1
|
Eulalio T, Sun MW, Gevaert O, Greicius MD, Montine TJ, Nachun D, Montgomery SB. regionalpcs improve discovery of DNA methylation associations with complex traits. Nat Commun 2025; 16:368. [PMID: 39753567 PMCID: PMC11698866 DOI: 10.1038/s41467-024-55698-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025] Open
Abstract
We have developed the regionalpcs method, an approach for summarizing gene-level methylation. regionalpcs addresses the challenge of deciphering complex epigenetic mechanisms in diseases like Alzheimer's disease. In contrast to averaging, regionalpcs uses principal components analysis to capture complex methylation patterns across gene regions. Our method demonstrates a 54% improvement in sensitivity over averaging in simulations, providing a robust framework for identifying subtle epigenetic variations. Applying regionalpcs to Alzheimer's disease brain methylation data, combined with cell type deconvolution, we uncover 838 differentially methylated genes associated with neuritic plaque burden-significantly outperforming conventional methods. Integrating methylation quantitative trait loci with genome-wide association studies identified 17 genes with potential causal roles in Alzheimer's disease risk, including MS4A4A and PICALM. Available in the Bioconductor package regionalpcs, our approach facilitates a deeper understanding of the epigenetic landscape in Alzheimer's disease and opens avenues for research into complex diseases.
Collapse
Affiliation(s)
- Tiffany Eulalio
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
| | - Min Woo Sun
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Olivier Gevaert
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA, USA
| | - Michael D Greicius
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
| | | | - Daniel Nachun
- Department of Pathology, Stanford University, Stanford, CA, USA.
| | - Stephen B Montgomery
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Behl T, Kyada A, Roopashree R, Nathiya D, Arya R, Kumar MR, Khalid M, Gulati M, Sachdeva M, Fareed M, Patra PK, Agrawal A, Wal P, Gasmi A. Epigenetic biomarkers in Alzheimer's disease: Diagnostic and prognostic relevance. Ageing Res Rev 2024; 102:102556. [PMID: 39490904 DOI: 10.1016/j.arr.2024.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of cognitive decline in the aging population, presenting a critical need for early diagnosis and effective prognostic tools. Epigenetic modifications, including DNA methylation, histone modifications, and non-coding RNAs, have emerged as promising biomarkers for AD due to their roles in regulating gene expression and potential for reversibility. This review examines the current landscape of epigenetic biomarkers in AD, emphasizing their diagnostic and prognostic relevance. DNA methylation patterns in genes such as APP, PSEN1, and PSEN2 are highlighted for their strong associations with AD pathology. Alterations in DNA methylation at specific CpG sites have been consistently observed in AD patients, suggesting their utility in early detection. Histone modifications, such as acetylation and methylation, also play a crucial role in chromatin remodelling and gene expression regulation in AD. Dysregulated histone acetylation and methylation have been linked to AD progression, making these modifications valuable biomarkers. Non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), further contribute to the epigenetic regulation in AD. miRNAs can modulate gene expression post-transcriptionally and have been found in altered levels in AD, while lncRNAs can influence chromatin structure and gene expression. The presence of these non-coding RNAs in biofluids like blood and cerebrospinal fluid positions them as accessible and minimally invasive biomarkers. Technological advancements in detecting and quantifying epigenetic modifications have propelled the field forward. Techniques such as next-generation sequencing, bisulfite sequencing, and chromatin immunoprecipitation assays offer high sensitivity and specificity, enabling the detailed analysis of epigenetic changes in clinical samples. These tools are instrumental in translating epigenetic research into clinical practice. This review underscores the potential of epigenetic biomarkers to enhance the early diagnosis and prognosis of AD, paving the way for personalized therapeutic strategies and improved patient outcomes. The integration of these biomarkers into clinical workflows promises to revolutionize AD management, offering hope for better disease monitoring and intervention.
Collapse
Affiliation(s)
- Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab 140306, India.
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Jaipur, India
| | - Renu Arya
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Mohammad Khalid
- Department of pharmacognosy, College of pharmacy, Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Monika Sachdeva
- Fatima College of Health Sciences, Al Ain, United Arab Emirates
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box No. 71666, Riyadh 11597, Saudi Arabia
| | - Pratap Kumar Patra
- School of Pharmacy & Life Sciences, Centurion University of Technology & Managemnet, Bhubaneswar, Odisha 752050, India
| | - Ankur Agrawal
- Jai Institute of Pharmaceutical Sciences and Research, Gwalior, Madhya Pradesh 474001, India
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology, Pharmacy, NH-19, Bhauti Road, Kanpur, UP 209305, India
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France; International Institute of Nutrition and Micronutrition Sciences, Saint-Étienne, France
| |
Collapse
|
3
|
Goldberg D, Wadhwani AR, Dehghani N, Sreepada LP, Fu H, De Jager PL, Bennett DA, Wolk DA, Lee EB, Farrell K, Crary JF, Zhou W, McMillan CT. Epigenetic signatures of regional tau pathology and cognition in the aging and pathological brain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.07.24316933. [PMID: 39606399 PMCID: PMC11601699 DOI: 10.1101/2024.11.07.24316933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Primary age-related tauopathy (PART) and Alzheimer's disease (AD) share hippocampal phospho-tau (p-tau) pathology but differ in p-tau extent and amyloid presence. As a result, PART uniquely enables investigation of amyloid-independent p-tau mechanisms during brain aging. We conducted the first epigenome-wide association (EWAS) study of PART, which yielded 13 new and robust p-tau/methylation associations. We then jointly analyzed PART and AD epigenomes to develop "TauAge", novel epigenetic clocks that predict p-tau severity in region-specific, age-, and amyloid-independent manners. Integrative transcriptomic analyses revealed that genes involved in synaptic transmission are related to hippocampal p-tau severity in both PART and AD, while neuroinflammatory genes are related to frontal cortex p-tau severity in AD only. Further, a machine learning classifier based on PART-vs-AD epigenetic differences discriminates neuropathological diagnoses and stratifies indeterminate cases into subgroups with disparity in cognitive impairment. Together, these findings demonstrate the brain epigenome's substantial role in linking tau pathology to cognitive outcomes in aging and AD.
