1
|
Choi S, Park YS, Lee KW, Park YJ, Jang HJ, Kim DM, Yoo TH. Sensitive Methods to Detect Single-Stranded Nucleic Acids of Food Pathogens Based on Cell-Free Protein Synthesis and Retroreflection Signal Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3783-3792. [PMID: 38346351 DOI: 10.1021/acs.jafc.3c07785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Cell-free protein synthesis (CFPS) has recently gained considerable attention as a new platform for developing methods to detect various molecules, ranging from small chemicals to biological macromolecules. Retroreflection has been used as an alternative signal to develop analytical methods because it can be detected by using a simple instrument comprising a white light source and a camera. Here, we report a novel reporter protein that couples the capability of CFPS and the simplicity of retroreflection signal detection. The design of the reporter was based on two pairs of protein-peptide interactions, SpyCatcher003-SpyTag003 and MDM2-PMI(N8A). MDM2-MDM2-SpyCatcher003 was decided as the reporter protein, and the two peptides, SpyTag003 and PMI(N8A), were immobilized on the surfaces of retroreflective Janus particles and microfluidic chips, respectively. The developed retroreflection signal detection system was combined with a previously reported CFPS reaction that can transduce the presence of a single-stranded nucleic acid into protein synthesis. The resulting methods were applied to detect 16S rRNAs of several foodborne pathogens. Concentration-dependent relationships were observed over a range of 10° fM to 102 pM, with the limits of detection being single-digit femtomolar concentrations. Considering the designability of the CFPS system for other targets, the retroreflection signal detection method will enable the development of novel methods to detect various molecules.
Collapse
Affiliation(s)
- Sunjoo Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Ye Seop Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Kyung Won Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Yu Jin Park
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - Hee Ju Jang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Korea
| |
Collapse
|
2
|
Pham HTM, Nguyen DL, Kim HS, Yang EK, Kim JH, Yoon HC, Park HJ. A novel and cost-effective method for high-throughput 3D culturing and rhythmic assessment of hiPSC-derived cardiomyocytes using retroreflective Janus microparticles. Biomater Res 2023; 27:79. [PMID: 37587478 PMCID: PMC10428620 DOI: 10.1186/s40824-023-00416-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) gain attention as a potent cell source in regenerative medicine and drug discovery. With the necessity of the demands for experimental models to create a more physiologically relevant model of the heart in vitro we herein investigate a 3D culturing platform and a method for assessing rhythm in hiPSC-CMs. METHODS The 3D cell culture PAMCELL™ plate is designed to enable cells to attach exclusively to adhesive patterned areas. These cell adhesive zones, named as micro-patterned pads, feature micron silica beads that are surface-modified with the well-known arginyl-glycyl-aspartic acid (RGD) peptide. RGD binding to the surface of hiPSC-CMs facilitates cell-cell attachment and the formation of uniform-size spheroids, which is controlled by the diameter of the micro-patterned pads. The assessment and evaluation of 3D hiPSC-CMs beating pattern are carried out using reflective properties of retroreflective Janus micro-particle (RJP). These RJPs are modified with an antibody targeting the gap junction protein found on the surface of hiPSC-CM spheroids. The signal assessment system comprises a camera attached to an optical microscope and a white light source. RESULTS The 3D PAMCELL™ R100 culture plate efficiently generate approximately 350 uniform-sized hiPSC-CM spheroids in each well of a 96-well plate and supported a 20-day culture. Analysis of genes and protein expression levels reveal that iPSC-CM spheroids grown on PAMCELL™ R100 retain cardiac stem cell characteristics and functions, outperforming traditional 2D culture platform. Additionally, the RJPs enable monitoring and evaluation of in vitro beating properties of cardiomyocytes without using complex monitoring setup. The system demonstrates its capability to identify alteration in the rhythmic activity of cardiac cells when exposed to ion channel blockers, nifedipine and E4031. CONCLUSIONS The integration of the 3D culture method and RJPs in this study establishes a platform for evaluating the rhythmic properties of 3D hiPSC-CMs. This approach holds significant potential for identifying arrhythmias or other cardiac abnormalities, ultimately contributing to the development of more effective therapies for heart diseases.
