1
|
Wang JC, Chen HH, Hsu TW, Hung KH, Huang CC. A taxonomic revision of the genus Angelica (Apiaceae) in Taiwan with a new species A. aliensis. BOTANICAL STUDIES 2024; 65:3. [PMID: 38252347 PMCID: PMC10803708 DOI: 10.1186/s40529-023-00407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Angelica L. sensu lato is a taxonomically complex genus, and many studies have utilized morphological and molecular features to resolve its classification issues. In Taiwan, there are six taxa within Angelica, and their taxonomic treatments have been a subject of controversy. In this study, we conducted a comprehensive analysis incorporating morphological and molecular (cpDNA and nrDNA) characteristics to revise the taxonomic treatments of Angelica in Taiwan. RESULTS As a result of our research, we have revised the classification between A. dahurica var. formosana and A. pubescens and merged two varieties of A. morrisonicola into a single taxon. A new taxon, A. aliensis, has been identified and found to share a close relationship with A. tarokoensis. Based on the morphological and molecular characteristics data, it has been determined that the former three taxa should be grouped into the Eurasian Angelica clade, while the remaining four taxa should belong to the littoral Angelica clade. Furthermore, Angelica species in Taiwan distributed at higher altitudes displayed higher genetic diversity, implying that the central mountain range of Taiwan serves as a significant reservoir of plant biodiversity. Genetic drift, such as bottlenecks, has been identified as a potential factor leading to the fixation or reduction of genetic diversity of populations in most Angelica species. We provide key to taxa, synopsis, phenology, and distribution for each taxon of Taiwan. CONCLUSIONS Our comprehensive analysis of morphological and molecular features has shed light on the taxonomic complexities within Angelica in Taiwan, resolving taxonomic issues and providing valuable insights into the phylogenetic relationships of Angelica in Taiwan.
Collapse
Affiliation(s)
- Jenn-Che Wang
- Department of Life Science, National Taiwan Normal University, Taipei, 106, Taiwan
| | - Hung-Hsin Chen
- Department of Life Science, National Taiwan Normal University, Taipei, 106, Taiwan
| | - Tsai-Wen Hsu
- Wild Plants Division, Taiwan Biodiversity Research Institute, Nantou, 552, Taiwan
| | - Kuo-Hsiang Hung
- Graduate Institute of Bioresources, Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
- Forestry and Biodiversity Research Center, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| | - Chi-Chun Huang
- Wild Plants Division, Taiwan Biodiversity Research Institute, Nantou, 552, Taiwan.
| |
Collapse
|
2
|
Xie J, Tang X, Xie C, Wang Y, Huang J, Jin J, Liu H, Zhong C, Zhou R, Ren G, Zhang S. Comparative analysis of root anatomical structure, chemical components and differentially expressed genes between early bolting and unbolting in Peucedanum praeruptorum Dunn. Genomics 2023; 115:110557. [PMID: 36610559 DOI: 10.1016/j.ygeno.2023.110557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/18/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Early bolting of Peucedanum praeruptorum Dunn severely affects its quality. In this study, we compared with the root structure of P. praeruptorum and its four coumarins content between early bolting (CT) and unbolting (WT) at different growth stages. We found that the proportion of area outside the root cambium (Rs) was higher in the WT plants than in the CT plants and correlated positively with the proximity to the root tip. Furthermore, the content of all four coumarins was also higher in the WT plants relative to the CT plants. In addition, we identified 15,524 differentially expressed genes (DEGs) between the two plant varieties. 11 DEGs are involved in the photoperiod and gibberellin pathways that regulate early bolting and 24 genes involved in coumarins biosynthesis were also identified. Nevertheless, early bolting of P. praeruptorum does affect its quality formation, and further studies are needed to confirm its mechanism.
