1
|
Liu J, Wu Y, Tian C, Zhang X, Su Z, Nie L, Wang R, Zeng X. Quantitative assessment of renal steatosis in patients with type 2 diabetes mellitus using the iterative decomposition of water and fat with echo asymmetry and least squares estimation quantification sequence imaging: repeatability and clinical implications. Quant Imaging Med Surg 2024; 14:7341-7352. [PMID: 39429570 PMCID: PMC11485345 DOI: 10.21037/qims-24-330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/14/2024] [Indexed: 10/22/2024]
Abstract
Background Fatty kidney disease is linked to renal function damage, but there is no noninvasive tool for monitoring renal fat accumulation. This study aimed to explore the repeatability of the iterative decomposition of water and fat with echo asymmetry and least squares estimation quantification (IDEAL-IQ) sequence imaging in quantifying renal fat deposition and to assess the differences observed in patients with type 2 diabetes mellitus (T2DM). Methods A total of 26 healthy participants underwent two IDEAL-IQ scans without repositioning, and the repeatability of the imaging technique was assessed with Bland-Altman analysis. Additionally, 96 patients with T2DM underwent a single IDEAL-IQ scan for the examination of renal fat deposition. The patients with T2DM were classified into three groups based on their estimated glomerular filtration rate (eGFR). One-way analysis of variance was used to analyze the differences of renal fat depositions between the groups. Receiver operating characteristic curve analysis was used to assess the diagnostic performance of IDEAL-IQ. Results Bland-Altman analyses showed narrower limits of agreement and a significant correlation (r=0.81; P<0.05) between the two IDEAL-IQ scans. Statistically significant differences between the healthy volunteers and patients with T2DM, diabetic kidney disease (DKD) I-II, and or DKD III-IV were found in renal parenchymal proton-density fat fraction (PDFF) values (P<0.001). Renal parenchymal PDFF was negatively correlated with eGFR (r=-0.437; P<0.001) and positive correlated with serum creatinine level (µmol/L) (r=0.421; P<0.001). The area under the curve of IDEAL-IQ in discriminating between the healthy volunteers and patients with T2DM was 0.857. For discriminating T2DM from DKD I-II and DKD III-IV, the IDEAL-IQ had an area under the curve of 0.689 and 0.823, respectively. Conclusions IDEAL-IQ is a promising and reproducible technique for the assessment of renal fat deposition and identification of risk of DKD in patients with T2DM. Moreover, IDEAL-IQ imaging is expected to improve the sensitivity and specificity of early renal function damage and staging assessment of patients with T2DM.
Collapse
Affiliation(s)
- Jian Liu
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yu Wu
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People’s Hospital, Guiyang, China
- Department of Graduate School, Zunyi Medical University, Zunyi, China
| | - Chong Tian
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xunlan Zhang
- Department of Graduate School, Zunyi Medical University, Zunyi, China
| | - Zhijie Su
- Department of Graduate School, Zunyi Medical University, Zunyi, China
| | - Lisha Nie
- GE HealthCare Magnetic Resonance Research, Beijing, China
| | - Rongpin Wang
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xianchun Zeng
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People’s Hospital, Guiyang, China
| |
Collapse
|
2
|
Tian Z, Ni Y, He H, Tian B, Gong R, Xu F, Wang Z. Quantitative assessment of rotator cuff injuries using synthetic MRI and IDEAL-IQ imaging techniques. Heliyon 2024; 10:e37307. [PMID: 39296233 PMCID: PMC11409122 DOI: 10.1016/j.heliyon.2024.e37307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Purpose To evaluate synthetic magnetic resonance imaging (SyMRI) and iterative decomposition of water and fat with echo asymmetry and least squares estimation (IDEAL-IQ) imaging for a comprehensive evaluation of rotator cuff injuries (RCI). Methods Ninety-seven patients with RCI were classified into four groups based on the arthroscopic results: (grade II), partial tear (grade III), complete tear (grade IV), and controls (grade I). T1 (Transverse Relaxation Time 1), T2 (Transverse Relaxation Time 2), proton density (PD), and fat fraction (FF) were evaluated using SyMRI and IDEAL-IQ. Measurement reliability was assessed using intraclass correlation coefficients (ICC). The diagnostic potential for grading RCI was evaluated using ordinal regression and ROC analyses. Results A high measurement reliability (ICC > 0.7) was observed across subregions. T1 and T2 significantly varied across grades, particularly T2 in the lateral subregion between grades III and IV (P < 0.001) and the central subregion between grades II and III (P < 0.001). ROC analyses yielded valuable diagnostic accuracy, including T2 in the lateral subregion with an AUC of 0.891, distinguishing grade I from grade IV. Positive correlations were found between T2 values in specific shoulder subregions and injury grade (r = 0.615 for lateral, r = 0.542 for medial, both P < 0.001). In grade IV, FF was notably increased in the supraspinatus, infraspinatus, and subscapularis muscles compared with grades I-III. There were no significant FF variations in the teres minor muscle among grades. Conclusions Quantitative MRI parameters from SyMRI and IDEAL-IQ, especially T2 and FF, may classify and assess RCI severity. The results could help improve the accuracy of diagnosing different grades of RCI, offering clinicians additional tools for improving patient outcomes through personalized medicine.
Collapse
Affiliation(s)
- Zhaorong Tian
- Department of Radiology, General Hospital of Ningxia Medical University, No 804 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Yabo Ni
- Department of Radiology, General Hospital of Ningxia Medical University, No 804 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Hua He
- Department of Radiology, General Hospital of Ningxia Medical University, No 804 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Bo Tian
- Department of Radiology, General Hospital of Ningxia Medical University, No 804 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Rui Gong
- Department of Radiology, General Hospital of Ningxia Medical University, No 804 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Fenling Xu
- Department of Radiology, General Hospital of Ningxia Medical University, No 804 Shengli Street, Yinchuan, 750001, Ningxia, China
| | - Zhijun Wang
- Department of Radiology, General Hospital of Ningxia Medical University, No 804 Shengli Street, Yinchuan, 750001, Ningxia, China
| |
Collapse
|
3
|
Zhao F, Chen Y, Zhou T, Tang C, Huang J, Zhang H, Kannengiesser S, Long L. Application of the magnetic resonance 3D multiecho Dixon sequence for quantifying hepatic iron overload and steatosis in patients with thalassemia. Magn Reson Imaging 2024; 111:28-34. [PMID: 38492786 DOI: 10.1016/j.mri.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/02/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE To investigate the feasibility and diagnostic efficacy of a 3D multiecho Dixon (qDixon) research application for simultaneously quantifying the liver iron concentration (LIC) and steatosis in thalassemia patients. MATERIALS AND METHODS This prospective study enrolled participants with thalassemia who underwent 3 T MRI of the liver for the evaluation of hepatic iron overload. The imaging protocol including qDixon and conventional T2* mapping based on 2D multiecho gradient echo (ME GRE) sequences respectively. Regions of interest (ROIs) were drawn in the liver on the qDixon maps to obtain R2* and proton density fat fraction (PDFF). The reference R2* value was measured and calculated on conventional T2* mapping using the CMRtools software. Correlation analysis, Linear regression analysis, and Bland-Altman analysis were performed. RESULTS 84 patients were finally included in this study. The median R2*-ME-GRE was 366.97 (1/s), range [206.68 (1/s), 522.20 (1/s)]. 8 patients had normal hepatic iron deposition, 16 had Insignificant, 42 had mild, 18 had moderate. The median of R2*-qDixon was 376.88 (1/s) [219.33 (1/s), 491.75 (1/s)]. A strong correlation was found between the liver R2*-qDixon and the R2*-ME-GRE (r = 0.959, P < 0.001). The median value of PDFF was 1.76% (1.10%, 2.95%). 8 patients had mild fatty liver, and 1 had severe fatty liver. CONCLUSION MR qDixon research sequence can rapidly and accurately quantify liver iron overload, that highly consistent with the measured via conventional GRE sequence, and it can also simultaneously detect hepatic steatosis, this has great potential for clinical evaluation of thalassemia patients.
Collapse
Affiliation(s)
- Fanyu Zhao
- Department of Radiology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530001, China
| | - Yidi Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ting Zhou
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530001, China
| | - Cheng Tang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530001, China
| | - Jiang Huang
- Department of Radiology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530001, China
| | - Huiting Zhang
- MR Research Collaboration, Siemens Healthineers Ltd., Wuhan, China.
| | | | - Liling Long
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530001, China.
| |
Collapse
|
4
|
Huang XC, Ma JY, Gao C, Chen JX, Li CL, Huang YL, He B. Diffusion-tensor magnetic resonance imaging as a non-invasive assessment of extracellular matrix remodeling in lumbar paravertebral muscles of rats with sarcopenia. BMC Musculoskelet Disord 2024; 25:540. [PMID: 38997743 PMCID: PMC11245810 DOI: 10.1186/s12891-024-07654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Extracellular matrix (ECM) remodeling in skeletal muscle is a significant factor in the development of sarcopenia. This study aims to evaluate changes in ECM remodeling in the lumbar paravertebral muscles of sarcopenic rats using diffusion-tensor magnetic resonance imaging (DT-MRI) and compare them with histology. METHODS Twenty 6-month-old female Sprague Dawley rats were randomly divided into the dexamethasone (DEX) group and the control (CON) group. Both groups underwent 3.0T MRI scanning, including Mensa, T2WI, and DT-MRI sequences. The changes in muscle fibers and extracellular matrix (ECM) of the erector spinal muscle were observed using hematoxylineosin and sirius red staining. The expressions of collagen I, III, and fibronectin in the erector spinae were detected by western blot. Pearson correlation analysis was employed to assess the correlation between MRI quantitative parameters and corresponding histopathology markers. RESULTS The cross-sectional area and fractional anisotropy values of the erector spinae in the DEX group rats were significantly lower than those in the CON group (p < 0.05). Hematoxylin eosin staining revealed muscle fiber atrophy and disordered arrangement in the DEX group, while sirius red staining showed a significant increase in collagen volume fraction in the DEX group. The western blot results indicate a significant increase in the expression of collagen I, collagen III, and fibronectin in the DEX group (p < 0.001 for all). Correlation coefficients between fractional anisotropy values and collagen volume fraction, collagen I, collagen III, and fibronectin were - 0.71, -0.94, -0.85, and - 0.88, respectively (p < 0.05 for all). CONCLUSIONS The fractional anisotropy value is strongly correlated with the pathological collagen volume fraction, collagen I, collagen III, and fibronectin. This indicates that DT-MRI can non-invasively evaluate the changes in extracellular matrix remodeling in the erector spinal muscle of sarcopenia. It provides a potential imaging biomarker for the diagnosis of sarcopenia.
Collapse
Affiliation(s)
- Xin-Chen Huang
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ji-Yao Ma
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chao Gao
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jia-Xin Chen
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chun-Li Li
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yi-Long Huang
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Bo He
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
5
|
Schumacher K, Prince MR, Blumenfeld JD, Rennert H, Hu Z, Dev H, Wang Y, Dimov AV. Quantitative susceptibility mapping for detection of kidney stones, hemorrhage differentiation, and cyst classification in ADPKD. Abdom Radiol (NY) 2024; 49:2285-2295. [PMID: 38530430 DOI: 10.1007/s00261-024-04243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND AND PURPOSE The objective is to demonstrate feasibility of quantitative susceptibility mapping (QSM) in autosomal dominant polycystic kidney disease (ADPKD) patients and to compare imaging findings with traditional T1/T2w magnetic resonance imaging (MRI). METHODS Thirty-three consecutive patients (11 male, 22 female) diagnosed with ADPKD were initially selected. QSM images were reconstructed from the multiecho gradient echo data and compared to co-registered T2w, T1w, and CT images. Complex cysts were identified and classified into distinct subclasses based on their imaging features. Prevalence of each subclass was estimated. RESULTS QSM visualized two renal calcifications measuring 9 and 10 mm and three pelvic phleboliths measuring 2 mm but missed 24 calcifications measuring 1 mm or less and 1 larger calcification at the edge of the field of view. A total of 121 complex T1 hyperintense/T2 hypointense renal cysts were detected. 52 (43%) Cysts appeared hyperintense on QSM consistent with hemorrhage; 60 (49%) cysts were isointense with respect to simple cysts and normal kidney parenchyma, while the remaining 9 (7%) were hypointense. The presentation of the latter two complex cyst subtypes is likely indicative of proteinaceous composition without hemorrhage. CONCLUSION Our results indicate that QSM of ADPKD kidneys is possible and uniquely suited to detect large renal calculi without ionizing radiation and able to identify properties of complex cysts unattainable with traditional approaches.
