1
|
Rogalski A, Hu W, Wang F, Martyniuk P. Performance of Low-Dimensional Solid Room-Temperature Photodetectors-Critical View. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4522. [PMID: 39336263 PMCID: PMC11433362 DOI: 10.3390/ma17184522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
In the last twenty years, nanofabrication progress has allowed for the emergence of a new photodetector family, generally called low-dimensional solids (LDSs), among which the most important are two-dimensional (2D) materials, perovskites, and nanowires/quantum dots. They operate in a wide wavelength range from ultraviolet to far-infrared. Current research indicates remarkable advances in increasing the performance of this new generation of photodetectors. The published performance at room temperature is even better than reported for typical photodetectors. Several articles demonstrate detectivity outperforming physical boundaries driven by background radiation and signal fluctuations. This study attempts to explain these peculiarities. In order to achieve this goal, we first clarify the fundamental differences in the photoelectric effects of the new generation of photodetectors compared to the standard designs dominating the commercial market. Photodetectors made of 2D transition metal dichalcogenides (TMDs), quantum dots, topological insulators, and perovskites are mainly considered. Their performance is compared with the fundamental limits estimated by the signal fluctuation limit (in the ultraviolet region) and the background radiation limit (in the infrared region). In the latter case, Law 19 dedicated to HgCdTe photodiodes is used as a standard reference benchmark. The causes for the performance overestimate of the different types of LDS detectors are also explained. Finally, an attempt is made to determine their place in the global market in the long term.
Collapse
Affiliation(s)
- Antoni Rogalski
- Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland;
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China; (W.H.); (F.W.)
| | - Fang Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China; (W.H.); (F.W.)
| | - Piotr Martyniuk
- Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland;
| |
Collapse
|
2
|
Yang H, Zhang Q, Chang R, Wu Z, Shen H. Understanding the Growth Mechanism of HgTe Colloidal Quantum Dots through Bilateral Injection. Inorg Chem 2024; 63:6231-6238. [PMID: 38529948 DOI: 10.1021/acs.inorgchem.3c04511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
As potential low-cost alternatives of traditional bulk HgCdTe crystals, HgTe colloidal quantum dots (CQDs) synthesized through reactions between HgCl2 and trioctylphosphine-telluride in hot oleylamine have shown promising performances in mid-wave infrared photodetectors. Tetrapodic or tetrahedral HgTe CQDs have been obtained by tuning the reaction conditions such as temperature, reaction time, concentrations, and ratios of the two precursors. However, the principles governing the growth dynamics and the mechanism behind the transitions between tetrapodic and tetrahedral HgTe CQDs have not been sufficiently understood. In this work, synthesis of HgTe CQDs through bilateral injection is introduced to study the growth mechanism. It suggests that tetrahedral HgTe CQDs usually result from the breaks of tetrapodic HgTe CQDs after their legs grow thick enough. The fundamental factor determining whether the growth makes their legs longer or thicker is the effective concentration of the Te precursor during the growth, rather than temperature, Hg-rich environment, or reactivity of precursors. A chemical model is proposed to illustrate the principles governing the growth dynamics, which provides valuable guidelines for tuning the material properties of HgTe CQDs according to the needs of applications.
Collapse
Affiliation(s)
- Hao Yang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng 475004, China
| | - Qiong Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng 475004, China
| | - Ruiguang Chang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng 475004, China
| | - Zhenghui Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng 475004, China
| | - Huaibin Shen
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials, Henan University, Kaifeng 475004, China
| |
Collapse
|
3
|
Mo̷lnås H, Paul SJ, Scimeca MR, Mattu N, Zuo J, Parashar N, Li L, Riedo E, Sahu A. Dedoping of Intraband Silver Selenide Colloidal Quantum Dots through Strong Electronic Coupling at Organic/Inorganic Hybrid Interfaces. CRYSTAL GROWTH & DESIGN 2024; 24:2821-2832. [PMID: 38585377 PMCID: PMC10995946 DOI: 10.1021/acs.cgd.3c01474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024]
Abstract
Colloidal quantum dot (CQD) infrared (IR) photodetectors can be fabricated and operated with larger spectral tunability, fewer limitations in terms of cooling requirements and substrate lattice matching, and at a potentially lower cost than detectors based on traditional bulk materials. Silver selenide (Ag2Se) has emerged as a promising sustainable alternative to current state-of-the-art toxic semiconductors based on lead, cadmium, and mercury operating in the IR. However, an impeding gap in available absorption bandwidth for Ag2Se CQDs exists in the short-wave infrared (SWIR) region due to degenerate doping by the environment, switching the CQDs from intrinsic interband semiconductors in the near-infrared (NIR) to intraband absorbing CQDs in the mid-wave infrared (MWIR). Herein, we show that the small molecular p-type dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) can be used to extract electrons from the 1Se state of MWIR active Ag2Se CQDs to activate their intrinsic energy gap in the SWIR window. We demonstrate quenching of the MWIR Ag2Se absorbance peak, shifting of nitrile vibrational peaks characteristic of charge-neutral F4-TCNQ, as well as enhanced CQD absorption around ∼2500 nm after doping both in ambient and under air-free conditions. We elucidate the doping mechanism to be one that involves an integer charge transfer akin to doping in semiconducting polymers. These indications of charge transfer are promising milestones on the path to achieving sustainable SWIR Ag2Se CQD photodetectors.
Collapse
Affiliation(s)
- Håvard Mo̷lnås
- Department of Chemical and
Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| | - Shlok Joseph Paul
- Department of Chemical and
Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| | - Michael R. Scimeca
- Department of Chemical and
Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| | - Navkawal Mattu
- Department of Chemical and
Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| | - Jiaqi Zuo
- Department of Chemical and
Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| | - Nitika Parashar
- Department of Chemical and
Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| | - Letian Li
- Department of Chemical and
Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| | - Elisa Riedo
- Department of Chemical and
Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| | - Ayaskanta Sahu
- Department of Chemical and
Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| |
Collapse
|
4
|
Siomra A, Wawrzyńczyk D, Samoć M, Nyk M. Two-photon excited luminescence of sulfur quantum dots for heavy metal ion detection. RSC Adv 2024; 14:2439-2446. [PMID: 38223700 PMCID: PMC10784784 DOI: 10.1039/d3ra07521d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024] Open
Abstract
Spectrally-resolved third-order nonlinear optical properties of water-dispersed sulfur quantum dots (SQDs) were investigated in the wavelength range from 740 nm to 820 nm with the two-photon excited emission technique using a tunable femtosecond laser system. The maximum value of the two-photon absorption (TPA) cross-section (σ2) for ∼5.4 nm size SQDs was found to be 185 GM (Goeppert-Mayer unit), while the two-photon brightness (σ2 × η) was found to be 1.5 GM at 780 nm, the wavelength being in the first biological transmittance window. The TPA properties are presented here as appropriate cross-sections normalized per molecular weight which enables meaningful comparison of the nonlinear factors of the studied quantum dots with those of various nanomaterials. The optimized TPA properties of these hydrophilic colloidal SQDs may be potentially useful for detection of Fe3+ metal ions. The experimentally determined limit of Fe3+ detection for both one- and two-photon regime was 10 μmol L-1 (0.6 μg mL-1). Förster resonance energy transfer between SQDs as donors and Fe3+ metal ions as acceptors was confirmed as one of the possible detection mechanisms using a time-correlated single photon counting technique.