Collapse
Affiliation(s)
- Jing Xie
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410013, PR China
| | - Xueyang Tang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410013, PR China
| | - Chufei Xie
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410013, PR China
| | - Yongqing Wang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410013, PR China
| | - Jianhua Huang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410013, PR China
| | - Jian Jin
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410013, PR China
| | - Hao Liu
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410013, PR China
| | - Can Zhong
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410013, PR China
| | - Rongrong Zhou
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410013, PR China
| | - Guangxi Ren
- College of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Shuihan Zhang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410013, PR China.
| |
Collapse
|
3
|
Amatjan M, Li N, He P, Zhang B, Mai X, Jiang Q, Xie H, Shao X. A Novel Approach Based on Gut Microbiota Analysis and Network Pharmacology to Explain the Mechanisms of Action of Cichorium intybus L. Formula in the Improvement of Hyperuricemic Nephropathy in Rats. Drug Des Devel Ther 2023; 17:107-128. [PMID: 36712944 PMCID: PMC9880016 DOI: 10.2147/dddt.s389811] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Background Cichorium intybus L. formula (CILF) is a traditional Chinese medicine (TCM) widely used in the treatment of gout and hyperuricemic nephropathy (HN). The aim of this research was to investigate the potential protective effect of CILF against HN and elucidated the underlying mechanism. Methods CILF water extract was administered to an HN rat model established by adenine combined with ethambutol. The levels of uric acid (UA), serum urea nitrogen (UREA), and creatinine (CREA) were detected. Changes in the pathology and histology of the kidney were observed by hematoxylin-eosin staining. The 16S rRNA of the gut microbiota was sequenced. The binding ability of the main ingredients of CILF to key targets was analyzed by network pharmacology and molecular docking. The expression levels of the related mRNAs and proteins in the kidney were evaluated by RT-qPCR and immunohistochemistry analysis. Results CILF administration significantly alleviated increases in UA, UREA, and CREA, structural damage, and kidney dysfunction. Gut microbiota analysis was applied to explore the pharmacological mechanism of the effects of CILF on bacterial diversity and microbiota structure in HN. CILF decreased the abundance of Bacteroides. In addition, it increased the abundance of Lactobacillaceae, Erysipelotrichaceae, Lachnospiraceae, Ruminococcaceae, and Bifidobacterium. Based on network pharmacology and molecular docking analysis, CILF profoundly influenced the IL17, TNF and AGE-RAGE signaling pathway. Additionally, CILF inhibited the expression of STAT3, VEGFA and SIRT1 to improve the symptoms of nephropathy. Our research suggested that CILF protects against kidney dysfunction in rats with HN induced by adenine combined with ethambutol. Conclusion Our findings on the anti-HN effects of CILF and its mechanism of action, from the viewpoint of systems biology, and elaborated that CILF can alter the diversity and community structure of the gut microbiota in HN, providing new approaches for the prevention and treatment of HN.