Collapse
|
4
|
Alves VC, Carro E, Figueiro-Silva J. Unveiling DNA methylation in Alzheimer's disease: a review of array-based human brain studies. Neural Regen Res 2024; 19:2365-2376. [PMID: 38526273 PMCID: PMC11090417 DOI: 10.4103/1673-5374.393106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/05/2023] [Indexed: 03/26/2024] Open
Abstract
The intricacies of Alzheimer's disease pathogenesis are being increasingly illuminated by the exploration of epigenetic mechanisms, particularly DNA methylation. This review comprehensively surveys recent human-centered studies that investigate whole genome DNA methylation in Alzheimer's disease neuropathology. The examination of various brain regions reveals distinctive DNA methylation patterns that associate with the Braak stage and Alzheimer's disease progression. The entorhinal cortex emerges as a focal point due to its early histological alterations and subsequent impact on downstream regions like the hippocampus. Notably, ANK1 hypermethylation, a protein implicated in neurofibrillary tangle formation, was recurrently identified in the entorhinal cortex. Further, the middle temporal gyrus and prefrontal cortex were shown to exhibit significant hypermethylation of genes like HOXA3, RHBDF2, and MCF2L, potentially influencing neuroinflammatory processes. The complex role of BIN1 in late-onset Alzheimer's disease is underscored by its association with altered methylation patterns. Despite the disparities across studies, these findings highlight the intricate interplay between epigenetic modifications and Alzheimer's disease pathology. Future research efforts should address methodological variations, incorporate diverse cohorts, and consider environmental factors to unravel the nuanced epigenetic landscape underlying Alzheimer's disease progression.
Collapse
Affiliation(s)
- Victoria Cunha Alves
- Neurodegenerative Diseases Group, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University, Madrid, Spain
- Neurotraumatology and Subarachnoid Hemorrhage Group, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Eva Carro
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Neurobiology of Alzheimer's Disease Unit, Functional Unit for Research Into Chronic Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Joana Figueiro-Silva
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Bonham L, Sirkis D, Pang A, Sugrue L, Santamaría-García H, Ibanez A, Miller B, Yokoyama J, Corley M. DNA methylation age from peripheral blood predicts progression to Alzheimer's disease, white matter disease burden, and cortical atrophy. RESEARCH SQUARE 2024:rs.3.rs-5273529. [PMID: 39574903 PMCID: PMC11581046 DOI: 10.21203/rs.3.rs-5273529/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Cross-sectional studies suggest a limited relationship between accelerated epigenetic aging derived from epigenetic clocks, and Alzheimer's disease (AD) pathophysiology or risk. However, most prior analyses have not utilized longitudinal analyses or whole-brain neuroimaging biomarkers of AD. Herein, we employed longitudinal modeling and structural neuroimaging analyses to test the hypothesis that accelerated epigenetic aging would predict AD progression. Using survival analyses, we found that two second generation epigenetic clocks, DNAmPhenoAge and DNAmGrimAge, predicted progression from cognitively normal aging to mild cognitive impairment or AD and worse longitudinal cognitive outcomes. Epigenetic age was also strongly associated with cortical thinning in AD-relevant regions and white matter disease burden. Thus, in contrast to earlier work suggesting limited applicability of blood-based epigenetic clocks in AD, our novel analytic framework suggests that second-generation epigenetic clocks have broad utility and may represent promising predictors of AD risk and pathophysiology.
Collapse
|
6
|
Shen Y, Zhu W, Li S, Zhang Z, Zhang J, Li M, Zheng W, Wang D, Zhong Y, Li M, Zheng H, Du J. Integrated analyses of 5 mC, 5hmC methylation and gene expression reveal pathology-associated AKT3 gene and potential biomarkers for Alzheimer's disease. J Psychiatr Res 2024; 178:367-377. [PMID: 39197298 DOI: 10.1016/j.jpsychires.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/18/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024]
Abstract
AIMS 5 mC methylation and hydroxymethylation (5hmC) are associated with Alzheimer's disease (AD). However, previous studies were limited by the absence of a 5hmC calculation. This study aims to find AD associated predictors and potential therapeutic chemicals using bioinformatics approach integrating 5 mC, 5hmC, and expression changes, and an AD mouse model. METHODS Gene expression microarray and 5 mC and 5hmC sequencing datasets were downloaded from GEO repository. 142 AD and 52 normal entorhinal cortex specimens were enrolled. Data from oxidative bisulfite sequencing (oxBS)-treated samples, which represent only 5 mC, were used to calculate 5hmC level. Functional analyses, random forest supervised classification and methylation validation were applied. Potential chemicals were predicted by CMap. Morris water maze, Y maze and novel object recognition behavior tests were performed using FAD4T AD mice model. Cortex and hippocampus tissues were isolated for immunohistochemical staining. RESULTS C1QTNF5, UBD, ZFP106, NEDD1, AKT3, and MBP genes involving 13 promoter CpG sites with 5mc, 5hmC methylation and expression difference were identified. AKT3 and MBP were down-regulated in both patients and mouse model. Three CpG sites in AKT3 and MBP showed significant methylation difference on validation. FAD4T AD mice showed recession in brain functions and lower AKT3 expression in both cortex and hippocampus. Ten chemicals were predicted as potential treatments for AD. CONCLUSIONS AKT3 and MBP may be associated with AD pathology and could serve as biomarkers. The ten predicted chemicals might offer new therapeutic approaches. Our findings could contribute to identifying novel markers and advancing the understanding of AD mechanisms.