Collapse
Affiliation(s)
- Karl Schumacher
- Department of Bioengineering, Santa Clara University, Santa Clara, CA, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Martin R Prince
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Jon D Blumenfeld
- The Rogosin Institute, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Hanna Rennert
- Department of Pathology, Weill Cornell Medicine, New York, NY, USA
| | - Zhongxiu Hu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Hreedi Dev
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Alexey V Dimov
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Yang Z, Liu C, Shi Z, Qin J. IDEAL-IQ combined with intravoxel incoherent motion diffusion-weighted imaging for quantitative diagnosis of osteoporosis. BMC Med Imaging 2024; 24:155. [PMID: 38902641 PMCID: PMC11188172 DOI: 10.1186/s12880-024-01326-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Osteoporosis (OP) is a common chronic metabolic bone disease characterized by decreased bone mineral content and microstructural damage, leading to increased fracture risk. Traditional methods for measuring bone density have limitations in accurately distinguishing vertebral bodies and are influenced by vertebral degeneration and surrounding tissues. Therefore, novel methods are needed to quantitatively assess changes in bone density and improve the accurate diagnosis of OP. METHODS This study aimed to explore the applicative value of the iterative decomposition of water and fat with echo asymmetry and least-squares estimation-iron (IDEAL-IQ) sequence combined with intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) for the diagnosis of osteoporosis. Data from 135 patients undergoing dual-energy X-ray absorptiometry (DXA), IDEAL-IQ, and IVIM-DWI were prospectively collected and analyzed. Various parameters obtained from IVIM-DWI and IDEAL-IQ sequences were compared, and their diagnostic efficacy was evaluated. RESULTS Statistically significant differences were observed among the three groups for FF, R2*, f, D, DDC values, and BMD values. FF and f values exhibited negative correlations with BMD values, with r=-0.313 and - 0.274, respectively, while R2*, D, and DDC values showed positive correlations with BMD values, with r = 0.327, 0.532, and 0.390, respectively. Among these parameters, D demonstrated the highest diagnostic efficacy for osteoporosis (AUC = 0.826), followed by FF (AUC = 0.713). D* exhibited the lowest diagnostic performance for distinguishing the osteoporosis group from the other two groups. Only D showed a significant difference between genders. The AUCs for IDEAL-IQ, IVIM-DWI, and their combination were 0.74, 0.89, and 0.90, respectively. CONCLUSIONS IDEAL-IQ combined with IVIM-DWI provides valuable information for the diagnosis of osteoporosis and offers evidence for clinical decisions. The superior diagnostic performance of IVIM-DWI, particularly the D value, suggests its potential as a more sensitive and accurate method for diagnosing osteoporosis compared to IDEAL-IQ. These findings underscore the importance of integrating advanced imaging techniques into clinical practice for improved osteoporosis management and highlight the need for further research to explore the full clinical implications of these imaging modalities.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Chenglong Liu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Zhaojuan Shi
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Jian Qin
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China.
| |
Collapse
|
7
|
Zheng G, Wei F, Lu P, Yang G, Li C, Lin C, Zhou Y, Chen Y, Tian J, Wang X, Wang L, Liu W, Zhang G, Cai Q, Huang H, Yun Y. IDEAL-IQ measurement can distinguish dysplastic nodule from early hepatocellular carcinoma: a case-control study. Quant Imaging Med Surg 2024; 14:3901-3913. [PMID: 38846285 PMCID: PMC11151266 DOI: 10.21037/qims-23-1593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/25/2024] [Indexed: 06/09/2024]
Abstract
Background Previous studies have confirmed that malignant transformation of dysplastic nodule (DN) into hepatocellular carcinoma (HCC) is accompanied by reduction of iron content in nodules. This pathological abnormality can serve as the basis for magnetic resonance imaging (MRI). This study was designed to identify the feasibility of iterative decomposition of water and fat with echo asymmetry and least squares estimation-iron quantitative (IDEAL-IQ) measurement to distinguish early hepatocellular carcinoma (eHCC) from DN. Methods We reviewed MRI studies of 35 eHCC and 23 DN lesions (46 participants with 58 lesions total, 37 males, 9 females, 31-80 years old). The exams include IDEAL-IQ sequence and 3.0T MR conventional scan [including T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and Gadopentic acid (Gd-GDPA)-enhanced]. Then, 3 readers independently diagnosed eHCC, DN, or were unable to distinguish eHCC from DN using conventional MRI (CMRI), and then assessed R2* value of nodules [R2* value represents the nodule iron content (NIC)] and R2* value of liver background [R2* value represents the liver background iron content (LBIC)] with IDEAL-IQ. Statistical analysis was conducted using the t-test for comparison of means, the Mann-Whitney test for comparison of medians, the chi-square test for comparison of frequencies, and diagnostic efficacy was evaluated by using receiver operating characteristic (ROC) curve. Results This study evaluated 35 eHCC participants (17 males, 6 females, 34-81 years old, nodule size: 10.5-27.6 mm, median 18.0 mm) and 23 DN participants (20 males, 3 females, 31-76 years old, nodule size: 16.30±4.095 mm). The NIC and ratio of NIC to LIBC (NIC/LBIC) of the eHCC group (35.926±12.806 sec-1, 0.327±0.107) was lower than that of the DN group (176.635±87.686 sec-1, 1.799±0.629) (P<0.001). Using NIC and NIC/LBIC to distinguish eHCC from DN, the true positive/false positive rates were 91.3%/94.3% and 87.0%/97.1%, respectively. The rates of CMRI, NIC and NIC/LBIC in diagnosis of eHCC were 77.1%, and 94.3%, 97.1%, respectively, and those of DN were 65.2%, 91.3%, and 87.0%, respectively. The diagnosis rate of eHCC and DN by CMRI was lower than that of NIC and NIC/LBIC (eHCC: P=0.03, 0.04, DN: P=0.02, 0.04). Conclusions Using IDEAL-IQ measurement can distinguish DN from eHCC.
Collapse
Affiliation(s)
- Guangping Zheng
- Department of Radiology, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Fangjun Wei
- Department of Radiology, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Puxuan Lu
- Department of Radiology, Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Gendong Yang
- Department of Radiology, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Cuizu Li
- Department of Radiology, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Chunming Lin
- Department of Radiology, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Yun Zhou
- Department of Radiology, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Yixin Chen
- Department of Radiology, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Jianing Tian
- Department of Radiology, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Xiaolei Wang
- Department of Radiology, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Linjing Wang
- Department of Radiology, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Wenhao Liu
- Department of Radiology, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Guangfeng Zhang
- Department of Radiology, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Qingxian Cai
- Department of Radiology, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Hua Huang
- Department of Radiology, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Yongxing Yun
- Department of Radiology, Shenzhen Third People’s Hospital, Shenzhen, China
| |
Collapse
|
8
|
Goto K, Watanabe D, Kawae N, Nakamura T, Yanagida K, Yoshida T, Kajihara H, Mizushima A. Relationship between Femoral Proximal Bone Quality Assessment by MRI IDEAL-IQ Sequence and Body Mass Index in Elderly Men. Tomography 2024; 10:816-825. [PMID: 38787022 PMCID: PMC11125441 DOI: 10.3390/tomography10050062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Bone assessment using the MRI DEAL-IQ sequence may have the potential to serve as a substitute for evaluating bone strength by quantifying the bone marrow hematopoietic region (R2*) and marrow adiposity (proton density fat fraction: PDFF). Higher body mass index (BMI) is associated with increased bone mineral density (BMD) in the proximal femur; however, the relationship between BMI and R2* or PDFF remains unclear. Herein, we investigated the correlation between BMI and MRI IDEAL-IQ based R2* or PDFF of the proximal femur. METHODS A retrospective single-cohort study was conducted on 217 patients diagnosed with non-metastatic prostate cancer between September 2019 and December 2022 who underwent MRI. The correlation between BMI and R2* or PDFF of the proximal femur was analyzed using Spearman's rank correlation test. RESULTS Among 217 patients (median age, 74 years; median BMI, 23.8 kg/m2), there was a significant positive correlation between BMI and R2* at the right and left proximal femur (r = 0.2686, p < 0.0001; r = 0.2755, p < 0.0001, respectively). Furthermore, BMI and PDFF showed a significant negative correlation (r = -0.239, p = 0.0004; r = -0.2212, p = 0.001, respectively). CONCLUSION In elderly men, the increased loading on the proximal femur due to elevated BMI was observed to promote a decrease in bone marrow adiposity in the proximal femur, causing a tendency for a transition from fatty marrow to red marrow with hematopoietic activity. These results indicate that the MRI IDEAL-IQ sequence may be valuable for assessing bone quality deterioration in the proximal femur.
Collapse
Affiliation(s)
- Kashia Goto
- Department of Palliative Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (K.G.); (N.K.); (A.M.)
| | - Daisuke Watanabe
- Department of Palliative Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (K.G.); (N.K.); (A.M.)
- Department of Urology, Koto Hospital, Tokyo 136-0072, Japan; (K.Y.); (T.Y.)
- Department of Molecular and Cellular Therapeutics, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Norikazu Kawae
- Department of Palliative Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (K.G.); (N.K.); (A.M.)
- Department of Radiology, Koto Hospital, Tokyo 136-0072, Japan;
| | | | - Kazuki Yanagida
- Department of Urology, Koto Hospital, Tokyo 136-0072, Japan; (K.Y.); (T.Y.)
| | - Takahiro Yoshida
- Department of Urology, Koto Hospital, Tokyo 136-0072, Japan; (K.Y.); (T.Y.)
| | - Hajime Kajihara
- Department of Orthopedic Surgery, Koto Hospital, Tokyo 136-0072, Japan;
| | - Akio Mizushima
- Department of Palliative Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (K.G.); (N.K.); (A.M.)
- Department of Molecular and Cellular Therapeutics, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
9
|
Ito K, Ohgi K, Kimura K, Ishitaki K, Yamashita A, Yokote H, Tsukuda S, Matsushita K, Naraoka Y, Fujioka A, Ono T. Kidney R2* Mapping for Noninvasive Evaluation of Iron Overload in Paroxysmal Nocturnal Hemoglobinuria. Magn Reson Med Sci 2024:mp.2023-0114. [PMID: 38369335 DOI: 10.2463/mrms.mp.2023-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
PURPOSE The kidney iron deposition can cause kidney damage and renal insufficiency in paroxysmal nocturnal hemoglobinuria (PNH) patients. Assessment of iron deposition in the kidney is essential for the early diagnosis of renal damage in PNH patients. The purpose of this study was to evaluate kidney R2* (T2* reciprocals) values in PNH patients using the iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL-IQ). METHODS Two radiologists measured the R2* values of the renal cortex in 14 PNH patients and 13 healthy volunteers using IDEAL-IQ. Lactate dehydrogenase (LDH), a reliable marker of intravascular hemolysis, was also measured in all participants. RESULTS The kidney R2* values were significantly higher in PNH patients compared with those in healthy volunteers (P < 0.001). High inter-operator reproducibility of the measurements was also acquired using IDEAL-IQ. LDH levels were also significantly higher in PNH patients compared with those in healthy volunteers (P < 0.001). Kidney R2* values strongly correlated with LDH levels in PNH patients. CONCLUSION IDEAL-IQ has a possibility of becoming a useful method for the noninvasive evaluation of renal iron overload in PNH patients.
