic denervation, implying that this process is initiated well before the point of diagnosis. The findings also support that cholinergic denervation in the brainstem contributes to dysautonomia.
Collapse
Affiliation(s)
- Niels Okkels
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Casper Skjærbæk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Katrine B Andersen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Miguel Labrador-Espinosa
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Janne K Mortensen
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Henriette Klit
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Mette Møller
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Erik H Danielsen
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Erik L Johnsen
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Goran Bekan
- Department of Neurology, Regionshospitalet Gødstrup, 7400 Herning, Denmark
| | - Kim V Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Ole L Munk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Malene F Damholdt
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Pernille L Kjeldsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Neurology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Allan K Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Nuclear Medicine, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Hanne Gottrup
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
3
|
Rishisree A, Mallory B, Elena K, Teodora J, Gordana Z, Katarina Š, Aleksandar J. Pomegranate peel, chokeberry leaves and Ironwort extract as novel natural inhibitors of amylin aggregation and cellular toxicity in pancreatic β cells. Biophys Chem 2024; 304:107130. [PMID: 37952497 PMCID: PMC10841580 DOI: 10.1016/j.bpc.2023.107130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/14/2023]
Abstract
Impeding or reducing human amylin aggregation and/or its toxicity can be key to preventing pancreatic islet amyloidosis and β-cell loss in patients with Type 2 Diabetes Mellitus (T2DM). Here, Punica granatum (pomegranate) peel, Sideritis raeseri (ironwort) and Aronia melanocarpa (chokeberry) leaf extracts, were tested for their novel anti-aggregative and antitoxic properties in human amylin (hIAPP) treated rat pancreatic insulinoma (INS) cells. The protein aggregation (Th-T) assay revealed an inhibitory trend of all three plant extracts against amylin aggregates. In agreement with this finding, pomegranate peel and ironwort extracts effectively prevented the transition of hIAPP from disordered, random coil structures into aggregation prone β-sheet enriched molecular assemblies, revealed by CD spectroscopy. Consistent with their anti-aggregative action, all three extracts prevented, to various degrees, reactive oxygen species (ROS) accumulation, mitochondrial stress, and, ultimately, apoptosis of INS cells. Collectively, the results from this study demonstrate effectiveness of natural products to halt hIAPP aggregation, redox stress, and toxicity, which could be exploited as novel therapeutics against amylin-derived islet amyloidosis and β-cell stress in T2DM.
Collapse
Affiliation(s)
- Achanta Rishisree
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Brayer Mallory
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Karnaukhova Elena
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jankovic Teodora
- Institute for Medicinal Plant Research "Dr. Josif Pančić", 11000 Belgrade, Serbia
| | - Zdunić Gordana
- Institute for Medicinal Plant Research "Dr. Josif Pančić", 11000 Belgrade, Serbia
| | - Šavikin Katarina
- Institute for Medicinal Plant Research "Dr. Josif Pančić", 11000 Belgrade, Serbia
| | - Jeremic Aleksandar
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA.
| |
Collapse
|
4
|
Li W, Tiedt S, Lo EH. Tau in the pancreas: understanding the link between type 2 diabetes mellitus and Alzheimer's disease. Signal Transduct Target Ther 2023; 8:447. [PMID: 38057303 PMCID: PMC10700573 DOI: 10.1038/s41392-023-01701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023] Open
Affiliation(s)
- Wenlu Li
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA), Boston, USA.
| | - Steffen Tiedt
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA), Boston, USA
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
| | - Eng H Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA), Boston, USA.
