1
|
Wani AK, Akhtar N, Mir TUG, Rahayu F, Suhara C, Anjli A, Chopra C, Singh R, Prakash A, El Messaoudi N, Fernandes CD, Ferreira LFR, Rather RA, Américo-Pinheiro JHP. Eco-friendly and safe alternatives for the valorization of shrimp farming waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38960-38989. [PMID: 37249769 PMCID: PMC10227411 DOI: 10.1007/s11356-023-27819-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
The seafood industry generates waste, including shells, bones, intestines, and wastewater. The discards are nutrient-rich, containing varying concentrations of carotenoids, proteins, chitin, and other minerals. Thus, it is imperative to subject seafood waste, including shrimp waste (SW), to secondary processing and valorization for demineralization and deproteination to retrieve industrially essential compounds. Although several chemical processes are available for SW processing, most of them are inherently ecotoxic. Bioconversion of SW is cost-effective, ecofriendly, and safe. Microbial fermentation and the action of exogenous enzymes are among the significant SW bioconversion processes that transform seafood waste into valuable products. SW is a potential raw material for agrochemicals, microbial culture media, adsorbents, therapeutics, nutraceuticals, and bio-nanomaterials. This review comprehensively elucidates the valorization approaches of SW, addressing the drawbacks of chemically mediated methods for SW treatments. It is a broad overview of the applications associated with nutrient-rich SW, besides highlighting the role of major shrimp-producing countries in exploring SW to achieve safe, ecofriendly, and efficient bio-products.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Tahir Ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Farida Rahayu
- Research Center for Applied Microbiology, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Cece Suhara
- Research Center for Horticulture and Plantation, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Anjli Anjli
- HealthPlix Technologies Private Limited, Bengaluru, 560103, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, 80000, Agadir, Morocco
| | - Clara Dourado Fernandes
- Graduate Program in Process Engineering, Tiradentes University, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
- Institute of Technology and Research, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Rauoof Ahmad Rather
- Division of Environmental Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Srinagar, Jammu and Kashmir, India
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP, 18610-034, Brazil.
- Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo, SP, 08230-030, Brazil.
| |
Collapse
|
2
|
Fotovvat M, Najafi F, Khavari-Nejad RA, Talei D, Rejali F. Investigating the simultaneous effect of chitosan and arbuscular mycorrhizal fungi on growth, phenolic compounds, PAL enzyme activity and lipid peroxidation in Salvia nemorosa L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108617. [PMID: 38608504 DOI: 10.1016/j.plaphy.2024.108617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Considering the importance of Salvia nemorosa L. in the pharmaceutical and food industries, and also beneficial approaches of arbuscular mycorrhizal fungi (AMF) symbiosis and the use of bioelicitors such as chitosan to improve secondary metabolites, the aim of this study was to evaluate the performance of chitosan on the symbiosis of AMF and the effect of both on the biochemical and phytochemical performance of this plant and finally introduced the best treatment. Two factors were considered for the factorial experiment: AMF with four levels (non-inoculated plants, Funneliformis mosseae, Rhizophagus intraradices and the combination of both), and chitosan with six levels (0, 50, 100, 200, 400 mg L-1 and 1% acetic acid). Four months after treatments, the aerial part and root length, the levels of lipid peroxidation, H2O2, phenylalanine ammonia lyase (PAL) activity, total phenol and flavonoid contents and the main secondary metabolites (rosmarinic acid and quercetin) in the leaves and roots were determined. The flowering stage was observed in R. intraradices treatments and the highest percentage of colonization (78.87%) was observed in the treatment of F. mosseae × 400 mg L-1 chitosan. Furthermore, simultaneous application of chitosan and AMF were more effective than their separate application to induce phenolic compounds accumulation, PAL activity and reduce oxidative compounds. The cluster and principal component analysis based on the measured variables indicated that the treatments could be classified into three clusters. It seems that different treatments in different tissues have different effects. However, in an overview, it can be concluded that 400 mg L-1 chitosan and F. mosseae × R. intraradices showed better results in single and simultaneous applications. The results of this research can be considered in the optimization of this medicinal plant under normal conditions and experiments related to abiotic stresses in the future.
