1
|
Collado L, Pizarro AH, Barawi M, García-Tecedor M, Liras M, de la Peña O'Shea VA. Light-driven nitrogen fixation routes for green ammonia production. Chem Soc Rev 2024. [PMID: 39387285 DOI: 10.1039/d3cs01075a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The global goal for decarbonization of the energy sector and the chemical industry could become a reality by a massive increase in renewable-based technologies. For this clean energy transition, the versatile green ammonia may play a key role in the future as a fossil-free fertilizer, long-term energy storage medium, chemical feedstock, and clean burning fuel for transportation and decentralized power generation. The high energy-intensive industrial ammonia production has triggered researchers to look for a step change in new synthetic approaches powered by renewable energies. This review provides a comprehensive comparison of light-mediated N2 fixation technologies for green ammonia production, including photocatalytic, photoelectrocatalytic, PV-electrocatalytic and photothermocatalytic routes. Since these approaches are still at laboratory scale, we examine the most recent developments and discuss the open challenges for future improvements. Last, we offer a technoeconomic comparison of current and emerging ammonia production technologies, highlighting costs, barriers, recommendations, and potential opportunities for the real development of the next generation of green ammonia solutions.
Collapse
Affiliation(s)
- Laura Collado
- Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Madrid 28935, Spain.
| | - Alejandro H Pizarro
- Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Madrid 28935, Spain.
| | - Mariam Barawi
- Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Madrid 28935, Spain.
| | - Miguel García-Tecedor
- Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Madrid 28935, Spain.
| | - Marta Liras
- Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Madrid 28935, Spain.
| | | |
Collapse
|
2
|
Lv SH, Wang Y, Wang DB, Song CX. Defect Engineering in Bi-Based Photo/Electrocatalysts for Nitrogen Reduction to Ammonia. Chemistry 2024; 30:e202400342. [PMID: 38687194 DOI: 10.1002/chem.202400342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Main group Bi-based materials have gained popularity as N2 reduction reaction (NRR) photo/electrocatalysts due to their ability to inhibit competitive H2 evolution reactions (HER) and the unique N2 adsorption activities. The introduction of defects in Bi-based catalysts represents a highly effective strategy for enhancing light absorption, promoting efficient separation of photogenerated carriers, optimizing the activity of free radicals, regulating electronic structure, and improving catalytic performance. In this review, we outline the various applications of state of the defect engineering in Bi-based catalysts and elucidate the impact of vacancies on NRR performance. In particular, the types of defects, methods of defects tailoring, advanced characterization techniques, as well as the Bi-based catalysts with abundant defects and their corresponding catalytic behavior in NRR were elucidated in detail. Finally, the main challenges and opportunities for future development of defective Bi-based NRR catalysts are discussed, which provides a comprehensive theoretical guidance for this field.
Collapse
Affiliation(s)
- Shuhua H Lv
- College of Materials Science and Engineering, Qingdao University of Science & Technology, Qingdao, 266042, PR China
| | - Ying Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, PR China
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Debao B Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, PR China
| | - Caixia X Song
- College of Materials Science and Engineering, Qingdao University of Science & Technology, Qingdao, 266042, PR China
| |
Collapse
|
3
|
Copper indium sulfide quantum dots in photocatalysis. J Colloid Interface Sci 2023; 638:193-219. [PMID: 36738544 DOI: 10.1016/j.jcis.2023.01.107] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Since the advent of photocatalytic technology, scientists have been searching for semiconductor materials with high efficiency in solar energy utilization and conversion to chemical energy. Recently, the development of quantum dot (QD) photocatalysts has attracted much attention because of their unique characteristics: small size, quantum effects, strong surface activity, and wide photoresponse range. Among ternary chalcogenide semiconductors, CuInS2 QDs are increasingly examined in the field of photocatalysis due to their high absorption coefficients, good matching of the absorption range with sunlight spectrum, long lifetimes of photogenerated electron-hole pairs and environmental sustainability. In this review paper, the structural and electronic properties, synthesis methods and various photocatalytic applications of CuInS2 QDs are systematically expounded. The current research status on the photocatalytic properties of materials based on CuInS2 QD is discussed combined with the existing modification approaches for the enhancement of their performances. Future challenges and new development opportunities of CuInS2 QDs in the field of photocatalysis are then prospected.