Collapse
Affiliation(s)
- Koichi Ito
- Department of Radiology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Kazuyuki Ohgi
- Department of Radiology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Koichiro Kimura
- Department of Radiology, Japanese Red Cross Medical Center, Tokyo, Japan
- Department of Diagnostic Radiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Ishitaki
- Department of Radiology, Japanese Red Cross Medical Center, Tokyo, Japan
- Department of Diagnostic Radiology, Shin-Yurigaoka General Hospital, Kanagawa, Kawasaki, Japan
| | - Akiyoshi Yamashita
- Department of Radiology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Hiroyuki Yokote
- Department of Radiology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Shunji Tsukuda
- Department of Radiology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Ko Matsushita
- Department of Radiology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Yuko Naraoka
- Department of Radiology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Amon Fujioka
- Department of Radiology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Tatsuki Ono
- Department of Radiology, Japanese Red Cross Medical Center, Tokyo, Japan
| |
Collapse
|
10
|
Jeon KJ, Choi YJ, Lee C, Kim HS, Han SS. Evaluation of masticatory muscles in temporomandibular joint disorder patients using quantitative MRI fat fraction analysis-Could it be a biomarker? PLoS One 2024; 19:e0296769. [PMID: 38241266 PMCID: PMC10798479 DOI: 10.1371/journal.pone.0296769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024] Open
Abstract
Temporomandibular joint disorders (TMDs) are closely related to the masticatory muscles, but objective and quantitative methods to evaluate muscle are lacking. IDEAL-IQ, a type of chemical shift-encoded magnetic resonance imaging (CSE-MRI), can quantify the fat fraction (FF). The purpose of this study was to develop an MR IDEAL-IQ-based method for quantitative muscle diagnosis in TMD patients. A total of 65 patients who underwent 3 T MRI scans, including CSE-MRI sequences, were retrospectively included. MRI diagnoses and clinical data were reviewed. There were 19 patients in the normal group and 46 patients in the TMD group with unilateral disc displacement. The TMD group was subdivided into those with and without clenching. The right and left FF values of the masseter, medial, and lateral pterygoid muscles were measured twice by two oral radiologists on CSE-MRI, and the average value was used. FF measurements using CSE-MRI showed excellent intra- and inter-observer agreement (ICC > 0.889 for both). There were no statistically significant differences between the right and left FF values in the masseter, medial pterygoid, and lateral pterygoid of the normal group (p > 0.05). A statistically significant difference was found in the TMD group without clenching, in which the masseter muscle had a statistically significantly lower FF value on the disc displacement side (3.94 ± 1.61) than on the normal side (4.52 ± 2.24) (p < 0.05). CSE-MRI, which can reproducibly quantify muscle FF values, is expected to be a biomarker for objective muscle evaluation in TMD patients. The masseter muscle is expected to be particularly useful compared to other masticatory muscles, but further research is needed.
Collapse
Affiliation(s)
- Kug Jin Jeon
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Yoon Joo Choi
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Chena Lee
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Hak-Sun Kim
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Sang-Sun Han
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
11
|
Kitagawa T, Kozaka K, Matsubara T, Wakayama T, Takamatsu A, Kobayashi T, Okumura K, Yoshida K, Yoneda N, Kitao A, Kobayashi S, Gabata T, Matsui O, Heiken JP. Fat fraction and R2 * values of various liver masses: Initial experience with 6-point Dixon method on a 3T MRI system. Eur J Radiol Open 2023; 11:100519. [PMID: 37609047 PMCID: PMC10440393 DOI: 10.1016/j.ejro.2023.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
Purpose To assess the feasibility of the 6-point Dixon method for evaluating liver masses. We also report our initial experience with the quantitative values in various liver masses on a 3T system. Materials and methods Of 251 consecutive patients for whom 6-point Dixon was employed in abdominal magnetic resonance imaging scans between October 2020 and October 2021, 117 nodules in 117 patients with a mass diameter of more than 1 cm were included in the study. Images for measuring the proton density fat fraction (PDFF) and R2 * values were obtained using the iterative decomposition of water and fat with echo asymmetry and least-squares estimation-quantitative technique for liver imaging. Two radiologists independently measured PDFF (%) and R2 * (Hz). Inter-reader agreement and the differences between readers were examined using intra-class correlation coefficient (ICC) and the Bland-Altman method, respectively. PDFF and R2 * values in differentiating liver masses were examined. Results The masses included hepatocellular carcinoma (n = 59), cyst (n = 20), metastasis (n = 14), hemangioma (n = 8), and others (n = 16). The ICCs for the region of interest (mm2), PDFF, and R2 * were 0.988 (95 % confidence interval (CI): 0.983, 0.992), 0.964 (95 % CI: 0.949, 0.975), and 0.962 (95 % CI: 0.941, 0.975), respectively. The differences of measurements between the readers showed that 5.1 % (6/117) and 6.0% (7/117) for PDFF and R2 * , respectively, were outside the 95 % CI. Conclusion Our observation indicates that the 6-point Dixon method is applicable to liver masses.
Collapse
Affiliation(s)
- Taichi Kitagawa
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Kazuto Kozaka
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Takashi Matsubara
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Tetsuya Wakayama
- Applied Science Laboratory Japan and Vascular MR, MR Clinical Solutions and Research Collaborations, GE HealthCare, 4-7-127, Asahigaoka, Hino, Tokyo 191-8503, Japan
| | - Atsushi Takamatsu
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Tomohiro Kobayashi
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Kenichiro Okumura
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Kotaro Yoshida
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Norihide Yoneda
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Azusa Kitao
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Satoshi Kobayashi
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Toshifumi Gabata
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Osamu Matsui
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Jay P. Heiken
- Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, 200, First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
12
|
Cao MJ, Wu WJ, Chen JW, Fang XM, Ren Y, Zhu XW, Cheng HY, Tang QF. Quantification of ectopic fat storage in the liver and pancreas using six-point Dixon MRI and its association with insulin sensitivity and β-cell function in patients with central obesity. Eur Radiol 2023; 33:9213-9222. [PMID: 37410109 DOI: 10.1007/s00330-023-09856-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/26/2023] [Accepted: 05/14/2023] [Indexed: 07/07/2023]
Abstract
OBJECTIVES To assess the association of ectopic fat deposition in the liver and pancreas quantified by Dixon magnetic resonance imaging (MRI) with insulin sensitivity and β-cell function in patients with central obesity. MATERIALS AND METHODS A cross-sectional study of 143 patients with central obesity with normal glucose tolerance (NGT), prediabetes (PreD), and untreated type 2 diabetes mellitus (T2DM) was conducted between December 2019 and March 2022. All participants underwent routine medical history taking, anthropometric measurements, and laboratory tests, including a standard glucose tolerance test to quantify insulin sensitivity and β-cell function. The fat content in the liver and pancreas was measured with MRI using the six-point Dixon technique. RESULTS Patients with T2DM and PreD had a higher liver fat fraction (LFF) than those with NGT, while those with T2DM had a higher pancreatic fat fraction (PFF) than those with PreD and NGT. LFF was positively correlated with homeostatic model assessment of insulin resistance (HOMA-IR), while PFF was negatively correlated with homeostatic model assessment of insulin secretion (HOMA-β). Furthermore, using a structured equation model, we found LFF and PFF to be positively associated with glycosylated hemoglobin via HOMA-IR and HOMA-β, respectively. CONCLUSIONS In patients with central obesity, the effects of LFF and PFF on glucose metabolism. were associated with HOMA-IR and HOMA-β, respectively. Ectopic fat storage in the liver and pancreas quantified by MR Dixon imaging potentially plays a notable role in the onset ofT2DM. CLINICAL RELEVANCE STATEMENT We highlight the potential role of ectopic fat deposition in the liver and pancreas in the development of type 2 diabetes in patients with central obesity, providing valuable insights into the pathogenesis of the disease and potential targets for intervention. KEY POINTS • Ectopic fat deposition in the liver and pancreas is associated with T2DM. • T2DM and prediabetes patients had higher liver and pancreatic fat fractions than normal individuals. • The results provide valuable insights into pathogenesis of T2DM and potential targets for intervention.
Collapse
Affiliation(s)
- Meng-Jiao Cao
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi , Jiangsu Province, 214000, China
| | - Wen-Jun Wu
- Department of Endocrinology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi , Jiangsu Province, 214000, China.
| | - Jing-Wen Chen
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi , Jiangsu Province, 214000, China
| | - Xiang-Ming Fang
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi , Jiangsu Province, 214000, China
| | - Ye Ren
- Department of Endocrinology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi , Jiangsu Province, 214000, China
| | - Xiao-Wen Zhu
- Department of Endocrinology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi , Jiangsu Province, 214000, China
| | - Hai-Yan Cheng
- Department of Endocrinology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi , Jiangsu Province, 214000, China
| | - Qun-Feng Tang
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299 Qingyang Road, Wuxi , Jiangsu Province, 214000, China.
| |
Collapse
|
13
|
Liu P, Li W, Qiu G, Chen J, Liu Y, Wen Z, Liang M, Zhao Y. Multiparametric MRI combined with clinical factors to predict glypican-3 expression of hepatocellular carcinoma. Front Oncol 2023; 13:1142916. [PMID: 38023195 PMCID: PMC10666788 DOI: 10.3389/fonc.2023.1142916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Objectives The present study aims at establishing a noninvasive and reliable model for the preoperative prediction of glypican 3 (GPC3)-positive hepatocellular carcinoma (HCC) based on multiparametric magnetic resonance imaging (MRI) and clinical indicators. Methods As a retrospective study, the subjects included 158 patients from two institutions with surgically-confirmed single HCC who underwent preoperative MRI between 2020 and 2022. The patients, 102 from institution I and 56 from institution II, were assigned to the training and the validation sets, respectively. The association of the clinic-radiological variables with the GPC3 expression was investigated through performing univariable and multivariable logistic regression (LR) analyses. The synthetic minority over-sampling technique (SMOTE) was used to balance the minority group (GPC3-negative HCCs) in the training set, and diagnostic performance was assessed by the area under the curve (AUC) and accuracy. Next, a prediction nomogram was developed and validated for patients with GPC3-positive HCC. The performance of the nomogram was evaluated through examining its calibration and clinical utility. Results Based on the results obtained from multivariable analyses, alpha-fetoprotein levels > 20 ng/mL, 75th percentile ADC value < 1.48 ×103 mm2/s and R2* value ≥ 38.6 sec-1 were found to be the significant independent predictors of GPC3-positive HCC. The SMOTE-LR model based on three features achieved the best predictive performance in the training (AUC, 0.909; accuracy, 83.7%) and validation sets (AUC, 0.829; accuracy, 82.1%) with a good calibration performance and clinical usefulness. Conclusions The nomogram combining multiparametric MRI and clinical indicators is found to have satisfactory predictive efficacy for preoperative prediction of GPC3-positive HCC. Accordingly, the proposed method can promote individualized risk stratification and further treatment decisions of HCC patients.
Collapse
Affiliation(s)
- Peijun Liu
- Department of Radiology, Central People’s Hospital of Zhanjiang, Zhanjiang, China
| | - Weiqiu Li
- Department of Radiology, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | - Ganbin Qiu
- Department of Radiology, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | - Jincan Chen
- Department of Radiology, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | - Yonghui Liu
- Department of Radiology, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | - Zhongyan Wen
- Department of Radiology, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | - Mei Liang
- Department of Radiology, The First People’s Hospital of Zhaoqing, Zhaoqing, China
| | - Yue Zhao
- Department of Radiology, Central People’s Hospital of Zhanjiang, Zhanjiang, China
| |
Collapse
|
14
|
Tian Y, Liu PF, Li JY, Li YN, Sun P. Hepatic MR imaging using IDEAL-IQ sequence: Will Gd-EOB-DTPA interfere with reproductivity of fat fraction quantification? World J Clin Cases 2023; 11:5887-5896. [PMID: 37727487 PMCID: PMC10506030 DOI: 10.12998/wjcc.v11.i25.5887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/31/2023] [Accepted: 07/14/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Iterative decomposition of water and fat with echo asymmetry and least squares estimation quantification sequence (IDEAL-IQ) is based on chemical shift-based water and fat separation technique to get proton density fat fraction. Multiple studies have shown that using IDEAL-IQ to test the stability and repeatability of liver fat is acceptable and has high accuracy. AIM To explore whether Gadoxetate Disodium (Gd-EOB-DTPA) interferes with the measurement of the hepatic fat content quantified with the IDEAL-IQ and to evaluate the robustness of this technique. METHODS IDEAL-IQ was used to quantify the liver fat content at 3.0T in 65 patients injected with Gd-EOB-DTPA contrast. After injection, IDEAL-IQ was estimated four times, and the fat fraction (FF) and R2* were measured at the following time points: Pre-contrast, between the portal phase (70 s) and the late phase (180 s), the delayed phase (5 min) and the hepatobiliary phase (20 min). One-way repeated-measures analysis was conducted to evaluate the difference in the FFs between the four time points. Bland-Altman plots were adopted to assess the FF changes before and after injection of the contrast agent. P < 0.05 was considered statistically significant. RESULTS The assessment of the FF at the four time points in the liver, spleen and spine showed no significant differences, and the measurements of hepatic FF yielded good consistency between T1 and T2 [95% confidence interval: -0.6768%, 0.6658%], T1 and T3 (-0.3900%, 0.3178%), and T1 and T4 (-0.3750%, 0.2825%). R2* of the liver, spleen and spine increased significantly after injection (P < 0.0001). CONCLUSION Using the IDEAL-IQ sequence to measure the FF, we can obtain results that will not be affected by Gd-EOB-DTPA. The high reproducibility of the IDEAL-IQ sequence makes it available in the scanning interval to save time during multiphase examinations.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Peng-Fei Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Jia-Yu Li
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ya-Nan Li
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Peng Sun
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
15
|
Morin CE, Kolbe AB, Alazraki A, Chavhan GB, Gill A, Infante J, Khanna G, Nguyen HN, O'Neill AF, Rees MA, Sharma A, Squires JE, Squires JH, Syed AB, Tang ER, Towbin AJ, Schooler GR. Cancer Therapy-related Hepatic Injury in Children: Imaging Review from the Pediatric LI-RADS Working Group. Radiographics 2023; 43:e230007. [PMID: 37616168 DOI: 10.1148/rg.230007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The liver is the primary organ for the metabolism of many chemotherapeutic agents. Treatment-induced liver injury is common in children undergoing cancer therapy. Hepatic injury occurs due to various mechanisms, including biochemical cytotoxicity, hepatic vascular injury, radiation-induced cytotoxicity, and direct hepatic injury through minimally invasive and invasive surgical treatments. Treatment-induced liver injury can be seen contemporaneous with therapy and months to years after therapy is complete. Patients can develop a combination of hepatic injuries manifesting during and after treatment. Acute toxic effects of cancer therapy in children include hepatitis, steatosis, steatohepatitis, cholestasis, hemosiderosis, and vascular injury. Longer-term effects of cancer therapy include hepatic fibrosis, chronic liver failure, and development of focal liver lesions. Quantitative imaging techniques can provide useful metrics for disease diagnosis and monitoring, especially in treatment-related diffuse liver injury such as hepatic steatosis and steatohepatitis, hepatic iron deposition, and hepatic fibrosis. Focal liver lesions, including those developing as a result of treatment-related vascular injury such as focal nodular hyperplasia-like lesions and hepatic perfusion anomalies, as well as hepatic infections occurring as a consequence of immune suppression, can be anxiety provoking and confused with recurrent malignancy or hepatic metastases, although there often are imaging features that help elucidate the correct diagnosis. Radiologic evaluation, in conjunction with clinical and biochemical screening, is integral to diagnosing and monitoring hepatic complications of cancer therapy in pediatric patients during therapy and after therapy completion for long-term surveillance. ©RSNA, 2023 Quiz questions for this article are available in the supplemental material See the invited commentary by Ferraciolli and Gee in this issue.