Collapse
Affiliation(s)
- Marzieh Fotovvat
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, 15719-14911, Tehran, Iran.
| | - Farzaneh Najafi
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, 15719-14911, Tehran, Iran.
| | - Ramazan Ali Khavari-Nejad
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, 15719-14911, Tehran, Iran
| | - Daryush Talei
- Medicinal Plants Research Center, Shahed University, 3319118651, Tehran, Iran
| | - Farhad Rejali
- Soil and Water Research Institute, Agricultural Research Education and Extension Organization (AREEO), 3177993545, Karaj, Iran
| |
Collapse
|
3
|
Grzegorczyk-Karolak I, Krzemińska M, Grąbkowska R, Gomulski J, Żekanowski C, Gaweda-Walerych K. Accumulation of Polyphenols and Associated Gene Expression in Hairy Roots of Salvia viridis Exposed to Methyl Jasmonate. Int J Mol Sci 2024; 25:764. [PMID: 38255839 PMCID: PMC10815010 DOI: 10.3390/ijms25020764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Methyl jasmonate (MJA), a signaling molecule in stress pathways, can be used to induce secondary metabolite synthesis in plants. The present study examines its effects on the growth of Salvia viridis hairy roots, and the accumulation of bioactive compounds, and correlates it with the expression of genes involved in the phenylpropanoid pathway. To our knowledge, this study represents the first exploration of elicitation in S. viridis culture and the first comprehensive analysis of MJA's influence on such a wide array of genes within the polyphenol metabolic pathway in the Salvia genus. Plants were treated with 50 and 100 µM MJA, and samples were collected at intervals of one, three, five, and seven days post-elicitation. HPLC analysis revealed that MJA stimulated the accumulation of all tested compounds, with a 30% increase (38.65 mg/g dry weight) in total polyphenol content (TPC) on day five. Quantitative real-time polymerase chain reaction (RT-PCR) analysis demonstrated a significant increase in the expression of the phenylpropanoid pathway genes-TAT (tyrosine aminotransferase), HPPR (4-hydroxyphenylpyruvate reductase), PAL (phenylalanine ammonia-lyase), C4H (cinnamic acid 4-hydroxylase), 4CL (4-coumarate-CoA ligase), and RAS (rosmarinic acid synthase)-following MJA treatment. For the majority of the genes, this increase was observed after the first day of treatment. Importantly, our present results confirm strong correlations of the analyzed gene expression with polyphenol biosynthesis. These findings support the notion that hairy roots provide a promising biotechnological framework for augmenting polyphenol production. Additionally, the combination of elicitor treatment and transgenic technology emerges as a viable strategy to enhance the biosynthesis of these valuable metabolites.
Collapse
Affiliation(s)
- Izabela Grzegorczyk-Karolak
- Department of Biology and Pharmaceutical Botany, University of Lodz, 90-151 Lodz, Poland; (M.K.); (R.G.); (J.G.)
| | - Marta Krzemińska
- Department of Biology and Pharmaceutical Botany, University of Lodz, 90-151 Lodz, Poland; (M.K.); (R.G.); (J.G.)
| | - Renata Grąbkowska
- Department of Biology and Pharmaceutical Botany, University of Lodz, 90-151 Lodz, Poland; (M.K.); (R.G.); (J.G.)
| | - Jan Gomulski
- Department of Biology and Pharmaceutical Botany, University of Lodz, 90-151 Lodz, Poland; (M.K.); (R.G.); (J.G.)
| | - Cezary Żekanowski
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (C.Ż.); (K.G.-W.)
| | - Katarzyna Gaweda-Walerych
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (C.Ż.); (K.G.-W.)