Collapse
|
4
|
Panda J, Tripathy SP, Dash S, Ray A, Behera P, Subudhi S, Parida K. Inner transition metal-modulated metal organic frameworks (IT-MOFs) and their derived nanomaterials: a strategic approach towards stupendous photocatalysis. NANOSCALE 2023; 15:7640-7675. [PMID: 37066602 DOI: 10.1039/d3nr00274h] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Photocatalysis, as an amenable and effective process, can be adopted for pollution remediation and to alleviate the ongoing energy crisis. In this case, recently, metal organic frameworks (MOFs) have attracted increasing attention in the field of photocatalysis owning to their unique characteristics including large specific surface area, tuneable pore architecture, mouldable framework composition, tuneable band structure, and exceptional photon absorption tendency complimented with superior anti-recombination of excitons. Among the plethora of frameworks, inner transition metal based-MOFs (IT-MOFs) have started to garner significant traction as photocatalysts due to their distinct characteristics compared to conventional transition metal-based frameworks. Typically, IT-MOFs have the tendency to generate high nuclearity clusters and possess abundant Lewis acidic sites, together with mixed valency, which aids in easily converting redox couples, thereby making them a suitable candidate for various photocatalytic reactions. Therefore, in this contribution, we aim to summarise the excellent photocatalytic performance of IT-MOFs and their composites accompanied by a thorough discussion of their topological changes with a variation in the structure of the metal cluster, fabrication routes, morphological features, and physico-chemical properties together with a brief discussion of computational findings. Moreover, we attempt to explore the scientific understanding of the functionalities of IT-MOFs and their composites with detailed mechanistic pathways for in-depth clarity towards photocatalysis. Furthermore, we present a comprehensive analysis of IT-MOFs for various crucial photocatalytic applications such as H2/O2 evolution, organic pollutant degradation, organic transformation, and N2 and CO2 reduction. In addition, we discuss the measures employed to enhance their performance with some future directions to address the challenges with IT-MOF-based nanomaterials.
Collapse
Affiliation(s)
- Jayashree Panda
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Suraj Prakash Tripathy
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Srabani Dash
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Asheli Ray
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Pragyandeepti Behera
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Satyabrata Subudhi
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Kulamani Parida
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| |
Collapse
|
5
|
Lee SA, Bu J, Lee J, Jang HW. High‐Entropy Nanomaterials for Advanced Electrocatalysis. SMALL SCIENCE 2023. [DOI: 10.1002/smsc.202200109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Affiliation(s)
- Sol A Lee
- Department of Materials Science and Engineering Research Institute of Advanced Materials (RIAM) Seoul National University Seoul 08826 South Korea
- Liquid Sunlight Alliance (LiSA) Department of Applied Physics and Materials Science California Institute of Technology Pasadena CA 91106 USA
| | - Jeewon Bu
- Department of Materials Science and Engineering Research Institute of Advanced Materials (RIAM) Seoul National University Seoul 08826 South Korea
| | - Jiwoo Lee
- Department of Materials Science and Engineering Research Institute of Advanced Materials (RIAM) Seoul National University Seoul 08826 South Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering Research Institute of Advanced Materials (RIAM) Seoul National University Seoul 08826 South Korea
- Advanced Institute of Convergence Technology Seoul National University Suwon 16229 Republic of Korea
| |
Collapse
|
6
|
Boong SK, Chong C, Lee JK, Ang ZZ, Li H, Lee HK. Superlattice-based Plasmonic Catalysis: Concentrating Light at the Nanoscale to Drive Efficient Nitrogen-to-Ammonia Fixation at Ambient Conditions. Angew Chem Int Ed Engl 2023; 62:e202216562. [PMID: 36504182 DOI: 10.1002/anie.202216562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
Plasmonic catalysis promises green ammonia synthesis but is limited by the need for co-catalysts and poor performances due to weak electromagnetic field enhancement. Here, we use two-dimensional plasmonic superlattices with dense electromagnetic hotspots to boost ambient nitrogen-to-ammonia photoconversion without needing co-catalyst. By organizing Ag octahedra into a square superlattice to concentrate light, the ammonia formation is enhanced by ≈15-fold and 4-fold over hexagonal superlattice and disorganized array, respectively. Our unique catalyst achieves superior ammonia formation rate and apparent quantum yield up to ≈15-fold and ≈103 -fold, respectively, better than traditional designs. Mechanistic investigations reveal the abundance of intense plasmonic hotspots is crucial to promote hot electron generation and transfer for nitrogen reduction. Our work offers valuable insights to design electromagnetically hot plasmonic catalysts for diverse chemical and energy applications.