Collapse
Affiliation(s)
- Yupei Shen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Weiqiang Zhu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Shuaicheng Li
- School of Computer Science, Fudan University, Shanghai Key Laboratory of Intelligent Information Processing Shanghai, China
| | - Zhaofeng Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Jian Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Mingjie Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Wei Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Difei Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yushun Zhong
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Min Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Jing Du
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.
| |
Collapse
|
7
|
Ray NR, Kunkle BW, Hamilton‐Nelson K, Kurup JT, Rajabli F, Qiao M, Vardarajan BN, Cosacak MI, Kizil C, Jean‐Francois M, Cuccaro M, Reyes‐Dumeyer D, Cantwell L, Kuzma A, Vance JM, Gao S, Hendrie HC, Baiyewu O, Ogunniyi A, Akinyemi RO, Lee W, Martin ER, Wang L, Beecham GW, Bush WS, Xu W, Jin F, Wang L, Farrer LA, Haines JL, Byrd GS, Schellenberg GD, Mayeux R, Pericak‐Vance MA, Reitz C. Extended genome-wide association study employing the African genome resources panel identifies novel susceptibility loci for Alzheimer's disease in individuals of African ancestry. Alzheimers Dement 2024; 20:5247-5261. [PMID: 38958117 PMCID: PMC11350055 DOI: 10.1002/alz.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Despite a two-fold risk, individuals of African ancestry have been underrepresented in Alzheimer's disease (AD) genomics efforts. METHODS Genome-wide association studies (GWAS) of 2,903 AD cases and 6,265 controls of African ancestry. Within-dataset results were meta-analyzed, followed by functional genomics analyses. RESULTS A novel AD-risk locus was identified in MPDZ on chromosome (chr) 9p23 (rs141610415, MAF = 0.002, p = 3.68×10-9). Two additional novel common and nine rare loci were identified with suggestive associations (P < 9×10-7). Comparison of association and linkage disequilibrium (LD) patterns between datasets with higher and lower degrees of African ancestry showed differential association patterns at chr12q23.2 (ASCL1), suggesting that this association is modulated by regional origin of local African ancestry. DISCUSSION These analyses identified novel AD-associated loci in individuals of African ancestry and suggest that degree of African ancestry modulates some associations. Increased sample sets covering as much African genetic diversity as possible will be critical to identify additional loci and deconvolute local genetic ancestry effects. HIGHLIGHTS Genetic ancestry significantly impacts risk of Alzheimer's Disease (AD). Although individuals of African ancestry are twice as likely to develop AD, they are vastly underrepresented in AD genomics studies. The Alzheimer's Disease Genetics Consortium has previously identified 16 common and rare genetic loci associated with AD in African American individuals. The current analyses significantly expand this effort by increasing the sample size and extending ancestral diversity by including populations from continental Africa. Single variant meta-analysis identified a novel genome-wide significant AD-risk locus in individuals of African ancestry at the MPDZ gene, and 11 additional novel loci with suggestive genome-wide significance at p < 9×10-7. Comparison of African American datasets with samples of higher degree of African ancestry demonstrated differing patterns of association and linkage disequilibrium at one of these loci, suggesting that degree and/or geographic origin of African ancestry modulates the effect at this locus. These findings illustrate the importance of increasing number and ancestral diversity of African ancestry samples in AD genomics studies to fully disentangle the genetic architecture underlying AD, and yield more effective ancestry-informed genetic screening tools and therapeutic interventions.
Collapse
Grants
- P30 AG013854 NIA NIH HHS
- International Parkinson Fonds
- P50 MH060451 NIMH NIH HHS
- P30 AG066444 NIA NIH HHS
- R01 AG28786-01A1 North Carolina A&T University
- U01AG46161 NIA NIH HHS
- AG05128 Duke University
- Medical Research Council
- U01AG057659 NIH HHS
- R01 DK131437 NIDDK NIH HHS
- R01 AG022374 NIA NIH HHS
- U19 AG074865 NIA NIH HHS
- P50 AG023501 NIA NIH HHS
- U01 AG046152 NIA NIH HHS
- P30 AG010124 NIA NIH HHS
- U01 HG006375 NHGRI NIH HHS
- Biogen
- U01 AG058654 NIA NIH HHS
- NIMH MH60451 NINDS NIH HHS
- U54 AG052427 NIA NIH HHS
- P30 AG066518 NIA NIH HHS
- UO1 HG004610 Group Health Research Institute
- RC2 AG036528 NIA NIH HHS
- P30 AG028377 NIA NIH HHS
- R01AG048927 NIH HHS
- UO1 HG006375 Group Health Research Institute
- R01 AG22018 Rush University
- U01AG46152 NIA NIH HHS
- P50 AG008671 NIA NIH HHS
- P30 AG10133 Indiana University
- P50 AG005142 NIA NIH HHS
- U01 AG10483 Boston University
- Higher Education Funding Council for England
- R01 AG035137 NIA NIH HHS
- R01 AG009029 NIA NIH HHS
- P50 AG005131 NIA NIH HHS
- P50 AG005128 NIA NIH HHS
- P30 AG010133 NIA NIH HHS
- U24 AG021886 NIA NIH HHS
- R01 AG031581 NIA NIH HHS
- 5R01AG012101 New York University
- R01 AG009956 NIA NIH HHS
- P50 AG016574 NIA NIH HHS
- P50 AG005146 NIA NIH HHS
- U01AG058654 NIH HHS
- AG025688 Emory University
- P30AG10161 NIA NIH HHS
- Alzheimer's Drug Discovery Foundation
- U01 AG061356 NIA NIH HHS
- RC2 AG036650 NIA NIH HHS
- Servier
- Janssen Alzheimer Immunotherapy Research & Development, LLC.