Collapse
Affiliation(s)
- Huyen T M Pham
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Duc Long Nguyen
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Hyo-Sop Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Eun Kyeong Yang
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Jae-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.
| | - Hyun C Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.
| | - Hyun-Ji Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.
| |
Collapse
|
3
|
Bruce-Tagoe TA, Danquah MK. Bioaffinity Nanoprobes for Foodborne Pathogen Sensing. MICROMACHINES 2023; 14:1122. [PMID: 37374709 DOI: 10.3390/mi14061122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
Bioaffinity nanoprobes are a type of biosensor that utilize the specific binding properties of biological molecules, such as antibodies, enzymes, and nucleic acids, for the detection of foodborne pathogens. These probes serve as nanosensors and can provide highly specific and sensitive detection of pathogens in food samples, making them an attractive option for food safety testing. The advantages of bioaffinity nanoprobes include their ability to detect low levels of pathogens, rapid analysis time, and cost-effectiveness. However, limitations include the need for specialized equipment and the potential for cross-reactivity with other biological molecules. Current research efforts focus on optimizing the performance of bioaffinity probes and expanding their application in the food industry. This article discusses relevant analytical methods, such as surface plasmon resonance (SPR) analysis, Fluorescence Resonance Energy Transfer (FRET) measurements, circular dichroism, and flow cytometry, that are used to evaluate the efficacy of bioaffinity nanoprobes. Additionally, it discusses advances in the development and application of biosensors in monitoring foodborne pathogens.
Collapse
Affiliation(s)
- Tracy Ann Bruce-Tagoe
- Department of Chemical Engineering, University of Tennessee, Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA
| |
Collapse
|
4
|
Herrera-Domínguez M, Morales-Luna G, Mahlknecht J, Cheng Q, Aguilar-Hernández I, Ornelas-Soto N. Optical Biosensors and Their Applications for the Detection of Water Pollutants. BIOSENSORS 2023; 13:bios13030370. [PMID: 36979582 PMCID: PMC10046542 DOI: 10.3390/bios13030370] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 05/14/2023]
Abstract
The correct detection and quantification of pollutants in water is key to regulating their presence in the environment. Biosensors offer several advantages, such as minimal sample preparation, short measurement times, high specificity and sensibility and low detection limits. The purpose of this review is to explore the different types of optical biosensors, focusing on their biological elements and their principle of operation, as well as recent applications in the detection of pollutants in water. According to our literature review, 33% of the publications used fluorescence-based biosensors, followed by surface plasmon resonance (SPR) with 28%. So far, SPR biosensors have achieved the best results in terms of detection limits. Although less common (22%), interferometers and resonators (4%) are also highly promising due to the low detection limits that can be reached using these techniques. In terms of biological recognition elements, 43% of the published works focused on antibodies due to their high affinity and stability, although they could be replaced with molecularly imprinted polymers. This review offers a unique compilation of the most recent work in the specific area of optical biosensing for water monitoring, focusing on both the biological element and the transducer used, as well as the type of target contaminant. Recent technological advances are discussed.