Collapse
Affiliation(s)
- Siew Kheng Boong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Carice Chong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jinn-Kye Lee
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Zhi Zhong Ang
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Haitao Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Hiang Kwee Lee
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.,Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A✶STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| |
Collapse
|
7
|
Recent Progress in Pd based Electrocatalysts for Electrochemical Nitrogen Reduction to Ammonia. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Yu MS, Jesudass SC, Surendran S, Kim JY, Sim U, Han MK. Synergistic Interaction of MoS 2 Nanoflakes on La 2Zr 2O 7 Nanofibers for Improving Photoelectrochemical Nitrogen Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31889-31899. [PMID: 35816758 DOI: 10.1021/acsami.2c05653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ammonia is a suitable hydrogen carrier with each molecule accounting for up to 17.65% of hydrogen by mass. Among various potential ammonia production methods, we adopt the photoelectrochemical (PEC) technique, which uses solar energy as well as electricity to efficiently synthesize ammonia under ambient conditions. In this article, we report MoS2@La2Zr2O7 heterostructures designed by incorporating two-dimensional (2D)-MoS2 nanoflakes on La2Zr2O7 nanofibers (MoS2@LZO) as photoelectrocatalysts. The MoS2@LZO heterostructures are synthesized by a facile hydrothermal route with electrospun La2Zr2O7 nanofibers and Mo precursors. The MoS2@LZO heterostructures work synergistically to amend the drawbacks of the individual MoS2 electrocatalysts. In addition, the harmonious activity of the mixed phase of pyrochlore/defect fluorite-structured La2Zr2O7 nanofibers generates an interface that aids in increased electrocatalytic activity by enriching oxygen vacancies in the system. The MoS2@LZO electrocatalyst exhibits an enhanced Faradaic efficiency and ammonia yield of approximately 2.25% and 10.4 μg h-1 cm-2, respectively, compared to their corresponding pristine samples. Therefore, the mechanism of improving the PEC ammonia production performance by coupling oxygen-vacant sites to the 2D-semiconductor-based electrocatalysts has been achieved. This work provides a facile strategy to improve the activity of PEC catalysts by designing an efficient heterostructure interface for PEC applications.
Collapse
Affiliation(s)
- Min Seo Yu
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Sebastian Cyril Jesudass
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Subramani Surendran
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju, Jeonnam 58330, Republic of Korea
| | - Joon Young Kim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju, Jeonnam 58330, Republic of Korea
- Research Institute, NEEL Sciences, INC., Gwangju 61186, South Korea
| | - Uk Sim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju, Jeonnam 58330, Republic of Korea
- Research Institute, NEEL Sciences, INC., Gwangju 61186, South Korea
| | - Mi-Kyung Han
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, South Korea
- Research Institute, NEEL Sciences, INC., Gwangju 61186, South Korea
| |
Collapse
|
9
|
Kaiprathu A, Velayudham P, Teller H, Schechter A. Mechanisms of electrochemical nitrogen gas reduction to ammonia under ambient conditions: a focused review. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Yang P, Guo H, Zhang F, Zhou Y, Niu X. 电催化合成氨反应原位表征技术研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Centi G, Perathoner S. Redesign chemical processes to substitute the use of fossil fuels: A viewpoint of the implications on catalysis. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Murugan P, Annamalai J, Atchudan R, Govindasamy M, Nallaswamy D, Ganapathy D, Reshetilov A, Sundramoorthy AK. Electrochemical Sensing of Glucose Using Glucose Oxidase/PEDOT:4-Sulfocalix [4]arene/MXene Composite Modified Electrode. MICROMACHINES 2022; 13:mi13020304. [PMID: 35208428 PMCID: PMC8877456 DOI: 10.3390/mi13020304] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 12/12/2022]
Abstract
Glucose is one of the most important monosaccharides found in the food, as a part of more complex structures, which is a primary energy source for the brain and body. Thus, the monitoring of glucose concentration is more important in food and biological samples in order to maintain a healthy lifestyle. Herein, an electrochemical glucose biosensor was fabricated by immobilization of glucose oxidase (GOX) onto poly(3,4-ethylenedioxythiophene):4-sulfocalix [4]arene (PEDOT:SCX)/MXene modified electrode. For this purpose, firstly, PEDOT was synthesized in the presence of SCX (counterion) by the chemical oxidative method. Secondly, MXene (a 2D layered material) was synthesized by using a high-temperature furnace under a nitrogen atmosphere. After that, PEDOT:SCX/MXene (1:1) dispersion was prepared by ultrasonication which was later utilized to prepare PEDOT:SCX/MXene hybrid film. A successful formation of PEDOT:SCX/MXene film was confirmed by HR-SEM, Fourier transform infrared (FT-IR), and Raman spectroscopies. Due to the biocompatibility nature, successful immobilization of GOX was carried out onto chitosan modified PEDOT:SCX/MXene/GCE. Moreover, the electrochemical properties of PEDOT:SCX/MXene/GOX/GCE was studied through cyclic voltammetry and amperometry methods. Interestingly, a stable redox peak of FAD-GOX was observed at a formal potential of –0.435 V on PEDOT:SCX/MXene/GOX/GCE which indicated a direct electron transfer between the enzyme and the electrode surface. PEDOT:SCX/MXene/GOX/GCE also exhibited a linear response against glucose concentrations in the linear range from 0.5 to 8 mM. The effect of pH, sensors reproducibility, and repeatability of the PEDOT:SCX/MXene/GOX/GCE sensor were studied. Finally, this new biosensor was successfully applied to detect glucose in commercial fruit juice sample with satisfactory recovery.