| |
Collapse
|
5
|
Khin PP, Lee JH, Jun HS. Pancreatic Beta-cell Dysfunction in Type 2 Diabetes. EUR J INFLAMM 2023. [DOI: 10.1177/1721727x231154152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Pancreatic β-cells produce and secrete insulin to maintain blood glucose levels within a narrow range. Defects in the function and mass of β-cells play a significant role in the development and progression of diabetes. Increased β-cell deficiency and β-cell apoptosis are observed in the pancreatic islets of patients with type 2 diabetes. At an early stage, β-cells adapt to insulin resistance, and their insulin secretion increases, but they eventually become exhausted, and the β-cell mass decreases. Various causal factors, such as high glucose, free fatty acids, inflammatory cytokines, and islet amyloid polypeptides, contribute to the impairment of β-cell function. Therefore, the maintenance of β-cell function is a logical approach for the treatment and prevention of diabetes. In this review, we provide an overview of the role of these risk factors in pancreatic β-cell loss and the associated mechanisms. A better understanding of the molecular mechanisms underlying pancreatic β-cell loss will provide an opportunity to identify novel therapeutic targets for type 2 diabetes.
Collapse
Affiliation(s)
- Phyu Phyu Khin
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
| | - Jong Han Lee
- Department of Marine Bio-industry, Hanseo University, Seosan, Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155, Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambangmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
- Gachon Medical Research Institute, Gil Hospital, 21, Namdong-daero 774, beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| |
Collapse
|
6
|
Ogaki K, Fujita H, Nozawa N, Shiina T, Sakuramoto H, Suzuki K. Impact of diabetes and glycated hemoglobin level on the clinical manifestations of Parkinson's disease. J Neurol Sci 2023; 454:120851. [PMID: 37931442 DOI: 10.1016/j.jns.2023.120851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The coexistence of diabetes mellitus (DM) has been suggested to accelerate the progression of Parkinson's disease (PD) and make the phenotype more severe. In this study, we investigated whether DM or glycated hemoglobin (HbA1c) levels affect the differences in motor and nonmotor symptoms. METHODS We conducted a cross-sectional study including 140 consecutive Japanese patients with PD for whom medical history and serum HbA1c records were available. The PD patients with a DM diagnosis were classified into the diabetes-complicated group (PD-DM) and the nondiabetes-complicated group (PD-no DM). Next, patients were classified based on a median HbA1c value of 5.7, and clinical parameters were compared. The correlations between HbA1c levels and other clinical variables were analyzed. RESULTS Of 140 patients, 23 patients (16%) had DM. Compared to PD-no DM patients, PD-DM patients showed lower MMSE scores. Compared to the lower HbA1c group, the higher HbA1c group showed a higher MDS-UPDRS part III score and a lower metaiodobenzylguanidine (MIBG) scintigraphy heart-to-mediastinum (H/M) ratio. HbA1c levels were positively correlated with age and the MDS-UPDRS part III score and negatively correlated with the MMSE score and H/M ratio on cardiac MIBG scintigraphy. Binary logistic regression analysis, which included age, sex, disease duration, and MMSE and MDS-UPDRS part III scores as independent variables, revealed that a lower MMSE score was an independent contributor to PD-DM and PD with high HbA1c levels. CONCLUSIONS DM complications and high HbA1c levels may affect cognitive function in patients with PD.
Collapse
Affiliation(s)
- Keitaro Ogaki
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Hiroaki Fujita
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan.
| | - Narihiro Nozawa
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Tomohiko Shiina
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | | | - Keisuke Suzuki
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
7
|
Greco M, Munir A, Musarò D, Coppola C, Maffia M. Restoring autophagic function: a case for type 2 diabetes mellitus drug repurposing in Parkinson's disease. Front Neurosci 2023; 17:1244022. [PMID: 38027497 PMCID: PMC10654753 DOI: 10.3389/fnins.2023.1244022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Parkinson's disease (PD) is a predominantly idiopathic pathological condition characterized by protein aggregation phenomena, whose main component is alpha-synuclein. Although the main risk factor is ageing, numerous evidence points to the role of type 2 diabetes mellitus (T2DM) as an etiological factor. Systemic alterations classically associated with T2DM like insulin resistance and hyperglycemia modify biological processes such as autophagy and mitochondrial homeostasis. High glucose levels also compromise protein stability through the formation of advanced glycation end products, promoting protein aggregation processes. The ability of antidiabetic drugs to act on pathways impaired in both T2DM and PD suggests that they may represent a useful tool to counteract the neurodegeneration process. Several clinical studies now in advanced stages are looking for confirmation in this regard.