Collapse
Affiliation(s)
- Cara E Morin
- From the Department of Radiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH 45229 (C.E.M., A.J.T.); Department of Radiology, Mayo Clinic, Rochester, Minn (A.B.K.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (A.A., A.G., G.K.); Diagnostic Imaging Department, The Hospital for Sick Children and Department of Medical Imaging, University of Toronto, Ontario, Canada (G.B.C.); Department of Radiology, Nicklaus Children's Hospital, Miami, Fla (J.I.); Department of Radiology, Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Mass (A.F.O.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tenn (A.S.); Division of Gastroenterology, Hepatology, and Nutrition (J.E.S.) and Department of Radiology (J.H.S.), UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Radiology, Stanford University, Stanford, Calif (A.B.S.); Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colo (E.R.T.); and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (G.R.S.)
| | - Amy B Kolbe
- From the Department of Radiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH 45229 (C.E.M., A.J.T.); Department of Radiology, Mayo Clinic, Rochester, Minn (A.B.K.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (A.A., A.G., G.K.); Diagnostic Imaging Department, The Hospital for Sick Children and Department of Medical Imaging, University of Toronto, Ontario, Canada (G.B.C.); Department of Radiology, Nicklaus Children's Hospital, Miami, Fla (J.I.); Department of Radiology, Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Mass (A.F.O.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tenn (A.S.); Division of Gastroenterology, Hepatology, and Nutrition (J.E.S.) and Department of Radiology (J.H.S.), UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Radiology, Stanford University, Stanford, Calif (A.B.S.); Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colo (E.R.T.); and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (G.R.S.)
| | - Adina Alazraki
- From the Department of Radiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH 45229 (C.E.M., A.J.T.); Department of Radiology, Mayo Clinic, Rochester, Minn (A.B.K.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (A.A., A.G., G.K.); Diagnostic Imaging Department, The Hospital for Sick Children and Department of Medical Imaging, University of Toronto, Ontario, Canada (G.B.C.); Department of Radiology, Nicklaus Children's Hospital, Miami, Fla (J.I.); Department of Radiology, Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Mass (A.F.O.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tenn (A.S.); Division of Gastroenterology, Hepatology, and Nutrition (J.E.S.) and Department of Radiology (J.H.S.), UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Radiology, Stanford University, Stanford, Calif (A.B.S.); Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colo (E.R.T.); and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (G.R.S.)
| | - Govind B Chavhan
- From the Department of Radiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH 45229 (C.E.M., A.J.T.); Department of Radiology, Mayo Clinic, Rochester, Minn (A.B.K.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (A.A., A.G., G.K.); Diagnostic Imaging Department, The Hospital for Sick Children and Department of Medical Imaging, University of Toronto, Ontario, Canada (G.B.C.); Department of Radiology, Nicklaus Children's Hospital, Miami, Fla (J.I.); Department of Radiology, Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Mass (A.F.O.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tenn (A.S.); Division of Gastroenterology, Hepatology, and Nutrition (J.E.S.) and Department of Radiology (J.H.S.), UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Radiology, Stanford University, Stanford, Calif (A.B.S.); Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colo (E.R.T.); and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (G.R.S.)
| | - Annie Gill
- From the Department of Radiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH 45229 (C.E.M., A.J.T.); Department of Radiology, Mayo Clinic, Rochester, Minn (A.B.K.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (A.A., A.G., G.K.); Diagnostic Imaging Department, The Hospital for Sick Children and Department of Medical Imaging, University of Toronto, Ontario, Canada (G.B.C.); Department of Radiology, Nicklaus Children's Hospital, Miami, Fla (J.I.); Department of Radiology, Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Mass (A.F.O.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tenn (A.S.); Division of Gastroenterology, Hepatology, and Nutrition (J.E.S.) and Department of Radiology (J.H.S.), UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Radiology, Stanford University, Stanford, Calif (A.B.S.); Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colo (E.R.T.); and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (G.R.S.)
| | - Juan Infante
- From the Department of Radiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH 45229 (C.E.M., A.J.T.); Department of Radiology, Mayo Clinic, Rochester, Minn (A.B.K.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (A.A., A.G., G.K.); Diagnostic Imaging Department, The Hospital for Sick Children and Department of Medical Imaging, University of Toronto, Ontario, Canada (G.B.C.); Department of Radiology, Nicklaus Children's Hospital, Miami, Fla (J.I.); Department of Radiology, Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Mass (A.F.O.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tenn (A.S.); Division of Gastroenterology, Hepatology, and Nutrition (J.E.S.) and Department of Radiology (J.H.S.), UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Radiology, Stanford University, Stanford, Calif (A.B.S.); Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colo (E.R.T.); and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (G.R.S.)
| | - Geetika Khanna
- From the Department of Radiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH 45229 (C.E.M., A.J.T.); Department of Radiology, Mayo Clinic, Rochester, Minn (A.B.K.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (A.A., A.G., G.K.); Diagnostic Imaging Department, The Hospital for Sick Children and Department of Medical Imaging, University of Toronto, Ontario, Canada (G.B.C.); Department of Radiology, Nicklaus Children's Hospital, Miami, Fla (J.I.); Department of Radiology, Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Mass (A.F.O.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tenn (A.S.); Division of Gastroenterology, Hepatology, and Nutrition (J.E.S.) and Department of Radiology (J.H.S.), UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Radiology, Stanford University, Stanford, Calif (A.B.S.); Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colo (E.R.T.); and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (G.R.S.)
| | - HaiThuy N Nguyen
- From the Department of Radiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH 45229 (C.E.M., A.J.T.); Department of Radiology, Mayo Clinic, Rochester, Minn (A.B.K.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (A.A., A.G., G.K.); Diagnostic Imaging Department, The Hospital for Sick Children and Department of Medical Imaging, University of Toronto, Ontario, Canada (G.B.C.); Department of Radiology, Nicklaus Children's Hospital, Miami, Fla (J.I.); Department of Radiology, Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Mass (A.F.O.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tenn (A.S.); Division of Gastroenterology, Hepatology, and Nutrition (J.E.S.) and Department of Radiology (J.H.S.), UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Radiology, Stanford University, Stanford, Calif (A.B.S.); Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colo (E.R.T.); and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (G.R.S.)
| | - Allison F O'Neill
- From the Department of Radiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH 45229 (C.E.M., A.J.T.); Department of Radiology, Mayo Clinic, Rochester, Minn (A.B.K.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (A.A., A.G., G.K.); Diagnostic Imaging Department, The Hospital for Sick Children and Department of Medical Imaging, University of Toronto, Ontario, Canada (G.B.C.); Department of Radiology, Nicklaus Children's Hospital, Miami, Fla (J.I.); Department of Radiology, Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Mass (A.F.O.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tenn (A.S.); Division of Gastroenterology, Hepatology, and Nutrition (J.E.S.) and Department of Radiology (J.H.S.), UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Radiology, Stanford University, Stanford, Calif (A.B.S.); Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colo (E.R.T.); and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (G.R.S.)
| | - Mitchell A Rees
- From the Department of Radiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH 45229 (C.E.M., A.J.T.); Department of Radiology, Mayo Clinic, Rochester, Minn (A.B.K.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (A.A., A.G., G.K.); Diagnostic Imaging Department, The Hospital for Sick Children and Department of Medical Imaging, University of Toronto, Ontario, Canada (G.B.C.); Department of Radiology, Nicklaus Children's Hospital, Miami, Fla (J.I.); Department of Radiology, Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Mass (A.F.O.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tenn (A.S.); Division of Gastroenterology, Hepatology, and Nutrition (J.E.S.) and Department of Radiology (J.H.S.), UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Radiology, Stanford University, Stanford, Calif (A.B.S.); Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colo (E.R.T.); and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (G.R.S.)
| | - Akshay Sharma
- From the Department of Radiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH 45229 (C.E.M., A.J.T.); Department of Radiology, Mayo Clinic, Rochester, Minn (A.B.K.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (A.A., A.G., G.K.); Diagnostic Imaging Department, The Hospital for Sick Children and Department of Medical Imaging, University of Toronto, Ontario, Canada (G.B.C.); Department of Radiology, Nicklaus Children's Hospital, Miami, Fla (J.I.); Department of Radiology, Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Mass (A.F.O.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tenn (A.S.); Division of Gastroenterology, Hepatology, and Nutrition (J.E.S.) and Department of Radiology (J.H.S.), UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Radiology, Stanford University, Stanford, Calif (A.B.S.); Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colo (E.R.T.); and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (G.R.S.)
| | - James E Squires
- From the Department of Radiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH 45229 (C.E.M., A.J.T.); Department of Radiology, Mayo Clinic, Rochester, Minn (A.B.K.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (A.A., A.G., G.K.); Diagnostic Imaging Department, The Hospital for Sick Children and Department of Medical Imaging, University of Toronto, Ontario, Canada (G.B.C.); Department of Radiology, Nicklaus Children's Hospital, Miami, Fla (J.I.); Department of Radiology, Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Mass (A.F.O.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tenn (A.S.); Division of Gastroenterology, Hepatology, and Nutrition (J.E.S.) and Department of Radiology (J.H.S.), UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Radiology, Stanford University, Stanford, Calif (A.B.S.); Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colo (E.R.T.); and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (G.R.S.)
| | - Judy H Squires
- From the Department of Radiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH 45229 (C.E.M., A.J.T.); Department of Radiology, Mayo Clinic, Rochester, Minn (A.B.K.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (A.A., A.G., G.K.); Diagnostic Imaging Department, The Hospital for Sick Children and Department of Medical Imaging, University of Toronto, Ontario, Canada (G.B.C.); Department of Radiology, Nicklaus Children's Hospital, Miami, Fla (J.I.); Department of Radiology, Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Mass (A.F.O.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tenn (A.S.); Division of Gastroenterology, Hepatology, and Nutrition (J.E.S.) and Department of Radiology (J.H.S.), UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Radiology, Stanford University, Stanford, Calif (A.B.S.); Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colo (E.R.T.); and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (G.R.S.)
| | - Ali B Syed
- From the Department of Radiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH 45229 (C.E.M., A.J.T.); Department of Radiology, Mayo Clinic, Rochester, Minn (A.B.K.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (A.A., A.G., G.K.); Diagnostic Imaging Department, The Hospital for Sick Children and Department of Medical Imaging, University of Toronto, Ontario, Canada (G.B.C.); Department of Radiology, Nicklaus Children's Hospital, Miami, Fla (J.I.); Department of Radiology, Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Mass (A.F.O.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tenn (A.S.); Division of Gastroenterology, Hepatology, and Nutrition (J.E.S.) and Department of Radiology (J.H.S.), UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Radiology, Stanford University, Stanford, Calif (A.B.S.); Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colo (E.R.T.); and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (G.R.S.)