| |
Collapse
|
4
|
Sun W, Shahrajabian MH, Petropoulos SA, Shahrajabian N. Developing Sustainable Agriculture Systems in Medicinal and Aromatic Plant Production by Using Chitosan and Chitin-Based Biostimulants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2469. [PMID: 37447031 DOI: 10.3390/plants12132469] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Chitosan is illustrated in research as a stimulant of plant tolerance and resistance that promotes natural defense mechanisms against biotic and abiotic stressors, and its use may lessen the amount of agrochemicals utilized in agriculture. Recent literature reports indicate the high efficacy of soil or foliar usage of chitin and chitosan in the promotion of plant growth and the induction of secondary metabolites biosynthesis in various species, such as Artemisia annua, Curcuma longa, Dracocephalum kotschyi, Catharanthus roseus, Fragaria × ananassa, Ginkgo biloba, Iberis amara, Isatis tinctoria, Melissa officinalis, Mentha piperita, Ocimum basilicum, Origanum vulgare ssp. Hirtum, Psammosilene tunicoides, Salvia officinalis, Satureja isophylla, Stevia rebaudiana, and Sylibum marianum, among others. This work focuses on the outstanding scientific contributions to the field of the production and quality of aromatic and medicinal plants, based on the different functions of chitosan and chitin in sustainable crop production. The application of chitosan can lead to increased medicinal plant production and protects plants against harmful microorganisms. The effectiveness of chitin and chitosan is also due to the low concentration required, low cost, and environmental safety. On the basis of showing such considerable characteristics, there is increasing attention on the application of chitin and chitosan biopolymers in horticulture and agriculture productions.
Collapse
Affiliation(s)
- Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Spyridon A Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
| | - Nazanin Shahrajabian
- Department of Economics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81595-158, Iran
| |
Collapse
|
5
|
Sripinyowanich S, Petchsri S, Tongyoo P, Lee TK, Lee S, Cho WK. Comparative Transcriptomic Analysis of Genes in the 20-Hydroxyecdysone Biosynthesis in the Fern Microsorum scolopendria towards Challenges with Foliar Application of Chitosan. Int J Mol Sci 2023; 24:ijms24032397. [PMID: 36768717 PMCID: PMC9916870 DOI: 10.3390/ijms24032397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Microsorum scolopendria is an important medicinal plant that belongs to the Polypodiaceae family. In this study, we analyzed the effects of foliar spraying of chitosan on growth promotion and 20-hydroxyecdysone (20E) production in M. scolopendria. Treatment with chitosan at a concentration of 50 mg/L in both young and mature sterile fronds induced the highest increase in the amount of accumulated 20E. Using RNA sequencing, we identified 3552 differentially expressed genes (DEGs) in response to chitosan treatment. The identified DEGs were associated with 236 metabolic pathways. We identified several DEGs involved in the terpenoid and steroid biosynthetic pathways that might be associated with secondary metabolite 20E biosynthesis. Eight upregulated genes involved in cholesterol and phytosterol biosynthetic pathway, five upregulated genes related to the methylerythritol 4-phosphate (MEP) and mevalonate (MVA) pathways, and several DEGs that are members of cytochrome P450s and ABC transporters were identified. Quantitative real-time RT-PCR confirmed the results of RNA-sequencing. Taken together, we showed that chitosan treatment increased plant dry weight and 20E accumulation in M. scolopendria. RNA-sequencing and DEG analyses revealed key enzymes that might be related to the production of the secondary metabolite 20E in M. scolopendria.
Collapse
Affiliation(s)
- Siriporn Sripinyowanich
- Department of Botany, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Sahanat Petchsri
- Department of Botany, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Pumipat Tongyoo
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok 10900, Thailand
| | - Taek-Kyun Lee
- Risk Assessment Research Center, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: (S.L.); (W.K.C.)
| | - Won Kyong Cho
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: (S.L.); (W.K.C.)
| |
Collapse
|
6
|
Picos-Corrales LA, Morales-Burgos AM, Ruelas-Leyva JP, Crini G, García-Armenta E, Jimenez-Lam SA, Ayón-Reyna LE, Rocha-Alonzo F, Calderón-Zamora L, Osuna-Martínez U, Calderón-Castro A, De-Paz-Arroyo G, Inzunza-Camacho LN. Chitosan as an Outstanding Polysaccharide Improving Health-Commodities of Humans and Environmental Protection. Polymers (Basel) 2023; 15:526. [PMID: 36771826 PMCID: PMC9920095 DOI: 10.3390/polym15030526] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Public health, production and preservation of food, development of environmentally friendly (cosmeto-)textiles and plastics, synthesis processes using green technology, and improvement of water quality, among other domains, can be controlled with the help of chitosan. It has been demonstrated that this biopolymer exhibits advantageous properties, such as biocompatibility, biodegradability, antimicrobial effect, mucoadhesive properties, film-forming capacity, elicitor of plant defenses, coagulant-flocculant ability, synergistic effect and adjuvant along with other substances and materials. In part, its versatility is attributed to the presence of ionizable and reactive primary amino groups that provide strong chemical interactions with small inorganic and organic substances, macromolecules, ions, and cell membranes/walls. Hence, chitosan has been used either to create new materials or to modify the properties of conventional materials applied on an industrial scale. Considering the relevance of strategic topics around the world, this review integrates recent studies and key background information constructed by different researchers designing chitosan-based materials with potential applications in the aforementioned concerns.