- U01 AG032984 NIA NIH HHS
- U01 HG008657 NHGRI NIH HHS
- Brain Net Europe
- R01 AG019085 NIA NIH HHS
- Lumosity
- R01 AG013616 NIA NIH HHS
- U01 AG024904 NIA NIH HHS
- R01 HG012384 NHGRI NIH HHS
- Translational Genomics Research Institute
- P50 AG008702 NIA NIH HHS
- Bristol-Myers Squibb Company
- R01 AG030146 NIA NIH HHS
- R01AG041797 NIA FBS (Columbia University)
- U01 AG072579 NIA NIH HHS
- Piramal Imaging
- DeNDRoN
- UL1 RR029893 NCRR NIH HHS
- Takeda Pharmaceutical Company
- 1R01AG035137 New York University
- R01 AG15819 Rush University
- R01AG30146 NIA NIH HHS
- R01AG15819 NIA NIH HHS
- P50 NS039764 NINDS NIH HHS
- P01 AG003991 NIA NIH HHS
- Office of Research and Development
- Genentech, Inc.
- U01 AG016976 NIA NIH HHS
- US Department of Veterans Affairs Administration
- P30 AG008051 NIA NIH HHS
- P50 AG005681 NIA NIH HHS
- P30 AG013846 NIA NIH HHS
- U24 AG056270 NIA NIH HHS
- RC2 AG036502 NIA NIH HHS
- P01 AG026276 NIA NIH HHS
- R01 AG017917 NIA NIH HHS
- Araclon Biotech
- U01 AG057659 NIA NIH HHS
- R01 MH080295 NIMH NIH HHS
- Hersenstichting Nederland Breinbrekend Werk
- R01 CA267872 NCI NIH HHS
- R01 AG026390 NIA NIH HHS
- R01 AG028786 NIA NIH HHS
- KL2 RR024151 NCRR NIH HHS
- Internationale Stiching Alzheimer Onderzoek
- P30AG066462 NIH HHS
- U24 AG026390 NIA FBS (Columbia University)
- Novartis Pharmaceuticals Corporation
- P50 AG005136 NIA NIH HHS
- Meso Scale Diagnostics, LLC.
- CereSpir, Inc.
- P30 AG012300 NIA NIH HHS
- P01 AG03991 University of Washington
- RF1AG059018 NIH HHS
- Canadian Institute of Health Research
- RF1 AG059018 NIA NIH HHS
- BioClinica, Inc.
- UG3 NS132061 NINDS NIH HHS
- U01 AG062943 NIA NIH HHS
- R01 AG012101 NIA NIH HHS
- GE Healthcare
- P50 AG016573 NIA NIH HHS
- U24 AG21886 National Cell Repository for Alzheimer's Disease (NCRAD)
- P50 AG016570 NIA NIH HHS
- P50 AG005134 NIA NIH HHS
- P30 AG066462 NIA NIH HHS
- Stichting MS Research
- P30 AG008017 NIA NIH HHS
- R01AG33193 Boston University
- Howard Hughes Medical Institute
- R01 AG042437 NIA NIH HHS
- U24 AG041689 NIA NIH HHS
- P01 AG019724 NIA NIH HHS
- R01AG36042 NIA NIH HHS
- RC2AG036547 NIA NIH HHS
- R01 AG036042 NIA NIH HHS
- P30 AG010161 NIA NIH HHS
- AG019757 University of Miami
- Kronos Science
- P30 AG08051 New York University
- IIRG-05-14147 Alzheimer's Association
- AG010491 University of Miami
- R01 AG033193 NIA NIH HHS
- P50 AG025688 NIA NIH HHS
- IIRG-08-89720 Alzheimer's Association
- AbbVie
- R37 AG015473 NIA NIH HHS
- U24 AG026395 NIA NIH HHS
- R01 AG032990 NIA NIH HHS
- North Bristol NHS Trust Research and Innovation Department
- AG021547 University of Miami
- R01 AG01101 Rush University
- Transition Therapeutics
- R01 AG072547 NIA NIH HHS
- AG027944 University of Miami
- AG041232 NIA NIH HHS
- A2111048 BrightFocus Foundation
- U01 AG052410 NIA NIH HHS
- Johnson & Johnson Pharmaceutical Research & Development LLC.
- R01 CA129769 NCI NIH HHS
- P50 AG005133 NIA NIH HHS
- U01 AG010483 NIA NIH HHS
- UO1 AG006781 Group Health Research Institute
- Merck & Co., Inc.
- U01AG32984 NIA NIH HHS
- U01 AG024904 NIH HHS
- RC2 AG036547 NIA NIH HHS
- P01 AG002219 NIA NIH HHS
- R01 AG17917 Rush University
- U01 AG006781 NIA NIH HHS
- R01 AG041797 NIA NIH HHS
- NIBIB NIH HHS
- P01 AG010491 NIA NIH HHS
- P50 AG005144 NIA NIH HHS
- U01AG062943 NIH HHS
- R01 AG064614 NIA NIH HHS
- Glaxo Smith Kline
- U01AG072579 NIH HHS
- Biomedical Laboratory Research Program
- U19AG074865 NIH HHS
- R01 AG048927 NIA NIH HHS
- RF1 AG057473 NIA NIH HHS
- R01 AG037212 NIA NIH HHS
- R01 AG022018 NIA NIH HHS
- U24AG056270 NIH HHS
- R01 AG021547 NIA NIH HHS
- R01 AG041232 NIA NIH HHS
- P50 AG005138 NIA NIH HHS
- RF1AG57473 NIA NIH HHS
- R01 AG019757 NIA NIH HHS
- R01 AG020688 NIA NIH HHS
- AG07562 University of Pittsburgh
- R01AG072547 NIH HHS
- Alzheimer's Research Trust
- Pfizer Inc.
