1
|
Dong R, Lou X, Chen Z. Fabrication of bio-abiotic hybrid living hydrogel for bifunctional electrochemical conversion. Biosens Bioelectron 2024; 260:116462. [PMID: 38833834 DOI: 10.1016/j.bios.2024.116462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/06/2024]
Abstract
Design and intelligent use renewable natural bioenergy is an important challenge. Electric microorganism-based materials are being serve as an important part of bioenergy devices for energy release and collection, calling for suitable skeleton materials to anchor live microbes. Herein we verified the feasibility of constructing bio-abiotic hybrid living materials based on the combination of gelatin, Li-ions and exoelectrogenic bacteria Shewanella oneidensis manganese-reducing-1 (MR-1). The gelatin-based mesh contains abundant pores, allowing microbes to dock and small molecules to diffuse. The hybrid materials hold plentiful electronegative groups, which effectively anchor Li-ions and facilitate their transition. Moreover, the electrochemical characteristics of the materials can be modulated through changing the ratios of gelatin, bacteria and Li-ions. Based on the gelatin-Li-ion-microorganism hybrid materials, a bifunctional device was fabricated, which could play dual roles alternatively, generation of electricity as a microbial fuel cell and energy storage as a pseudocapacitor. The capacitance and the maximum voltage output of the device reaches 68 F g-1 and 0.67 V, respectively. This system is a new platform and fresh start to fabricate bio-abiotic living materials for microbial electron storage and transfer. We expect the setup will extend to other living systems and devices for synthetic biological energy conversion.
Collapse
Affiliation(s)
- Rongyao Dong
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, PR China; PPG Global Coatings Inovation Center, No.69, 7th Street, Binhai District, Tianjin, 300457, PR China
| | - Xiya Lou
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, PR China
| | - Zhijun Chen
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, PR China.
| |
Collapse
|
2
|
Paternò GM. Materials-driven strategies in bacterial engineering. MRS COMMUNICATIONS 2024; 14:1027-1036. [PMID: 39404665 PMCID: PMC7616573 DOI: 10.1557/s43579-024-00623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/23/2024] [Indexed: 11/01/2024]
Abstract
This perspective article focuses on the innovative field of materials-based bacterial engineering, highlighting interdisciplinary research that employs material science to study, augment, and exploit the attributes of living bacteria. By utilizing exogenous abiotic material interfaces, researchers can engineer bacteria to perform new functions, such as enhanced bioelectric capabilities and improved photosynthetic efficiency. Additionally, materials can modulate bacterial communities and transform bacteria into biohybrid microrobots, offering promising solutions for sustainable energy production, environmental remediation, and medical applications. Finally, the perspective discusses a general paradigm for engineering bacteria through the materials-driven modulation of their transmembrane potential. This parameter regulates their ion channel activity and ultimately their bioenergetics, suggesting that controlling it could allow scientists to hack the bioelectric language bacteria use for communication, task execution, and environmental response. Graphical abstract
Collapse
Affiliation(s)
- Giuseppe Maria Paternò
- Physics Department, Politecnico Di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
- Center for Nanoscience and Technology, Istituto Italiano Di Tecnologia, Via Rubattino 71, 20134 Milano, Italy
| |
Collapse
|
3
|
Wang S, Aljirafi FO, Payne GF, Bentley WE. Excite the unexcitable: engineering cells and redox signaling for targeted bioelectronic control. Curr Opin Biotechnol 2024; 85:103052. [PMID: 38150921 DOI: 10.1016/j.copbio.2023.103052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
The ever-growing influence of technology in our lives has led to an increasing interest in the development of smart electronic devices to interrogate and control biological systems. Recently, redox-mediated electrogenetics introduced a novel avenue that enables direct bioelectronic control at the genetic level. In this review, we discuss recent advances in methodologies for bioelectronic control, ranging from electrical stimulation to engineering efforts that allow traditionally unexcitable cells to be electrically 'programmable.' Alongside ion-transport signaling, we suggest redox as a route for rational engineering because it is a native form of electronic communication in biology. Using redox as a common language allows the interfacing of electronics and biology. This newfound connection opens a gateway of possibilities for next-generation bioelectronic tools.