Collapse
Affiliation(s)
- Marco Greco
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | - Anas Munir
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Lecce, Italy
| | - Debora Musarò
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | - Chiara Coppola
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| |
Collapse
|
8
|
Bortoletto AS, Parchem RJ. A pancreatic player in dementia: pathological role for islet amyloid polypeptide accumulation in the brain. Neural Regen Res 2023; 18:2141-2146. [PMID: 37056121 PMCID: PMC10328265 DOI: 10.4103/1673-5374.369095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
Type 2 diabetes mellitus patients have a markedly higher risk of developing dementia. While multiple factors contribute to this predisposition, one of these involves the increased secretion of amylin, or islet amyloid polypeptide, that accompanies the pathophysiology of type 2 diabetes mellitus. Islet amyloid polypeptide accumulation has undoubtedly been implicated in various forms of dementia, including Alzheimer's disease and vascular dementia, but the exact mechanisms underlying islet amyloid polypeptide's causative role in dementia are unclear. In this review, we have summarized the literature supporting the various mechanisms by which islet amyloid polypeptide accumulation may cause neuronal damage, ultimately leading to the clinical symptoms of dementia. We discuss the evidence for islet amyloid polypeptide deposition in the brain, islet amyloid polypeptide interaction with other amyloids implicated in neurodegeneration, neuroinflammation caused by islet amyloid polypeptide deposition, vascular damage induced by islet amyloid polypeptide accumulation, and islet amyloid polypeptide-induced cytotoxicity. There are very few therapies approved for the treatment of dementia, and of these, clinical responses have been controversial at best. Therefore, investigating new, targetable pathways is vital for identifying novel therapeutic strategies for treating dementia. As such, we conclude this review by discussing islet amyloid polypeptide accumulation as a potential therapeutic target not only in treating type 2 diabetes mellitus but as a future target in treating or even preventing dementia associated with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Angelina S. Bortoletto
- Center for Cell and Gene Therapy, Stem Cell and Regenerative Medicine Center, Department of Neuroscience, Department of Molecular and Cellular Biology, Translational Biology and Molecular Medicine Program, Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Ronald J. Parchem
- Center for Cell and Gene Therapy, Stem Cell and Regenerative Medicine Center, Department of Neuroscience, Department of Molecular and Cellular Biology, Translational Biology and Molecular Medicine Program, Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
Kachkin DV, Lashkul VV, Gorsheneva NA, Fedotov SA, Rubel MS, Chernoff YO, Rubel AA. The Aβ42 Peptide and IAPP Physically Interact in a Yeast-Based Assay. Int J Mol Sci 2023; 24:14122. [PMID: 37762425 PMCID: PMC10531723 DOI: 10.3390/ijms241814122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Numerous studies have demonstrated that people with type 2 diabetes mellitus (associated with IAPP peptide aggregation) show an increased incidence of Alzheimer's disease (associated with Aβ aggregation), but the mechanism responsible for this correlation is presently unknown. Here, we applied a yeast-based model to study the interactions of IAPP with PrP (associated with TSEs) and with the Aβ42 peptide. We demonstrated that fluorescently tagged IAPP forms detergent-resistant aggregates in yeast cells. Using the FRET approach, we showed that IAPP and Aβ aggregates co-localize and physically interact in yeast cells. We also showed that this interaction is specific and that there is no interaction between IAPP and PrP in the yeast system. Our data confirmed a direct physical interaction between IAPP and Aβ42 aggregates in a living cell. Based on these findings, we hypothesize that this interaction may play a crucial role in seeding Aβ42 aggregation in T2DM patients, thereby promoting the development of AD.
Collapse
Affiliation(s)
- Daniel V. Kachkin
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (D.V.K.); (S.A.F.)
| | - Veronika V. Lashkul
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (D.V.K.); (S.A.F.)
| | - Natalia A. Gorsheneva
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (D.V.K.); (S.A.F.)
| | - Sergey A. Fedotov
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (D.V.K.); (S.A.F.)