Collapse
Affiliation(s)
- Lorenzo A. Picos-Corrales
- Facultad de Ingeniería Culiacán, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Ana M. Morales-Burgos
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Jose P. Ruelas-Leyva
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Grégorio Crini
- Laboratoire Chrono-Environnement, UMR 6249, UFR Sciences et Techniques, Université de Franche-Comté, 16 Route de Gray, 25000 Besançon, France
| | - Evangelina García-Armenta
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Sergio A. Jimenez-Lam
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Lidia E. Ayón-Reyna
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Fernando Rocha-Alonzo
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico
| | - Loranda Calderón-Zamora
- Facultad de Biología, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Ulises Osuna-Martínez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Abraham Calderón-Castro
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Gonzalo De-Paz-Arroyo
- Facultad de Ingeniería Culiacán, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Levy N. Inzunza-Camacho
- Unidad Académica Preparatoria Hermanos Flores Magón, Universidad Autónoma de Sinaloa, Culiacán 80000, Sinaloa, Mexico
| |
Collapse
|
7
|
Bharati R, Sen MK, Kumar R, Gupta A, Žiarovská J, Fernández-Cusimamani E, Leuner O. Systematic Identification of Suitable Reference Genes for Quantitative Real-Time PCR Analysis in Melissa officinalis L. PLANTS (BASEL, SWITZERLAND) 2023; 12:470. [PMID: 36771553 PMCID: PMC9919226 DOI: 10.3390/plants12030470] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Melissa officinalis L. is well known for its lemon-scented aroma and various pharmacological properties. Despite these valuable properties, the genes involved in the biosynthetic pathways in M. officinalis are not yet well-explored when compared to other members of the mint family. For that, gene expression studies using quantitative real-time PCR (qRT-PCR) are an excellent tool. Although qRT-PCR can provide accurate results, its accuracy is highly reliant on the expression and stability of the reference gene used for normalization. Hence, selecting a suitable experiment-specific reference gene is very crucial to obtain accurate results. However, to date, there are no reports for experiment-specific reference genes in M. officinalis. Therefore, in the current study, ten commonly used reference genes were assessed for their suitability as optimal reference genes in M. officinalis under various abiotic stress conditions and different plant organs. The candidate genes were ranked based on BestKeeper, comparative ΔCt, geNorm, NormFinder, and RefFinder. Based on the results, we recommend the combination of EF-1α and GAPDH as the best reference genes to normalize gene expression studies in M. officinalis. On the contrary, HLH71 was identified as the least-performing gene. Thereafter, the reliability of the optimal gene combination was assessed by evaluating the relative gene expression of the phenylalanine ammonia lyase (PAL) gene under two elicitor treatments (gibberellic acid and jasmonic acid). PAL is a crucial gene involved directly or indirectly in the production of various economically important secondary metabolites in plants. Suitable reference genes for each experimental condition are also discussed. The findings of the current study form a basis for current and future gene expression studies in M. officinalis and other related species.