- Illinois Department of Public Health
- Elan Pharmaceuticals, Inc.
- NHS trusts
- R01 AG030653 NIA NIH HHS
- R01 HG009658 NHGRI NIH HHS
- AG052410 NIA NIH HHS
- P20 MD000546 NIMHD NIH HHS
- R01 AG027944 NIA NIH HHS
- Eli Lilly and Company
- R01 AG017173 NIA NIH HHS
- R01 AG025259 NIA NIH HHS
- U01 HG004610 NHGRI NIH HHS
- U24-AG041689 University of Pennsylvania
- P30 AG010129 NIA NIH HHS
- U01 AG046161 NIA NIH HHS
- Wellcome Trust
- P30 AG019610 NIA NIH HHS
- IXICO Ltd.
- P50 AG016582 NIA NIH HHS
- R01 AG048015 NIA NIH HHS
- NeuroRx Research
- R01AG17917 NIA NIH HHS
- U01AG61356 NIA NIH HHS
- R01AG36836 NIA NIH HHS
- 5R01AG022374 New York University
- EuroImmun; F. Hoffmann-La Roche Ltd
- R01 AG041718 NIA NIH HHS
- 1RC2AG036502 New York University
- Newcastle University
- AG041718 University of Pittsburgh
- P30 AG028383 NIA NIH HHS
- AG05144 University of Kentucky
- AG030653 University of Pittsburgh
- R01AG48015 NIA NIH HHS
- R01 AG026916 NIA NIH HHS
- P50 AG033514 NIA NIH HHS
- R01 NS059873 NINDS NIH HHS
- # NS39764 NINDS NIH HHS
- ADGC National Institutes of Health, National Institute on Aging (NIH-NIA)
- Neurotrack Technologies
- Fujirebio
- Lundbeck
- MP-V BrightFocus Foundation
- BRACE
- R01 AG015819 NIA NIH HHS
- R01 AG036836 NIA NIH HHS
- Eisai Inc.
- 5R01AG013616 New York University
- W81XWH-12-2-0012 Department of Defense
- R01AG064614 NIH HHS
- AG02365 University of Pittsburgh
- NIH
- University of Pennsylvania
- NACC
- Boston University
- Columbia University
- Duke University
- Emory University
- Indiana University
- Johns Hopkins University
- Massachusetts General Hospital
- Mayo Clinic
- New York University
- Northwestern University
- Oregon Health & Science University
- Rush University
- NIA
- University of Alabama at Birmingham
- University of Arizona
- University of California, Davis
- University of California, Irvine
- University of California, Los Angeles
- University of California, San Diego
- University of California, San Francisco
- University of Kentucky
- University of Michigan
- University of Pittsburgh
- University of Southern California
- University of Miami
- University of Washington
- Vanderbilt University
- NINDS
- Alzheimer's Association
- Office of Research and Development
- BrightFocus Foundation
- Wellcome Trust
- Howard Hughes Medical Institute
- Medical Research Council
- Newcastle University
- Higher Education Funding Council for England
- Alzheimer's Research Trust
- BRACE
- Stichting MS Research
- Department of Defense
- National Institute of Biomedical Imaging and Bioengineering
- AbbVie
- Alzheimer's Drug Discovery Foundation
- BioClinica, Inc.
- Biogen
- Bristol‐Myers Squibb Company
- Eli Lilly and Company
- Genentech, Inc.
- Fujirebio
- GE Healthcare
- Lundbeck
- Merck & Co., Inc.
- Novartis Pharmaceuticals Corporation
- Pfizer Inc.
- Servier
- Takeda Pharmaceutical Company
- Illinois Department of Public Health
- Translational Genomics Research Institute
Collapse
|
8
|
Eulalio T, Sun MW, Gevaert O, Greicius MD, Montine TJ, Nachun D, Montgomery SB. regionalpcs: improved discovery of DNA methylation associations with complex traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.590171. [PMID: 38746367 PMCID: PMC11092597 DOI: 10.1101/2024.05.01.590171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
We have developed the regional principal components (rPCs) method, a novel approach for summarizing gene-level methylation. rPCs address the challenge of deciphering complex epigenetic mechanisms in diseases like Alzheimer's disease (AD). In contrast to traditional averaging, rPCs leverage principal components analysis to capture complex methylation patterns across gene regions. Our method demonstrated a 54% improvement in sensitivity over averaging in simulations, offering a robust framework for identifying subtle epigenetic variations. Applying rPCs to the AD brain methylation data in ROSMAP, combined with cell type deconvolution, we uncovered 838 differentially methylated genes associated with neuritic plaque burden-significantly outperforming conventional methods. Integrating methylation quantitative trait loci (meQTL) with genome-wide association studies (GWAS) identified 17 genes with potential causal roles in AD, including MS4A4A and PICALM. Our approach is available in the Bioconductor package regionalpcs, opening avenues for research and facilitating a deeper understanding of the epigenetic landscape in complex diseases.