Collapse
Affiliation(s)
- Marcela Herrera-Domínguez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Gesuri Morales-Luna
- Departamento de Física y Matemáticas, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, Mexico City 01219, Mexico
| | - Jürgen Mahlknecht
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Quan Cheng
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Iris Aguilar-Hernández
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
- Correspondence: (I.A.-H.); (N.O.-S.)
| | - Nancy Ornelas-Soto
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
- Correspondence: (I.A.-H.); (N.O.-S.)
| |
Collapse
|
5
|
Fakhr MH, Beshchasna N, Balakin S, Carrasco IL, Heitbrink A, Göhler F, Rösch N, Opitz J. Cleaning of LTCC, PEN, and PCB Au electrodes towards reliable electrochemical measurements. Sci Rep 2022; 12:20431. [PMID: 36443326 PMCID: PMC9705539 DOI: 10.1038/s41598-022-23395-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/31/2022] [Indexed: 11/29/2022] Open
Abstract
Surface cleaning of the working electrode has a key role in improved electrochemical and physicochemical properties of the biosensors. Herein, chemical oxidation in piranha, chemical cleaning in potassium hydroxide-hydrogen peroxide, combined (electro-) chemical alkaline treatment, and potential cycling in sulfuric acid were applied to gold finish electrode surfaces deposited onto three different substrates; low temperature co-fired ceramics (LTCC), polyethylene naphthalate (PEN), and polyimide (PI), using three different deposition technologies; screen printing, inkjet printing, and electroplating (printed circuit board technology, PCB) accordingly. The effects of the (electro-) chemical treatments on the gold content and electrochemical responses of LTCC, PEN, and PCB applicable for aptamer-based sensors are discussed. In order to assess the gold surface and to compare the efficiency of the respective cleaning procedures; cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were employed. LTCC sensors electrochemically cycled in sulfuric acid resulted in the most gold content on the electrode surface, the lowest peak potential difference, and the highest charge transfer ability. While, for PEN, the highest elemental gold and the lowest peak-to-peak separation were achieved by a combined (electro-) chemical alkaline treatment. Gold content and electrochemical characteristics on the PCB surface with extremely thin gold layer could be slightly optimized with the chemical cleaning in KOH + H2O2. The proposed cleaning procedures might be generally applied to various kinds of Au electrodes fabricated with the same conditions comparable with those are introduced in this study.
Collapse
Affiliation(s)
- Mahan Hosseinzadeh Fakhr
- grid.461622.50000 0001 2034 8950Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany ,grid.6810.f0000 0001 2294 5505Institute of Physics, Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Natalia Beshchasna
- grid.461622.50000 0001 2034 8950Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany
| | - Sascha Balakin
- grid.461622.50000 0001 2034 8950Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany
| | - Ivan Lopez Carrasco
- grid.461622.50000 0001 2034 8950Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany ,grid.4488.00000 0001 2111 7257Max Bergmann Center of Biomaterials (MBC), Technical University of Dresden, 01069 Dresden, Germany
| | - Alexander Heitbrink
- grid.461622.50000 0001 2034 8950Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany ,grid.4488.00000 0001 2111 7257Max Bergmann Center of Biomaterials (MBC), Technical University of Dresden, 01069 Dresden, Germany ,InnoME GmbH, 32339 Espelkamp, Germany
| | - Fabian Göhler
- grid.6810.f0000 0001 2294 5505Institute of Physics, Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Niels Rösch
- grid.6810.f0000 0001 2294 5505Institute of Physics, Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Joerg Opitz
- grid.461622.50000 0001 2034 8950Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany ,grid.4488.00000 0001 2111 7257Max Bergmann Center of Biomaterials (MBC), Technical University of Dresden, 01069 Dresden, Germany
| |
Collapse
|
6
|
Bao F, Liang Z, Deng J, Lin Q, Li W, Peng Q, Fang Y. Toward intelligent food packaging of biosensor and film substrate for monitoring foodborne microorganisms: A review of recent advancements. Crit Rev Food Sci Nutr 2022; 64:3920-3931. [PMID: 36300845 DOI: 10.1080/10408398.2022.2137774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Microorganisms in food do harms to human. They can cause serious adverse reactions and sometimes even death. So it is an urgent matter to find an effective method to control them. The research of intelligent- biosensor packaging is in the ascendant in recent years, which is mainly promoted by reflecting on food safety and reducing resource waste. Intelligent biosensor-packaging is an instant and efficient intelligent packaging technology, which can directly and scientifically manifest the quality of food without complex operation. In this review, the purposes of providing relevant information on intelligent biosensor-packaging are reviewed, such as types of biosensors for monitoring foodborne microorganism, the suitable material for intelligent biosensor-packaging and design and fabrication of intelligent biosensor-packaging. The potential of intelligent biosensor-packaging in the detection of foodborne microorganisms is emphasized. The challenges and directions of the intelligent biosensor-packaging in the detection of foodborne pathogens are discussed. With the development of science and technology in the future, the intelligent biosensor-packaging should be commercialized in a real sense. And it is expected that commercial products can be manufactured in the future, which will provide a far-reaching approach in food safety and food prevention. HighlightsSeveral biosensors are suitable for the detection of food microorganisms.Plastic polymer is an excellent choice for the construction of intelligent biosensor packaging.Design and fabrication can lay the foundation for intelligent-biosensor packaging.Intelligent biosensor-packaging can realize fast and real-time detection of microorganisms in food.