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Maria S. Rubel
- Laboratory of DNA-Nanosensor Diagnostics, SCAMT Institute, ITMO University, St. Petersburg 191002, Russia;
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Aleksandr A. Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (D.V.K.); (S.A.F.)
- Pediatric Research and Clinical Center for Infectious Diseases, Department of Medical Microbiology and Molecular Epidemiology, St. Petersburg 197022, Russia
| |
Collapse
|
10
|
Polat E, Celik E, Togac M, Sahin A. Retinal neurodegeneration in metabolic syndrome: a spectral optical coherence tomography study. Int J Ophthalmol 2023; 16:224-232. [PMID: 36816217 PMCID: PMC9922630 DOI: 10.18240/ijo.2023.02.08] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 10/25/2022] [Indexed: 02/05/2023] Open
Abstract
AIM To evaluate the effects of metabolic syndrome (MetS) on retinal neurodegeneration by optical coherence tomography (OCT). METHODS Patients diagnosed as MetS were compared with the age and sex-matched healthy control group (CG). Waist circumference measurements, fasting serological biochemical tests, and systemic blood pressures of all participants were evaluated. The MetS group was divided into 3 subgroups according to the number of MetS components: hypertension, diabetes mellitus, dyslipidemia (low-, high-density lipoprotein, hypertriglyceridemia), and visceral obesity findings; 3-component MetS3, 4-component MetS4, and all-component MetS5. All patients underwent complete eye examination and spectral OCT retinal imaging. RESULTS Totally 58 eyes of 58 patients were included in the MetS group and 63 eyes of 63 age and sex-matched healthy subjects were included in CG. MetS group was composed of 22 subjects in MetS3, 21 subjects in MetS4, and 15 subjects in the MetS5 subgroup. Mean foveal thickness (MetS, 218.7±23.1 µm vs CG, 228.8±21.9 µm, P=0.015), mean inferior (MetS, 283.4±17.0 µm vs CG, 288.7±38.4 µm, P=0.002), superior (MetS, 287.0±18.5 µm vs CG 297.3±17.1 µm, P=0.001), nasal (MetS 287.3±16.7 µm vs CG 297.9±13.9 µm, P=0.000) and temporal (274.5±17.6 µm vs CG 285.6±13.6 µm, P=0.000) thickness in the 3 mm Early Treatment of Diabetic Retinopathy Study (ETDRS) circle was significantly lower in the MetS group. There was no statistically significant difference in the mean inferior, superior, nasal, and temporal thickness of 6 mm ETDRS circle, total macular volume, peripapillary and macular retinal nerve fiber layer, macular ganglion cell layer with inner plexiform layer, and ganglion cell complex. No statistically significant difference was found in these values between the MetS3, MetS4, and the MetS5 groups. CONCLUSION A significant reduction in central macular region thickness in MetS is detected and macular thickness is more susceptible to MetS induced neurodegeneration than peripapillary retinal nerve fiber layer.