Collapse
Affiliation(s)
- Preethika Murugan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India;
| | - Jayshree Annamalai
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India;
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Mani Govindasamy
- Department of Materials Engineering, Ming-Chi University of Technology, New Taipei City 243, Taiwan;
| | - Deepak Nallaswamy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India; (D.N.); (D.G.)
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India; (D.N.); (D.G.)
| | - Anatoly Reshetilov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Centre for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Ashok K. Sundramoorthy
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India;
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India; (D.N.); (D.G.)
- Correspondence:
| |
Collapse
|
13
|
Ali H, Masar M, Guler AC, Urbanek M, Machovsky M, Kuritka I. Heterojunction-based photocatalytic nitrogen fixation: principles and current progress. NANOSCALE ADVANCES 2021; 3:6358-6372. [PMID: 36133492 PMCID: PMC9417957 DOI: 10.1039/d1na00565k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/16/2021] [Indexed: 06/15/2023]
Abstract
Nitrogen fixation is considered one of the grand challenges of the 21st century for achieving the ultimate vision of a green and sustainable future. It is crucial to develop and design sustainable nitrogen fixation techniques with minimal environmental impact as an alternative to the energy-cost intensive Haber-Bosch process. Heterojunction-based photocatalysis has recently emerged as a viable solution for the various environmental and energy issues, including nitrogen fixation. The primary advantages of heterojunction photocatalysts are spatially separated photogenerated charge carriers while retaining high oxidation and reduction potentials of the individual components, enabling visible light-harvesting. This review summarises the fundamental principles of photocatalytic heterostructures, the reaction mechanism of the nitrogen reduction reaction, ammonia detection methods, and the current progress of heterostructured photocatalysts for nitrogen fixation. Finally, future challenges and prospects are briefly discussed for the emerging field of heterostructured photocatalytic nitrogen fixation.
Collapse
Affiliation(s)
- Hassan Ali
- Centre of Polymer Systems, Tomas Bata University in Zlin Tr. T. Bati 5678 76001 Zlin Czech Republic
| | - Milan Masar
- Centre of Polymer Systems, Tomas Bata University in Zlin Tr. T. Bati 5678 76001 Zlin Czech Republic
| | - Ali Can Guler
- Centre of Polymer Systems, Tomas Bata University in Zlin Tr. T. Bati 5678 76001 Zlin Czech Republic
| | - Michal Urbanek
- Centre of Polymer Systems, Tomas Bata University in Zlin Tr. T. Bati 5678 76001 Zlin Czech Republic
| | - Michal Machovsky
- Centre of Polymer Systems, Tomas Bata University in Zlin Tr. T. Bati 5678 76001 Zlin Czech Republic
| | - Ivo Kuritka
- Centre of Polymer Systems, Tomas Bata University in Zlin Tr. T. Bati 5678 76001 Zlin Czech Republic
| |
Collapse
|
14
|
Hu C, Paul R, Dai Q, Dai L. Carbon-based metal-free electrocatalysts: from oxygen reduction to multifunctional electrocatalysis. Chem Soc Rev 2021; 50:11785-11843. [PMID: 34559871 DOI: 10.1039/d1cs00219h] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since the discovery of N-doped carbon nanotubes as the first carbon-based metal-free electrocatalyst (C-MFEC) for oxygen reduction reaction (ORR) in 2009, C-MFECs have shown multifunctional electrocatalytic activities for many reactions beyond ORR, such as oxygen evolution reaction (OER), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CO2RR), nitrogen reduction reaction (NRR), and hydrogen peroxide production reaction (H2O2PR). Consequently, C-MFECs have attracted a great deal of interest for various applications, including metal-air batteries, water splitting devices, regenerative fuel cells, solar cells, fuel and chemical production, water purification, to mention a few. By altering the electronic configuration and/or modulating their spin angular momentum, both heteroatom(s) doping and structural defects (e.g., atomic vacancy, edge) have been demonstrated to create catalytic active sites in the skeleton of graphitic carbon materials. Although certain C-MFECs have been made to be comparable to or even better than their counterparts based on noble metals, transition metals and/or their hybrids, further research and development are necessary in order to translate C-MFECs for practical applications. In this article, we present a timely and comprehensive, but critical, review on recent advancements in the field of C-MFECs within the past five years or so by discussing various types of electrocatalytic reactions catalyzed by C-MFECs. An emphasis is given to potential applications of C-MFECs for energy conversion and storage. The structure-property relationship for and mechanistic understanding of C-MFECs will also be discussed, along with the current challenges and future perspectives.