Collapse
Affiliation(s)
- Agnieszka Siomra
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology Wyb. Wyspianskiego 27 PL-50370 Wrocław Poland
| | - Dominika Wawrzyńczyk
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology Wyb. Wyspianskiego 27 PL-50370 Wrocław Poland
| | - Marek Samoć
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology Wyb. Wyspianskiego 27 PL-50370 Wrocław Poland
| | - Marcin Nyk
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology Wyb. Wyspianskiego 27 PL-50370 Wrocław Poland
| |
Collapse
|
5
|
Liu C, Vella J, Eedugurala N, Mahalingavelar P, Bills T, Salcido‐Santacruz B, Sfeir MY, Azoulay JD. Ultrasensitive Room Temperature Infrared Photodetection Using a Narrow Bandgap Conjugated Polymer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304077. [PMID: 37888896 PMCID: PMC10754133 DOI: 10.1002/advs.202304077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/04/2023] [Indexed: 10/28/2023]
Abstract
Photodetectors operating across the short-, mid-, and long-wave infrared (SWIR-LWIR, λ = 1-14 µm) underpin modern science, technology, and society in profound ways. Narrow bandgap semiconductors that form the basis for these devices require complex manufacturing, high costs, cooling, and lack compatibility with silicon electronics, attributes that remain prohibitive for their widespread usage and the development of emerging technologies. Here, a photoconductive detector, fabricated using a solution-processed narrow bandgap conjugated polymer is demonstrated that enables charge carrier generation in the infrared and ultrasensitive SWIR-LWIR photodetection at room temperature. Devices demonstrate an ultralow electronic noise that enables outstanding performance from a simple, monolithic device enabling a high detectivity (D*, the figure of merit for detector sensitivity) >2.44 × 109 Jones (cm Hz1/2 W-1 ) using the ultralow flux of a blackbody that mirrors the background emission of objects. These attributes, ease of fabrication, low dark current characteristics, and highly sensitive operation overcome major limitations inherent within modern narrow-bandgap semiconductors, demonstrate practical utility, and suggest that uncooled detectivities superior to many inorganic devices can be achieved at high operating temperatures.
Collapse
Affiliation(s)
- Chih‐Ting Liu
- School of Chemistry and Biochemistry and School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Jarrett Vella
- Sensor DirectorateAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| | - Naresh Eedugurala
- School of Chemistry and Biochemistry and School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Paramasivam Mahalingavelar
- School of Chemistry and Biochemistry and School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Tyler Bills
- School of Chemistry and Biochemistry and School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Bernardo Salcido‐Santacruz
- Photonics InitiativeAdvanced Science Research CenterCity University of New YorkNew YorkNY10031USA
- Department of ChemistryThe Graduate CenterCity University of New YorkNew YorkNY10016USA
| | - Matthew Y. Sfeir
- Photonics InitiativeAdvanced Science Research CenterCity University of New YorkNew YorkNY10031USA
- Department of ChemistryThe Graduate CenterCity University of New YorkNew YorkNY10016USA
- Department of PhysicsThe Graduate CenterCity University of New YorkNew YorkNY10016USA
| | - Jason D. Azoulay
- School of Chemistry and Biochemistry and School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| |
Collapse
|
6
|
Dang TH, Cavallo M, Khalili A, Dabard C, Bossavit E, Zhang H, Ledos N, Prado Y, Lafosse X, Abadie C, Gacemi D, Ithurria S, Vincent G, Todorov Y, Sirtori C, Vasanelli A, Lhuillier E. Multiresonant Grating to Replace Transparent Conductive Oxide Electrode for Bias Selected Filtering of Infrared Photoresponse. NANO LETTERS 2023; 23:8539-8546. [PMID: 37712683 DOI: 10.1021/acs.nanolett.3c02306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Optoelectronic devices rely on conductive layers as electrodes, but they usually introduce optical losses that are detrimental to the device performances. While the use of transparent conductive oxides is established in the visible region, these materials show high losses at longer wavelengths. Here, we demonstrate a photodiode based on a metallic grating acting as an electrode. The grating generates a multiresonant photonic structure over the diode stack and allows strong broadband absorption. The obtained device achieves the highest performances reported so far for a midwave infrared nanocrystal-based detector, with external quantum efficiency above 90%, detectivity of 7 × 1011 Jones at 80 K at 5 μm, and a sub-100 ns time response. Furthermore, we demonstrate that combining different gratings with a single diode stack can generate a bias reconfigurable response and develop new functionalities such as band rejection.
Collapse
Affiliation(s)
- Tung Huu Dang
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 24 Rue Lhomond, 75005 Paris, France
| | - Mariarosa Cavallo
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Adrien Khalili
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Corentin Dabard
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Erwan Bossavit
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Huichen Zhang
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Nicolas Ledos
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Yoann Prado
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Xavier Lafosse
- Centre de Nanosciences et de Nanotechnologies, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | - Claire Abadie
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Djamal Gacemi
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 24 Rue Lhomond, 75005 Paris, France
| | - Sandrine Ithurria
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI, PSL Research University, Sorbonne Université, CNRS UMR 8213, 10 rue Vauquelin, 75005 Paris, France
| | - Grégory Vincent
- DOTA, ONERA, Université Paris Saclay, 6 Chem. de la Vauve aux Granges, 91120 Palaiseau, France
| | - Yanko Todorov
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 24 Rue Lhomond, 75005 Paris, France
| | - Carlo Sirtori
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 24 Rue Lhomond, 75005 Paris, France
| | - Angela Vasanelli
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 24 Rue Lhomond, 75005 Paris, France
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
7
|
Dégardin A, Alamarguy D, Brézard Oudot A, Beldi S, Chaumont C, Boussaha F, Cheneau A, Kreisler A. Fast and Uncooled Semiconducting Ca-Doped Y-Ba-Cu-O Thin Film-Based Thermal Sensors for Infrared. SENSORS (BASEL, SWITZERLAND) 2023; 23:7934. [PMID: 37765991 PMCID: PMC10537438 DOI: 10.3390/s23187934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
YBa2Cu3O6+x (YBCO) cuprates are semiconductive when oxygen depleted (x < 0.5). They can be used for uncooled thermal detection in the near-infrared: (i) low temperature deposition on silicon substrates, leading to an amorphous phase (a-YBCO); (ii) pyroelectric properties exploited in thermal detectors offering both low noise and fast response above 1 MHz. However, a-YBCO films exhibit a small direct current (DC) electrical conductivity, with strong non-linearity of current-voltage plots. Calcium doping is well known for improving the transport properties of oxygen-rich YBCO films (x > 0.7). In this paper, we consider the performances of pyroelectric detectors made from calcium-doped (10 at. %) and undoped a-YBCO films. First, the surface microstructure, composition, and DC electrical properties of a-Y0.9Ca0.1Ba2Cu3O6+x films were investigated; then devices were tested at 850 nm wavelength and results were analyzed with an analytical model. A lower DC conductivity was measured for the calcium-doped material, which exhibited a slightly rougher surface, with copper-rich precipitates. The calcium-doped device exhibited a higher specific detectivity (D*=7.5×107 cm·Hz/W at 100 kHz) than the undoped device. Moreover, a shorter thermal time constant (<8 ns) was inferred as compared to the undoped device and commercially available pyroelectric sensors, thus paving the way to significant improvements for fast infrared imaging applications.