Collapse
Affiliation(s)
- Mukaram Amatjan
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Na Li
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Pengke He
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Boheng Zhang
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Xianyan Mai
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Qianle Jiang
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Haochen Xie
- Qinghai Tibet Plateau Research Institute, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Xiaoni Shao
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| |
Collapse
|
4
|
Zhang Y, Li Z, Wei J, Kong L, Song M, Zhang Y, Xiao X, Cao H, Jin Y. Network pharmacology and molecular docking reveal the mechanism of Angelica dahurica against Osteosarcoma. Medicine (Baltimore) 2022; 101:e31055. [PMID: 36343039 PMCID: PMC9646661 DOI: 10.1097/md.0000000000031055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Osteosarcoma (OS) is a malignant bone tumor of mesenchymal origin. Angelica dahurica is a typical traditional Chinese herb. Angelica dahurica is used in the treatment of a variety of tumors. However, the studies of Angelica dahurica for OS have not been reported. To investigate Angelica dahurica's potential mechanism of action in the treatment of OS, we used network pharmacology and molecular docking methods in this study. Of which the network pharmacology includes the collection of active ingredients of Angelica dahurica, the collection of predicted targets of Angelica dahurica and predicted targets of OS, the analysis of therapeutic targets of Angelica dahurica, gene ontology (GO) enrichment, and Kyoto encyclopedia of genes and genomes (KEGG) enrichment. The Venn plot performance showed that there were 225 predicted targets of Angelica dahurica for the treatment of OS. The therapeutic targets enrichment analysis results showed that Angelica dahurica treated OS through multiple targets and pathways. Angelica dahurica could affect OS's proliferation, apoptosis, migration, infiltration, and angiogenesis through a signaling network formed by pivotal genes crosstalking numerous signaling pathways. In addition, molecular docking results showed that sen-byakangelicol, beta-sitosterol, and Prangenin, have a relatively high potential to become a treatment for patients with OS and improve 5-year survival in OS patients. We used network pharmacology and molecular docking methods to predict the active ingredients and significant targets of Angelica dahurica for the treatment of OS and, to a certain extent, elucidated the potential molecular mechanism of Angelica dahurica in the treatment of OS. This study provided a theoretical basis for Angelica dahurica in the treatment of OS.
Collapse
Affiliation(s)
- Yafang Zhang
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Zhehong Li
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Junqiang Wei
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Lingwei Kong
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Mingze Song
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Yange Zhang
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Xiangyu Xiao
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Haiying Cao
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Yu Jin
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
- *Correspondence: Yu Jin, Department of Traumatology and Orthopaedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, China (e-mail: )
| |
Collapse
|
5
|
Song C, Li X, Jia B, Liu L, Wei P, Manzoor MA, Wang F, Li BY, Wang G, Chen C, Han B. Comparative Transcriptomics Unveil the Crucial Genes Involved in Coumarin Biosynthesis in Peucedanum praeruptorum Dunn. FRONTIERS IN PLANT SCIENCE 2022; 13:899819. [PMID: 35656010 PMCID: PMC9152428 DOI: 10.3389/fpls.2022.899819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Peucedanum praeruptorum Dunn is a commonly used traditional Chinese medicine that is abundant in furano- and dihydropyrano coumarins. When P. praeruptorum reaches the bolting stage, the roots gradually lignified, and the content of coumarins declines rapidly. Non-bolting has always been a decisive factor for harvesting the P. praeruptorum materials. To evaluate the amount of coumarin components in unbolted and bolted P. praeruptorum, the variations of praeruptorin A, praeruptorin B, praeruptorin E, peucedanocoumarin I, and peucedanocoumarin II were determined. Additionally, 336,505 transcripts were obtained from the comparative transcriptome data. Among them, a total of 1,573 differentially expressed genes were screened out. To identify the critical genes involved in coumarin biosynthesis, comparative transcriptomics coupled with co-expression associated analysis was conducted. Finally, coumarin biosynthesis-related eighteen candidate genes were selected for the validation of qPCR. Additionally, a phylogenetic tree and the expression profile of ATP-binding cassette (ABC) transporters were constructed. To clarify the main genes in the regulation of coumarin biosynthesis, the interaction network of the co-expression genes from thirteen modules was constructed. Current results exhibited the significant increment of praeruptorin A, praeruptorin B and praeruptorin E in the bolted P. praeruptorum. Although, peucedanocoumarin I and peucedanocoumarin II were slightly increased. Besides the content of coumarins, the essential genes involved in the coumarin biosynthesis also exhibited an overall downward trend after bolting. Three peroxidases (PRXs) involved in the production of lignin monomers had been demonstrated to be downregulated. PAL, C4H, HCT, COMT, CCoAOMT, and some ABC transporters were dramatically downregulated at the bolting stage. These results indicated that the downregulation of coumarin biosynthetic genes in the bolted P. praeruptorum ultimately reduced the formation of coumarins. However, the mechanism through which bolting indirectly affects the formation of coumarin still needs extra functional verification.