Collapse
Affiliation(s)
- Sally Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA; Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Futoon O Aljirafi
- Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA; Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA; Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
| |
Collapse
|
4
|
Wang S, Chen CY, Rzasa JR, Tsao CY, Li J, VanArsdale E, Kim E, Zakaria FR, Payne GF, Bentley WE. Redox-enabled electronic interrogation and feedback control of hierarchical and networked biological systems. Nat Commun 2023; 14:8514. [PMID: 38129428 PMCID: PMC10739708 DOI: 10.1038/s41467-023-44223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Microelectronic devices can directly communicate with biology, as electronic information can be transmitted via redox reactions within biological systems. By engineering biology's native redox networks, we enable electronic interrogation and control of biological systems at several hierarchical levels: proteins, cells, and cell consortia. First, electro-biofabrication facilitates on-device biological component assembly. Then, electrode-actuated redox data transmission and redox-linked synthetic biology allows programming of enzyme activity and closed-loop electrogenetic control of cellular function. Specifically, horseradish peroxidase is assembled onto interdigitated electrodes where electrode-generated hydrogen peroxide controls its activity. E. coli's stress response regulon, oxyRS, is rewired to enable algorithm-based feedback control of gene expression, including an eCRISPR module that switches cell-cell quorum sensing communication from one autoinducer to another-creating an electronically controlled 'bilingual' cell. Then, these disparate redox-guided devices are wirelessly connected, enabling real-time communication and user-based control. We suggest these methodologies will help us to better understand and develop sophisticated control for biology.
Collapse
Affiliation(s)
- Sally Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute of Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA
| | - Chen-Yu Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute of Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA
| | - John R Rzasa
- Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Chen-Yu Tsao
- Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute of Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA
| | - Jinyang Li
- Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute of Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Eric VanArsdale
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute of Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA
- National Research Council Postdoctoral Research Associate, United States Naval Research Laboratory, Washington, DC, USA
| | - Eunkyoung Kim
- Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute of Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA
| | - Fauziah Rahma Zakaria
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute of Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA
| | - Gregory F Payne
- Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA
- Institute of Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Fischell Institute of Biomedical Devices, University of Maryland, College Park, MD, USA.
- Institute of Bioscience and Biotechnology Research (IBBR), University of Maryland, Rockville, MD, USA.
| |
Collapse
|
5
|
Grozinger L, Heidrich E, Goñi-Moreno Á. An electrogenetic toggle switch model. Microb Biotechnol 2023; 16:546-559. [PMID: 36207818 PMCID: PMC9948229 DOI: 10.1111/1751-7915.14153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/29/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022] Open
Abstract
Synthetic biology uses molecular biology to implement genetic circuits that perform computations. These circuits can process inputs and deliver outputs according to predefined rules that are encoded, often entirely, into genetic parts. However, the field has recently begun to focus on using mechanisms beyond the realm of genetic parts for engineering biological circuits. We analyse the use of electrogenic processes for circuit design and present a model for a merged genetic and electrogenetic toggle switch operating in a biofilm attached to an electrode. Computational simulations explore conditions under which bistability emerges in order to identify the circuit design principles for best switch performance. The results provide a basis for the rational design and implementation of hybrid devices that can be measured and controlled both genetically and electronically.
Collapse
Affiliation(s)
- Lewis Grozinger
- School of Computing, Newcastle University, Newcastle Upon Tyne, UK.,Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Elizabeth Heidrich
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Ángel Goñi-Moreno
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| |
Collapse
|
6
|
Vázquez RJ, McCuskey SR, Quek G, Su Y, Llanes L, Hinks J, Bazan GC. Conjugated Polyelectrolyte/Bacteria Living Composites in Carbon Paper for Biocurrent Generation. Macromol Rapid Commun 2022; 43:e2100840. [PMID: 35075724 DOI: 10.1002/marc.202100840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Indexed: 11/08/2022]
Abstract
Successful practical implementation of bioelectrochemical systems requires developing affordable electrode structures that promote efficient electrical communication with microbes. Recent efforts have centered on immobilizing bacteria with organic semiconducting polymers on electrodes via electrochemical methods. This approach creates a fixed biocomposite that takes advantage of the increased electrode's electroactive surface area (EASA). Here, we demonstrate that a biocomposite comprising the water-soluble conjugated polyelectrolyte CPE-K and electrogenic Shewanella oneidensis MR-1 can self-assemble with carbon paper electrodes, thereby increasing its biocurrent extraction by ∼ 6-fold over control biofilms. A ∼ 1.5-fold increment in biocurrent extraction was obtained for the biocomposite on carbon paper relative to the biocurrent extracted from gold-coated counterparts. Electrochemical characterization revealed that the biocomposite stabilized with the carbon paper more quickly than atop flat gold electrodes. Cross-sectional images show that the biocomposite infiltrates inhomogeneously into the porous carbon structure. Despite an incomplete penetration, the biocomposite can take advantage of the large EASA of the electrode via long-range electron transport. These results show that previous success on gold electrode platforms can be improved when using more commercially viable and easily manipulated electrode materials. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ricardo Javier Vázquez