| | - Elizabeth R Tang
- From the Department of Radiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH 45229 (C.E.M., A.J.T.); Department of Radiology, Mayo Clinic, Rochester, Minn (A.B.K.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (A.A., A.G., G.K.); Diagnostic Imaging Department, The Hospital for Sick Children and Department of Medical Imaging, University of Toronto, Ontario, Canada (G.B.C.); Department of Radiology, Nicklaus Children's Hospital, Miami, Fla (J.I.); Department of Radiology, Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Mass (A.F.O.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tenn (A.S.); Division of Gastroenterology, Hepatology, and Nutrition (J.E.S.) and Department of Radiology (J.H.S.), UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Radiology, Stanford University, Stanford, Calif (A.B.S.); Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colo (E.R.T.); and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (G.R.S.)
| | - Alexander J Towbin
- From the Department of Radiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH 45229 (C.E.M., A.J.T.); Department of Radiology, Mayo Clinic, Rochester, Minn (A.B.K.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (A.A., A.G., G.K.); Diagnostic Imaging Department, The Hospital for Sick Children and Department of Medical Imaging, University of Toronto, Ontario, Canada (G.B.C.); Department of Radiology, Nicklaus Children's Hospital, Miami, Fla (J.I.); Department of Radiology, Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Mass (A.F.O.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tenn (A.S.); Division of Gastroenterology, Hepatology, and Nutrition (J.E.S.) and Department of Radiology (J.H.S.), UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Radiology, Stanford University, Stanford, Calif (A.B.S.); Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colo (E.R.T.); and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (G.R.S.)
| | - Gary R Schooler
- From the Department of Radiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH 45229 (C.E.M., A.J.T.); Department of Radiology, Mayo Clinic, Rochester, Minn (A.B.K.); Department of Radiology and Imaging Sciences, Emory University and Children's Healthcare of Atlanta, Atlanta, Ga (A.A., A.G., G.K.); Diagnostic Imaging Department, The Hospital for Sick Children and Department of Medical Imaging, University of Toronto, Ontario, Canada (G.B.C.); Department of Radiology, Nicklaus Children's Hospital, Miami, Fla (J.I.); Department of Radiology, Children's Hospital Los Angeles, Los Angeles, Calif (H.N.N.); Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Mass (A.F.O.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (M.A.R.); Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tenn (A.S.); Division of Gastroenterology, Hepatology, and Nutrition (J.E.S.) and Department of Radiology (J.H.S.), UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Radiology, Stanford University, Stanford, Calif (A.B.S.); Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colo (E.R.T.); and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (G.R.S.)
| |
Collapse
|
16
|
Monserrat-Mesquida M, Quetglas-Llabrés MM, Bouzas C, Pastor O, Ugarriza L, Llompart I, Cevallos-Ibarra K, Sureda A, Tur JA. Plasma Fatty Acid Composition, Oxidative and Inflammatory Status, and Adherence to the Mediterranean Diet of Patients with Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2023; 12:1554. [PMID: 37627549 PMCID: PMC10451635 DOI: 10.3390/antiox12081554] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a complex and increasingly prevalent cardiometabolic disorder worldwide. As of today, NAFLD is a pathology without specific pharmacological treatment, with the Mediterranean diet (MedDiet) being the most widely used approach for its management. The objective of this study is to assess the effects of adherence to the Mediterranean diet on fatty acid plasma levels, as well as on the oxidative and inflammatory status of NAFLD patients. A total of 100 adult patients (40-60 years old) diagnosed with NAFLD and from the Balearic Islands, Spain, were classified into three groups according to their adherence to the MedDiet. Consumption was assessed using a validated 143-item semiquantitative Food Frequency Questionnaire. Food items (g/day) were categorised according to their processing using the NOVA system. Anthropometrics, blood pressure, aminotransferases, Dietary Inflammatory Index (DII), inflammatory biomarkers, and fatty acid levels were measured in the plasma of NAFLD patients. High adherence to the MedDiet is associated to a highly plant-based diet, low ultra-processed food (UPF) consumption, low intake of dietary lipids, low intake of animal fats, high intake of monounsaturated fatty acid (MUFA; mainly palmitoleic acid), low intake of saturated fatty acids (SFAs; practically all dietary SFAs), low intake of trans-fatty acids, high intake of omega-3 fatty acids (mainly eicosapentaenoic acid), a higher n-6:n-3 in ratio, low intake of omega-6 fatty acids, and a low level of interleukin-6 (IL-6). High adherence to the MedDiet is related to a better fatty acid profile in the plasma, fewer SFAs and more MUFA and polyunsaturated fatty acids (PUFAs), a plasma biochemical profile, better proinflammatory status, and decreased ultra-processed food consumption of NAFLD patients.
Collapse
Affiliation(s)
- Margalida Monserrat-Mesquida
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), E-07120 Palma de Mallorca, Spain
| | - Maria Magdalena Quetglas-Llabrés
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), E-07120 Palma de Mallorca, Spain
| | - Cristina Bouzas
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), E-07120 Palma de Mallorca, Spain
| | - Oscar Pastor
- Service of Clinical Biochemistry, Hospital Universitario Ramon y Cajal-IRYCIS, E-28023 Madrid, Spain (K.C.-I.)
| | - Lucía Ugarriza
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), E-07120 Palma de Mallorca, Spain
- C.S. Camp Redó, IBSalut, E-07010 Palma de Mallorca, Spain
| | - Isabel Llompart
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), E-07120 Palma de Mallorca, Spain
- Clinical Analysis Service, University Hospital Son Espases, E-07198 Palma de Mallorca, Spain
| | - Karla Cevallos-Ibarra
- Service of Clinical Biochemistry, Hospital Universitario Ramon y Cajal-IRYCIS, E-28023 Madrid, Spain (K.C.-I.)
| | - Antoni Sureda
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), E-07120 Palma de Mallorca, Spain
| | - Josep A. Tur
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), E-07120 Palma de Mallorca, Spain
| |
Collapse
|
17
|
Moura Cunha G, Kolokythas O, Chen W, Akcicek H, Hitt D, Briller NE, Amin K. Intra-examination agreement between multi-echo gradient echo and confounder-corrected chemical shift-encoded MR sequences for R2* estimation as a biomarker of liver iron content in patients with a wide range of T2*/R2* and proton density fat fraction values. Abdom Radiol (NY) 2023; 48:2302-2310. [PMID: 37055586 DOI: 10.1007/s00261-023-03902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
PURPOSE To investigate the intra-examination agreement between multi-echo gradient echo (MEGE) and confounder-corrected chemical shift-encoded (CSE) sequences for liver T2*/R2* estimations in a wide range of T2*/R2* and proton density fat fraction (PDFF) values. Exploratorily, to search for the T2*/R2* value where the agreement line breaks and examine differences between regions of low and high agreement. METHODS Consecutive patients at risk for liver iron overload who underwent MEGE and CSE sequences within the same exam at 1.5 T were retrospectively selected. Regions of interest were drawn in the right and one in the left liver lobes on post-processed images for R2*(sec-1) and PDFF (%) estimation. Agreement between MEGE-R2* and CSE-R2* was evaluated using intra-class correlation coefficient (ICC) and Bland-Altman analysis. 95% confidence intervals (CI) were computed. Segment-and-regression analysis was performed to find the point where the agreement between sequences is interrupted. Regions of low and high agreement were examined using tree-based partitioning analyses. RESULTS 49 patients were included. Mean MEGE-R2* was 94.2 s-1 (range: 31.0-737.1) and mean CSE-R2* 87.7 (29.7-748.1). Mean CSE-PDFF was 9.12% (0.1-43.3). Agreement was strong for R2* estimations (ICC: 0.992,95%CI 0.987,0.996), but the relation was nonlinear and possibly heteroskedastic. Lower agreement occurred when MEGE-R2* > 235 s-1, with MEGE-R2* values consistently lower than CSE-R2*. Higher agreement was observed when PDFF < 14%. CONCLUSION MEGE-R2* and CSE-R2* strongly agree, though at higher iron content, MEGE-R2* is consistently lower than CSE-R2*. In this preliminary dataset, a breaking point for agreement was found at R2* > 235. Lower agreement was observed in patients with moderate to severe liver steatosis.
Collapse
Affiliation(s)
- Guilherme Moura Cunha
- Department of Radiology, University of Washington, 1705 NE Pacific St., Box 357233, Seattle, WA, 98195, USA.
| | - Orpheus Kolokythas
- Department of Radiology, University of Washington, 1705 NE Pacific St., Box 357233, Seattle, WA, 98195, USA
| | - Wenyu Chen
- Department of Statistics, University of Washington, Seattle, WA, USA
| | - Halit Akcicek
- Department of Radiology, University of Washington, 1705 NE Pacific St., Box 357233, Seattle, WA, 98195, USA
| | - Dave Hitt
- Philips Healthcare North America, Cleveland, OH, USA
| | - Noah E Briller
- Department of Radiology, University of Washington, 1705 NE Pacific St., Box 357233, Seattle, WA, 98195, USA
| | - Kathan Amin
- Department of Radiology, University of Washington, 1705 NE Pacific St., Box 357233, Seattle, WA, 98195, USA
| |
Collapse
|
18
|
Peng Y, Zou X, Chen G, Hu X, Shen Y, Hu D, Li Z. Chemical Shift-Encoded Sequence (IDEAL-IQ) and Amide Proton Transfer (APT) MRI for Prediction of Histopathological Factors of Rectal Cancer. Bioengineering (Basel) 2023; 10:720. [PMID: 37370651 DOI: 10.3390/bioengineering10060720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
To investigate whether parameters from IDEAL-IQ/amide proton transfer MRI (APTWI) could help predict histopathological factors of rectal cancer. Preoperative IDEAL-IQ and APTWI sequences of 67 patients with rectal cancer were retrospectively analyzed. The intra-tumoral proton density fat fraction (PDFF), R2* and magnetization transfer ratio asymmetry (MTRasym (3.5 ppm)) were measured according to the histopathological factors of rectal cancer. The relationship between MR parameters and histopathological factors were analyzed, along with diagnostic performance of MR parameters. PDFF, R2* and MTRasym (3.5 ppm) were statistically different between T1+T2/T3+T4 stages, non-metastatic/metastatic lymph nodes, lower/higher tumor grade and negative/positive status of MRF and EMVI (p < 0.001 for PDFF, p = 0.000-0.015 for R2* and p = 0.000-0.006 for MTRasym (3.5 ppm)). There were positive correlations between the above parameters and the histopathological features of rectal cancer (r = 0.464-0.723 for PDFF (p < 0.001), 0.299-0.651 for R2* (p = 0.000-0.014), and 0.337-0.667 for MTRasym (3.5 ppm) (p = 0.000-0.005)). MTRasym (3.5 ppm) correlated moderately and mildly with PDFF (r = 0.563, p < 0.001) and R2* (r = 0.335, p = 0.006), respectively. PDFF provided a significantly higher diagnostic ability than MTRasym (3.5 ppm) for distinguishing metastatic from non-metastatic lymph nodes (z = 2.407, p = 0.0161). No significant differences were found in MR parameters for distinguishing other histopathological features (p > 0.05). IDEAL-IQ and APTWI were associated with histopathological factors of rectal cancer, and might serve as non-invasive biomarkers for characterizing rectal cancer.
Collapse
Affiliation(s)
- Yang Peng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xianlun Zou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Gen Chen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xuemei Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yaqi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Daoyu Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| |
Collapse
|
19
|
Jeon KJ, Park Y, Jeong H, Lee C, Choi YJ, Han SS. Parotid gland evaluation of menopausal women with xerostomia using the iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL-IQ) method of MRI: a pilot study. Dentomaxillofac Radiol 2023; 52:20220349. [PMID: 36695352 PMCID: PMC10170170 DOI: 10.1259/dmfr.20220349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/25/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES This study aimed to analyze the quantitative fat fraction (FF) of the parotid gland in menopausal females with xerostomia using the iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL-IQ) method. METHODS A total 138 parotid glands of 69 menopausal females were enrolled in our study and participants were divided into normal group and xerostomia group. The xerostomia group was divided into those with or without Sjögren's syndrome. Participants underwent IDEAL-IQ sequences of MRI and the stimulated salivary flow test (s-SFR). The unpaired t-test was used to compare the FFs between the normal and xerostomia groups and between the subgroups with and without Sjögren's syndrome. The correlation between FF and s-SFR was analyzed by Pearson's correlation. RESULTS Excellent intra- and interobserver agreement during the measurement of FFs by IDEAL-IQ method (ICC>0.99, respectively). FF value in the xerostomia group was statistically significantly higher than the value in the normal group (p < 0.05). Within the xerostomia group, the average FF value of females with Sjögren's syndrome was higher than that of females without Sjögren's syndrome. However, the difference was not statistically significant (p > 0.05). Within the xerostomia group, FF value correlated negatively with s-SFR (p < 0.05). CONCLUSIONS The FF of the parotid gland was higher in the xerostomia group than in the normal group and FF value and s-SFR showed a negative correlation. Analyses of the FF using IDEAL-IQ in menopausal females can be helpful for the quantitative diagnosis of xerostomia.