Collapse
Affiliation(s)
- Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Xiaoli Li
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Bin Jia
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Li Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Peipei Wei
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | | | - Fang Wang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Biqi Yao Li
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Guanglin Wang
- Analytical and Testing Center, West Anhui University, Lu’an, China
| | - Cunwu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| | - Bangxing Han
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an, China
| |
Collapse
|
6
|
Mottaghipisheh J. Oxypeucedanin: Chemotaxonomy, Isolation, and Bioactivities. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081577. [PMID: 34451622 PMCID: PMC8401860 DOI: 10.3390/plants10081577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 05/10/2023]
Abstract
The present review comprehensively gathered phytochemical, bioactivity, and pharmacokinetic reports on a linear furanocoumarin, namely oxypeucedanin. Oxypeucedanin (OP), which structurally contains an epoxide ring, has been majorly isolated from ethyl acetate-soluble partitions of several genera, particularly Angelica, Ferulago, and Prangos of the Apiaceae family; and Citrus, belonging to the Rutaceae family. The methanolic extract of Angelica dahurica roots has been analytically characterized as the richest natural OP source. This naturally occurring secondary metabolite has been described to possess potent antiproliferative, cytotoxic, anti-influenza, and antiallergic activities, as assessed in preclinical studies. In order to explore potential drug candidates, oxypeucedanin, its derivatives, and semi-synthetically optimized analogues can be considered for the complementary assessments of biological assays.
Collapse
Affiliation(s)
- Javad Mottaghipisheh
- Center for Molecular Biosciences (CMBI), Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Song C, Li X, Jia B, Liu L, Ou J, Han B. De novo Transcriptome Sequencing Coupled With Co-expression Analysis Reveal the Transcriptional Regulation of Key Genes Involved in the Formation of Active Ingredients in Peucedanum praeruptorum Dunn Under Bolting Period. Front Genet 2021; 12:683037. [PMID: 34194480 PMCID: PMC8236723 DOI: 10.3389/fgene.2021.683037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Peucedanum praeruptorum Dunn is a perennial and one-off flowering plant of the Peucedanum genus in Umbelliferae. The cultivated P. praeruptorum Dunn usually grows nutritionally in the first year and then moves into the reproductive growth in the second year. The lignification of the roots caused by bolting leads to the quality decline of crude materials. Since most of the previous studies have dealt with coumarin biosynthesis and identification of functional genes in P. praeruptorum, the scientific connotation of the inability that the bolted P. praeruptorum cannot be used medically is still unclear. Here, we employed a transcriptome sequencing combined with coexpression analysis to unearth the regulation mechanism of key genes related to coumarin synthesis in pre- and postbolting period, and to explore the mechanisms underlying the effects of bolting on the formation and transport of coumarins between the annual and biennial plants. Six cDNA libraries were constructed, and the transcripts were sequenced and assembled by Illumina Hiseq platform. A total of 336,505 unigenes were obtained from 824,129 non-redundant spliced transcripts. Unigenes (114,488) were annotated to the NCBI nr database, 119,017 and 10,475 unigenes were aligned to Gene Ontology (GO) functional groups and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. Differential expression analysis screened out a series of upregulated and downregulated genes related to the phenylpropanoid pathway. The heatmap clustering showed that the similar expression patterns were both observed in groups C vs. D and groups C vs. F. The WGCNA-based coexpression was performed to elucidate the module and trait relationship to unearth important genes related to the bolting process. Seven pivotal modules on the KEGG functional annotations suggested these genes were mainly enriched in the process of plant–pathogen interaction, plant hormone signal transduction, MAPK signaling pathway, α-linolenic acid metabolism, circadian rhythm, and phenylpropanoid pathway. Further analysis provided clues that the key genes of the phenylpropanoid pathway, the ABC transporters, the apoptosis-related and circadian rhythm regulatory genes may play pivotal roles in regulating bolting signaling, biosynthesis, and transportation of coumarins.