Collapse
Affiliation(s)
- Annick Dégardin
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Génie Électrique et Électronique de Paris, 91190 Gif-sur-Yvette, France
- Sorbonne Université, CNRS, Laboratoire de Génie Électrique et Électronique de Paris, 75005 Paris, France
| | - David Alamarguy
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Génie Électrique et Électronique de Paris, 91190 Gif-sur-Yvette, France
- Sorbonne Université, CNRS, Laboratoire de Génie Électrique et Électronique de Paris, 75005 Paris, France
| | - Aurore Brézard Oudot
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Génie Électrique et Électronique de Paris, 91190 Gif-sur-Yvette, France
- Sorbonne Université, CNRS, Laboratoire de Génie Électrique et Électronique de Paris, 75005 Paris, France
| | - Samir Beldi
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Génie Électrique et Électronique de Paris, 91190 Gif-sur-Yvette, France
- Sorbonne Université, CNRS, Laboratoire de Génie Électrique et Électronique de Paris, 75005 Paris, France
- ESME Research Lab, 38 rue Molière, 94200 Ivry-sur-Seine, France
| | | | - Faouzi Boussaha
- GEPI, Observatoire de Paris, Université PSL, CNRS, 75014 Paris, France
| | - Antoine Cheneau
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Génie Électrique et Électronique de Paris, 91190 Gif-sur-Yvette, France
- Sorbonne Université, CNRS, Laboratoire de Génie Électrique et Électronique de Paris, 75005 Paris, France
| | - Alain Kreisler
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Génie Électrique et Électronique de Paris, 91190 Gif-sur-Yvette, France
- Sorbonne Université, CNRS, Laboratoire de Génie Électrique et Électronique de Paris, 75005 Paris, France
| |
Collapse
|
8
|
Al Mahfuz MM, Park J, Islam R, Ko DK. Colloidal Ag 2Se intraband quantum dots. Chem Commun (Camb) 2023; 59:10722-10736. [PMID: 37606169 DOI: 10.1039/d3cc02203j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
With the emergence of the Internet of Things, wearable electronics, and machine vision, the exponentially growing demands for miniaturization, energy efficiency, and cost-effectiveness have imposed critical requirements on the size, weight, power consumption and cost (SWaP-C) of infrared detectors. To meet this demand, new sensor technologies that can reduce the fabrication cost associated with semiconductor epitaxy and remove the stringent requirement for cryogenic cooling are under active investigation. In the technologically important spectral region of mid-wavelength infrared, intraband colloidal quantum dots are currently at the forefront of this endeavor, with wafer-scale monolithic integration and Auger suppression being the key material capabilities to minimize the sensor's SWaP-C. In this Feature Article, we provide a focused review on the development of sensors based on Ag2Se intraband colloidal quantum dots, a heavy metal-free colloidal nanomaterial that has merits for wide-scale adoption in consumer and industrial sectors.
Collapse
Affiliation(s)
- Mohammad Mostafa Al Mahfuz
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
| | - Junsung Park
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
| | - Rakina Islam
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
| | - Dong-Kyun Ko
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
| |
Collapse
|
9
|
Tian Y, Luo H, Chen M, Li C, Kershaw SV, Zhang R, Rogach AL. Mercury chalcogenide colloidal quantum dots for infrared photodetection: from synthesis to device applications. NANOSCALE 2023; 15:6476-6504. [PMID: 36960839 DOI: 10.1039/d2nr07309a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Commercial infrared (IR) photodetectors based on epitaxial growth inorganic semiconductors, e.g. InGaAs and HgCdTe, suffer from high fabrication cost, poor compatibility with silicon integrated circuits, rigid substrates and bulky cooling systems, which leaves a large development window for the emerging solution-processable semiconductor-based photo-sensing devices. Among the solution-processable semiconductors, mercury (Hg) chalcogenide colloidal quantum dots (QDs) exhibit unique ultra-broad and tuneable photo-responses in the short-wave infrared to far-wave infrared range, and have demonstrated photo-sensing abilities comparable to the commercial products, especially with advances in high operation temperature. Here, we provide a focused review on photodetectors employing Hg chalcogenide colloidal QDs, with a comprehensive summary of the essential progress in the areas of synthesis methods of QDs, property control, device engineering, focus plane array integration, etc. Besides imaging demonstrations, a series of Hg chalcogenide QD photodetector based flexible, integrated, multi-functional applications are also summarized. This review shows prospects for the next-generation low-cost highly-sensitive and compact IR photodetectors based on solution-processable Hg chalcogenide colloidal QDs.
Collapse
Affiliation(s)
- Yuanyuan Tian
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Hongqiang Luo
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Mengyu Chen
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China.
- Future Display Institute of Xiamen, Xiamen 361005, P. R. China
| | - Cheng Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China.
- Future Display Institute of Xiamen, Xiamen 361005, P. R. China
| | - Stephen V Kershaw
- Department of Materials Science and Engineering and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China.
| | - Rong Zhang
- Future Display Institute of Xiamen, Xiamen 361005, P. R. China
- Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, Department of Physics, Xiamen University, Xiamen 361005, P. R. China
- Engineering Research Center of Micro-nano Optoelectronic Materials and Devices, Ministry of Education, Xiamen University, Xiamen 361005, P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China.
| |
Collapse
|
10
|
Xue M, Peng W, Tang X, Cai Y, Li F, He Y. Pyro-Phototronic Effect Enhanced Pyramid Structured p-Si/n-ZnO Nanowires Heterojunction Photodetector. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4677-4689. [PMID: 36625530 DOI: 10.1021/acsami.2c18011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The emergence of nanomaterials has brought about the development of miniature photodetectors into a new stage, and ZnO nanomaterials are currently one of the most popular research objects. Here, the performance of a photodetector consisting of micropyramid structured p-Si/n-ZnO NWs heterojunction constructed by an anisotropic chemical etching and hydrothermal method is optimized by using the pyro-phototronic effect, and the photoresponses of the device to 405 and 648 nm lasers are investigated. The results show that, with the introduction of pyro-phototronic effect, the photoresponsivity Rpyro increases to 208 times that of Rphoto when the wavelength is 405 nm and the optical power density is 0.0693 mW/cm2. Moreover, with the increase of the chopper frequency, the photocurrent increases by more than 3 times, and the photoresponsivity is also increased by a factor of 4.5, making it possible to detect ultrafast pulsed light. In addition, in order to increase the current collection efficiency, a thin film Al layer was deposited as the back electrode on the basis of the device, and the photocurrent and photoresponsivity are significantly improved. Finally, the coupling between the pyro-phototronic effect and the piezo-phototronic effect is analyzed by applying compressive strain to the photodetector. When the compressive strain is -1.02%, the photocurrent decreases by 31.4% and the photoresponsivity decreases by 27.9% due to the opposite direction between laser illumination induced pyroelectric polarization charges and compressive strain induced piezoelectric polarization charges. This work not only demonstrates the great potential of pyro-phototronic effect in enhancing the silicon-based heterojunction photodetectors for high-performance photodetection and ultrafast pulsed light detection but also provides assistance for a better understanding of the coupling mechanism between pyro-phototronic and piezo-phototronic effects.
Collapse
Affiliation(s)
- Mingyan Xue
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an, Shaanxi 710049, China
| | - Wenbo Peng
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an, Shaanxi 710049, China
| | - Xuefeng Tang
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an, Shaanxi 710049, China
| | - Yahui Cai
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an, Shaanxi 710049, China
| | - Fangpei Li
- State Key Laboratory of Solidification Processing, Key Laboratory of Radiation Detection Materials and Devices, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yongning He
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi'an City, Xi'an, Shaanxi 710049, China
| |
Collapse
|
11
|
Rogalski A. Scaling infrared detectors-status and outlook. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:126501. [PMID: 36198261 DOI: 10.1088/1361-6633/ac97a8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The predicted 'Law 19' benchmark for HgCdTe photodiode performance established in 2019 is a milestone in the development of infrared (IR) detectors and make the dream of Elliott and colleagues, who in 1999 wrote thatthere is no fundamental obstacle to obtaining room temperature operation of photon detectors at room temperature with background-limited performance even in reduced fields of view(Elliottet al1999Appl. Phys. Lett.742881). This circumstance will make it possible to achieve in the near future the room-temperature IR arrays operation with high pixel density (small pixels) fully compatible with the background and diffraction-limited performance resulting from the system optics. The advent of smaller pixels also results in superior spatial and temperature resolutions of imaging systems. In megapixel imaging systems, the pixel dimension plays a crucial role in determining critical system attributes such as system size, weight, and power consumption. In the paper, the physical limitations of pixel size related to the aperture of the optics, which in turn is wavelength dependent, are described. Since the critical parameter of small pixels is quantum efficiency, more attention has been paid to enhancing the coupling of radiation to the detector. Then, the evaluation for assessing the figure-of-merit of different material systems (especially short wavelength IR colloidal quantum dots, both medium and long wavelength IR novel III-V material systems) relative to bulk HgCdTe alloys is considered. Of the various thermal detectors, particular attention has been focussed on bolometer arrays due to their largest share of the global commercial market. Also key challenges in realizing ultimate pixel dimensions in focal plane arrays design are presented for different material systems including dark current, pixel hybridization, pixel delineation, and unit cell readout capacity.