Collapse
Affiliation(s)
- Rohit Bharati
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Madhab Kumar Sen
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Ram Kumar
- Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Aayushi Gupta
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Jana Žiarovská
- Research Centre AgroBioTech, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Eloy Fernández-Cusimamani
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Olga Leuner
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| |
Collapse
|
8
|
Comparative Effects of Two Forms of Chitosan on Selected Phytochemical Properties of Plectranthus amboinicus (Lour.). Molecules 2023; 28:molecules28010376. [PMID: 36615569 PMCID: PMC9824852 DOI: 10.3390/molecules28010376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
In response to stress factors, plants produce a wide range of biologically active substances, from a group of secondary metabolites, which are applied in medicine and health prophylaxis. Chitosan is a well-known elicitor affecting secondary metabolism in plants, but its effect on the phytochemical profile of Plectranthus amboinicus has not been assessed yet. In the present experiment, the effectiveness of the foliar application of two forms of chitosan (chitosan suspension or chitosan lactate) was compared in order to evaluate their potential to induce the accumulation of selected polyphenolic compounds in the aboveground parts of P. amboinicus. It was shown that chitosan lactate had substantially higher elicitation efficiency, as the use of this form exerted a beneficial effect on the analysed quality parameters of the raw material, especially the content of selected polyphenolic compounds (total content of polyphenols, flavonols, anthocyanins, and caffeic acid derivatives) and the free radical-scavenging activity of extracts from elicited plants. Concurrently, it had no phytotoxic effects. Hence, chitosan lactate-based elicitation can be an effective method for optimisation of the production of high-quality P. amboinicus raw material characterised by an increased concentration of health-promoting and antioxidant compounds.
Collapse
|
9
|
Casimiro B, Mota I, Veríssimo P, Canhoto J, Correia S. Enhancing the Production of Hydrolytic Enzymes in Elicited Tamarillo ( Solanum betaceum Cav.) Cell Suspension Cultures. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12010190. [PMID: 36616319 PMCID: PMC9824068 DOI: 10.3390/plants12010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 05/07/2023]
Abstract
Plant cell suspension cultures are widely used as a tool for analyzing cellular and molecular processes, metabolite synthesis, and differentiation, bypassing the structural complexity of plants. Within the range of approaches used to increase the production of metabolites by plant cells, one of the most recurrent is applying elicitors capable of stimulating metabolic pathways related to defense mechanisms. Previous proteomics analysis of tamarillo cell lines and cell suspension cultures have been used to further characterize and optimize the growth and stress-related metabolite production under in vitro controlled conditions. The main objective of this work was to develop a novel plant-based bioreactor system to produce hydrolytic enzymes using an elicitation approach. Based on effective protocols for tamarillo micropropagation and plant cell suspension culture establishment from induced callus lines, cell growth has been optimized, and enzymatic activity profiles under in vitro controlled conditions characterized. By testing different sucrose concentrations and the effects of two types of biotic elicitors, it was found that 3% (w/v) sucrose concentration in the liquid medium enhanced the production of hydrolytic enzymes. Moreover, casein hydrolysate at 0.5 and 1.5 g/L promoted protein production, whereas yeast extract (0.5 g/L) enhanced glycosidase activity. Meanwhile, chitosan (0.05 and 0.1 g/L) enhanced glycosidases, alkaline phosphates, and protease activities.
Collapse
Affiliation(s)
- Bruno Casimiro
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal
- Correspondence: (B.C.); (S.C.)
| | - Inês Mota
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Paula Veríssimo
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Jorge Canhoto
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Sandra Correia
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal
- InnovPlantProtect CoLab, Estrada de Gil Vaz, 7351-901 Elvas, Portugal
- Correspondence: (B.C.); (S.C.)