Collapse
Affiliation(s)
- Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China.,Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an, China
| | - Xiaoli Li
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Bin Jia
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Li Liu
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jinmei Ou
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Bangxing Han
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China.,Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
8
|
Zhao L, Zhang S, Shan C, Shi Y, Wu H, Wu J, Peng D. De novo transcriptome assembly of Angelica dahurica and characterization of coumarin biosynthesis pathway genes. Gene 2021; 791:145713. [PMID: 33979682 DOI: 10.1016/j.gene.2021.145713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022]
Abstract
Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav (A. dahurica) is a famous Chinese herb known for the production of coumarins, important secondary metabolites with wide-ranging pharmacological activities. In particular, the methoxylated coumarins like those produced by A. dahurica are known for their anti-inflammatory, anti-cancer, and anti-oxidant pharmacological effects. However, the molecular mechanism of coumarin biosynthesis in A. dahurica has not been studied. Such investigation could help scientists harness the biosynthesis potential of methoxylated coumarins. Here we present, three transcriptomes corresponding to leaf, root, and stem tissues of A. dahurica. A total of 114,310 unigenes with an average length of 1118 bp were de novo assembled, and 81,404 (71.21%) of those unigenes were annotated. Then, 181 unigenes encoding the seven key enzymes involved were identified, for which COMT (Caffeic acid 3-O-methyltransferase) was spatially used in a phylogenetic analysis, and some of these key enzyme genes were verified by qRT-PCR. Differentially expressed genes and root-specific-expressed genes were identified, by comparing genes' profile activity between roots and other tissues. Furthermore, multiple genes encoding key enzymes or transcription factors related to coumarin biosynthesis were identified and analyzed. This study is the first to report comprehensive gene information of A. dahurica at the transcriptional level, and to distinguish candidate genes related to its biosynthesis of coumarin, thus laying a foundation for this pathway's further exploration in A. dahurica.
Collapse
Affiliation(s)
- Liqiang Zhao
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Shengxiang Zhang
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Chunmiao Shan
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Yuanyuan Shi
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Huan Wu
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Jiawen Wu
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China; Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, China.
| | - Daiyin Peng
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, China.
| |
Collapse
|
9
|
Kiyonga AN, Hong G, Kim HS, Suh YG, Jung K. Facile and Rapid Isolation of Oxypeucedanin Hydrate and Byakangelicin from Angelica dahurica by Using [Bmim]Tf 2N Ionic Liquid. Molecules 2021; 26:830. [PMID: 33562719 PMCID: PMC7915976 DOI: 10.3390/molecules26040830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022] Open
Abstract
Ionic liquids (ILs) have sparked much interest as alternative solvents for plant materials as they provide distinctive properties. Therefore, in this study, the capacity of ILs to extract oxypeucedanin hydrate and byakangelicin from the roots of Angelica dahurica (A. dahurica) was investigated. The back-extraction method was examined to recover target components from the IL solution as well. Herein, [Bmim]Tf2N demonstrated outstanding performance for extracting oxypeucedanin hydrate and byakangelicin. Moreover, factors including solvent/solid ratio, extraction temperature and time were investigated and optimized using a statistical approach. Under optimum extraction conditions (solvent/solid ratio 8:1, temperature 60 °C and time 180 min), the yields of oxypeucedanin hydrate and byakangelicin were 98.06% and 99.52%, respectively. In addition, 0.01 N HCl showed the most significant ability to back-extract target components from the [Bmim]Tf2N solution. The total content of both oxypeucedanin hydrate (36.99%) and byakangelicin (45.12%) in the final product exceeded 80%. Based on the data, the proposed approach demonstrated satisfactory extraction ability, recovery and enrichment of target compounds in record time. Therefore, the developed approach is assumed essential to considerably reduce drawbacks encountered during the separation of oxypeucedanin hydrate and byakangelicin from the roots of A. dahurica.