Collapse
Affiliation(s)
- Chuangang Hu
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Rajib Paul
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Quanbin Dai
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
15
|
Choe S, Kim SM, Lee Y, Seok J, Jung J, Lee JS, Jang YJ. Rational design of photocatalysts for ammonia production from water and nitrogen gas. NANO CONVERGENCE 2021; 8:22. [PMID: 34338913 PMCID: PMC8329108 DOI: 10.1186/s40580-021-00273-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Photocatalytic N2 reduction has emerged as one of the most attractive routes to produce NH3 as a useful commodity for chemicals used in industries and as a carbon-free energy source. Recently, significant progress has been made in understanding, exploring, and designing efficient photocatalyst. In this review, we outline the important mechanistic and experimental procedures for photocatalytic NH3 production. In addition, we review effective strategies on development of photocatalysts. Finally, our analyses on the characteristics and modifications of photocatalysts have been summarized, based on which we discuss the possible future research directions, particularly on preparing more efficient catalysts. Overall, this review provides insights on improving photocatalytic NH3 production and designing solar-driven chemical conversions.
Collapse
Affiliation(s)
- Seokwoo Choe
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sung Min Kim
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Yeji Lee
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jin Seok
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jiyong Jung
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jae Sung Lee
- Department of Energy and Chemical Engineering, Ulsan National Institute and Science and Technology, 50, UNIST-gil, Ulsan, 44919, Republic of Korea.
| | - Youn Jeong Jang
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
16
|
Hisai Y, Ma Q, Qureishy T, Watanabe T, Higo T, Norby T, Sekine Y. Enhanced activity of catalysts on substrates with surface protonic current in an electrical field - a review. Chem Commun (Camb) 2021; 57:5737-5749. [PMID: 34027532 DOI: 10.1039/d1cc01551f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has over the last few years been reported that the application of a DC electric field and resulting current over a bed of certain catalyst-support systems enhances catalytic activity for several reactions involving hydrogen-containing reactants, and the effect has been attributed to surface protonic conductivity on the porous ceramic support (typically ZrO2, CeO2, SrZrO3). Models for the nature of the interaction between the protonic current, the catalyst particle (typically Ru, Ni, Co, Fe), and adsorbed reactants such as NH3 and CH4 have developed as experimental evidence has emerged. Here, we summarize the electrical enhancement and how it enhances yield and lowers reaction temperatures of industrially important chemical processes. We also review the nature of the relevant catalysts, support materials, as well as essentials and recent progress in surface protonics. It is easily suspected that the effect is merely an increase in local vs. nominal set temperature due to the ohmic heating of the electrical field and current. We address this and add data from recent studies of ours that indicate that the heating effect is minor, and that the novel catalytic effect of a surface protonic current must have additional causes.
Collapse
Affiliation(s)
- Yudai Hisai
- Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan.
| | - Quanbao Ma
- Department of Chemistry, Centre for Materials Science and Nanotechnology, University of Oslo, FERMiO, Gaustadalléen 21, NO-0349 Oslo, Norway.
| | - Thomas Qureishy
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway
| | | | - Takuma Higo
- Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan.
| | - Truls Norby
- Department of Chemistry, Centre for Materials Science and Nanotechnology, University of Oslo, FERMiO, Gaustadalléen 21, NO-0349 Oslo, Norway.
| | - Yasushi Sekine
- Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan.