Collapse
Affiliation(s)
- A Rogalski
- Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
| |
Collapse
|
12
|
Ejehi F, Shooshtari L, Mohammadpour R, Asadian E, Sasanpour P. Self-powered ultraviolet/visible photodetector based on graphene-oxide via triboelectric nanogenerators performing by finger tapping. NANOTECHNOLOGY 2022; 33:475205. [PMID: 35977448 DOI: 10.1088/1361-6528/ac8a52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Self-sufficient power sources provide a promising application of abundant electronic devices utilized in detection of ambient properties. Recently, triboelectric nanogenerators (TENGs) have been widely investigated to broaden the self-powered systems by converting the ambient mechanical agitations into electrical voltage and current. Graphene oxide (GO), not only for sensing applications but also as a brilliant energy-related nanomaterial, provides a wide range of controllable bandgap energies, as well as facile synthesis route. In this study, GO-based self-powered photodetectors have been fabricated by conflating the photosensitivity and triboelectric characteristics of freestanding GO paper. In this regard, photodetection via TENGs has been investigated in two forms of active and passive circuits for ultraviolet (UV) and visible illumination. The photodetector responsivity upon UV enhanced from 0.011 mA W-1for conventional GO-photoresistors up to 13.41 mA W-1by active photodetection setup. Moreover, applying the active-TENG improved the efficiency from 0.25% (in passive TENG) to 4.21%. Our findings demonstrate that active TENGs might enable materials with insignificant optical response to represent considerably higher light-sensitivity by means of synergizing the effect of TENG output changes with opto-electronical properties of desired layers.
Collapse
Affiliation(s)
- Faezeh Ejehi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran
| | - Leyla Shooshtari
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran
| | - Raheleh Mohammadpour
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran
| | - Elham Asadian
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19839-63113, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Nanoscience, Institute for Research in Fundamental Sciences (IPM), PO Box 19395-5531, Tehran, Iran
| |
Collapse
|
13
|
Damulira E. Radiation dosimetry in medicine using II-VI semiconductors. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Gréboval C, Darson D, Parahyba V, Alchaar R, Abadie C, Noguier V, Ferré S, Izquierdo E, Khalili A, Prado Y, Potet P, Lhuillier E. Photoconductive focal plane array based on HgTe quantum dots for fast and cost-effective short-wave infrared imaging. NANOSCALE 2022; 14:9359-9368. [PMID: 35726871 DOI: 10.1039/d2nr01313d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
HgTe nanocrystals, thanks to quantum confinement, present a broadly tunable band gap all over the infrared spectral range. In addition, significant efforts have been dedicated to the design of infrared sensors with an absorbing layer made of nanocrystals. However, most efforts have been focused on single pixel sensors. Nanocrystals offer an appealing alternative to epitaxially grown semiconductors for infrared imaging by reducing the material growth cost and easing the coupling to the readout circuit. Here we propose a strategy to design an infrared focal plane array from a single fabrication step. The focal plane array (FPA) relies on a specifically designed readout circuit enabling in plane electric field application and operation in photoconductive mode. We demonstrate a VGA format focal plane array with a 15 μm pixel pitch presenting an external quantum efficiency of 4-5% (15% internal quantum efficiency) for a cut-off around 1.8 μm and operation using Peltier cooling only. The FPA is compatible with 200 fps imaging full frame and imaging up to 340 fps is demonstrated by driving a reduced area of the FPA. In the last part of the paper, we discuss the cost of such sensors and show that the latter is only driven by labor costs while we estimate the cost of the NC film to be in the 10-20 € range.
Collapse
Affiliation(s)
- Charlie Gréboval
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, F-75005 Paris, France.
| | - David Darson
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Victor Parahyba
- New Imaging Technologies SA, 1 impasse de la Noisette, 91370 Verrières le Buisson, France
| | - Rodolphe Alchaar
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, F-75005 Paris, France.
| | - Claire Abadie
- ONERA - The French Aerospace Lab, 6, chemin de la Vauve aux Granges, BP 80100, 91123 Palaiseau, France
| | - Vincent Noguier
- New Imaging Technologies SA, 1 impasse de la Noisette, 91370 Verrières le Buisson, France
| | - Simon Ferré
- New Imaging Technologies SA, 1 impasse de la Noisette, 91370 Verrières le Buisson, France
| | - Eva Izquierdo
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, F-75005 Paris, France.
| | - Adrien Khalili
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, F-75005 Paris, France.
| | - Yoann Prado
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, F-75005 Paris, France.
| | - Pierre Potet
- New Imaging Technologies SA, 1 impasse de la Noisette, 91370 Verrières le Buisson, France
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, F-75005 Paris, France.
| |
Collapse
|
15
|
Gak VY, Gadomska AV, Spirin MG, Pevtsov DN, Katsaba AV, Brichkin SB, Razumov VF. Study of Photoelectrophysical Characteristics of IR Photodetector Based on HgTe Colloidal Quantum Dots. HIGH ENERGY CHEMISTRY 2022. [DOI: 10.1134/s0018143922020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Ahn S, Chen W, Vazquez-Mena O. High resolution patterning of PbS quantum dots/graphene photodetectors with high responsivity via photolithography with a top graphene layer to protect surface ligands. NANOSCALE ADVANCES 2021; 3:6206-6212. [PMID: 36133947 PMCID: PMC9417613 DOI: 10.1039/d1na00582k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 06/15/2023]
Abstract
Photodetectors based on colloidal quantum dots (CQDs) and single layer graphene (SLG) have shown high responsivity due to the synergy of strong light absorption from CQDs and high mobility from SLG. However, it is still challenging to achieve high-density and small-footprint devices on a chip to meet the demand for their integration into electronic devices. Even though there are numerous approaches to pattern the chemically fragile CQD films, usually they require non-conventional approaches such as stamping and surface modification that may be non-compatible with semiconductor processing. In this study, we show that conventional lithography and dry etching can be used to pattern QD active films by employing a graphene monolayer passivation/protective layer that protects the surface ligands of CQDs. This protective layer avoids damage induced by lithography process solvents that deteriorate the carrier mobility of CQDs and therefore the photoresponse. Herein we report patterning of CQDs using conventional UV photolithography, achieving reproducible five-micron length PbS CQDs/SLG photodetectors with a responsivity of 108 A W-1. We have also fabricated thirty-six PbS CQDs/SLG photodetectors on a single chip to establish micron size photodetectors. This process offers an approach to pattern QDs with conventional UV lithography and dry etching semiconductor technology to facilitate their integration into current semiconductor commercial technology.