Collapse
Affiliation(s)
- Feng Bao
- Hunan Province Key Laboratory of Edible forestry Resource Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, JiangShu, Nanjing, China
| | - Zhao Liang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City, P. R. China
| | - Jing Deng
- Hunan Province Key Laboratory of Edible forestry Resource Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Qinlu Lin
- Hunan Province Key Laboratory of Edible forestry Resource Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, JiangShu, Nanjing, China
| | - Wen Li
- Hunan Province Key Laboratory of Edible forestry Resource Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, JiangShu, Nanjing, China
| | - Qiong Peng
- Hunan Province Key Laboratory of Edible forestry Resource Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, JiangShu, Nanjing, China
| |
Collapse
|
7
|
Han YD, Kim KR, Lee KW, Yoon HC. Retroreflection-based optical biosensing: From concept to applications. Biosens Bioelectron 2022; 207:114202. [DOI: 10.1016/j.bios.2022.114202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/31/2022]
|
8
|
Kim KR, Lee KW, Chun HJ, Lee D, Kim JH, Yoon HC. Wash-free operation of smartphone-integrated optical immunosensor using retroreflective microparticles. Biosens Bioelectron 2022; 196:113722. [PMID: 34700265 DOI: 10.1016/j.bios.2021.113722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/09/2021] [Accepted: 10/16/2021] [Indexed: 12/28/2022]
Abstract
Herein, we introduce a smartphone-integrated immunosensor based on non-spectroscopic optical detection. Sedimentation of the retroreflector and gentle inversion of the microfluidic chip was chosen as biosensing principles to ensure minimal human involvement. To realize this, wash-free immunosensing was implemented on a polymeric microfluidic chip device fabricated for light signal penetration in retroreflection signal acquisition. Applying a transparent chip and passive modulation of retroreflectors enabled the minimization of human error during sensing. In addition, a retroreflection-detectable optical gadget was constructed for integration with the commercial smartphone. The gadget had an optical chamber that induced retroreflection by integration with a smartphone. When the micro-sized reflector, named the retroreflective Janus microparticle, reacted on the sensing surface, the incident light was retroreflected towards the image sensor and quantified by a smartphone-installed Android application package. The developed application package features include time-lapse image capture performed by manipulating LED flash and camera modules, and quantification of retroreflected signal counts by image processing of time-lapse images. With this platform, the user could independently commence optical signal processing without a complicated optical setup and running software on a PC, and sensitive and reproducible immunosensing results could be obtained. The applicability test for creatine kinase-myocardial band detection from the buffer to serum was conducted and presented a calibration curve of 0-1000 ng/mL within 1 h. With the developed system, we believe that the applicability of the platform in bioanalytical detection can be expanded.