| |
Collapse
|
10
|
Ackah S, Bi Y, Xue S, Yakubu S, Han Y, Zong Y, Atuna RA, Prusky D. Post-harvest chitosan treatment suppresses oxidative stress by regulating reactive oxygen species metabolism in wounded apples. FRONTIERS IN PLANT SCIENCE 2022; 13:959762. [PMID: 35982700 PMCID: PMC9379280 DOI: 10.3389/fpls.2022.959762] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/04/2022] [Indexed: 05/27/2023]
Abstract
Mechanical wound on fruit triggers the formation of reactive oxygen species (ROS) that weaken cell walls, resulting in post-harvest losses. This mechanism can be controlled by using fruit preservatives to stimulate fruit antioxidant enzyme activities for the detoxification of ROS. Chitosan is a safe and environmentally friendly preservative that modulates ROS in whole fruits and plant cells, but the effects of chitosan on the ROS metabolism of mechanically wounded apples during storage are unknown. Our study focused on exploring the effects of post-harvest chitosan treatment on ROS production, cell membrane integrity, and enzymatic and non-enzymatic antioxidant systems at fruit wounds during storage. Apple fruits (cv. Fuji) were artificially wounded, treated with 2.5% (w/v) chitosan, and stored at room temperature (21-25°C, RH = 81-85%) for 7 days. Non-wounded apples were used as healthy controls. The results showed that chitosan treatment stimulated the activities of NADPH oxidase and superoxide dismutase and increased the formation of superoxide anions and hydrogen peroxide in fruit wounds. However, malondialdehyde, lipoxygenase, and membrane permeability, which are direct biomarkers to evaluate lipid peroxidation and membrane integrity, were significantly decreased in the wounded fruits after chitosan treatment compared to the wounded control fruits. Antioxidant enzymes, such as peroxidase and catalase activities, were induced by chitosan at fruit wounds. In addition, ascorbate-glutathione cycle-related enzymes; ascorbate peroxide, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase and the content of substrates, mainly ascorbic acid, dehydroascorbate, reduced glutathione, and glutathione, were increased at fruit wounds by chitosan compared to the wounded control fruits. Our results show that wounding stimulated the production of ROS or oxidative stress. However, treatment with chitosan triggered antioxidant systems to scavenge ROS and prevent loss of fruit membrane integrity. Therefore, chitosan promises to be a favorable preservative in inducing tolerance to stress and maintaining fruit quality.
Collapse
Affiliation(s)
- Sabina Ackah
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Sulin Xue
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Salimata Yakubu
- Department of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ye Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yuanyuan Zong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Richard Atinpoore Atuna
- Department of Food Science and Technology, University for Development Studies, Tamale, Ghana
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- Department of Post-harvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion, Israel
| |
Collapse
|
11
|
Ackah S, Xue S, Osei R, Kweku-Amagloh F, Zong Y, Prusky D, Bi Y. Chitosan Treatment Promotes Wound Healing of Apple by Eliciting Phenylpropanoid Pathway and Enzymatic Browning of Wounds. Front Microbiol 2022; 13:828914. [PMID: 35308351 PMCID: PMC8924504 DOI: 10.3389/fmicb.2022.828914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/20/2022] [Indexed: 11/14/2022] Open
Abstract
Chitosan is an elicitor that induces resistance in fruits against postharvest diseases, but there is little knowledge about the wound healing ability of chitosan on apple fruits. Our study aimed at revealing the effect of chitosan on the phenylpropanoid pathway by determining some enzyme activities, products metabolites, polyphenol oxidase activity, color (L*, b*, a*), weight loss, and disease index during healing. Apple (cv. Fuji) fruits wounded artificially were treated with 2.5% chitosan and healed at 21–25°C, relative humidity = 81–85% for 7 days, and non-wounded fruits (coated and non-coated) were used as control. The result shows that chitosan treatment significantly decreased weight loss of wounded fruits and disease index of Penicillium expansum inoculated fruits. The activities of phenylalanine ammonia-lyase (PAL), cinnamic acid 4-hydroxylase (C4H), 4-coumaryl coenzyme A ligase (4CL), cinnamoyl-CoA reductase (CCR), and cinnamyl alcohol dehydrogenase (CAD) were elicited throughout the healing period by chitosan, which increased the biosynthesis of cinnamic acid, caffeic acid, ferulic acid, sinapic acid, p-coumaric acid, p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol. Also, total phenol, flavonoid, and lignin contents were significantly increased at the fruits wounds. In addition, chitosan’s ability to enhance polyphenol oxidase activity stimulated enzymatic browning of wounds. Although wounding increased phenylpropanoid enzymes activities before healing, chitosan caused higher enzyme activities for a significant healing effect compared with the control. These findings imply that chitosan accelerates apple wound healing by activating the phenylpropanoid pathway and stimulating enzymatic browning of wounds.