Collapse
Affiliation(s)
- Seungbae Ahn
- Department of Nanoengineering, Center for Memory and Recording Research, Calibaja Center for Resilient Materials and Systems, University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Wenjun Chen
- Department of Nanoengineering, Center for Memory and Recording Research, Calibaja Center for Resilient Materials and Systems, University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Oscar Vazquez-Mena
- Department of Nanoengineering, Center for Memory and Recording Research, Calibaja Center for Resilient Materials and Systems, University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| |
Collapse
|
17
|
Hafiz SB, Al Mahfuz MM, Lee S, Ko DK. Midwavelength Infrared p-n Heterojunction Diodes Based on Intraband Colloidal Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49043-49049. [PMID: 34613686 DOI: 10.1021/acsami.1c14749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
As an emerging member of the colloidal semiconductor quantum dot materials family, intraband quantum dots are being extensively studied for thermal infrared sensing applications. High-performance detectors can be realized using a traditional p-n junction device design; however, the heavily doped nature of intraband quantum dots presents a new challenge in realizing diode devices. In this work, we utilize a trait uniquely available in a colloidal quantum dot material system to overcome this challenge: the ability to blend two different types of quantum dots to control the electrical property of the resulting film. We report on the preparation of binary mixture films containing midwavelength infrared Ag2Se intraband quantum dots and the fabrication of p-n heterojunction diodes with strong rectifying characteristics. The peak specific detectivity at 4.5 μm was measured to be 107 Jones at room temperature, which is an orders of magnitude improvement compared to the previous generation of intraband quantum dot detectors.
Collapse
Affiliation(s)
- Shihab Bin Hafiz
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Mohammad M Al Mahfuz
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Sunghwan Lee
- School of Engineering Technology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dong-Kyun Ko
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
18
|
Chen M, Lu L, Yu H, Li C, Zhao N. Integration of Colloidal Quantum Dots with Photonic Structures for Optoelectronic and Optical Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101560. [PMID: 34319002 PMCID: PMC8456226 DOI: 10.1002/advs.202101560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/23/2021] [Indexed: 05/05/2023]
Abstract
Colloidal quantum dot (QD), a solution-processable nanoscale optoelectronic building block with well-controlled light absorption and emission properties, has emerged as a promising material system capable of interacting with various photonic structures. Integrated QD/photonic structures have been successfully realized in many optical and optoelectronic devices, enabling enhanced performance and/or new functionalities. In this review, the recent advances in this research area are summarized. In particular, the use of four typical photonic structures, namely, diffraction gratings, resonance cavities, plasmonic structures, and photonic crystals, in modulating the light absorption (e.g., for solar cells and photodetectors) or light emission (e.g., for color converters, lasers, and light emitting diodes) properties of QD-based devices is discussed. A brief overview of QD-based passive devices for on-chip photonic circuit integration is also presented to provide a holistic view on future opportunities for QD/photonic structure-integrated optoelectronic systems.
Collapse
Affiliation(s)
- Mengyu Chen
- School of Electronic Science and EngineeringXiamen UniversityXiamen361005P. R. China
- Department of Electronic EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SARChina
| | - Lihua Lu
- School of Electronic Science and EngineeringXiamen UniversityXiamen361005P. R. China
| | - Hui Yu
- Department of Electronic EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SARChina
| | - Cheng Li
- School of Electronic Science and EngineeringXiamen UniversityXiamen361005P. R. China
- Future DisplayInstitute of XiamenXiamen361005P. R. China
| | - Ni Zhao
- Department of Electronic EngineeringThe Chinese University of Hong KongShatinNew TerritoriesHong Kong SARChina
| |
Collapse
|
19
|
Vella JH, Huang L, Eedugurala N, Mayer KS, Ng TN, Azoulay JD. Broadband infrared photodetection using a narrow bandgap conjugated polymer. SCIENCE ADVANCES 2021; 7:7/24/eabg2418. [PMID: 34108215 PMCID: PMC8189577 DOI: 10.1126/sciadv.abg2418] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/21/2021] [Indexed: 06/09/2023]
Abstract
Photodetection spanning the short-, mid-, and long-wave infrared (SWIR-LWIR) underpins modern science and technology. Devices using state-of-the-art narrow bandgap semiconductors require complex manufacturing, high costs, and cooling requirements that remain prohibitive for many applications. We report high-performance infrared photodetection from a donor-acceptor conjugated polymer with broadband SWIR-LWIR operation. Electronic correlations within the π-conjugated backbone promote a high-spin ground state, narrow bandgap, long-wavelength absorption, and intrinsic electrical conductivity. These previously unobserved attributes enabled the fabrication of a thin-film photoconductive detector from solution, which demonstrates specific detectivities greater than 2.10 × 109 Jones. These room temperature detectivities closely approach those of cooled epitaxial devices. This work provides a fundamentally new platform for broadly applicable, low-cost, ambient temperature infrared optoelectronics.
Collapse
Affiliation(s)
- Jarrett H Vella
- Sensors Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45433, USA
| | - Lifeng Huang
- Center for Optoelectronic Materials and Devices, School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Naresh Eedugurala
- Center for Optoelectronic Materials and Devices, School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Kevin S Mayer
- Center for Optoelectronic Materials and Devices, School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Tse Nga Ng
- Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407, USA
| | - Jason D Azoulay
- Center for Optoelectronic Materials and Devices, School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| |
Collapse
|
20
|
Chee SS, Gréboval C, Magalhaes DV, Ramade J, Chu A, Qu J, Rastogi P, Khalili A, Dang TH, Dabard C, Prado Y, Patriarche G, Chaste J, Rosticher M, Bals S, Delerue C, Lhuillier E. Correlating Structure and Detection Properties in HgTe Nanocrystal Films. NANO LETTERS 2021; 21:4145-4151. [PMID: 33956449 DOI: 10.1021/acs.nanolett.0c04346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
HgTe nanocrystals (NCs) enable broadly tunable infrared absorption, now commonly used to design light sensors. This material tends to grow under multipodic shapes and does not present well-defined size distributions. Such point generates traps and reduces the particle packing, leading to a reduced mobility. It is thus highly desirable to comprehensively explore the effect of the shape on their performance. Here, we show, using a combination of electron tomography and tight binding simulations, that the charge dissociation is strong within HgTe NCs, but poorly shape dependent. Then, we design a dual-gate field-effect-transistor made of tripod HgTe NCs and use it to generate a planar p-n junction, offering more tunability than its vertical geometry counterpart. Interestingly, the performance of the tripods is higher than sphere ones, and this can be correlated with a stronger Te excess in the case of sphere shapes which is responsible for a higher hole trap density.
Collapse
Affiliation(s)
- Sang-Soo Chee
- CNRS, Institut des NanoSciences de Paris, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
- Nanomaterials and Nanotechnology Center, Korea Institute of Ceramic Engineering and Technology (KICET), 101 Soho-ro, 52851 Jinju-si, Republic of Korea
| | - Charlie Gréboval
- CNRS, Institut des NanoSciences de Paris, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| | - Debora Vale Magalhaes
- Electron Microscopy for Materials Science, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, B-2020 Antwerp, Belgium
| | - Julien Ramade
- Electron Microscopy for Materials Science, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, B-2020 Antwerp, Belgium
| | - Audrey Chu
- CNRS, Institut des NanoSciences de Paris, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| | - Junling Qu
- CNRS, Institut des NanoSciences de Paris, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| | - Prachi Rastogi
- CNRS, Institut des NanoSciences de Paris, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| | - Adrien Khalili
- CNRS, Institut des NanoSciences de Paris, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| | - Tung Huu Dang
- CNRS, Institut des NanoSciences de Paris, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 75005 Paris, France
| | - Corentin Dabard
- CNRS, Institut des NanoSciences de Paris, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| | - Yoann Prado
- CNRS, Institut des NanoSciences de Paris, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| | - Gilles Patriarche
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, C2N, Palaiseau 2110, France
| | - Julien Chaste
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, C2N, Palaiseau 2110, France
| | - Michael Rosticher
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 75005 Paris, France
| | - Sara Bals
- Electron Microscopy for Materials Science, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, B-2020 Antwerp, Belgium
| | - Christophe Delerue
- Université Lille, CNRS, Centrale Lille, Université Polytechnique Hauts-de-France, Junia, UMR 8520 - IEMN F-59000 Lille, France
| | - Emmanuel Lhuillier
- CNRS, Institut des NanoSciences de Paris, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
21
|
Ganeev RA, Shuklov IA, Zvyagin AI, Dyomkin DV, Smirnov MS, Ovchinnikov OV, Lizunova AA, Perepukhov AM, Popov VS, Razumov VF. Synthesis and low-order optical nonlinearities of colloidal HgSe quantum dots in the visible and near infrared ranges. OPTICS EXPRESS 2021; 29:16710-16726. [PMID: 34154228 DOI: 10.1364/oe.425549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
We synthesize colloidal HgSe quantum dots and characterize their nonlinear refraction and nonlinear absorption using a Nd:YAG laser and its second harmonic. The 7.5 nm quantum dots were synthesized using the hot-injection method. The nonlinear absorption (β = 9×10-7 cm W-1) and negative nonlinear refraction (γ = -5×10-12 cm2 W-1) coefficients of colloidal quantum dots were determined using the 10 ns, 532 nm laser radiation. The joint influence of above processes was realized at a higher intensity of probe pulses. In the case of 10 ns, 1064 nm radiation, only negative nonlinear refraction dominated during z-scans of these quantum dots. The studies of optical limiting using two laser sources demonstrated the effectiveness of this process at 532 nm. The role of nonlinear scattering is analyzed. We discuss the mechanisms responsible for the nonlinear refraction processes in colloidal HgSe quantum dots.