| |
Collapse
|
17
|
Mansingh S, Das KK, Sultana S, Parida K. Recent advances in wireless photofixation of dinitrogen to ammonia under the ambient condition: A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100402] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
18
|
Two-dimensional transition metal dichalcogenides for electrocatalytic nitrogen fixation to ammonia: Advances, challenges and perspectives. A mini review. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
19
|
Li P, Gao S, Liu Q, Ding P, Wu Y, Wang C, Yu S, Liu W, Wang Q, Chen S. Recent Progress of the Design and Engineering of Bismuth Oxyhalides for Photocatalytic Nitrogen Fixation. ADVANCED ENERGY AND SUSTAINABILITY RESEARCH 2021. [DOI: 10.1002/aesr.202000097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Peishen Li
- Laboratory for Micro-sized Functional Materials College of Elementary Education Department of Chemistry Capital Normal University Beijing 100048 China
- Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT) Key Laboratory of Water and Sediment Sciences (Ministry of Education) College of Environmental Sciences and Engineering Peking University Beijing 100871 China
| | - Shuai Gao
- Laboratory for Micro-sized Functional Materials College of Elementary Education Department of Chemistry Capital Normal University Beijing 100048 China
| | - Qiming Liu
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA 95064 USA
| | - Peiren Ding
- Laboratory for Micro-sized Functional Materials College of Elementary Education Department of Chemistry Capital Normal University Beijing 100048 China
| | - Yunyun Wu
- Laboratory for Micro-sized Functional Materials College of Elementary Education Department of Chemistry Capital Normal University Beijing 100048 China
| | - Changzheng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environmental Remediation Beijing University of Civil Engineering and Architecture Beijing 100044 China
| | - Shaobin Yu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environmental Remediation Beijing University of Civil Engineering and Architecture Beijing 100044 China
| | - Wen Liu
- Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT) Key Laboratory of Water and Sediment Sciences (Ministry of Education) College of Environmental Sciences and Engineering Peking University Beijing 100871 China
| | - Qiang Wang
- Laboratory for Micro-sized Functional Materials College of Elementary Education Department of Chemistry Capital Normal University Beijing 100048 China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry University of California 1156 High Street Santa Cruz CA 95064 USA
| |
Collapse
|
20
|
Microwave-assisted ultrafast in-situ growth of N-doped carbon quantum dots on multiwalled carbon nanotubes as an efficient electrocatalyst for photovoltaics. J Colloid Interface Sci 2021; 586:349-361. [DOI: 10.1016/j.jcis.2020.10.098] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/27/2022]
|
21
|
Molybdenum-Containing Metalloenzymes and Synthetic Catalysts for Conversion of Small Molecules. Catalysts 2021. [DOI: 10.3390/catal11020217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The energy deficiency and environmental problems have motivated researchers to develop energy conversion systems into a sustainable pathway, and the development of catalysts holds the center of the research endeavors. Natural catalysts such as metalloenzymes have maintained energy cycles on Earth, thus proving themselves the optimal catalysts. In the previous research results, the structural and functional analogs of enzymes and nano-sized electrocatalysts have shown promising activities in energy conversion reactions. Mo ion plays essential roles in natural and artificial catalysts, and the unique electrochemical properties render its versatile utilization as an electrocatalyst. In this review paper, we show the current understandings of the Mo-enzyme active sites and the recent advances in the synthesis of Mo-catalysts aiming for high-performing catalysts.
Collapse
|
22
|
Ke X, Wang K, Tu C, Huang R, Luo D, Zhang M. Novel Aggregation-Induced Emission Materials/Cadmium Sulfide Composite Photocatalyst for Efficient Hydrogen Evolution in Absence of Sacrificial Reagent. MATERIALS 2020; 13:ma13225287. [PMID: 33266443 PMCID: PMC7700582 DOI: 10.3390/ma13225287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022]
Abstract
This work focuses on the development of a novel organic–inorganic photoactive material composited by aggregation-induced emission luminogens (AIE) and CdS. Tetraphenylethene-based AIE (TPE-Ca) is synthesized on CdS to form CdS/TPE-Ca electrode, due to its suitable band structure and potential capability of renewable energy production. The CdS/TPE-Ca electrode presents over three-fold improved photocurrent density and dramatically reduced interfacial resistance, compared with the pure CdS electrode. In addition, the engineering of the band alignment allows the holes to accumulate on the valance band of TPE-Ca, which would partially prevent the CdS from photo-corrosion, thus improving the stability of the sacrificial-free electrolyte photoelectrochemical cell.
Collapse
Affiliation(s)
- Xi Ke
- Institute of Semiconductors, South China Normal University, Guangzhou 510631, China; (X.K.); (K.W.)
| | - Kunqiang Wang
- Institute of Semiconductors, South China Normal University, Guangzhou 510631, China; (X.K.); (K.W.)
| | - Chen Tu
- School of Chemistry, Faculty of Science, Chemistry Building F11, Camperdown 2050, University of Sydney, Camperdown, NSW 2006, Australia;
| | - Runda Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China;
| | - Dongxiang Luo
- Institute of Semiconductors, South China Normal University, Guangzhou 510631, China; (X.K.); (K.W.)
- Correspondence: (D.L.); (M.Z.)
| | - Menglong Zhang
- Institute of Semiconductors, South China Normal University, Guangzhou 510631, China; (X.K.); (K.W.)