Collapse
Affiliation(s)
- Evrim Polat
- Department of Ophthalmology, Tekirdag City Hospital, Tekirdag 59100, Turkey
| | - Ekrem Celik
- Department of Ophthalmology, Tekirdag Namik Kemal University, Faculty of Medicine, Tekirdag 59100, Turkey
| | - Mesut Togac
- Department of Ophthalmology, Tekirdag City Hospital, Tekirdag 59100, Turkey
| | - Afsun Sahin
- Department of Ophthalmology, Koc University Medical School, Istanbul 34010, Turkey,Research Center for Translational Medicine, Koc University, Istanbul 34450, Turkey
| | | | | |
Collapse
|
11
|
Zhao Y, Wang Y, Wu Y, Tao C, Xu R, Chen Y, Qian L, Xu T, Lian X. PKM2-mediated neuronal hyperglycolysis enhances the risk of Parkinson's disease in diabetic rats. J Pharm Anal 2023; 13:187-200. [PMID: 36908857 PMCID: PMC9999299 DOI: 10.1016/j.jpha.2022.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Epidemiological and animal studies indicate that pre-existing diabetes increases the risk of Parkinson's disease (PD). However, the mechanisms underlying this association remain unclear. In the present study, we found that high glucose (HG) levels in the cerebrospinal fluid (CSF) of diabetic rats might enhance the effect of a subthreshold dose of the neurotoxin 6-hydroxydopamine (6-OHDA) on the development of motor disorders, and the damage to the nigrostriatal dopaminergic neuronal pathway. In vitro, HG promoted the 6-OHDA-induced apoptosis in PC12 cells differentiated to neurons with nerve growth factor (NGF) (NGF-PC12). Metabolomics showed that HG promoted hyperglycolysis in neurons and impaired tricarboxylic acid cycle (TCA cycle) activity, which was closely related to abnormal mitochondrial fusion, thus resulting in mitochondrial loss. Interestingly, HG-induced upregulation of pyruvate kinase M2 (PKM2) combined with 6-OHDA exposure not only mediated glycolysis but also promoted abnormal mitochondrial fusion by upregulating the expression of MFN2 in NGF-PC12 cells. In addition, we found that PKM2 knockdown rescued the abnormal mitochondrial fusion and cell apoptosis induced by HG+6-OHDA. Furthermore, we found that shikonin (SK), an inhibitor of PKM2, restored the mitochondrial number, promoted TCA cycle activity, reversed hyperglycolysis, enhanced the tolerance of cultured neurons to 6-OHDA, and reduced the risk of PD in diabetic rats. Overall, our results indicate that diabetes promotes hyperglycolysis and abnormal mitochondrial fusion in neurons through the upregulation of PKM2, leading to an increase in the vulnerability of dopaminergic neurons to 6-OHDA. Thus, the inhibition of PKM2 and restoration of mitochondrial metabolic homeostasis/pathways may prevent the occurrence and development of diabetic PD.
Collapse
Affiliation(s)
- Ya Zhao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanwei Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuying Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Cimin Tao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rui Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linghui Qian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tengfei Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyuan Lian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
12
|
Ebrahimzadeh Peer M, Fallahmohammadi Z, Akbari A. The effect of progressive endurance training and extract of black winter truffle on proteins levels and expression of hippocampus α-synuclein and HSF1 in the healthy and diabetic rats. Metabol Open 2023; 17:100232. [PMID: 36785616 PMCID: PMC9918783 DOI: 10.1016/j.metop.2023.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/22/2023] [Indexed: 01/29/2023] Open
Abstract
Aim The research aimed to investigate the effect of endurance running and T. Brumale extract on α-Syn and HSF1 in the brain and serum of healthy and diabetic rats. Methods A total of 40 Wistar rats were randomly divided into eight groups: Control (C), Exercise (E), Control-Tuber (T), Exercise-Tuber (ET), Control-Diabetes (D), Exercise-Diabetes (ED), Control-Diabetes-Tuber (CDT), and Exercise-Diabetes-Tuber (EDT). The endurance running was carried out five times per week for five weeks. The hippocampus and the serum α-Syn and HSF1 were measured using an enzyme-linked immunosorbent assay method. Results The brain α-Syn levels were higher in diabetic groups than in the healthy groups, but insignificantly (P ≤ 0.05). The brain α-Syn level significantly increased in the EDT group compared to the T group (P ≤ 0.05). The serum level of α-Syn in the ED group was significantly higher than in the E and D groups (P ≤ 0.05). The brain HSF1 level was significantly higher in the ED group compared to the D group (P ≤ 0.05). The gene expression of hsf1 was significantly reduced in the E group compared to the other groups and the EDT group compared to ED and CDT groups (P ≤ 0.05). Furthermore, the serum HSF1 level significantly increased in the ED group compared to the D group (P ≤ 0.05). Conclusion The results of this study suggest that progressive endurance running may improve neuroprotective conditions in diabetic patients by increasing HSF1 in the brain.