Collapse
Affiliation(s)
- Sabina Ackah
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Sulin Xue
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Richard Osei
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Francis Kweku-Amagloh
- Department of Food Science and Technology, University for Development Studies, Tamale, Ghana
| | - Yuanyuan Zong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.,Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion, Israel
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
12
|
Ke CL, Deng FS, Chuang CY, Lin CH. Antimicrobial Actions and Applications of Chitosan. Polymers (Basel) 2021; 13:904. [PMID: 33804268 PMCID: PMC7998239 DOI: 10.3390/polym13060904] [Citation(s) in RCA: 228] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
Chitosan is a naturally originating product that can be applied in many areas due to its biocompatibility, biodegradability, and nontoxic properties. The broad-spectrum antimicrobial activity of chitosan offers great commercial potential for this product. Nevertheless, the antimicrobial activity of chitosan varies, because this activity is associated with its physicochemical characteristics and depends on the type of microorganism. In this review article, the fundamental properties, modes of antimicrobial action, and antimicrobial effects-related factors of chitosan are discussed. We further summarize how microorganisms genetically respond to chitosan. Finally, applications of chitosan-based biomaterials, such as nanoparticles and films, in combination with current clinical antibiotics or antifungal drugs, are also addressed.
Collapse
Affiliation(s)
| | | | | | - Ching-Hsuan Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan; (C.-L.K.); (F.-S.D.); (C.-Y.C.)
| |
Collapse
|
13
|
Khojasteh A, Mirjalili MH, Alcalde MA, Cusido RM, Eibl R, Palazon J. Powerful Plant Antioxidants: A New Biosustainable Approach to the Production of Rosmarinic Acid. Antioxidants (Basel) 2020; 9:E1273. [PMID: 33327619 PMCID: PMC7765155 DOI: 10.3390/antiox9121273] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
Modern lifestyle factors, such as physical inactivity, obesity, smoking, and exposure to environmental pollution, induce excessive generation of free radicals and reactive oxygen species (ROS) in the body. These by-products of oxygen metabolism play a key role in the development of various human diseases such as cancer, diabetes, heart failure, brain damage, muscle problems, premature aging, eye injuries, and a weakened immune system. Synthetic and natural antioxidants, which act as free radical scavengers, are widely used in the food and beverage industries. The toxicity and carcinogenic effects of some synthetic antioxidants have generated interest in natural alternatives, especially plant-derived polyphenols (e.g., phenolic acids, flavonoids, stilbenes, tannins, coumarins, lignins, lignans, quinines, curcuminoids, chalcones, and essential oil terpenoids). This review focuses on the well-known phenolic antioxidant rosmarinic acid (RA), an ester of caffeic acid and (R)-(+)-3-(3,4-dihydroxyphenyl) lactic acid, describing its wide distribution in thirty-nine plant families and the potential productivity of plant sources. A botanical and phytochemical description is provided of a new rich source of RA, Satureja khuzistanica Jamzad (Lamiaceae). Recently reported approaches to the biotechnological production of RA are summarized, highlighting the establishment of cell suspension cultures of S. khuzistanica as an RA chemical biofactory.
Collapse
Affiliation(s)
- Abbas Khojasteh
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII sn, 08028 Barcelona, Spain; (A.K.); (M.A.A.); (R.M.C.)
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran;
| | - Miguel Angel Alcalde
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII sn, 08028 Barcelona, Spain; (A.K.); (M.A.A.); (R.M.C.)
| | - Rosa M. Cusido
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII sn, 08028 Barcelona, Spain; (A.K.); (M.A.A.); (R.M.C.)
| | - Regine Eibl
- Campus Grüental, Institute of Biotechnology, Biotechnological Engineering and Cell Cultivation Techniques, Zurich University of Applied Sciences, CH-8820 Wädenswill, Switzerland;
| | - Javier Palazon
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII sn, 08028 Barcelona, Spain; (A.K.); (M.A.A.); (R.M.C.)