Collapse
Affiliation(s)
- Ka Ram Kim
- Department of Molecular Science & Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Kyung Won Lee
- Department of Molecular Science & Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Hyeong Jin Chun
- Department of Molecular Science & Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Danbi Lee
- Department of Molecular Science & Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Jae-Ho Kim
- Department of Molecular Science & Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Hyun C Yoon
- Department of Molecular Science & Technology, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
9
|
Sohrabi H, Majidi MR, Asadpour-Zeynali K, Khataee A, Mokhtarzadeh A. Bimetallic Fe/Mn MOFs/MβCD/AuNPs stabilized on MWCNTs for developing a label-free DNA-based genosensing bio-assay applied in the determination of Salmonella typhimurium in milk samples. CHEMOSPHERE 2022; 287:132373. [PMID: 34600005 DOI: 10.1016/j.chemosphere.2021.132373] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Monitoring of pathogenic bacteria plays a vital role in precluding foodborne disease outbreaks. In this research work, a genosensor based on innovative label-free DNA was developed for the detection of Salmonella. typhimurium (S. typhimurium) in the milk samples. To realize this objective, bimetallic Fe/Mn MOF is synthesized and mixed with methyl-β-cyclodextrin (MβCD) and AuNPs which are then stabilized on multi-walled carbon nanotubes (MWCNTs), and the obtained nanocomposite is immobilized on the Au electrode surface. Different characterization methods such as FE-SEM, TEM, EDS, FTIR, and XRD were used for investigating the particle size and morphological features. Electrochemical and impedimetric techniques were used for exploring the applicability of the fabricated genosensor. Under optimal circumstances, LOD and LOQ have acquired at 0.07 pM and 0.21 pM. Moreover, an extensive linear range of 1 pM-1 μM was resulted for ss-tDNA (single-stranded target DNA), R2 obtained 0.9991. The recoveries were obtained 95.6-104%. Great selectivity against one, two, and three-base mismatched sequences was also shown for fabricated biosensing assay. Furthermore, negative genosensing assay control for investigating selectivity was provided by the ss-tDNAs of Haemophilusinfluenzae and Shigella dysenteriae bacteria. Well-fabricated genosensing bio-assay represents better performance, great specificity, high sensitivity, increased active sites, and finally results in an increase in the electron transfer rate. It is to be noted that the organized genosensing bio-assay is capable of being re-used and re-generated in a straightforward manner to estimate the hybridization process.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666 16471, Tabriz, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666 16471, Tabriz, Iran.
| | - Karim Asadpour-Zeynali
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666 16471, Tabriz, Iran; Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 51664, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080, Chelyabinsk, Russian Federation
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Choi JH, Ha T, Shin M, Lee SN, Choi JW. Nanomaterial-Based Fluorescence Resonance Energy Transfer (FRET) and Metal-Enhanced Fluorescence (MEF) to Detect Nucleic Acid in Cancer Diagnosis. Biomedicines 2021; 9:928. [PMID: 34440132 PMCID: PMC8392676 DOI: 10.3390/biomedicines9080928] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022] Open
Abstract
Nucleic acids, including DNA and RNA, have received prodigious attention as potential biomarkers for precise and early diagnosis of cancers. However, due to their small quantity and instability in body fluids, precise and sensitive detection is highly important. Taking advantage of the ease-to-functionality and plasmonic effect of nanomaterials, fluorescence resonance energy transfer (FRET) and metal-enhanced fluorescence (MEF)-based biosensors have been developed for accurate and sensitive quantitation of cancer-related nucleic acids. This review summarizes the recent strategies and advances in recently developed nanomaterial-based FRET and MEF for biosensors for the detection of nucleic acids in cancer diagnosis. Challenges and opportunities in this field are also discussed. We anticipate that the FRET and MEF-based biosensors discussed in this review will provide valuable information for the sensitive detection of nucleic acids and early diagnosis of cancers.