Collapse
Affiliation(s)
- Mojtaba Ebrahimzadeh Peer
- Exercise Physiology Department, Sports Sciences Faculty, University of Mazandaran, Babolsar, Mazandaran Province, Iran
| | - Ziya Fallahmohammadi
- Exercise Physiology Department, Sports Sciences Faculty, University of Mazandaran, Babolsar, Mazandaran Province, Iran,Corresponding author
| | - Abolfazl Akbari
- Physiology Department, Veterinary Medicine School, University of Shiraz, Shiraz, Fars Province, Iran
| |
Collapse
|
13
|
Al-Lahham R, Mendez N. Tau Loss of Function, by Deletion or Aggregation, Contributes to Peripheral Insulin Resistance. J Alzheimers Dis 2023; 95:1041-1058. [PMID: 37638441 PMCID: PMC10578286 DOI: 10.3233/jad-230392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Several epidemiological data revealed an association between Alzheimer's disease (AD) and type 2 diabetes. Researchers concentrated on brain insulin resistance with little emphasis on the link between systemic insulin resistance and AD, despite the fact that the incidence of type 2 diabetes is higher in AD patients and that impairment in insulin signaling is a risk factor for AD. OBJECTIVE The goal of this study is to determine the role of systemic insulin resistance in the pathogenesis of Alzheimer's disease by evaluating the consequences of tau loss-of-function on peripheral insulin sensitivity. METHODS Primary hepatocytes isolated from transgenic mouse models (Tau KO, P301 L) and wild type mice (C57BL/6) were evaluated for their insulin sensitivity using glucose uptake assays as well as biochemical analysis of insulin signaling markers. RESULTS Our data show that tau deletion or loss of function promotes peripheral insulin resistance as seen in primary hepatocytes isolated from Tau KO and P301 L mice, respectively. Furthermore, exposure of wild-type primary hepatocytes to sub-toxic concentrations of tau oligomers results in a dose-dependent inhibition of glucose uptake, associated with downregulation of insulin signaling. Tau oligomers-induced inactivation of insulin signaling proteins was rescued by inhibition of p38 MAPK, suggesting the involvement of p38 MAPK. CONCLUSIONS This is the first study testing tau role in peripheral insulin resistance at the cellular level using multiple transgenic mouse models. Moreover, this study suggests that tau should be functional for insulin sensitivity, therefore, any loss of function by deletion or aggregation would result in insulin resistance.
Collapse
Affiliation(s)
- Rabab Al-Lahham
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nicolas Mendez
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
14
|
Koyama S, Noguchi H, Yagita K, Hamasaki H, Shijo M, Yoshimura M, Inoshita K, Sasagasako N, Honda H. Characteristic distribution and molecular properties of normal cellular prion protein in human endocrine and exocrine tissues. Sci Rep 2022; 12:15289. [PMID: 36088465 PMCID: PMC9464206 DOI: 10.1038/s41598-022-19632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractPrion disease is an infectious and fatal neurodegenerative disease. Human prion disease autopsy studies have revealed abnormal prion protein (PrPSc) deposits in the central nervous system and systemic organs. In deer, chronic wasting disease has also become a global problem, with PrPSc in saliva and feces. Therefore, understanding normal cellular prion proteins (PrPc) characteristics in human systemic organs is important since they could be a PrPSc source. This study used western blotting and immunohistochemistry to investigate endocrine and exocrine tissues, such as the human pituitary, adrenal, submandibular glands and the pancreas. All tissues had 30–40 kDa PrP signals, which is a slightly higher molecular weight than normal brain tissue. Most cytoplasmic PrP-positive adenohypophyseal cells were immunopositive for nuclear pituitary-specific positive transcription factor 1. The adrenal medulla and islet cells of the pancreas were PrP-positive and colocalized with chromogranin A. The duct epithelium in the submandibular gland and pancreas were immunopositive for PrP. This study reports the characteristic molecular properties and detailed tissue localization of PrPc in endocrine and exocrine tissues, which is important for infection control and diagnosis.