Collapse
Affiliation(s)
- Tiffany Eulalio
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Min Woo Sun
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Olivier Gevaert
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Michael D Greicius
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Daniel Nachun
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | | |
Collapse
|
9
|
Breen C, Papale LA, Clark LR, Bergmann PE, Madrid A, Asthana S, Johnson SC, Keleş S, Alisch RS, Hogan KJ. Whole genome methylation sequencing in blood identifies extensive differential DNA methylation in late-onset dementia due to Alzheimer's disease. Alzheimers Dement 2024; 20:1050-1062. [PMID: 37856321 PMCID: PMC10916976 DOI: 10.1002/alz.13514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/17/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
INTRODUCTION DNA microarray-based studies report differentially methylated positions (DMPs) in blood between late-onset dementia due to Alzheimer's disease (AD) and cognitively unimpaired individuals, but interrogate < 4% of the genome. METHODS We used whole genome methylation sequencing (WGMS) to quantify DNA methylation levels at 25,409,826 CpG loci in 281 blood samples from 108 AD and 173 cognitively unimpaired individuals. RESULTS WGMS identified 28,038 DMPs throughout the human methylome, including 2707 differentially methylated genes (e.g., SORCS3, GABA, and PICALM) encoding proteins in biological pathways relevant to AD such as synaptic membrane, cation channel complex, and glutamatergic synapse. One hundred seventy-three differentially methylated blood-specific enhancers interact with the promoters of 95 genes that are differentially expressed in blood from persons with and without AD. DISCUSSION WGMS identifies differentially methylated CpGs in known and newly detected genes and enhancers in blood from persons with and without AD. HIGHLIGHTS Whole genome DNA methylation levels were quantified in blood from persons with and without Alzheimer's disease (AD). Twenty-eight thousand thirty-eight differentially methylated positions (DMPs) were identified. Two thousand seven hundred seven genes comprise DMPs. Forty-eight of 75 independent genetic risk loci for AD have DMPs. One thousand five hundred sixty-eight blood-specific enhancers comprise DMPs, 173 of which interact with the promoters of 95 genes that are differentially expressed in blood from persons with and without AD.
Collapse
Affiliation(s)
- Coleman Breen
- Department of StatisticsUniversity of Wisconsin, Medical Sciences CenterMadisonWisconsinUSA
| | - Ligia A. Papale
- Department of Neurological SurgeryUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Lindsay R. Clark
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Geriatric Research Education and Clinical CenterWilliam S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Phillip E. Bergmann
- Department of Neurological SurgeryUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Andy Madrid
- Department of Neurological SurgeryUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Sanjay Asthana
- Geriatric Research Education and Clinical CenterWilliam S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Geriatric Research Education and Clinical CenterWilliam S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Sündüz Keleş
- Department of StatisticsUniversity of Wisconsin, Medical Sciences CenterMadisonWisconsinUSA
- Department of Biostatistics and Medical InformaticsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Reid S. Alisch
- Department of Neurological SurgeryUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Kirk J. Hogan
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of AnesthesiologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| |
Collapse
|
10
|
Nohesara S, Abdolmaleky HM, Thiagalingam S, Zhou JR. Gut microbiota defined epigenomes of Alzheimer's and Parkinson's diseases reveal novel targets for therapy. Epigenomics 2024; 16:57-77. [PMID: 38088063 PMCID: PMC10804213 DOI: 10.2217/epi-2023-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
The origins of Alzheimer's disease (AD) and Parkinson's disease (PD) involve genetic mutations, epigenetic changes, neurotoxin exposure and gut microbiota dysregulation. The gut microbiota's dynamic composition and its metabolites influence intestinal and blood-brain barrier integrity, contributing to AD and PD development. This review explores protein misfolding, aggregation and epigenetic links in AD and PD pathogenesis. It also highlights the role of a leaky gut and the microbiota-gut-brain axis in promoting these diseases through inflammation-induced epigenetic alterations. In addition, we investigate the potential of diet, probiotics and microbiota transplantation for preventing and treating AD and PD via epigenetic modifications, along with a discussion related to current challenges and future considerations. These approaches offer promise for translating research findings into practical clinical applications.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Surgery, Nutrition/Metabolism laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jin-Rong Zhou
- Department of Surgery, Nutrition/Metabolism laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA
| |
Collapse
|
11
|
Zheng Y, Lunetta KL, Liu C, Smith AK, Sherva R, Miller MW, Logue MW. A novel principal component based method for identifying differentially methylated regions in Illumina Infinium MethylationEPIC BeadChip data. Epigenetics 2023; 18:2207959. [PMID: 37196182 PMCID: PMC10193914 DOI: 10.1080/15592294.2023.2207959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 03/22/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
Differentially methylated regions (DMRs) are genomic regions with methylation patterns across multiple CpG sites that are associated with a phenotype. In this study, we proposed a Principal Component (PC) based DMR analysis method for use with data generated using the Illumina Infinium MethylationEPIC BeadChip (EPIC) array. We obtained methylation residuals by regressing the M-values of CpGs within a region on covariates, extracted PCs of the residuals, and then combined association information across PCs to obtain regional significance. Simulation-based genome-wide false positive (GFP) rates and true positive rates were estimated under a variety of conditions before determining the final version of our method, which we have named DMRPC. Then, DMRPC and another DMR method, coMethDMR, were used to perform epigenome-wide analyses of several phenotypes known to have multiple associated methylation loci (age, sex, and smoking) in a discovery and a replication cohort. Among regions that were analysed by both methods, DMRPC identified 50% more genome-wide significant age-associated DMRs than coMethDMR. The replication rate for the loci that were identified by only DMRPC was higher than the rate for those that were identified by only coMethDMR (90% for DMRPC vs. 76% for coMethDMR). Furthermore, DMRPC identified replicable associations in regions of moderate between-CpG correlation which are typically not analysed by coMethDMR. For the analyses of sex and smoking, the advantage of DMRPC was less clear. In conclusion, DMRPC is a new powerful DMR discovery tool that retains power in genomic regions with moderate correlation across CpGs.