Collapse
Affiliation(s)
- Kug Jin Jeon
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Younjung Park
- Department of Orofacial Pain and Oral Medicine, Yonsei Dental Hospital, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Hui Jeong
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Chena Lee
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Yoon Joo Choi
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Sang-Sun Han
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
20
|
Radiomics nomograms based on R2* mapping and clinical biomarkers for staging of liver fibrosis in patients with chronic hepatitis B: a single-center retrospective study. Eur Radiol 2023; 33:1653-1667. [PMID: 36149481 DOI: 10.1007/s00330-022-09137-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/05/2022] [Accepted: 09/01/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To investigate the value of R2* mapping-based radiomics nomograms in staging liver fibrosis in patients with chronic hepatitis B. METHODS Between January 2020 and December 2020, 151 patients with chronic hepatitis B were randomly divided into training (n = 103) and validation (n = 48) cohorts. From January to February 2021, 58 patients were included in a test cohort. Radiomics features were selected using the interclass correlation coefficient and least absolute shrinkage and selection operator method. Three radiomics nomograms, combining the radiomics score (Radscore) derived from R2* mapping and clinical variables, were used for staging significant and advanced fibrosis, and cirrhosis. Performance of the model was evaluated using the AUC. The utility and clinical benefits were evaluated using the continuous net reclassification index (NRI), integrated discrimination improvement (IDI), and decision curve analysis (DCA). RESULTS The Radscore calculated by 12 radiomics features and independent factors (laminin and platelet) of advanced fibrosis were used to construct the radiomics nomograms. In the test cohort, the AUCs of the radiomics nomograms for staging significant fibrosis, advanced fibrosis, and cirrhosis were 0.738 (95% confidence interval [CI]: 0.604-0.872), 0.879 (95% CI: 0.779-0.98), and 0.952 (95% CI: 0.878-1), respectively. NRI, IDI, and DCA confirmed that radiomics nomograms demonstrated varying degrees of clinical benefit and improvement for advanced fibrosis and cirrhosis, but not for significant fibrosis. CONCLUSIONS Radiomics nomograms combined with R2* mapping-based Radscore, laminin, and platelet have value in staging advanced fibrosis and cirrhosis but limited value for staging significant fibrosis. KEY POINTS • Laminin and platelets were independent predictors of advanced fibrosis. • Radiomics analysis based on R2* mapping was beneficial for evaluating advanced fibrosis and cirrhosis. • It was difficult to distinguish significant fibrosis using a radiomics nomogram, which is possibly due to the complex pathological microenvironment of chronic liver diseases.
Collapse
|
21
|
Impact of physiological parameters on the parotid gland fat fraction in a normal population. Sci Rep 2023; 13:990. [PMID: 36653427 PMCID: PMC9849206 DOI: 10.1038/s41598-023-28193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Quantifying physiological fat tissue in the organs is important to further assess the organ's pathologic status. This study aimed to investigate the impact of body mass index (BMI), age, and sex on the fat fraction of normal parotid glands. Patients undergoing magnetic resonance imaging (MRI) of iterative decomposition of water and fat with echo asymmetry and least squares estimation (IDEAL-IQ) due to non-salivary gland-related disease were reviewed. Clinical information of individual patients was categorized into groups based on BMI (under/normal/overweight), age (age I/age II/age III), and sex (female/male) and an inter-group comparison of the fat fraction values of both parotid glands was conducted. Overall, in the 626 parotid glands analyzed, the fat fraction of the gland was 35.80%. The mean fat fraction value increased with BMI (30.23%, 35.74%, and 46.61% in the underweight, normal and overweight groups, respectively [p < 0.01]) and age (32.42%, 36.20%, and 41.94% in the age I, II, and III groups, respectively [p < 0.01]). The fat content of normal parotid glands varies significantly depending on the body mass and age regardless of sex. Therefore, the patient's age and body mass should be considered when evaluating fatty change in the parotid glands in imaging results.
Collapse
|
22
|
Watanabe D, Kimura T, Yanagida K, Yoshida T, Kawae N, Nakamura T, Kajihara H, Mizushima A. Feasibility of assessing male osteoporosis using MRI IDEAL-IQ sequence of proximal femur in prostate cancer patients. Aging Male 2022; 25:228-233. [PMID: 35997228 DOI: 10.1080/13685538.2022.2112663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Osteoporosis is often accompanied by bone loss with fat accumulation of the red marrow. A novel technique for quantification of iron and fat content by MRI IDEAL-IQ can visualize hematopoietic areas and fatty deposits in bone marrow; however, the relationship between these indices and total hip bone mineral density (BMD) remains unclear. In this study, the proximal femur of 104 men who underwent pelvic MRI and bone densitometry prior to treatment for non-metastatic prostate cancer was retrospectively examined to investigate the R2* value to quantify iron and proton density fat fraction (PDFF) to assess bone marrow fat content. R2* was significantly positively correlated with BMD (r = 0.6017, p < 0.0001), and PDFF was not correlated with BMD (r = -0.1302, p = 0.0512). Patients with BMD T-score ≤ -2.5 had significantly lower R2* than patients with BMD T-score > -2.5; however, there was no significant difference in PDFF. In the ROC analysis, which examined the predictive ability of R2* with BMD T-score ≤ -2.5 as an outcome, the cut-off value of R2* was 50.7 s-1 (AUC 0.817). These results show R2* correlated with BMD. R2* may be a non-invasive surrogate marker for diagnosing male osteoporosis.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Department of Palliative Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Urology, Koto Hospital, Tokyo, Japan
| | - Takahiro Kimura
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | | - Hajime Kajihara
- Department of Orthopedic Surgery, Koto Hospital, Tokyo, Japan
| | - Akio Mizushima
- Department of Palliative Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Li YW, Jiao Y, Chen N, Gao Q, Chen YK, Zhang YF, Wen QP, Zhang ZM. How to select the quantitative magnetic resonance technique for subjects with fatty liver: A systematic review. World J Clin Cases 2022; 10:8906-8921. [PMID: 36157636 PMCID: PMC9477046 DOI: 10.12998/wjcc.v10.i25.8906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/25/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Early quantitative assessment of liver fat content is essential for patients with fatty liver disease. Mounting evidence has shown that magnetic resonance (MR) technique has high accuracy in the quantitative analysis of fatty liver, and is suitable for monitoring the therapeutic effect on fatty liver. However, many packaging methods and postprocessing functions have puzzled radiologists in clinical applications. Therefore, selecting a quantitative MR imaging technique for patients with fatty liver disease remains challenging.
AIM To provide information for the proper selection of commonly used quantitative MR techniques to quantify fatty liver.
METHODS We completed a systematic literature review of quantitative MR techniques for detecting fatty liver, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol. Studies were retrieved from PubMed, Embase, and Cochrane Library databases, and their quality was assessed using the Quality Assessment of Diagnostic Studies criteria. The Reference Citation Analysis database (https://www.referencecitationanalysis.com) was used to analyze citation of articles which were included in this review.
RESULTS Forty studies were included for spectroscopy, two-point Dixon imaging, and multiple-point Dixon imaging comparing liver biopsy to other imaging methods. The advantages and disadvantages of each of the three techniques and their clinical diagnostic performances were analyzed.
CONCLUSION The proton density fat fraction derived from multiple-point Dixon imaging is a noninvasive method for accurate quantitative measurement of hepatic fat content in the diagnosis and monitoring of fatty liver progression.
Collapse
Affiliation(s)
- You-Wei Li
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Yang Jiao
- Department of Rehabilitation Psychology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Na Chen
- Department of Otorhinolaryngology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Qiang Gao
- Department of Gastroenterology and Hepatology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Yu-Kun Chen
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Yuan-Fang Zhang
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Qi-Ping Wen
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Zong-Ming Zhang
- Department of General Surgery, Beijing Electric Power Hospital, State Grid Corporation of China, Capital Medical University, Beijing 100073, China
| |
Collapse
|
24
|
Repeatability and Image Quality of IDEAL-IQ in Human Lumbar Vertebrae for Fat and Iron Quantification across Acquisition Parameters. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2229160. [PMID: 35720027 PMCID: PMC9203175 DOI: 10.1155/2022/2229160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/09/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022]
Abstract
Echo asymmetry and least square estimation-IQ (IDEAL-IQ) were used to quantify fat and iron to verify the effects of collection parameters on repeatability and image quality of water and fat in human vertebral body. Six IDEAL-IQ sequences were used to scan 48 healthy adult women. Reproducibility of fat and iron quantification and image quality were assessed for six IDEAL-IQ sequences. The results showed that the correlation index (0.987, 0.721) of FF and R2∗ between scans of sequence 2 was higher than that of other sequences, and the consistency of fat quantification was better than that of iron (0.860 vs. 0.579) (P < 0.001). Sequence 2 had the highest image quality score (4.9) and the lowest CV score (9.2%). In the FF figure, SNR (18.8) and CNR (17.8 ± 6.4) were the highest, while CV was the lowest (36.7%, 36.1%). In the R2∗ figure, sequence 3 had the highest SNR (21.8) and CNR (20.5), but its CV (51.8% and 56.1%) was significantly higher than that of sequence 2. The occurrence of fat-water exchange (FWS) was lowest in sequence 2 and sequence 4 (0, N = 96). In conclusion, the fat quantification of IDEAL-IQ was robust to the changes of collection parameters, and section thickness (ST) had a certain effect on maintaining good repeatability of R2∗ quantification. The higher the ST was, the better the image quality of FF and R2∗ was maintained and stable and the less the occurrence of FWS.
Collapse
|
25
|
Liu D, Lin C, Liu B, Qi J, Wen H, Tu L, Wei Q, Kong Q, Xie Y, Gu J. Quantification of Fat Metaplasia in the Sacroiliac Joints of Patients With Axial Spondyloarthritis by Chemical Shift-Encoded MRI: A Diagnostic Trial. Front Immunol 2022; 12:811672. [PMID: 35116037 PMCID: PMC8804375 DOI: 10.3389/fimmu.2021.811672] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/27/2021] [Indexed: 12/21/2022] Open
Abstract
Objective To study the diagnostic performance of chemical shift-encoded MRI (CSE-MRI) in the diagnosis of axial spondyloarthritis (axSpA). Methods CSE-MRI images were acquired for consecutive patients complaining of back pain as well as healthy volunteers. Proton density fat fraction (PDFF) values were measured independently by two readers. Diagnostic performance of CSE-MRI was analyzed by sensitivity analysis and ROC curve analysis. Logistic regression analysis was employed to investigate the risk factors of extensive fat deposition in the SIJs. Results A total of 52 r-axSpA patients, 37 nr-axSpA patients, 24 non-SpA patients and 34 healthy volunteers were included. Mean PDFF values in the SIJs of patients with r-axSpA and nr-axSpA (72.7% and 64.5%) were significantly higher than non-SpA patients and healthy volunteers (56.0% and 57.6%) (p<0.001). By defining extensive fat deposition in the SIJs as ≥8 ROIs with PDFF values over 70%, its sensitivity and specificity in diagnosing axSpA reached 72.47% and 86.21%%. By joining bone marrow edema (BME) with ≥8 ROIs (PDFF>70%), 22 (24.71%) and 23 (25.84%) more axSpA patients were classified as SIJ MRI (+) by reader 1 and 2, but specificities decreased by 15.52% and 10.34%. Multivariate logistic regression analysis confirmed longer disease duration as the independent risk factor of extensive fat deposition in SIJs (OR=1.15, 95%CI[1.03, 1.32]), while bDMARDs medication was a protective factor (OR=0.15, 95%CI[0.04, 0.51]). Conclusion CSE-MRI is a reliable tool to quantitively assess the fat metaplasia in the SIJs of axSpA patients. Extensive fat deposition in the SIJs could add incremental diagnostic value to BME, but at the cost of decreased specificities.