Collapse
|
15
|
Athauda D, Evans J, Wernick A, Virdi G, Choi ML, Lawton M, Vijiaratnam N, Girges C, Ben‐Shlomo Y, Ismail K, Morris H, Grosset D, Foltynie T, Gandhi S. The Impact of Type 2 Diabetes in Parkinson's Disease. Mov Disord 2022; 37:1612-1623. [PMID: 35699244 PMCID: PMC9543753 DOI: 10.1002/mds.29122] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Type 2 diabetes (T2DM) is an established risk factor for developing Parkinson's disease (PD), but its effect on disease progression is not well understood. OBJECTIVE The aim of this study was to investigate the influence of T2DM on aspects of disease progression in PD. METHODS We analyzed data from the Tracking Parkinson's study to examine the effects of comorbid T2DM on PD progression and quality of life by comparing symptom severity scores assessing a range of motor and nonmotor symptoms. RESULTS We identified 167 (8.7%) patients with PD and T2DM (PD + T2DM) and 1763 (91.3%) patients with PD without T2DM (PD). After controlling for confounders, patients with T2DM had more severe motor symptoms, as assessed by Movement Disorder Society Unified Parkinson's Disease Rating Scale, Part III (25.8 [0.9] vs. 22.5 [0.3] P = 0.002), and nonmotor symptoms, as assessed by Non-Motor Symptoms Scale total (38.4 [2.5] vs. 31.8 [0.7] P < 0.001), and were significantly more likely to report loss of independence (odds ratio, 2.08; 95% confidence interval [CI]: 1.34-3.25; P = 0.001) and depression (odds ratio, 1.62; CI: 1.10-2.39; P = 0.015). Furthermore, over time, patients with T2DM had significantly faster motor symptom progression (P = 0.012), developed worse mood symptoms (P = 0.041), and were more likely to develop substantial gait impairment (hazard ratio, 1.55; CI: 1.07-2.23; P = 0.020) and mild cognitive impairment (hazard ratio, 1.7; CI: 1.24-2.51; P = 0.002) compared with the PD group. CONCLUSIONS In the largest study to date, T2DM is associated with faster disease progression in Parkinson's, highlighting an interaction between these two diseases. Because it is a potentially modifiable metabolic state, with multiple peripheral and central targets for intervention, it may represent a target for alleviating parkinsonian symptoms and slowing progression to disability and dementia. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dilan Athauda
- Neurodegeneration Biology LaboratoryFrancis Crick InstituteLondonUnited Kingdom,UCL Queen Square Institute of NeurologyLondonUnited Kingdom,Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - James Evans
- Neurodegeneration Biology LaboratoryFrancis Crick InstituteLondonUnited Kingdom,UCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Anna Wernick
- Neurodegeneration Biology LaboratoryFrancis Crick InstituteLondonUnited Kingdom,UCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Gurvir Virdi
- Neurodegeneration Biology LaboratoryFrancis Crick InstituteLondonUnited Kingdom,UCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Minee L. Choi
- Neurodegeneration Biology LaboratoryFrancis Crick InstituteLondonUnited Kingdom,UCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Michael Lawton
- School of Social and Community MedicineUniversity of BristolBristolUnited Kingdom
| | - Nirosen Vijiaratnam
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Christine Girges
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Yoav Ben‐Shlomo
- School of Social and Community MedicineUniversity of BristolBristolUnited Kingdom
| | - Khalida Ismail
- Department of Psychological MedicineKing's College LondonUnited Kingdom
| | - Huw Morris
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Donald Grosset
- Institute of Neurological SciencesQueen Elizabeth University HospitalGlasgowUnited Kingdom
| | - Thomas Foltynie
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Sonia Gandhi
- Neurodegeneration Biology LaboratoryFrancis Crick InstituteLondonUnited Kingdom,UCL Queen Square Institute of NeurologyLondonUnited Kingdom,Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| |
Collapse
|
16
|
Al Adem K, Shanti A, Srivastava A, Homouz D, Thomas SA, Khair M, Stefanini C, Chan V, Kim TY, Lee S. Linking Alzheimer’s Disease and Type 2 Diabetes: Characterization and Inhibition of Cytotoxic Aβ and IAPP Hetero-Aggregates. Front Mol Biosci 2022; 9:842582. [PMID: 35372522 PMCID: PMC8968156 DOI: 10.3389/fmolb.2022.842582] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