Collapse
Affiliation(s)
| | | | | | | | - Kiwon Jung
- Institute of Pharmaceutical Sciences, College of Pharmacy, CHA University, Sungnam 13844, Korea; (A.N.K.); (G.H.); (H.S.K.); (Y.-G.S.)
| |
Collapse
|
10
|
Nan G, Zhang L, Liu Z, Liu Y, Du Y, Zhao H, Zheng H, Lin R, Yang G, Zheng S. Quantitative Determination of p-Cymene, Thymol, Neryl Acetate, and β-Caryophyllene in Different Growth Periods and Parts of Eupatorium fortunei Turcz. by GC-MS/MS. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2021; 2021:2174667. [PMID: 34381625 PMCID: PMC8352711 DOI: 10.1155/2021/2174667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 05/13/2023]
Abstract
Eupatorium fortunei Turcz. is a widely used Chinese herbal medicine in China. In this study, a gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) method was developed and validated to simultaneously determine the contents of p-cymene, thymol, neryl acetate, and β-caryophyllene in roots, stems, and leaves of Eupatorium fortunei Turcz. harvested at different growth periods. All four constituents could be detected in leaves, three could be detected in stems except β-caryophyllene, and only thymol could be detected in roots. The order of the total contents of four constituents in different parts was leaves > stems > roots. It indicated that the leaves could be the proper medicinal parts of Eupatorium fortunei Turcz. The content of four constituents in leaves varied a lot among different growth periods and showed an M-shaped change trend with the growth of Eupatorium fortunei Turcz. The four constituents accumulated to the highest values in early July followed by mid-September. Accordingly, the best harvest time of Eupatorium fortunei Turcz. is early July and mid-September.
Collapse
Affiliation(s)
- Guanjun Nan
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Lina Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhengzheng Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yu Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yan Du
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Hongwen Zhao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Hongxia Zheng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Rong Lin
- Department of Pharmacology, Xi'an Jiaotong University, Xi'an 710061, China
| | - Guangde Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Shaohua Zheng
- Department of Anesthesiology and Operation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
11
|
Chelghoum M, Guenane H, Harrat M, Yousfi M. Total Tocopherols, Carotenoids, and Fatty Acids Content Variation of Pistacia atlantica from Different Organs' Crude Oils and Their Antioxidant Activity during Development Stages. Chem Biodivers 2020; 17:e2000117. [PMID: 32558253 DOI: 10.1002/cbdv.202000117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022]
Abstract
The current study investigated the effect of developmental stages on the chemical composition and the antioxidant activity of fifteen crude oil samples obtained from Pistacia atlantica Desf. leaves, galls, and fruits. Twelve fatty acids were detected by GC/FID, linolenic acid (C18 : 3) was the major fatty acid detected in leaves crude oils that registered [41.73 % (P<0.05)] on the last stage. The best content of tocopherols and carotenoids was recorded at the last stage for leaves and galls oils, respectively, with values of [1.530±0.01, 0.52±0.01 (P<0.05) mg α-tocopherol equivalent/g DW] and [86.60±0.95, 69.15±0.13 (P<0.05) μg β-carotene equivalent/g DW]. For fruits oils, the content varied depending on the levels of fruits maturation. The results from DPPH, FRAP, and ABTS assays revealed that the antioxidant activity increased with the increasing content of tocopherols and carotenoids in leaves and galls oils during development stages, and varied for fruits oils depending on the ripening stages. Moreover, according to PCA analysis, the best phytoconstituent content and antioxidant activity were attributed to P. atlantica Desf. fruit's crude oils. Also, a strong relationship was found between the antioxidant activity and bioactive phytochemical components, such as tocopherols, carotenoids, and omega-three fatty acid, which confirmed that P. atlantica Desf. crude oils present a valuable source of natural antioxidant that could be used for pharmaceutical and food industries purposes.