Collapse
Affiliation(s)
- Dong Liu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Churong Lin
- Radiology Department, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Budian Liu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jun Qi
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Huiquan Wen
- Radiology Department, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liudan Tu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qiujing Wei
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qingcong Kong
- Radiology Department, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ya Xie
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jieruo Gu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Jieruo Gu,
| |
Collapse
|
26
|
Xiong Y, He T, Liu WV, Zhang Y, Hu S, Wen D, Wang Y, Zhang P, He F, Li X. Quantitative assessment of lumbar spine bone marrow in patients with different severity of CKD by IDEAL-IQ magnetic resonance sequence. Front Endocrinol (Lausanne) 2022; 13:980576. [PMID: 36204094 PMCID: PMC9530399 DOI: 10.3389/fendo.2022.980576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) has a significant negative impact on bone health. Bone marrow is an essential component of bone, mainly composed of trabecular bone and fat. The IDEAL-IQ sequence of MRI allows indirect quantification of trabecular bone mass by R2* and direct quantification of bone marrow fat content by FF map, respectively. OBJECTIVE Our objective was to explore the association of CKD severity with bone marrow using IDEAL-IQ and whether mineral and bone metabolism markers alter this association. METHOD We recruited 68 CKD patients in this cross-sectional research (15 with CKD stages 3-4, 26 with stage 5, and 27 with stage 5d). All patients underwent lumbar spine IDEAL-IQ, BMD, and several bone metabolism markers (iPTH, 25-(OH)-VitD, calcium and phosphorus). Multiple linear regression analysis was used to examine the association of CKD severity with MRI measurements (R2* and FF). RESULTS More severe CKD was associated with a higher R2* value [CKD 5d versus 3-4: 30.077 s-1 (95% CI: 12.937, 47.217), P for trend < 0.001], and this association was attenuated when iPTH was introduced [CKD 5d versus 3-4: 19.660 s-1 (95% CI: 0.205, 39.114), P for trend = 0.042]. Furthermore, iPTH had an association with R2* value [iPTH (pg/mL): 0.033 s-1 (95% CI: 0.001, 0.064), P = 0.041]. Besides, FF was mainly affected by age and BMI, but not CKD. CONCLUSIONS The bone marrow R2* value measured by IDEAL-IQ sequence is associated with CKD severity and iPTH. The R2* of IDEAL-IQ has the potential to reflect lumbar bone changes in patients with CKD.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongxiang He
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Yao Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donglin Wen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Wang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peisen Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Fan He
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Fan He, ; Xiaoming Li,
| | - Xiaoming Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Fan He, ; Xiaoming Li,
| |
Collapse
|
27
|
Chen R, Bai Y, Liu T, Zhang G, Han Y, Chen L, Gao H, Wei W, Wang M. Evaluation of Glypican-3 Expression in Hepatocellular Carcinoma by Using IDEAL IQ Magnetic Resonance Imaging. Acad Radiol 2021; 28:e227-e234. [PMID: 32540197 DOI: 10.1016/j.acra.2020.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
RATIONALE AND OBJECTIVES To investigate the value of iterative decomposition of water and fat with echo asymmetry and least squares estimation (IDEAL IQ) and gadolinium-ethoxybenzyl-diethylenetriamine (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) for evaluating Glypican-3 (GPC3) expression in hepatocellular carcinoma (HCC). MATERIALS AND METHODS Seventy-six patients with histopathologic diagnosis of HCC were retrospectively included in this study. In all patients IDEAL IQ and Gd-EOB-DTPA-enhanced MRI were performed preoperatively using a 3 T MRI system. For an identical slice through the liver of each patient a region of interest was drawn on the tumor in the hepatobiliary phase image and copied to the R2* map and fat fraction map produced by IDEAL IQ. A Mann-Whitney U test was used to compare the region of interest values of R2*, fat fraction and uptake of Gd-EOB-DTPA values between patients with positive and negative GPC3 expression HCC. Receiver operating characteristic analysis was used to determine the diagnostic performances of each of the MRI parameters in evaluating GPC3 expression and histological grade in HCC. RESULTS R2* value was significantly higher in cases of positive than negative GPC3 expression HCCs (p < 0.001), whereas there were no significant differences in fat fraction and uptake of Gd-EOB-DTPA between the 2 groups (both p > 0.05). R2* value had higher areas under receiver operating characteristic (0.881), sensitivity (85.96%), and specificity (84.21%) compared to the fat fraction and uptake of Gd-EOB-DTPA. CONCLUSION R2* value yielded from IDEAL IQ could reliably predict GPC3 expression in HCC prior to surgery.
Collapse
Affiliation(s)
- Rushi Chen
- Academy of Medical Sciences & the People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Bai
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Taiyuan Liu
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Ge Zhang
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Yanhong Han
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Lijuan Chen
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Haiyan Gao
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Wei Wei
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
28
|
Du D, Wu X, Wang J, Chen H, Song J, Liu B. Impact of iron deposit on the accuracy of quantifying liver fat fraction using multi-material decomposition algorithm in dual-energy spectral computed tomography. J Appl Clin Med Phys 2021; 22:236-242. [PMID: 34288379 PMCID: PMC8364258 DOI: 10.1002/acm2.13368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 12/31/2022] Open
Abstract
Objectives To investigate the accuracy of using multi‐material decomposition (MMD) algorithm in dual‐energy spectral computed tomography (CT) for quantifying fat fraction (FF) in the presence of iron. Materials Nine tubes with various proportions of fat and iron were prepared. FF were divided into three levels (10%, 20%, and 30%), recorded as references (FFref). Iron concentrations (in mg/100 g) were divided into three ranges (25.25–25.97, 50.38–51.55 and 75.57–77.72). The nine‐tube phantom underwent dual‐energy CT and MR. CT attenuation was measured and FF were determined using MMD in CT (FFCT) and Iterative Decomposition of water and fat with Echo Asymmetry and Least squares estimation (IDEAL‐IQ) in MR (FFMR) for each tube. Statistical analyses used were: Spearman rank correlation for correlations between FFref and CT attenuation, FFCT, and FFMR; one‐way ANOVA, and one‐sample t‐test for the differences between FFCT and FFref and between FFMR and FFref. A multivariate linear regression model was established to analyze the differences between the corresponding values with different iron concentrations under the same FFref. Results Fat fraction on CT (FFCT) and FFMR were positively correlated with FFref (all p < 0.001), while the CT attenuation was negatively correlated with FFref in the three iron concentration ranges. For a given FFref, FFCT decreased and FFMR increased as the iron concentration increased. The mean difference between FFCT and FFref over the nine tube measurements was 0.25 ± 2.45%, 5.7% lower the 5.98 ± 3.33% value between FFMR and FFref (F = 310.017, p < 0.01). Conclusion The phantom results indicate that MMD in dual‐energy CT can directly quantify volumetric FF and is less affected by iron concentration than MR IDEAL‐IQ method.
Collapse
Affiliation(s)
- Dandan Du
- Department of Radiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xingwang Wu
- Department of Radiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jinchuan Wang
- Department of Radiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hua Chen
- Department of Radiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jian Song
- Department of Radiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bin Liu
- Department of Radiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
29
|
Chianca V, Cuocolo R, Albano D. Editorial for "Quantification of Bone Marrow Fat Fraction and Iron by MRI for Distinguishing Aplastic Anemia and Myelodysplastic Syndromes". J Magn Reson Imaging 2021; 54:1761-1762. [PMID: 34131985 DOI: 10.1002/jmri.27778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/10/2023] Open
Affiliation(s)
- Vito Chianca
- Clinica di Radiologia EOC IIMSI, Lugano, Switzerland.,Dipartimento di Radiologia, Ospedale Evangelico Betania, Naples, Italy
| | - Renato Cuocolo
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II", Naples, Italy.,Laboratory of Augmented Reality for Health Monitoring (ARHeMLab), Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Domenico Albano
- Unità di Radiologia Diagnostica ed Interventistica, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Sezione di Scienze Radiologiche, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
30
|
Zeng Z, Ma X, Guo Y, Ye B, Xu M, Wang W. Quantifying Bone Marrow Fat Fraction and Iron by MRI for Distinguishing Aplastic Anemia from Myelodysplastic Syndromes. J Magn Reson Imaging 2021; 54:1754-1760. [PMID: 34117662 PMCID: PMC9292058 DOI: 10.1002/jmri.27769] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 01/19/2023] Open
Abstract
Background Bone marrow of patients with aplastic anemia (AA) is different from that of patients with myelodysplastic syndrome (MDS) and is difficult to identify by blood examination. IDEAL‐IQ (iterative decomposition of water and fat with echo asymmetry and least‐squares estimation) imaging might be able to quantify fat fraction (FF) and iron content in bone tissues. Purpose To determine if IDEAL‐IQ measurements of bone marrow FF and iron content can distinguish between patients with AA and MDS. Study Type Retrospective. Population Fifty‐seven patients with AA, 21 patients with MDS, and 24 healthy controls. Field Strength/Sequence 3.0 T, IDEAL‐IQ sequence. Assessment Three independent observers evaluated the IDEAL‐IQ images and measured FF and R2* in the left posterior superior iliac spine. Statistical Tests Kruskal–Wallis test, linear correlations, and Bland–Altman analysis were used. A P‐value of <0.05 was considered statistically significant. Results The FF in patients with AA (79.46% ± 15.00%) was significantly higher than that in patients with MDS (42.78% ± 30.09%) and control subjects (65.50% ± 14.73%). However, there was no significant difference in FF between control subjects and patients with MDS (P = 0.439). The R2* value of AA, MDS, and controls was 145.38 ± 53.33, (171.13 ± 100.89, and 135.99 ± 32.41/second, respectively, with no significant difference between the three groups (P = 0.553). Data Conclusion Quantitative IDEAL‐IQ magnetic resonance imaging may facilitate the diagnosis of AA and distinguish it from MDS. Level of Evidence 3 Technical Efficacy Stage 2
Collapse
Affiliation(s)
- Zhaolong Zeng
- Radiology Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Radiology Department, The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China, Hangzhou, China
| | - Xiangzheng Ma
- Radiology Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Radiology Department, The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China, Hangzhou, China
| | - Yifan Guo
- Radiology Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Radiology Department, The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China, Hangzhou, China
| | - Baodong Ye
- Radiology Department, The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China, Hangzhou, China.,Hematology Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Maosheng Xu
- Radiology Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Radiology Department, The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China, Hangzhou, China
| | - Wei Wang
- Radiology Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Radiology Department, The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China, Hangzhou, China
| |
Collapse
|
31
|
Jeon KJ, Lee C, Choi YJ, Han SS. Assessment of bone marrow fat fractions in the mandibular condyle head using the iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL-IQ) method. PLoS One 2021; 16:e0246596. [PMID: 33635882 PMCID: PMC7909693 DOI: 10.1371/journal.pone.0246596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/22/2021] [Indexed: 12/25/2022] Open
Abstract
The prevalence of temporomandibular joint disorder (TMD) is gradually increasing, and magnetic resonance imaging (MRI) is becoming increasingly common as a modality used to diagnose TMD. Edema and osteonecrosis in the bone marrow of the mandibular condyle have been considered to be precursors of osteoarthritis, but these changes are not evaluated accurately and quantitatively on routine MRI. The iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL-IQ) method, as a cutting-edge MRI technique, can separate fat and water using three asymmetric echo times and the three-point Dixon method. The purpose of this study was to analyze the quantitative fat fraction (FF) in the mandibular condyle head using the IDEAL-IQ method. Seventy-nine people who underwent MRI using IDEAL-IQ were investigated and divided into 1) the control group, without TMD symptoms, and 2) the TMD group, with unilateral temporomandibular joint (TMJ) pain. In both groups, the FF of the condyle head in the TMJ was analyzed by two oral and maxillofacial radiologists. In the TMD group, 29 people underwent cone-beam computed tomography (CBCT) and the presence or absence of bony changes in the condylar head was evaluated. The FF measurements of the condyle head using IDEAL-IQ showed excellent inter-observer and intra-observer agreement. The average FF of the TMD group was significantly lower than that of the control group (p < 0.05). In the TMD group, the average FF values of joints with pain and joints with bony changes were significantly lower than those of joints without pain or bony changes, respectively (p < 0.05). The FF using IDEAL-IQ in the TMJ can be helpful for the quantitative diagnosis of TMD.