- Department of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Samantha R McCuskey
- Department of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Glenn Quek
- Department of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Yude Su
- Suzhou Institute of Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Luana Llanes
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Jamie Hinks
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, 637551, Singapore
| | - Guillermo C Bazan
- Department of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
7
|
Nagendranatha Reddy C, Kondaveeti S, Mohanakrishna G, Min B. Application of bioelectrochemical systems to regulate and accelerate the anaerobic digestion processes. CHEMOSPHERE 2022; 287:132299. [PMID: 34627010 DOI: 10.1016/j.chemosphere.2021.132299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/23/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) serves as a potential bioconversion process to treat various organic wastes/wastewaters, including sewage sludge, and generate renewable green energy. Despite its efficiency, AD has several limitations that need to be overcome to achieve maximum energy recovery from organic materials while regulating inhibitory substances. Hence, bioelectrochemical systems (BESs) have been widely investigated to treat inhibitory compounds including ammonia in AD processes and improve the AD operational efficiency, stability, and economic viability with various integrations. The BES operations as a pretreatment process, inside AD or after the AD process aids in the upgradation of biogas (CO2 to methane) and residual volatile fatty acids (VFAs) to valuable chemicals and fuels (alcohols) and even directly to electricity generation. This review presents a comprehensive summary of BES technologies and operations for overcoming the limitations of AD in lab-scale applications and suggests upscaling and future opportunities for BES-AD systems.
Collapse
Affiliation(s)
- C Nagendranatha Reddy
- Department of Environmental Science and Engineering, Kyung Hee University, Seocheon-dong, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea; Department of Biotechnology, Chaitanya Bharathi Institute of Technology (Autonomous), Gandipet, 500075, Hyderabad, Telangana State, India
| | - Sanath Kondaveeti
- Division of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029, South Korea
| | | | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University, Seocheon-dong, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea.
| |
Collapse
|
8
|
Valorisation of CO2 into Value-Added Products via Microbial Electrosynthesis (MES) and Electro-Fermentation Technology. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040291] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microbial electrocatalysis reckons on microbes as catalysts for reactions occurring at electrodes. Microbial fuel cells and microbial electrolysis cells are well-known in this context; both prefer the oxidation of organic and inorganic matter for producing electricity. Notably, the synthesis of high energy-density chemicals (fuels) or their precursors by microorganisms using bio-cathode to yield electrical energy is called Microbial Electrosynthesis (MES), giving an exceptionally appealing novel way for producing beneficial products from electricity and wastewater. This review accentuates the concept, importance and opportunities of MES, as an emerging discipline at the nexus of microbiology and electrochemistry. Production of organic compounds from MES is considered as an effective technique for the generation of various beneficial reduced end-products (like acetate and butyrate) as well as in reducing the load of CO2 from the atmosphere to mitigate the harmful effect of greenhouse gases in global warming. Although MES is still an emerging technology, this method is not thoroughly known. The authors have focused on MES, as it is the next transformative, viable alternative technology to decrease the repercussions of surplus carbon dioxide in the environment along with conserving energy.
Collapse
|
9
|
Shewanella oneidensis MR-1 as a bacterial platform for electro-biotechnology. Essays Biochem 2021; 65:355-364. [PMID: 33769488 PMCID: PMC8314016 DOI: 10.1042/ebc20200178] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
The genus Shewanella comprises over 70 species of heterotrophic bacteria with versatile respiratory capacities. Some of these bacteria are known to be pathogens of fishes and animals, while many are non-pathogens considered to play important roles in the global carbon cycle. A representative strain is Shewanella oneidensis MR-1 that has been intensively studied for its ability to respire diverse electron acceptors, such as oxygen, nitrate, sulfur compounds, metals, and organics. In addition, studies have been focused on its ability as an electrochemically active bacterium that is capable of discharging electrons to and receiving electrons from electrodes in bioelectrochemical systems (BESs) for balancing intracellular redox states. This ability is expected to be applied to electro-fermentation (EF) for producing value-added chemicals that conventional fermentation technologies are difficult to produce efficiently. Researchers are also attempting to utilize its electrochemical ability for controlling gene expression, for which electro-genetics (EG) has been coined. Here we review fundamental knowledge on this bacterium and discuss future directions of studies on its applications to electro-biotechnology (EB).