Collapse
Affiliation(s)
- Manel Chelghoum
- Laboratoire des Sciences Fondamentales, Université Amar Télidji, 03000, Laghouat, Algérie
| | - Hamid Guenane
- Laboratoire des Sciences Fondamentales, Université Amar Télidji, 03000, Laghouat, Algérie
| | - Mohamed Harrat
- Laboratoire des Sciences Fondamentales, Université Amar Télidji, 03000, Laghouat, Algérie
| | - Mohamed Yousfi
- Laboratoire des Sciences Fondamentales, Université Amar Télidji, 03000, Laghouat, Algérie
| |
Collapse
|
12
|
Szymborska-Sandhu I, Przybył JL, Kosakowska O, Bączek K, Węglarz Z. Chemical Diversity of Bastard Balm ( Melittis melisophyllum L.) as Affected by Plant Development. Molecules 2020; 25:E2421. [PMID: 32455929 PMCID: PMC7287771 DOI: 10.3390/molecules25102421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022] Open
Abstract
The phytochemical diversity of Melittis melissophyllum was investigated in terms of seasonal changes and age of plants including plant organs diversity. The content of phenolics, namely: coumarin; 3,4-dihydroxycoumarin; o-coumaric acid 2-O-glucoside; verbascoside; apiin; luteolin-7-O-glucoside; and o-coumaric; p-coumaric; chlorogenic; caffeic; ferulic; cichoric acids, was determined using HPLC-DAD. Among these, luteolin-7-O-glucoside, verbascoside, chlorogenic acid, and coumarin were the dominants. The highest content of flavonoids and phenolic acids was observed in 2-year-old plants, while coumarin in 4-year-old plants (272.06 mg 100 g-1 DW). When considering seasonal changes, the highest content of luteolin-7-O-glucoside was observed at the full flowering, whereas verbascoside and chlorogenic acid were observed at the seed-setting stage. Among plant organs, the content of coumarin and phenolic acids was the highest in leaves, whereas verbascoside and luteolin-7-O-glucoside were observed in flowers. The composition of essential oil was determined using GC-MS/GC-FID. In the essential oil from leaves, the dominant was 1-octen-3-ol, whilst from flowers, the dominant was α-pinene.
Collapse
Affiliation(s)
| | | | | | - Katarzyna Bączek
- Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Warsaw University of Life Sciences–SGGW, 166 Nowoursynowska Street, 02-787 Warsaw, Poland; (I.S.-S.); (J.L.P.); (O.K.); (Z.W.)
| | | |
Collapse
|
13
|
Bao X, Huang B, Mao Y, Zhang Z, Zhou Y, Wen C, Zhou Q. Pharmacokinetic UPLC–MS/MS studies on byakangelicol after oral and intravenous administration to rats. ACTA CHROMATOGR 2020. [DOI: 10.1556/1326.2019.00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Byakangelicol is one of coumarins from Baizhi and has been shown to inhibit the release of PGE2 from human lung epithelial A549 cells in a dose-dependent manner. A sensitive ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method was developed and full validated for the quantification of byakangelicol in rat plasma. The pharmacokinetics of byakangelicol after both intravenous (5 mg/kg) and oral (15 mg/kg) administrations were studied. Chromatographic separation was performed on an ultra-performance liquid chromatography ethylene bridged hybrid (UPLC BEH) C18 column with acetonitrile and 0.1% formic acid as the mobile phase at a flow rate of 0.4 mL/min; fargesin was used as the internal standard (IS). The following quantitative analysis of byakangelicol was utilized in the multiple reaction monitoring mode. The samples were extracted from rat plasma via protein precipitation using acetonitrile. In the concentration range of 1–2000 ng/mL, the method correlated linearity (r > 0.995) with a lower limit of quantitation (LLOQ) of 1 ng/mL. Intra-day precision was less than 11%, and inter-day precision was less than 12%. The accuracy was between 92.0% and 108.7%, the recovery was better than 89.6%, and the matrix effect was between 85.9% and 98.6%. The method was successfully applied to a pharmacokinetic study of byakangelicol after intravenous and oral administration, and the absolute bioavailability was 3.6%.