Collapse
|
22
|
Infrared photoconduction at the diffusion length limit in HgTe nanocrystal arrays. Nat Commun 2021; 12:1794. [PMID: 33741921 PMCID: PMC7979921 DOI: 10.1038/s41467-021-21959-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/20/2021] [Indexed: 12/02/2022] Open
Abstract
Narrow band gap nanocrystals offer an interesting platform for alternative design of low-cost infrared sensors. It has been demonstrated that transport in HgTe nanocrystal arrays occurs between strongly-coupled islands of nanocrystals in which charges are partly delocalized. This, combined with the scaling of the noise with the active volume of the film, make case for device size reduction. Here, with two steps of optical lithography we design a nanotrench which effective channel length corresponds to 5–10 nanocrystals, matching the carrier diffusion length. We demonstrate responsivity as high as 1 kA W−1, which is 105 times higher than for conventional µm-scale channel length. In this work the associated specific detectivity exceeds 1012 Jones for 2.5 µm peak detection under 1 V at 200 K and 1 kHz, while the time response is as short as 20 µs, making this performance the highest reported for HgTe NC-based extended short-wave infrared detection. Infrared nanocrystals have become an enabling building block for the design of low-cost infrared sensors. Here, Chu et al. design a nanotrench device geometry at the diffusion length limit in HgTe nanocrystals and demonstrate the record high sensing performance operated in the short-wave infrared.
Collapse
|
23
|
Abstract
The cryogenic cooling of infrared (IR) photon detectors optimized for the mid- (MWIR, 3–5 µm) and long wavelength (LWIR, 8–14 µm) range is required to reach high performance. This is a major obstacle for more extensive use of IR technology. Focal plane arrays (FPAs) based on thermal detectors are presently used in staring thermal imagers operating at room temperature. However, their performance is modest; thermal detectors exhibit slow response, and the multispectral detection is difficult to reach. Initial efforts to develop high operating temperature (HOT) photodetectors were focused on HgCdTe photoconductors and photoelectromagnetic detectors. The technological efforts have been lately directed on advanced heterojunction photovoltaic HgCdTe detectors. This paper presents the several approaches to increase the photon-detectors room-temperature performance. Various kinds of materials are considered: HgCdTe, type-II AIIIBV superlattices, two-dimensional materials and colloidal quantum dots.
Collapse
|
24
|
Abstract
Silver sulfide quantum dots (Ag2S QDs) as a theragnostic agent have received much attention because they provide excellent optical and chemical properties to facilitate diagnosis and therapy simultaneously.
Collapse
Affiliation(s)
| | - Joon Myong Song
- College of Pharmacy
- Seoul National University
- Seoul 08826
- South Korea
| |
Collapse
|
25
|
Xu K, Zhou W, Ning Z. Integrated Structure and Device Engineering for High Performance and Scalable Quantum Dot Infrared Photodetectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003397. [PMID: 33140560 DOI: 10.1002/smll.202003397] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Colloidal quantum dots (CQDs) are emerging as promising materials for the next generation infrared (IR) photodetectors, due to their easy solution processing, low cost manufacturing, size-tunable optoelectronic properties, and flexibility. Tremendous efforts including material engineering and device structure manipulation have been made to improve the performance of the photodetectors based on CQDs. In recent years, benefiting from the facial integration with materials such as 2D structure, perovskite and silicon, as well as device engineering, the performance of CQD IR photodetectors have been developing rapidly. On the other hand, to prompt the application of CQD IR photodetectors, scalable device structures that are compatible with commercial systems are developed. Herein, recent advances of CQD based IR photodetectors are summarized, especially material integration, device engineering, and scalable device structures.
Collapse
Affiliation(s)
- Kaimin Xu
- School of Physics Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wenjia Zhou
- School of Physics Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhijun Ning
- School of Physics Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
26
|
Balakrishnan J, Sreeshma D, Siddesh BM, Jagtap A, Abhale A, Rao KSRK. Ternary alloyed HgCdTe nanocrystals for short-wave and mid-wave infrared region optoelectronic applications. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/aba230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Semiconductor quantum dots (QDs) are emerging as the forefront alternative for the conventional imaging technology, particularly in infrared region from near infrared (0.75–1.4 μm) to long-wave infrared (8–14 μm) region. A handful of materials are explored for mid infrared imaging QDs and they are all invariably binary semiconductor compounds. Ternary alloyed quantum dots in many previous cases have shown properties that are unique and better than parent binary compounds. In this work, we have synthesized ternary alloyed HgCdTe quantum dots and studied their photophysical properties. Previously studied ternary alloyed HgCdTe CQDs absorb and emit in regions limited upto near-infrared region. We have tuned the excitonic absorption of HgCdTe QDs in the range of 2.2–5 μm, where addition of cadmium clearly showed blueshift in excitonic peak as compared to that of HgTe QDs. Structural properties are studied by TEM, XRD & XPS techniques. Electrical behaviour is studied by measuring I-V, I-V-T curves. Photodetectors are fabricated in photoconductive geometry showing promising photo-response under visible (532 nm) and NIR (810 nm, 1550 nm) excitation. Responsivity of the devices is in the order of 1 mA W−1 at 1 V bias and show good linearity over irradiance range of 0.025 and 2.5 W cm−2. These results pave the way for development of next generation cost-effective short-wave and mid-wave infrared region optoelectronic devices based on narrow bandgap HgCdTe nanocrystals.
Collapse
|
27
|
Kwon JB, Kim SW, Kang BH, Yeom SH, Lee WH, Kwon DH, Lee JS, Kang SW. Air-stable and ultrasensitive solution-cast SWIR photodetectors utilizing modified core/shell colloidal quantum dots. NANO CONVERGENCE 2020; 7:28. [PMID: 32803407 PMCID: PMC7429620 DOI: 10.1186/s40580-020-00238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
InGaAs-based photodetectors have been generally used for detection in the short-wave infrared (SWIR) region. However, the epitaxial process used to grow these materials is expensive; therefore, InGaAs-based photodetectors are limited to space exploration and military applications. Many researchers have expended considerable efforts to address the problem of SWIR photodetector development using lead sulfide (PbS) quantum dots (QDs). Along with their cost-efficient solution processability and flexible substrate compatibility, PbS QDs are highly interesting for the quantum-size-effect tunability of their bandgaps, spectral sensitivities, and wide absorption ranges. However, the performance of PbS QD-based SWIR photodetectors is limited owing to inefficient carrier transfer and low photo and thermal stabilities. In this study, a simple method is proposed to overcome these problems by incorporating CdS in PbS QD shells to provide efficient carrier transfer and enhance the long-term stability of SWIR photodetectors against oxidation. The SWIR photodetectors fabricated using thick-shell PbS/CdS QDs exhibited a high on/off (light/dark) ratio of 11.25 and a high detectivity of 4.0 × 1012 Jones, which represents a greater than 10 times improvement in these properties relative to those of PbS QDs. Moreover, the lifetimes of thick-shell PbS/CdS QD-based SWIR photodetectors were significantly improved owing to the self-passivation of QD surfaces.