Collapse
|
10
|
Yi YC, Ng IS. Redirection of metabolic flux in Shewanella oneidensis MR-1 by CRISPRi and modular design for 5-aminolevulinic acid production. BIORESOUR BIOPROCESS 2021; 8:13. [PMID: 38650245 PMCID: PMC10992681 DOI: 10.1186/s40643-021-00366-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/01/2021] [Indexed: 11/10/2022] Open
Abstract
Programming non-canonical organisms is more attractive due to the prospect of high-value chemical production. Among all, Shewanella oneidensis MR-1 possesses outstanding heme synthesis ability and is well-known for electron transfer, thus has high potential in microbial fuel cell and bioremediation. However, heme, as the final product of C4 and C5 pathways, is regulated by heme cluster for the high-value 5-aminolevulinic acid (ALA) for cancer photodynamic therapy, which has never been explored in MR-1. Herein, the heme metabolism in MR-1 was firstly optimized for ALA production. We applied CRISPR interference (CRISPRi) targeted on the genes to fine-tune carbon flux in TCA cycle and redirected the carbon out-flux from heme, leading to a significant change in the amino acid profiles, while downregulation of the essential hemB showed a 2-fold increasing ALA production via the C5 pathway. In contrast, the modular design including of glucokinase, GroELS chaperone, and ALA synthase from Rhodobacter capsulatus enhanced ALA production markedly in the C4 pathway. By integrating gene cluster under dual T7 promoters, we obtained a new strain M::TRG, which significantly improved ALA production by 145-fold. We rewired the metabolic flux of MR-1 through this modular design and successfully produced the high-value ALA compound at the first time.
Collapse
Affiliation(s)
- Ying-Chen Yi
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
11
|
Neubert TJ, Wehrhold M, Kaya NS, Balasubramanian K. Faradaic effects in electrochemically gated graphene sensors in the presence of redox active molecules. NANOTECHNOLOGY 2020; 31:405201. [PMID: 32485689 DOI: 10.1088/1361-6528/ab98bc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Field-effect transistors (FETs) based on graphene are promising devices for the direct sensing of a range of analytes in solution. We show here that the presence of redox active molecules in the analyte solution leads to the occurrence of heterogeneous electron transfer with graphene generating a Faradaic current (electron transfer) in a FET configuration resulting in shifts of the Dirac point. Such a shift occurs if the Faradaic current is significantly high, e.g. due to a large graphene area. Furthermore, the redox shift based on the Faradaic current, reminiscent of a doping-like effect, is found to be non-Nernstian and dependent on parameters known from electrode kinetics in potentiodynamic methods, such as the electrode area, the standard potential of the redox probes and the scan rate of the gate voltage modulation. This behavior clearly differentiates this effect from other transduction mechanisms based on electrostatic interactions or molecular charge transfer doping effects, which are usually behind a shift of the Dirac point. These observations suggest that large-area unmodified/pristine graphene in field-effect sensors behaves as a non-polarized electrode in liquid. Strategies for ensuring a polarized interface are discussed.
Collapse
Affiliation(s)
- Tilmann J Neubert
- School of Analytical Sciences Adlershof (SALSA), IRIS Adlershof and Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany. Institut für Silizium-Photovoltaik, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | | | | | | |
Collapse
|
12
|
Rambhujun N, Salman MS, Wang T, Pratthana C, Sapkota P, Costalin M, Lai Q, Aguey-Zinsou KF. Renewable hydrogen for the chemical industry. MRS ENERGY & SUSTAINABILITY : A REVIEW JOURNAL 2020; 7:33. [PMID: 38624624 PMCID: PMC7851507 DOI: 10.1557/mre.2020.33] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Hydrogen is often touted as the fuel of the future, but hydrogen is already an important feedstock for the chemical industry. This review highlights current means for hydrogen production and use, and the importance of progressing R&D along key technologies and policies to drive a cost reduction in renewable hydrogen production and enable the transition of chemical manufacturing toward green hydrogen as a feedstock and fuel. The chemical industry is at the core of what is considered a modern economy. It provides commodities and important materials, e.g., fertilizers, synthetic textiles, and drug precursors, supporting economies and more broadly our needs. The chemical sector is to become the major driver for oil production by 2030 as it entirely relies on sufficient oil supply. In this respect, renewable hydrogen has an important role to play beyond its use in the transport sector. Hydrogen not only has three times the energy density of natural gas and using hydrogen as a fuel could help decarbonize the entire chemical manufacturing, but also the use of green hydrogen as an essential reactant at the basis of many chemical products could facilitate the convergence toward virtuous circles. Enabling the production of green hydrogen at cost could not only enable new opportunities but also strengthen economies through a localized production and use of hydrogen. Herein, existing technologies for the production of renewable hydrogen including biomass and water electrolysis, and methods for the effective storage of hydrogen are reviewed with an emphasis on the need for mitigation strategies to enable such a transition.