| |
Collapse
|
14
|
Rajestary R, Landi L, Romanazzi G. Chitosan and postharvest decay of fresh fruit: Meta‐analysis of disease control and antimicrobial and eliciting activities. Compr Rev Food Sci Food Saf 2020; 20:563-582. [DOI: 10.1111/1541-4337.12672] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Razieh Rajestary
- Department of Agricultural, Food and Environmental Sciences Marche Polytechnic University Via Brecce Bianche 10 Ancona Italy
| | - Lucia Landi
- Department of Agricultural, Food and Environmental Sciences Marche Polytechnic University Via Brecce Bianche 10 Ancona Italy
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences Marche Polytechnic University Via Brecce Bianche 10 Ancona Italy
| |
Collapse
|
15
|
Suarez-Fernandez M, Marhuenda-Egea FC, Lopez-Moya F, Arnao MB, Cabrera-Escribano F, Nueda MJ, Gunsé B, Lopez-Llorca LV. Chitosan Induces Plant Hormones and Defenses in Tomato Root Exudates. FRONTIERS IN PLANT SCIENCE 2020; 11:572087. [PMID: 33250907 PMCID: PMC7672008 DOI: 10.3389/fpls.2020.572087] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/08/2020] [Indexed: 05/23/2023]
Abstract
In this work, we use electrophysiological and metabolomic tools to determine the role of chitosan as plant defense elicitor in soil for preventing or manage root pests and diseases sustainably. Root exudates include a wide variety of molecules that plants and root microbiota use to communicate in the rhizosphere. Tomato plants were treated with chitosan. Root exudates from tomato plants were analyzed at 3, 10, 20, and 30 days after planting (dap). We found, using high performance liquid chromatography (HPLC) and excitation emission matrix (EEM) fluorescence, that chitosan induces plant hormones, lipid signaling and defense compounds in tomato root exudates, including phenolics. High doses of chitosan induce membrane depolarization and affect membrane integrity. 1H-NMR showed the dynamic of exudation, detecting the largest number of signals in 20 dap root exudates. Root exudates from plants irrigated with chitosan inhibit ca. twofold growth kinetics of the tomato root parasitic fungus Fusarium oxysporum f. sp. radicis-lycopersici. and reduced ca. 1.5-fold egg hatching of the root-knot nematode Meloidogyne javanica.
Collapse
Affiliation(s)
- Marta Suarez-Fernandez
- Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies Ramon Margalef, University of Alicante, Alicante, Spain
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| | - Frutos Carlos Marhuenda-Egea
- Department of Agrochemistry and Biochemistry, Multidisciplinary Institute for Environmental Studies Ramon Margalef, University of Alicante, Alicante, Spain
| | - Federico Lopez-Moya
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| | - Marino B. Arnao
- Department of Plant Biology (Plant Physiology), University of Murcia, Murcia, Spain
| | | | - Maria Jose Nueda
- Department of Mathematics, University of Alicante, Alicante, Spain
| | - Benet Gunsé
- Plant Physiology Laboratory, Faculty of Biosciences, Universidad Autonoma de Barcelona, Bellaterra, Spain
| | - Luis Vicente Lopez-Llorca
- Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies Ramon Margalef, University of Alicante, Alicante, Spain
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| |
Collapse
|
16
|
Jogaiah S, Satapute P, De Britto S, Konappa N, Udayashankar AC. Exogenous priming of chitosan induces upregulation of phytohormones and resistance against cucumber powdery mildew disease is correlated with localized biosynthesis of defense enzymes. Int J Biol Macromol 2020; 162:1825-1838. [DOI: 10.1016/j.ijbiomac.2020.08.124] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/01/2020] [Accepted: 08/14/2020] [Indexed: 01/15/2023]
|
17
|
Chitin- and Chitosan-Based Derivatives in Plant Protection against Biotic and Abiotic Stresses and in Recovery of Contaminated Soil and Water. POLYSACCHARIDES 2020. [DOI: 10.3390/polysaccharides1010003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Biotic, abiotic stresses and their unpredictable combinations severely reduce plant growth and crop yield worldwide. The different chemicals (pesticides, fertilizers, phytoregulators) so far used to enhance crop tolerance to multistress have a great environmental impact. In the search of more eco-friendly systems to manage plant stresses, chitin, a polysaccharide polymer composed of N-acetyl-D-glucosamine and D-glucosamine and its deacetylated derivative chitosan appear as promising tools to solve this problem. In fact, these molecules, easily obtainable from crustacean shells and from the cell wall of many fungi, are non-toxic, biodegradable, biocompatible and able to stimulate plant productivity and to protect crops against pathogens. In addition, chitin and chitosan can act as bioadsorbents for remediation of contaminated soil and water. In this review we summarize recent results obtained using chitin- and chitosan-based derivatives in plant protection against biotic and abiotic stresses and in recovery of contaminated soil and water.
Collapse
|