Collapse
Affiliation(s)
- Jin-Ha Choi
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Korea;
| | - Taehyeong Ha
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (T.H.); (M.S.)
| | - Minkyu Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (T.H.); (M.S.)
| | - Sang-Nam Lee
- Uniance Gene Inc., 1107 Teilhard Hall, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (T.H.); (M.S.)
| |
Collapse
|
11
|
Huang F, Zhang Y, Lin J, Liu Y. Biosensors Coupled with Signal Amplification Technology for the Detection of Pathogenic Bacteria: A Review. BIOSENSORS 2021; 11:190. [PMID: 34207580 PMCID: PMC8227973 DOI: 10.3390/bios11060190] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/18/2022]
Abstract
Foodborne disease caused by foodborne pathogens is a very important issue in food safety. Therefore, the rapid screening and sensitive detection of foodborne pathogens is of great significance for ensuring food safety. At present, many research works have reported the application of biosensors and signal amplification technologies to achieve the rapid and sensitive detection of pathogenic bacteria. Thus, this review summarized the use of biosensors coupled with signal amplification technology for the detection of pathogenic bacteria, including (1) the development, concept, and principle of biosensors; (2) types of biosensors, such as electrochemical biosensors, optical biosensors, microfluidic biosensors, and so on; and (3) different kinds of signal amplification technologies applied in biosensors, such as enzyme catalysis, nucleic acid chain reaction, biotin-streptavidin, click chemistry, cascade reaction, nanomaterials, and so on. In addition, the challenges and future trends for pathogenic bacteria based on biosensor and signal amplification technology were also discussed and summarized.
Collapse
Affiliation(s)
- Fengchun Huang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
| | - Yingchao Zhang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (J.L.)
| | - Jianhan Lin
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (J.L.)
| | - Yuanjie Liu
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (J.L.)
| |
Collapse
|
12
|
Kim KR, Lee D, Jeong KY, Lee KW, Kim MS, Kim JH, Yoon HC. Nonspectroscopic Migratory Cell Monitoring Method Using Retroreflective Janus Microparticles. ACS OMEGA 2020; 5:24790-24798. [PMID: 33015497 PMCID: PMC7528338 DOI: 10.1021/acsomega.0c03454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/08/2020] [Indexed: 05/02/2023]
Abstract
This study aims to suggest a simple migratory cell monitoring method in the Transwell system by utilizing retroreflective Janus microparticles (RJPs) as an optical probe. The RJP could be internalized on cells without compromising the cell viability and can be registered as bright spots within the cell body by inducing retroreflection from nonspectroscopic light sources. Conventional optical probes (e.g., fluorophores, chromogens, and nanoparticles) have been extensively studied and applied across diverse platforms (e.g., Boyden chamber, wound closing, and microfluidic chips) for understanding in vitro kinetic cell behavior. However, the complexities of running such platforms and setting up analytical instruments are limiting. In this regard, we aimed to demonstrate a modified Transwell migration assay by introducing the retroreflection principle to the cell quantification procedures that ensure a simplified optical setup, assure easy signal acquisition, and are compatible with conventional platforms. To demonstrate retroreflection as a signaling principle, a half-metal-coated silica particle that can induce interior retroreflection was synthesized. Because the RJPs can concentrate incident light and reflect it back to the light source, retroreflection was distinctively recognizable and enabled sensitive visualization. To verify the applicability of the developed migration assay, cell quantification during the incremental progress of macrophage migration, and cell quantification under gradients of chemoattractant monocyte protein-1, was accomplished by obtaining phagocytosed RJP-mediated retroreflection signals. Considering that conventional assays are designed as endpoint measurements, we anticipate the proposed retroreflection-based cell quantification technique to be a promising solution, bypassing current limitations.