The cytotoxic self-aggregation of β-amyloid (Aβ) peptide and islet amyloid polypeptide (IAPP) is implicated in the pathogenesis of Alzheimer’s disease (AD) and Type 2 diabetes (T2D), respectively. Increasing evidence, particularly the co-deposition of Aβ and IAPP in both brain and pancreatic tissues, suggests that Aβ and IAPP cross-interaction may be responsible for a pathological link between AD and T2D. Here, we examined the nature of IAPP-Aβ40 co-aggregation and its inhibition by small molecules. In specific, we characterized the kinetic profiles, morphologies, secondary structures and toxicities of IAPP-Aβ40 hetero-assemblies and compared them to those formed by their homo-assemblies. We demonstrated that monomeric IAPP and Aβ40 form stable hetero-dimers and hetero-assemblies that further aggregate into β-sheet-rich hetero-aggregates that are toxic (cell viability <50%) to both PC-12 cells, a neuronal cell model, and RIN-m5F cells, a pancreatic cell model for β-cells. We then selected polyphenolic candidates to inhibit IAPP or Aβ40 self-aggregation and examined the inhibitory effect of the most potent candidate on IAPP-Aβ40 co-aggregation. We demonstrated that epigallocatechin gallate (EGCG) form inter-molecular hydrogen bonds with each of IAPP and Aβ40. We also showed that EGCG reduced hetero-aggregate formation and resulted in lower β-sheets content and higher unordered structures in IAPP-Aβ40-EGCG samples. Importantly, we showed that EGCG is highly effective in reducing the toxicity of IAPP-Aβ40 hetero-aggregates on both cell models, specifically at concentrations that are equivalent to or are 2.5-fold higher than the mixed peptide concentrations. To the best of our knowledge, this is the first study to report the inhibition of IAPP-Aβ40 co-aggregation by small molecules. We conclude that EGCG is a promising candidate to prevent co-aggregation and cytotoxicity of IAPP-Aβ40, which in turn, contribute to the pathological link between AD and T2D.
Collapse
Affiliation(s)
- Kenana Al Adem
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Aya Shanti
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Amit Srivastava
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Dirar Homouz
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Physics, University of Houston, Houston, TX, United States
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Sneha Ann Thomas
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mostafa Khair
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Cesare Stefanini
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Vincent Chan
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Tae-Yeon Kim
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Sungmun Lee
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Khalifa University’s Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- *Correspondence: Sungmun Lee,
| |
Collapse
|
17
|
Molecular Mechanisms of Amylin Turnover, Misfolding and Toxicity in the Pancreas. Molecules 2022; 27:molecules27031021. [PMID: 35164285 PMCID: PMC8838401 DOI: 10.3390/molecules27031021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 12/13/2022] Open
Abstract
Amyloidosis is a common pathological event in which proteins self-assemble into misfolded soluble and insoluble molecular forms, oligomers and fibrils that are often toxic to cells. Notably, aggregation-prone human islet amyloid polypeptide (hIAPP), or amylin, is a pancreatic hormone linked to islet β-cells demise in diabetics. The unifying mechanism by which amyloid proteins, including hIAPP, aggregate and kill cells is still matter of debate. The pathology of type-2 diabetes mellitus (T2DM) is characterized by extracellular and intracellular accumulation of toxic hIAPP species, soluble oligomers and insoluble fibrils in pancreatic human islets, eventually leading to loss of β-cell mass. This review focuses on molecular, biochemical and cell-biology studies exploring molecular mechanisms of hIAPP synthesis, trafficking and degradation in the pancreas. In addition to hIAPP turnover, the dynamics and the mechanisms of IAPP–membrane interactions; hIAPP aggregation and toxicity in vitro and in situ; and the regulatory role of diabetic factors, such as lipids and cholesterol, in these processes are also discussed.
Collapse
|
18
|
Troshneva A, Ametov A. Parkinson’s disease and type 2 diabetes mellitus: interrelation of pathogenetic mechanisms and general therapeutic approaches. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:12-18. [DOI: 10.17116/jnevro202212211212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|