Collapse
Affiliation(s)
- Jin-Beom Kwon
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 1370 Sankyuk-dong, Daegu, 702-701, Republic of Korea
| | - Sae-Wan Kim
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 1370 Sankyuk-dong, Daegu, 702-701, Republic of Korea
| | - Byoung-Ho Kang
- Advanced Semiconductor Research Center, Gumi Electronics and Information Technology Research Institute (GERI), Gumi, 39253, Republic of Korea
| | - Se-Hyuk Yeom
- Advanced Semiconductor Research Center, Gumi Electronics and Information Technology Research Institute (GERI), Gumi, 39253, Republic of Korea
| | - Wang-Hoon Lee
- Advanced Semiconductor Research Center, Gumi Electronics and Information Technology Research Institute (GERI), Gumi, 39253, Republic of Korea
| | - Dae-Hyuk Kwon
- Department of Electronic Engineering, Kyungil University, Hayang-up, 712-702, Gyeongsang buk-do, Republic of Korea
| | - Jae-Sung Lee
- Advanced Semiconductor Research Center, Gumi Electronics and Information Technology Research Institute (GERI), Gumi, 39253, Republic of Korea.
| | - Shin-Won Kang
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 1370 Sankyuk-dong, Daegu, 702-701, Republic of Korea.
| |
Collapse
|
28
|
Qu J, Rastogi P, Gréboval C, Lagarde D, Chu A, Dabard C, Khalili A, Cruguel H, Robert C, Xu XZ, Ithurria S, Silly MG, Ferré S, Marie X, Lhuillier E. Electroluminescence from HgTe Nanocrystals and Its Use for Active Imaging. NANO LETTERS 2020; 20:6185-6190. [PMID: 32662652 DOI: 10.1021/acs.nanolett.0c02557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mercury telluride (HgTe) nanocrystals are among the most versatile infrared (IR) materials with the absorption of lowest energy optical absorption which can be tuned from the visible to the terahertz range. Therefore, they have been extensively considered as near IR emitters and as absorbers for low-cost IR detectors. However, the electroluminescence of HgTe remains poorly investigated despite its ability to go toward longer wavelengths compared to traditional lead sulfide (PbS). Here, we demonstrate a light-emitting diode (LED) based on an indium tin oxide (ITO)/zinc oxide (ZnO)/ZnO-HgTe/PbS/gold-stacked structure, where the emitting layer consists of a ZnO/HgTe bulk heterojunction which drives the charge balance in the system. This LED has low turn-on voltage, long lifetime, and high brightness. Finally, we conduct short wavelength infrared (SWIR) active imaging, where illumination is obtained from a HgTe NC-based LED, and demonstrate moisture detection.
Collapse
Affiliation(s)
- Junling Qu
- Institut des NanoSciences de Paris, Sorbonne Université, CNRS, INSP, F-75005 Paris, France
| | - Prachi Rastogi
- Institut des NanoSciences de Paris, Sorbonne Université, CNRS, INSP, F-75005 Paris, France
| | - Charlie Gréboval
- Institut des NanoSciences de Paris, Sorbonne Université, CNRS, INSP, F-75005 Paris, France
| | - Delphine Lagarde
- INSA-CNRS-UPS, LPCNO, Université de Toulouse, 31000, Toulouse, France
| | - Audrey Chu
- Institut des NanoSciences de Paris, Sorbonne Université, CNRS, INSP, F-75005 Paris, France
| | - Corentin Dabard
- Institut des NanoSciences de Paris, Sorbonne Université, CNRS, INSP, F-75005 Paris, France
| | - Adrien Khalili
- Institut des NanoSciences de Paris, Sorbonne Université, CNRS, INSP, F-75005 Paris, France
| | - Hervé Cruguel
- Institut des NanoSciences de Paris, Sorbonne Université, CNRS, INSP, F-75005 Paris, France
| | - Cédric Robert
- INSA-CNRS-UPS, LPCNO, Université de Toulouse, 31000, Toulouse, France
| | - Xiang Zhen Xu
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Sandrine Ithurria
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Mathieu G Silly
- Synchrotron-SOLEIL, Saint-Aubin, BP48, F91192 Gif sur Yvette, Cedex, France
| | - Simon Ferré
- New Imaging Technologies SA, 1 impasse de la Noisette 91370 Verrières le Buisson, France
| | - Xavier Marie
- INSA-CNRS-UPS, LPCNO, Université de Toulouse, 31000, Toulouse, France
| | - Emmanuel Lhuillier
- Institut des NanoSciences de Paris, Sorbonne Université, CNRS, INSP, F-75005 Paris, France
| |
Collapse
|
29
|
Rastogi P, Chu A, Gréboval C, Qu J, Noumbé UN, Chee SS, Goyal M, Khalili A, Xu XZ, Cruguel H, Ithurria S, Gallas B, Dayen JF, Dudy L, Silly MG, Patriarche G, Degiron A, Vincent G, Lhuillier E. Pushing Absorption of Perovskite Nanocrystals into the Infrared. NANO LETTERS 2020; 20:3999-4006. [PMID: 32283029 DOI: 10.1021/acs.nanolett.0c01302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To date, defect-tolerance electronic structure of lead halide perovskite nanocrystals is limited to an optical feature in the visible range. Here, we demonstrate that IR sensitization of formamidinium lead iodine (FAPI) nanocrystal array can be obtained by its doping with PbS nanocrystals. In this hybrid array, absorption comes from the PbS nanocrystals while transport is driven by the perovskite which reduces the dark current compared to pristine PbS. In addition, we fabricate a field-effect transistor using a high capacitance ionic glass made of hybrid FAPI/PbS nanocrystal arrays. We show that the hybrid material has an n-type nature with an electron mobility of 2 × 10-3 cm2 V-1 s-1. However, the dark current reduction is mostly balanced by a loss of absorption. To overcome this limitation, we couple the FAPI/PbS hybrid to a guided mode resonator that can enhance the infrared light absorption.