- Correspondence: (D.L.); (M.Z.)
| |
Collapse
|
23
|
Sahoo S, Heske J, Antonietti M, Qin Q, Oschatz M, Kühne TD. Electrochemical N 2 Reduction to Ammonia Using Single Au/Fe Atoms Supported on Nitrogen-Doped Porous Carbon. ACS APPLIED ENERGY MATERIALS 2020; 3:10061-10069. [PMID: 33134880 PMCID: PMC7592340 DOI: 10.1021/acsaem.0c01740] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
The electrochemical nitrogen reduction reaction (NRR) to ammonia (NH3) is a promising alternative route for an NH3 synthesis at ambient conditions to the conventional high temperature and pressure Haber-Bosch process without the need for hydrogen gas. Single metal ions or atoms are attractive candidates for the catalytic activation of non-reactive nitrogen (N2), and for future targeted improvement of NRR catalysts, it is of utmost importance to get detailed insights into structure-performance relationships and mechanisms of N2 activation in such structures. Here, we report density functional theory studies on the NRR catalyzed by single Au and Fe atoms supported in graphitic C2N materials. Our results show that the metal atoms present in the structure of C2N are the reactive sites, which catalyze the aforesaid reaction by strong adsorption and activation of N2. We further demonstrate that a lower onset electrode potential is required for Fe-C2N than for Au-C2N. Thus, Fe-C2N is theoretically predicted to be a potentially better NRR catalyst at ambient conditions than Au-C2N owing to the larger adsorption energy of N2 molecules. Furthermore, we have experimentally shown that single sites of Au and Fe supported on nitrogen-doped porous carbon are indeed active NRR catalysts. However, in contrast to our theoretical results, the Au-based catalyst performed slightly better with a Faradaic efficiency (FE) of 10.1% than the Fe-based catalyst with an FE of 8.4% at -0.2 V vs. RHE. The DFT calculations suggest that this difference is due to the competitive hydrogen evolution reaction and higher desorption energy of ammonia.
Collapse
Affiliation(s)
- Sudhir
K. Sahoo
- Dynamics
of Condensed Mater and Center for Sustainable System Design, Chair
of Theoretical Chemistry, University of
Paderborn, Warburger Str. 100, Paderborn D-33098, Germany
| | - Julian Heske
- Dynamics
of Condensed Mater and Center for Sustainable System Design, Chair
of Theoretical Chemistry, University of
Paderborn, Warburger Str. 100, Paderborn D-33098, Germany
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, Potsdam D-14476, Germany
| | - Markus Antonietti
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, Potsdam D-14476, Germany
| | - Qing Qin
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, Potsdam D-14476, Germany
| | - Martin Oschatz
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, Potsdam D-14476, Germany
| | - Thomas D. Kühne
- Dynamics
of Condensed Mater and Center for Sustainable System Design, Chair
of Theoretical Chemistry, University of
Paderborn, Warburger Str. 100, Paderborn D-33098, Germany
- Paderborn
Center for Parallel Computing and Institute for Lightweight Design, University of Paderborn, Warburger Str. 100, Paderborn D-33098, Germany
| |
Collapse
|
24
|
Yang L, Shaik F, Pang F, Zhang W. PdAgCu Alloy Nanoparticles Integrated on Three-Dimensional Nanoporous CuO for Efficient Electrocatalytic Nitrogen Reduction under Ambient Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5112-5117. [PMID: 32340442 DOI: 10.1021/acs.langmuir.0c00228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exploration of catalysts is the primary focus of the electrochemical nitrogen reduction reaction (NRR). However, cost-effective materials are rarely reported. Herein, we report a composite consisting of a three-dimensional nanoporous CuO structure decorated with PdAgCu alloy nanoparticles (abbreviated as PdAgCu/CuO composites) as a highly effective catalyst. Compared with the nanoporous PdAgCu alloy and PdCu/CuO and Cu/CuO composites, PdAgCu/CuO composites exhibit much superior NRR catalytic activity with a high NH3 production rate of 40.4 μg h-1 mgcat-1. In addition, PdAgCu/CuO composites show good catalytic stability for NRR. The superior NRR performance of PdAgCu/CuO composites can be ascribed to the synergistic effects of metals and metal oxides, which are highly significant for the exploration of efficient catalysts for NRR.