Collapse
|
13
|
Choi JH, Lee JH, Choi JW. Applications of Bionano Sensor for Extracellular Vesicles Analysis. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3677. [PMID: 32825537 PMCID: PMC7503349 DOI: 10.3390/ma13173677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
Recently, extracellular vesicles (EVs) and their contents have been revealed to play crucial roles in the intrinsic intercellular communications and have received extensive attention as next-generation biomarkers for diagnosis of diseases such as cancers. However, due to the structural nature of the EVs, the precise isolation and characterization are extremely challenging. To this end, tremendous efforts have been made to develop bionano sensors for the precise and sensitive characterization of EVs from a complex biologic fluid. In this review, we will provide a detailed discussion of recently developed bionano sensors in which EVs analysis applications were achieved, typically in optical and electrochemical methods. We believe that the topics discussed in this review will be useful to provide a concise guideline in the development of bionano sensors for EVs monitoring in the future. The development of a novel strategy to monitor various bio/chemical materials from EVs will provide promising information to understand cellular activities in a more precise manner and accelerates research on both cancer and cell-based therapy.
Collapse
Affiliation(s)
- Jin-Ha Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea;
| | - Jin-Ho Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea;
| |
Collapse
|
14
|
Choi JH, Lee JH, Son J, Choi JW. Noble Metal-Assisted Surface Plasmon Resonance Immunosensors. SENSORS 2020; 20:s20041003. [PMID: 32069896 PMCID: PMC7071002 DOI: 10.3390/s20041003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
For the early diagnosis of several diseases, various biomarkers have been discovered and utilized through the measurement of concentrations in body fluids such as blood, urine, and saliva. The most representative analytical method for biomarker detection is an immunosensor, which exploits the specific antigen-antibody immunoreaction. Among diverse analytical methods, surface plasmon resonance (SPR)-based immunosensors are emerging as a potential detection platform due to high sensitivity, selectivity, and intuitive features. Particularly, SPR-based immunosensors could detect biomarkers without labeling of a specific detection probe, as typical immunosensors such as enzyme-linked immunosorbent assay (ELISA) use enzymes like horseradish peroxidase (HRP). In this review, SPR-based immunosensors utilizing noble metals such as Au and Ag as SPR-inducing factors for the measurement of different types of protein biomarkers, including viruses, microbes, and extracellular vesicles (EV), are briefly introduced.
Collapse
Affiliation(s)
- Jin-Ha Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (J.-H.C.); (J.S.)
| | - Jin-Ho Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Korea;
| | - Joohyung Son
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (J.-H.C.); (J.S.)
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (J.-H.C.); (J.S.)
- Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea
- Correspondence: ; Tel.: +(82)-2-705-8480; Fax: +(82)-2-718-1976
| |
Collapse
|
15
|
Rapid and sensitive detection of Salmonella Typhimurium using nickel nanowire bridge for electrochemical impedance amplification. Talanta 2020; 211:120715. [PMID: 32070611 DOI: 10.1016/j.talanta.2020.120715] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 11/23/2022]
Abstract
Rapid detection of foodborne pathogens is crucial to prevent the outbreaks of foodborne illnesses. In this study, a sensitive electrochemical aptasensor was developed using aptamer coated gold interdigitated microelectrode for target capture and impedance measurement, and antibody modified nickel nanowires (NiNWs) for target separation and impedance amplification. First, the interdigitated microelectrode was modified with the biotinylated aptamers against Salmonella typhimurium through electrostatic absorption of streptavidin onto the microelectrode and streptavidin-biotin binding. Then, the target Salmonella cells were magnetically separated and concentrated using the NiNWs modified with the anti-Salmonella typhimurium antibodies to form the bacteria-NiNW complexes, and incubated on the microelectrode to form the aptamer-bacteria-NiNW complexes. After an external arc magnetic field was developed and applied to control the NiNWs to form conductive NiNW bridges across the microelectrode, the enhanced impedance change of the microelectrode was measured and used to determine the amount of target bacteria. This electrochemical aptasensor was able to quantitatively detect Salmonella ranging from 102 to 106 CFU/mL in 2 h with the detection limit of 80 CFU/mL. The mean recovery for the spiked chicken samples was 103.2%.
Collapse
|