Collapse
Affiliation(s)
- Yuanchao Zheng
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Kathryn L. Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Alicia K. Smith
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard Sherva
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Mark W. Miller
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA
| | - Mark W. Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
12
|
Tompkins JD. Transgenerational Epigenetic DNA Methylation Editing and Human Disease. Biomolecules 2023; 13:1684. [PMID: 38136557 PMCID: PMC10742326 DOI: 10.3390/biom13121684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
During gestation, maternal (F0), embryonic (F1), and migrating primordial germ cell (F2) genomes can be simultaneously exposed to environmental influences. Accumulating evidence suggests that operating epi- or above the genetic DNA sequence, covalent DNA methylation (DNAme) can be recorded onto DNA in response to environmental insults, some sites which escape normal germline erasure. These appear to intrinsically regulate future disease propensity, even transgenerationally. Thus, an organism's genome can undergo epigenetic adjustment based on environmental influences experienced by prior generations. During the earliest stages of mammalian development, the three-dimensional presentation of the genome is dramatically changed, and DNAme is removed genome wide. Why, then, do some pathological DNAme patterns appear to be heritable? Are these correctable? In the following sections, I review concepts of transgenerational epigenetics and recent work towards programming transgenerational DNAme. A framework for editing heritable DNAme and challenges are discussed, and ethics in human research is introduced.
Collapse
Affiliation(s)
- Joshua D Tompkins
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
13
|
Liu Y, Tian J. Neuroprotective factors affect the progression of Alzheimer's disease. Biochem Biophys Res Commun 2023; 681:276-282. [PMID: 37797415 DOI: 10.1016/j.bbrc.2023.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
Alzheimer's disease(AD) is a neurodegenerative disease that occurs mostly in the elderly and is characterized by chronic progressive cognitive dysfunction, which seriously threatens the health and life-quality of patients. Alterations at the molecular level, which causes pathological changes of AD brain, have impacted the progression of AD. In this review, we illustrate the recent evidence of the alteration of neuroprotective proteins in AD, such as changes in their contents and variants. Furthermore, we elucidate the single nucleotide polymorphism (SNP) and gene changes. Finally, we highlight the epigenetic changes in AD, which helps to display the characteristics of the disease and provides guidance regarding research hot spots in the field against AD.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, China
| | - Jinzhou Tian
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, China.
| |
Collapse
|
14
|
Mir FA, Amanullah A, Jain BP, Hyderi Z, Gautam A. Neuroepigenetics of ageing and neurodegeneration-associated dementia: An updated review. Ageing Res Rev 2023; 91:102067. [PMID: 37689143 DOI: 10.1016/j.arr.2023.102067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Gene expression is tremendously altered in the brain during memory acquisition, recall, and forgetfulness. However, non-genetic factors, including environmental elements, epigenetic changes, and lifestyle, have grabbed significant attention in recent years regarding the etiology of neurodegenerative diseases (NDD) and age-associated dementia. Epigenetic modifications are essential in regulating gene expression in all living organisms in a DNA sequence-independent manner. The genes implicated in ageing and NDD-related memory disorders are epigenetically regulated by processes such as DNA methylation, histone acetylation as well as messenger RNA editing machinery. The physiological and optimal state of the epigenome, especially within the CNS of humans, plays an intricate role in helping us adjust to the changing environment, and alterations in it cause many brain disorders, but the mechanisms behind it still need to be well understood. When fully understood, these epigenetic landscapes could act as vital targets for pharmacogenetic rescue strategies for treating several diseases, including neurodegeneration- and age-induced dementia. Keeping this objective in mind, this updated review summarises the epigenetic changes associated with age and neurodegeneration-associated dementia.
Collapse
Affiliation(s)
- Fayaz Ahmad Mir
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Zeeshan Hyderi
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
15
|
Magrin C, Bellafante M, Sola M, Piovesana E, Bolis M, Cascione L, Napoli S, Rinaldi A, Papin S, Paganetti P. Tau protein modulates an epigenetic mechanism of cellular senescence in human SH-SY5Y neuroblastoma cells. Front Cell Dev Biol 2023; 11:1232963. [PMID: 37842084 PMCID: PMC10569482 DOI: 10.3389/fcell.2023.1232963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: Progressive Tau deposition in neurofibrillary tangles and neuropil threads is the hallmark of tauopathies, a disorder group that includes Alzheimer's disease. Since Tau is a microtubule-associated protein, a prevalent concept to explain the pathogenesis of tauopathies is that abnormal Tau modification contributes to dissociation from microtubules, assembly into multimeric β-sheets, proteotoxicity, neuronal dysfunction and cell loss. Tau also localizes in the cell nucleus and evidence supports an emerging function of Tau in DNA stability and epigenetic modulation. Methods: To better characterize the possible role of Tau in regulation of chromatin compaction and subsequent gene expression, we performed a bioinformatics analysis of transcriptome data obtained from Tau-depleted human neuroblastoma cells. Results: Among the transcripts deregulated in a Tau-dependent manner, we found an enrichment of target genes for the polycomb repressive complex 2. We further describe decreased cellular amounts of the core components of the polycomb repressive complex 2 and lower histone 3 trimethylation in Tau deficient cells. Among the de-repressed polycomb repressive complex 2 target gene products, IGFBP3 protein was found to be linked to increased senescence induction in Tau-deficient cells. Discussion: Our findings propose a mechanism for Tau-dependent epigenetic modulation of cell senescence, a key event in pathologic aging.