Collapse
Affiliation(s)
- Liting Yang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China
| | - Firdoz Shaik
- Department of Chemistry, Guangdong-Technion Israel Institute of Technology, Shantou 515063, China
| | - Fangjie Pang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China
| | - Weiqing Zhang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| |
Collapse
|
25
|
Mansingh S, Sultana S, Acharya R, Ghosh MK, Parida KM. Efficient Photon Conversion via Double Charge Dynamics CeO2–BiFeO3 p–n Heterojunction Photocatalyst Promising toward N2 Fixation and Phenol–Cr(VI) Detoxification. Inorg Chem 2020; 59:3856-3873. [DOI: 10.1021/acs.inorgchem.9b03526] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sriram Mansingh
- Centre for Nano Science and Nano Technology, S ‘O’ A Deemed to be University, Bhubaneswar 751 030, Odisha, India
| | - Sabiha Sultana
- Centre for Nano Science and Nano Technology, S ‘O’ A Deemed to be University, Bhubaneswar 751 030, Odisha, India
| | - Rashmi Acharya
- Centre for Nano Science and Nano Technology, S ‘O’ A Deemed to be University, Bhubaneswar 751 030, Odisha, India
| | - M. K. Ghosh
- Advanced Materials Technology Department and Hydro & Electrometallurgy Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, Odisha, India
| | - K. M. Parida
- Centre for Nano Science and Nano Technology, S ‘O’ A Deemed to be University, Bhubaneswar 751 030, Odisha, India
| |
Collapse
|
26
|
|
27
|
Xian H, Guo H, Chen Z, Yu G, Alshehri AA, Alzahrani KA, Hao F, Song R, Li T. Bioinspired Electrocatalyst for Electrochemical Reduction of N 2 to NH 3 in Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2445-2451. [PMID: 31852178 DOI: 10.1021/acsami.9b18027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Industrial ammonia production depends heavily on the traditional Haber-Bosch method at the expense of CO2 emissions and large energy consumptions. Artificial fixation of nitrogen to ammonia is therefore regarded as a promising path to yield ammonia in energy-saving conditions. However, a competent electrocatalyst is highly desired, owing to the extremely stable bond of N≡N. In this work, we report Fe2(MoO4)3 nanoparticles as a non-noble-metal electrocatalyst, inspired by nitrogenase enzymes for electrochemically converting nitrogen into ammonia, which achieves a Faradic efficiency of 9.1% and an excellent NH3 yield of 18.16 μg h-1 mg-1 cat in 0.1 M sodium sulfate at -0.6 V vs reversible hydrogen electrode. Also, it has a better ammonia yield rate of 20.09 μg h-1 mg-1 cat in 0.1 M hydrochloric acid. Moreover, this noble-metal-free catalyst exhibits a unique reaction process selectivity and stability compared with the other catalysts working in harsh conditions. The specific reaction processes are analyzed by density functional theoretical calculations to gain insights into the nitrogen reduction reaction (NRR) by this catalyst.
Collapse
Affiliation(s)
- Haohong Xian
- School of Materials and Energy , University of Electronic Science and Technology of China , Xiyuan Road 2006 , High-Tech District, Chengdu 611731 , Sichuan , China
| | - Haoran Guo
- School of Chemical Sciences , University of Chinese Academy of Sciences , 19 Yuquan Road , Shijingshan District, Beijing 100049 , China
| | - Zhishu Chen
- School of Materials and Energy , University of Electronic Science and Technology of China , Xiyuan Road 2006 , High-Tech District, Chengdu 611731 , Sichuan , China
| | - Guangsen Yu
- School of Materials and Energy , University of Electronic Science and Technology of China , Xiyuan Road 2006 , High-Tech District, Chengdu 611731 , Sichuan , China
| | - Abdulmohsen Ali Alshehri
- Chemistry Department, Faculty of Science , King Abdulaziz University , P.O. Box 80203, Jeddah 21589 , Saudi Arabia
| | - Khalid Ahmed Alzahrani
- Chemistry Department, Faculty of Science , King Abdulaziz University , P.O. Box 80203, Jeddah 21589 , Saudi Arabia
| | - Feng Hao
- School of Materials and Energy , University of Electronic Science and Technology of China , Xiyuan Road 2006 , High-Tech District, Chengdu 611731 , Sichuan , China
| | - Rui Song
- School of Chemical Sciences , University of Chinese Academy of Sciences , 19 Yuquan Road , Shijingshan District, Beijing 100049 , China
| | - Tingshuai Li
- School of Materials and Energy , University of Electronic Science and Technology of China , Xiyuan Road 2006 , High-Tech District, Chengdu 611731 , Sichuan , China
| |
Collapse
|
28
|
Lashgari M, Zeinalkhani P. Electrostatic promotion of the catalyst activity for ammonia photosynthesis upon a robust affordable nanostructured uni-electrodic photodevice/reactor. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01291b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The catalytic ability of the uni-electrodic photoelectrochemical system to synthesize ammonia can be electrostatically boosted by applying a non-faradaic potential bias to the photodevice/reactor or adding a promoter species into the reaction medium.
Collapse
Affiliation(s)
- Mohsen Lashgari
- Chem. Dept. Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
- Center for Research in Climate Change and Global Warming: Hydrogen and Solar Division
- Zanjan 45137-66731
| | - Parisa Zeinalkhani
- Chem. Dept. Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| |
Collapse
|
29
|
Solar-driven chemistry: towards new catalytic solutions for a sustainable world. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2019. [DOI: 10.1007/s12210-019-00836-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|