Collapse
Affiliation(s)
- Prachi Rastogi
- Institut des NanoSciences de Paris, INSP, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Audrey Chu
- Institut des NanoSciences de Paris, INSP, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Charlie Gréboval
- Institut des NanoSciences de Paris, INSP, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Junling Qu
- Institut des NanoSciences de Paris, INSP, Sorbonne Université, CNRS, F-75005 Paris, France
| | | | - Sang-Soo Chee
- Institut des NanoSciences de Paris, INSP, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Mayank Goyal
- Institut des NanoSciences de Paris, INSP, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Adrien Khalili
- Institut des NanoSciences de Paris, INSP, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Xiang Zhen Xu
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Hervé Cruguel
- Institut des NanoSciences de Paris, INSP, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Sandrine Ithurria
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Bruno Gallas
- Institut des NanoSciences de Paris, INSP, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Jean-Francois Dayen
- Université de Strasbourg, IPCMS-CNRS UMR 7504, 23 Rue du Loess, 67034 Strasbourg, France
| | - Lenart Dudy
- Synchrotron-SOLEIL, Saint-Aubin, BP48, F91192 Gif sur Yvette Cedex, France
| | - Mathieu G Silly
- Synchrotron-SOLEIL, Saint-Aubin, BP48, F91192 Gif sur Yvette Cedex, France
| | - Gilles Patriarche
- Centre de Nanosciences et de Nanotechnologies, CNRS, University of Paris-Sud, Université Paris-Saclay, C2N, Marcoussis 91460, France
| | - Aloyse Degiron
- Laboratoire Matériaux et Phénomènes Quantiques, Université de Paris, CNRS, 75013 Paris, France
| | - Grégory Vincent
- ONERA - The French Aerospace Lab, 6, chemin de la Vauve aux Granges, BP 80100, 91123 Palaiseau, France
| | - Emmanuel Lhuillier
- Institut des NanoSciences de Paris, INSP, Sorbonne Université, CNRS, F-75005 Paris, France
| |
Collapse
|
30
|
Bianconi S, Mohseni H. Recent advances in infrared imagers: toward thermodynamic and quantum limits of photon sensitivity. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:044101. [PMID: 32018242 PMCID: PMC7282310 DOI: 10.1088/1361-6633/ab72e5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Infrared detection and imaging are key enabling technologies for a vast number of applications, ranging from communication, to medicine and astronomy, and have recently attracted interest for their potential application in optical interconnects and quantum computing. Nonetheless, infrared detection still constitutes the performance bottleneck for several of these applications, due to a number of unsolved challenges, such as limited quantum efficiency, yield and scalability of the devices, as well as limited sensitivity and low operating temperatures. The current commercially dominating technologies are based on planar semiconducting PIN or avalanche detectors. However, recent developments in semiconductor technology and nano-scale materials have enabled significant technological advancement, demonstrating the potential for groundbreaking achievements in the field. We review the recent progress in the most prominent novel detection technologies, and evaluate their advantages, limitations, and prospects. We further offer a perspective on the main fundamental limits on the detectors sensitivity, and we discuss the technological challenges that need to be addressed for significative advancement of the field. Finally, we present a set of potential system-wide strategies, including nanoscale and low-dimensional detectors, light coupling enhancement strategies, advanced read-out circuitry, neuromorphic and curved image sensors, aimed at improving the overall imagers performance.
Collapse
Affiliation(s)
- Simone Bianconi
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, United States of America
| | | |
Collapse
|
31
|
Lee S. Design Principle of Reactive Components for Dimethacrylate‐Terminated Quantum Dots: Preserved Photoluminescent Quantum Yield, Excellent Pattern Uniformity, and Suppression of Aggregation in the Matrix. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.201900488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Seonwoo Lee
- Department of Electrical and Computer EngineeringInter‐university Semiconductor Research CenterSeoul National University 1 Gwanakro, Gwanak‐gu Seoul 08826 Republic of Korea
| |
Collapse
|
32
|
Kim GW, Kang SH, Ha JW. Characterizing the non-paraxial Talbot effect of two-dimensional periodic arrays of plasmonic gold nanodisks by differential interference contrast microscopy. Analyst 2020; 145:7541-7545. [DOI: 10.1039/d0an01544j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exploiting the working principle of conventional differential interference contrast (DIC) microscopy, we experimentally investigate the non-paraxial Talbot effect of two-dimensional periodic arrays of gold nanodisks (AuNDs) with a periodicity ao comparable to the excitation wavelength λ.
Collapse
Affiliation(s)
- Geun Wan Kim
- Advanced Nano-Bio-Imaging and Spectroscopy Laboratory
- Department of Chemistry
- University of Ulsan
- Ulsan 44610
- Republic of Korea
| | - Seong Ho Kang
- Department of Applied Chemistry and Institute of Natural Sciences
- Kyung Hee University
- Gyeonggi-do 17104
- Republic of Korea
| | - Ji Won Ha
- Advanced Nano-Bio-Imaging and Spectroscopy Laboratory
- Department of Chemistry
- University of Ulsan
- Ulsan 44610
- Republic of Korea
| |
Collapse
|
33
|
Lee S. Designing of low-cost, eco-friendly, and versatile photosensitive composites / inks based on carboxyl-terminated quantum dots and reactive prepolymers in a mixed solvent: Suppression of the coffee-ring strain and aggregation. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Chu A, Martinez B, Ferré S, Noguier V, Gréboval C, Livache C, Qu J, Prado Y, Casaretto N, Goubet N, Cruguel H, Dudy L, Silly MG, Vincent G, Lhuillier E. HgTe Nanocrystals for SWIR Detection and Their Integration up to the Focal Plane Array. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33116-33123. [PMID: 31426628 DOI: 10.1021/acsami.9b09954] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Infrared applications remain too often a niche market due to their prohibitive cost. Nanocrystals offer an interesting alternative to reach cost disruption especially in the short-wave infrared (SWIR, λ < 1.7 μm) where material maturity is now high. Two families of materials are candidate for SWIR photoconduction: lead and mercury chalcogenides. Lead sulfide typically benefits from all the development made for a wider band gap such as the one made for solar cells, while HgTe takes advantage of the development relative to mid-wave infrared detectors. Here, we make a fair comparison of the two material detection properties in the SWIR and discuss the material stability. At such wavelengths, studies have been mostly focused on PbS rather than on HgTe, therefore we focus in the last part of the discussion on the effect of surface chemistry on the electronic spectrum of HgTe nanocrystals. We unveil that tuning the capping ligands is a viable strategy to adjust the material from the p-type to ambipolar. Finally, HgTe nanocrystals are integrated into multipixel devices to quantize spatial homogeneity and onto read-out circuits to obtain a fast and sensitive infrared laser beam profile.
Collapse
Affiliation(s)
- Audrey Chu
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
- ONERA-The French Aerospace Lab , Chemin de la Hunière, BP 80100 , F-91123 Palaiseau , France
| | - Bertille Martinez
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
- Laboratoire de Physique et d'Étude des Matériaux , ESPCI Paris PSL Research University, Sorbonne Université Univ Paris 06, CNRS , 10 rue Vauquelin 75005 Paris , France
| | - Simon Ferré
- New Imaging Technologies SA , 1 impasse de la Noisette 91370 Verrières le Buisson , France
| | - Vincent Noguier
- New Imaging Technologies SA , 1 impasse de la Noisette 91370 Verrières le Buisson , France
| | - Charlie Gréboval
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
| | - Clément Livache
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
- Laboratoire de Physique et d'Étude des Matériaux , ESPCI Paris PSL Research University, Sorbonne Université Univ Paris 06, CNRS , 10 rue Vauquelin 75005 Paris , France
| | - Junling Qu
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
| | - Yoann Prado
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
| | - Nicolas Casaretto
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
| | - Nicolas Goubet
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
- Sorbonne Université, CNRS, De la Molécule aux Nano-objets: Réactivité, Interactions et Spectroscopies, MONARIS , F-75005 Paris , France
| | - Hervé Cruguel
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
| | - Lenart Dudy
- Synchrotron-SOLEIL , Saint-Aubin, BP48 , F91192 Gif sur Yvette Cedex , France
| | - Mathieu G Silly
- Synchrotron-SOLEIL , Saint-Aubin, BP48 , F91192 Gif sur Yvette Cedex , France
| | - Grégory Vincent
- ONERA-The French Aerospace Lab , Chemin de la Hunière, BP 80100 , F-91123 Palaiseau , France
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
| |
Collapse
|
35
|
Guyot-Sionnest P, Ackerman MM, Tang X. Colloidal quantum dots for infrared detection beyond silicon. J Chem Phys 2019. [DOI: 10.1063/1.5115501] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Philippe Guyot-Sionnest
- James Franck Institute, The University of Chicago, 929E. 57th Street, Chicago, Illinois 60637, USA
| | - Matthew M. Ackerman
- James Franck Institute, The University of Chicago, 929E. 57th Street, Chicago, Illinois 60637, USA
| | - Xin Tang
- James Franck Institute, The University of Chicago, 929E. 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|