Collapse
Affiliation(s)
- Claudia Magrin
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, PhD Program in Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Martina Bellafante
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
| | - Martina Sola
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, PhD Program in Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Ester Piovesana
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, PhD Program in Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Marco Bolis
- Functional Cancer Genomics Laboratory, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
| | - Luciano Cascione
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sara Napoli
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Rinaldi
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
| | - Stéphanie Papin
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
| | - Paolo Paganetti
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, PhD Program in Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
16
|
Jeremic D, Jiménez-Díaz L, Navarro-López JD. Targeting epigenetics: A novel promise for Alzheimer's disease treatment. Ageing Res Rev 2023; 90:102003. [PMID: 37422087 DOI: 10.1016/j.arr.2023.102003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/30/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
So far, the search for a cure for Alzheimer Disease (AD) has been unsuccessful. The only approved drugs attenuate some symptoms, but do not halt the progress of this disease, which affects 50 million people worldwide and will increase its incidence in the coming decades. Such scenario demands new therapeutic approaches to fight against this devastating dementia. In recent years, multi-omics research and the analysis of differential epigenetic marks in AD subjects have contributed to our understanding of AD; however, the impact of epigenetic research is yet to be seen. This review integrates the most recent data on pathological processes and epigenetic changes relevant for aging and AD, as well as current therapies targeting epigenetic machinery in clinical trials. Evidence shows that epigenetic modifications play a key role in gene expression, which could provide multi-target preventative and therapeutic approaches in AD. Both novel and repurposed drugs are employed in AD clinical trials due to their epigenetic effects, as well as increasing number of natural compounds. Given the reversible nature of epigenetic modifications and the complexity of gene-environment interactions, the combination of epigenetic-based therapies with environmental strategies and drugs with multiple targets might be needed to properly help AD patients.
Collapse
Affiliation(s)
- Danko Jeremic
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, Spain
| | - Lydia Jiménez-Díaz
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, Spain.
| | - Juan D Navarro-López
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, Spain.
| |
Collapse
|
17
|
Ray NR, Kunkle BW, Hamilton-Nelson K, Kurup JT, Rajabli F, Cosacak MI, Kizil C, Jean-Francois M, Cuccaro M, Reyes-Dumeyer D, Cantwell L, Kuzma A, Vance JM, Gao S, Hendrie HC, Baiyewu O, Ogunniyi A, Akinyemi RO, Lee WP, Martin ER, Wang LS, Beecham GW, Bush WS, Farrer LA, Haines JL, Byrd GS, Schellenberg GD, Mayeux R, Pericak-Vance MA, Reitz C. Extended genome-wide association study employing the African Genome Resources Panel identifies novel susceptibility loci for Alzheimer's Disease in individuals of African ancestry. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.29.23294774. [PMID: 37693582 PMCID: PMC10491365 DOI: 10.1101/2023.08.29.23294774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Despite a two-fold increased risk, individuals of African ancestry have been significantly underrepresented in Alzheimer's Disease (AD) genomics efforts. METHODS GWAS of 2,903 AD cases and 6,265 cognitive controls of African ancestry. Within-dataset results were meta-analyzed, followed by gene-based and pathway analyses, and analysis of RNAseq and whole-genome sequencing data. RESULTS A novel AD risk locus was identified in MPDZ on chromosome 9p23 (rs141610415, MAF=.002, P =3.68×10 -9 ). Two additional novel common and nine novel rare loci approached genome-wide significance at P <9×10 -7 . Comparison of association and LD patterns between datasets with higher and lower degrees of African ancestry showed differential association patterns at chr12q23.2 ( ASCL1 ), suggesting that the association is modulated by regional origin of local African ancestry. DISCUSSION Increased sample sizes and sample sets from Africa covering as much African genetic diversity as possible will be critical to identify additional disease-associated loci and improve deconvolution of local genetic ancestry effects.
Collapse
|
18
|
Bazan N, Bhattacharjee S, Kala-Bhattacharjee S, Ledet A, Mukherjee P. Elovanoids are neural resiliency epigenomic regulators targeting histone modifications, DNA methylation, tau phosphorylation, telomere integrity, senescence programming, and dendrite integrity. RESEARCH SQUARE 2023:rs.3.rs-3185942. [PMID: 37502897 PMCID: PMC10371143 DOI: 10.21203/rs.3.rs-3185942/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Cellular identity, developmental reorganization, genomic structure modulation, and susceptibility to diseases are determined by epigenomic regulation by multiple signaling interplay. Here we demonstrate that elovanoids (ELVs), mediators derived from very-long-chain polyunsaturated fatty acids (VLC-PUFAs, n-3, C > 28), and their precursors in neurons in culture overcome the damage triggered by oligomeric amyloid-beta (OAβ), erastin (ferroptosis-dependent cell death), or other insults that target epigenomic signaling. We uncover that ELVs counteract damage targeting histones H3K9 and H3K27 methylation and acetylation; tau hyperphosphorylation (pThr181, pThr217, pThr231, and pSer202/pThr205 (AT8)); senescence gene programming (p16INK4a, p27KIP, p21CIP1, and p53); DNA methylation (DNAm) modifying enzymes: TET (DNA hydroxymethylase), DNA methyltransferase, DNA demethylase, and DNAm (5mC) phenotype. Moreover, ELVs revert OAβ-triggered telomere length (TL) attrition as well as upregulation of telomerase reverse transcriptase (TERT) expression fostering dendrite protection and neuronal survival. Thus, ELVs modulate epigenomic resiliency by pleiotropic interrelated signaling.
Collapse
|