Collapse
Affiliation(s)
- Xi Bao
- 1 The First Affiliated Hospital of Wenzhou Medical University Wenzhou 325000 China
| | - Bingge Huang
- 2 Laboratory Animal Centre, Wenzhou Medical UniversityWenzhou 325035China
| | - Yiting Mao
- 2 Laboratory Animal Centre, Wenzhou Medical UniversityWenzhou 325035China
| | - Zhiguang Zhang
- 2 Laboratory Animal Centre, Wenzhou Medical UniversityWenzhou 325035China
| | - Yunfang Zhou
- 3 The Laboratory of Clinical Pharmacy, The People's Hospital of LishuiLishui 323000China
| | - Congcong Wen
- 2 Laboratory Animal Centre, Wenzhou Medical UniversityWenzhou 325035China
| | - Quan Zhou
- 3 The Laboratory of Clinical Pharmacy, The People's Hospital of LishuiLishui 323000China
| |
Collapse
|
14
|
Singh G, Singh A, Singh P, Bhatti R. Bergapten Ameliorates Vincristine-Induced Peripheral Neuropathy by Inhibition of Inflammatory Cytokines and NFκB Signaling. ACS Chem Neurosci 2019; 10:3008-3017. [PMID: 31064179 DOI: 10.1021/acschemneuro.9b00206] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bergapten, a furanocoumarin derivative found in a variety of medicinal plants, is documented to possess anti-inflammatory activity. However, whether bergapten is useful in alleviating the symptoms as well as the progress of peripheral neuropathy is not yet studied. The current investigation has been designed to explore the effect of bergapten on vincristine-induced neuropathic pain. Rats were grouped as normal, neuropathic control (vincristine), gabapentin, and bergapten treated groups with five animals in each group. Vincristine (100 μg/kg, i.p.) was administered for 10 days with 2 days break. Gabapentin (60 mg/kg, i.p.) and bergapten (10 mg/kg i.p.) treatments were given once daily for 14 days. The animals were assessed for hyperalgesia and allodynia. After 14 days, animals were sacrificed to detect plasma pro-inflammatory cytokines (TNF α, IL-1β), spinal cord, and sciatic nerve oxidative stress and expression of iNOS, COX-2, and NFkB in the spinal cord. There was a marked reduction in pain behaviors in the bergapten group as compared to the vincristine group. Bergapten also attenuated pro-inflammatory cytokines (TNFα and IL-1β), oxidative stress, and expression of NFkB, COX-2, and iNOS. Overall the current study concludes that bergapten could serve as a potential lead to drug development for the treatment of neuropathic pain.
Collapse
|
15
|
Bruni R, Barreca D, Protti M, Brighenti V, Righetti L, Anceschi L, Mercolini L, Benvenuti S, Gattuso G, Pellati F. Botanical Sources, Chemistry, Analysis, and Biological Activity of Furanocoumarins of Pharmaceutical Interest. Molecules 2019; 24:E2163. [PMID: 31181737 PMCID: PMC6600687 DOI: 10.3390/molecules24112163] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
The aim of this work is to provide a critical review of plant furanocoumarins from different points of view, including their chemistry and biosynthetic pathways to their extraction, analysis, and synthesis, to the main biological activities found for these active compounds, in order to highlight their potential within pharmaceutical science. The limits and the possible improvements needed for research involving these molecules are also highlighted and discussed.
Collapse
Affiliation(s)
- Renato Bruni
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Michele Protti
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | - Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy.
| | - Laura Righetti
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Lisa Anceschi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy.
| | - Laura Mercolini
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | - Stefania Benvenuti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy.
| | - Giuseppe Gattuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy.
| |
Collapse
|