Collapse
Affiliation(s)
- Nigel Rambhujun
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052 Australia
| | - Muhammad Saad Salman
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052 Australia
| | - Ting Wang
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052 Australia
| | - Chulaluck Pratthana
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052 Australia
| | - Prabal Sapkota
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052 Australia
| | - Mehdi Costalin
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052 Australia
| | - Qiwen Lai
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052 Australia
| | | |
Collapse
|
13
|
Chu N, Liang Q, Jiang Y, Zeng RJ. Microbial electrochemical platform for the production of renewable fuels and chemicals. Biosens Bioelectron 2020; 150:111922. [DOI: 10.1016/j.bios.2019.111922] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/01/2022]
|
14
|
|
15
|
Wafi T, Ben Othman A, Besbes M. Qualitative and quantitative characterization of municipal solid waste and the unexploited potential of green energy in Tunisia. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0274-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Municipal solid waste management (MSWM) is one of the major environmental issues in Tunisian cities. Rapid growth in urbanization and population rates and the changes in people’s lifestyle have prompted a dramatic increase quantity and a significant shift in the composition of municipal solid waste. There is insufficient data concerning the quantities and the composition of waste streams along with the absence of a comprehensive complete overview and a wider perspective of MSWM potential that provides detailed information at region and city level. As a result, it is still impossible for the scientific community and the authorities to provide synergetic schemes to tie the problems of MSWM with how to integrate economically feasible and environmentally sustainable practices holistically. In the present study, an attempt has been made to provide a comprehensive overview of MSW, through a qualitative (compositional) and quantitative (parametric) characterization of the generated total waste generated in Tunisian cities. A 1-year research survey was conducted in seven regions in Tunisia (Great Tunis, Northeast, Northwest, Midwest, Mideast, Southwest, and Southeast) that cover the 24 provinces of the country. Collected samples revealed that the distribution of waste by region was defined by the region’s demographic, economic, and industrial status. Approaches of possibly more efficient procedures that can be undertaken to improve MSW collection are discussed. At a final stage and based on the potential of biogas calculated in the seven regions, we suggest that the scientific community and the authorities should introduce applicable schemes to valorize MSW through generating biogas as a renewable energy.
Collapse
|
16
|
Kasai T, Tomioka Y, Kouzuma A, Watanabe K. Overexpression of the adenylate cyclase gene cyaC facilitates current generation by Shewanella oneidensis in bioelectrochemical systems. Bioelectrochemistry 2019; 129:100-105. [PMID: 31153124 DOI: 10.1016/j.bioelechem.2019.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/18/2019] [Accepted: 05/19/2019] [Indexed: 12/26/2022]
Abstract
Electrochemically active bacteria (EAB) are capable of electrochemical interactions with electrodes via extracellular electron transfer (EET) pathways and serve as essential components in bioelectrochemical systems. Previous studies have suggested that EAB, such as Shewanella oneidensis MR-1, use cyclic AMP (cAMP) receptor proteins to coordinately regulate the expression of catabolic and EET-related genes, prompting us to hypothesize that the intracellular cAMP concentration is an important factor determining the electrochemical activities of EAB. The present study constructed an MR-1 mutant, cyaC-OE, that overexpressed cyaC, a gene encoding a membrane-bound class III adenylate cyclase, and examined its electrochemical and transcriptomic characteristics. We show that the intracellular cAMP concentration in cyaC-OE is more than five times that in wild-type MR-1, and that cya-OE generates approximately two-fold higher current in BES than the wild-type strain. In addition, the expression of genes involved in EET and anaerobic carbon catabolism is up-regulated in cya-OE compared to that in the wild-type strain. These results suggest that increasing the intracellular cAMP level is a promising approach for constructing EAB with high catabolic and electrochemical activities.
Collapse
Affiliation(s)
- Takuya Kasai
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yuki Tomioka
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|