Collapse
Affiliation(s)
- Kug Jin Jeon
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Chena Lee
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Yoon Joo Choi
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Sang-Sun Han
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
32
|
Lins CF, Salmon CEG, Nogueira-Barbosa MH. Applications of the Dixon technique in the evaluation of the musculoskeletal system. Radiol Bras 2021; 54:33-42. [PMID: 33583975 PMCID: PMC7869722 DOI: 10.1590/0100-3984.2019.0086] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The acquisition of images with suppression of the fat signal is very useful in clinical practice and can be achieved in a variety of sequences. The Dixon technique, unlike other fat suppression techniques, allows the signal of fat to be suppressed in the postprocessing rather than during acquisition, as well as allowing the visualization of maps showing the distribution of water and fat. This review of the Dixon technique aims to illustrate the basic physical principles, to compare the technique with other magnetic resonance imaging sequences for fat suppression or fat quantification, and to describe its applications in the study of diseases of the musculoskeletal system. Many variants of the Dixon technique have been developed, providing more consistent separation of the fat and water signals, as well as allowing correction for many confounding factors. It allows homogeneous fat suppression, being able to be acquired in combination with several other sequences, as well as with different weightings. The technique also makes it possible to obtain images with and without fat suppression from a single acquisition. In addition, the Dixon technique can be used as a quantitative method, allowing the proportion of tissue fat to be determined, and, in more updated versions, can quantify tissue iron.
Collapse
Affiliation(s)
- Carolina Freitas Lins
- Escola Bahiana de Medicina e Saúde Pública, Salvador, BA, Brazil.,Delfin Inteligência Diagnóstica, Salvador, BA, Brazil
| | - Carlos Ernesto Garrido Salmon
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
33
|
Blonna D, Olivero A, Galletta C, Greco V, Castoldi F, Fracassi M, Davico M, Rossi R. Minimal Damage to the Supinator Muscle After the Double-Incision Technique for Distal Biceps Tendon Repair. Orthop J Sports Med 2020; 8:2325967120967776. [PMID: 33354582 PMCID: PMC7734523 DOI: 10.1177/2325967120967776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/03/2020] [Indexed: 11/16/2022] Open
Abstract
Background The effect of the double-incision technique on the supinator muscle is unclear. Purpose The aim of this study was to quantify fatty atrophy of the supinator muscle and map the area of muscle damage. Study Design Case series; Level of evidence, 4. Methods A total of 19 male patients (median age, 43 years) who underwent distal biceps tendon repair were included in the analysis. Patients with a minimum of 12 months of follow-up were included. The following variables were analyzed: range of motion; shortened version of Disabilities of the Arm, Shoulder and Hand (QuickDASH) score; Summary Outcome Determination (SOD) score; and isokinetic peak force and endurance in supination. Quantitative analysis and mapping of fatty infiltration of the supinator muscle were based on the calculation of proton density fat fraction on magnetic resonance imaging scans of both elbows using the IDEAL (Iterative Decomposition of Echoes of Asymmetrical Length) sequence. Results At an average follow-up of 24 months (range, 12-64 months), the median SOD score was 9.0 (95% CI, 7.8-9.4), and the mean QuickDASH score was 6.7 (95% CI, 0.0-14.1). A difference of 17% in peak torque was measured between repaired and nonrepaired elbows (repaired elbow: 9.7 N·m; nonrepaired elbow: 11.7 N·m; P = .11). Endurance was better in the repaired elbow than the nonrepaired elbow (8.4% vs 14.9% work fatigue, respectively; P = .02). The average fat fraction of the supinator muscle was 19% (95% CI, 16%-21%) in repaired elbows and 14% (95% CI, 13%-16%) in contralateral elbows (P = .04). The increase in fat fraction was located in a limited area between the radius and ulna at the level of the bicipital tuberosity. Conclusion The assessment of the supinator muscle showed a limited increase in fat fraction between the radius and ulna at the level of the bicipital tuberosity. No significant effect on supination strength was highlighted.
Collapse
|
34
|
Monserrat-Mesquida M, Quetglas-Llabrés M, Abbate M, Montemayor S, Mascaró CM, Casares M, Tejada S, Abete I, Zulet MA, Tur JA, Martínez JA, Sureda A. Oxidative Stress and Pro-Inflammatory Status in Patients with Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2020; 9:E759. [PMID: 32824349 PMCID: PMC7463614 DOI: 10.3390/antiox9080759] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive fat accumulation, especially triglycerides, in hepatocytes. If the pathology is not properly treated, it can progress to nonalcoholic steatohepatitis (NASH) and continue to fibrosis, cirrhosis or hepatocarcinoma. OBJECTIVE The aim of the current research was to identify the plasma biomarkers of liver damage, oxidative stress and inflammation that facilitate the early diagnosis of the disease and control its progression. METHODS Antioxidant and inflammatory biomarkers were measured in the plasma of patients diagnosed with NAFLD (n = 100 adults; 40-60 years old) living in the Balearic Islands, Spain. Patients were classified according to the intrahepatic fat content (IFC) measured by magnetic resonance imaging (MRI). RESULTS Circulating glucose, glycosylated haemoglobin, triglycerides, low-density lipoprotein-cholesterol, aspartate aminotransferase and alanine aminotransferase were higher in patients with an IFC ≥ 2 of NAFLD in comparison to patients with an IFC of 0 and 1. The plasma levels of catalase, irisin, interleukin-6, malondialdehyde, and cytokeratin 18 were higher in stage ≥2 subjects, whereas the resolvin D1 levels were lower. No differences were observed in xanthine oxidase, myeloperoxidase, protein carbonyl and fibroblast growth factor 21 depending on liver status. CONCLUSION The current available data show that the severity of NAFLD is associated with an increase in oxidative stress and proinflammatory status. It may be also useful as diagnostic purpose in clinical practice.
Collapse
Affiliation(s)
- Margalida Monserrat-Mesquida
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands and Health Research Institute of Balearic Islands (IdISBa), 07122 Palma de Mallorca, Spain; (M.M.-M.); (M.Q.-L.); (M.A.); (S.M.); (C.M.M.); (S.T.); (A.S.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (I.A.); (M.A.Z.); (J.A.M.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Magdalena Quetglas-Llabrés
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands and Health Research Institute of Balearic Islands (IdISBa), 07122 Palma de Mallorca, Spain; (M.M.-M.); (M.Q.-L.); (M.A.); (S.M.); (C.M.M.); (S.T.); (A.S.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Manuela Abbate
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands and Health Research Institute of Balearic Islands (IdISBa), 07122 Palma de Mallorca, Spain; (M.M.-M.); (M.Q.-L.); (M.A.); (S.M.); (C.M.M.); (S.T.); (A.S.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Sofía Montemayor
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands and Health Research Institute of Balearic Islands (IdISBa), 07122 Palma de Mallorca, Spain; (M.M.-M.); (M.Q.-L.); (M.A.); (S.M.); (C.M.M.); (S.T.); (A.S.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Catalina M. Mascaró
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands and Health Research Institute of Balearic Islands (IdISBa), 07122 Palma de Mallorca, Spain; (M.M.-M.); (M.Q.-L.); (M.A.); (S.M.); (C.M.M.); (S.T.); (A.S.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Miguel Casares
- Radiodiagnosis Service, Red Asistencial Juaneda, 07011 Palma de Mallorca, Spain;
| | - Silvia Tejada
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands and Health Research Institute of Balearic Islands (IdISBa), 07122 Palma de Mallorca, Spain; (M.M.-M.); (M.Q.-L.); (M.A.); (S.M.); (C.M.M.); (S.T.); (A.S.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (I.A.); (M.A.Z.); (J.A.M.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- Laboratory of Neurophysiology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Itziar Abete
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (I.A.); (M.A.Z.); (J.A.M.)
- Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Maria Angeles Zulet
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (I.A.); (M.A.Z.); (J.A.M.)
- Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Josep A. Tur
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands and Health Research Institute of Balearic Islands (IdISBa), 07122 Palma de Mallorca, Spain; (M.M.-M.); (M.Q.-L.); (M.A.); (S.M.); (C.M.M.); (S.T.); (A.S.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (I.A.); (M.A.Z.); (J.A.M.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - J. Alfredo Martínez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (I.A.); (M.A.Z.); (J.A.M.)
- Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Cardiometabolics Precision Nutrition Program, IMDEA Food, CEI UAM-CSIC, 28049 Madrid, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands and Health Research Institute of Balearic Islands (IdISBa), 07122 Palma de Mallorca, Spain; (M.M.-M.); (M.Q.-L.); (M.A.); (S.M.); (C.M.M.); (S.T.); (A.S.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (I.A.); (M.A.Z.); (J.A.M.)
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| |
Collapse
|
35
|
Gkotsis DE, Gotsis ED, Lymperopoulou G, Karaiskos P, Seimenis I. Determination of the R 2* relaxation rate constant for estimating hepatic iron concentration: A customized approach that considers liver fat infiltration. Phys Med 2020; 76:150-158. [PMID: 32679410 DOI: 10.1016/j.ejmp.2020.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/05/2020] [Accepted: 06/23/2020] [Indexed: 10/23/2022] Open
Abstract
PURPOSE Α customized approach to determine R2* relaxation rate for hepatic iron concentration (HIC) estimation is presented, and is evaluated in the context of concurrent liver fat infiltration. METHODS The proposed method employs a customized acquisition protocol, featuring a 16-echo, gradient-echo sequence, and a bi-exponential least squares fitting that considers baseline noise and uses a cosine function to correct for fat-induced signal oscillation. 193 patients with wide-ranging HIC and liver fat fraction (FF) were imaged at 1.5 T. In severely iron-overload patients, a four-echo train technique was applied to enforce all 16 echoes in the 1.2-4.0 ms range. Acquired data were compared to corresponding results obtained with the IDEAL IQ method. RESULTS Techniques employed to counter the rapid signal decay in iron-overloaded liver, such as the offset and the truncation methods, have to be combined with the appropriate calibration curve to provide reliable HIC estimation. When high grade steatosis and siderosis co-exist, fat-suppression may downgrade siderosis. A high correlation was observed between data obtained with the proposed technique and the IDEAL IQ method, except from the high R2* region. However, systematic differences were detected. In the concurrent presence of high FF and non-severe iron overload, it is postulated that the bi-exponential model may attribute patient siderosis grading more accurately than IDEAL IQ, while simultaneously providing reliable FF estimation. CONCLUSIONS The proposed approach is widely available and seems capable of providing reliable R2* measurements regardless of liver steatosis grading, whilst it succeeds in averting significant R2* underestimation in severely iron-overloaded liver.
Collapse
Affiliation(s)
- D E Gkotsis
- National and Kapodistrian University of Athens, Medical School, Department of Medical Physics, Greece
| | | | - G Lymperopoulou
- National and Kapodistrian University of Athens, Medical School, 1(st) Department of Radiology, Greece
| | - P Karaiskos
- National and Kapodistrian University of Athens, Medical School, Department of Medical Physics, Greece
| | - I Seimenis
- National and Kapodistrian University of Athens, Medical School, Department of Medical Physics, Greece.
| |
Collapse
|
36
|
Sinha U, Malis V, Chen JS, Csapo R, Kinugasa R, Narici MV, Sinha S. Role of the Extracellular Matrix in Loss of Muscle Force With Age and Unloading Using Magnetic Resonance Imaging, Biochemical Analysis, and Computational Models. Front Physiol 2020; 11:626. [PMID: 32625114 PMCID: PMC7315044 DOI: 10.3389/fphys.2020.00626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022] Open
Abstract
The focus of this review is the application of advanced MRI to study the effect of aging and disuse related remodeling of the extracellular matrix (ECM) on force transmission in the human musculoskeletal system. Structural MRI includes (i) ultra-low echo times (UTE) maps to visualize and quantify the connective tissue, (ii) diffusion tensor imaging (DTI) modeling to estimate changes in muscle and ECM microstructure, and (iii) magnetization transfer contrast imaging to quantify the macromolecular fraction in muscle. Functional MRI includes dynamic acquisitions during contraction cycles enabling computation of the strain tensor to monitor muscle deformation. Further, shear strain extracted from the strain tensor may be a potential surrogate marker of lateral transmission of force. Biochemical and histological analysis of muscle biopsy samples can provide "gold-standard" validation of some of the MR findings. The review summarizes biochemical studies of ECM adaptations with age and with disuse. A brief summary of animal models is included as they provide experimental confirmation of longitudinal and lateral force transmission pathways. Computational muscle models enable exploration of force generation and force pathways and elucidate the link between structural adaptations and functional consequences. MR image findings integrated in a computational model can explain and predict subject specific functional changes to structural adaptations. Future work includes development and validation of MRI biomarkers using biochemical analysis of muscle tissue as a reference standard and potential translation of the imaging markers to the clinic to noninvasively monitor musculoskeletal disease conditions and changes consequent to rehabilitative interventions.
Collapse
Affiliation(s)
- Usha Sinha
- Department of Physics, San Diego State University, San Diego, CA, United States
| | - Vadim Malis
- Department of Physics, University of California, San Diego, San Diego, CA, United States
| | - Jiun-Shyan Chen
- Department of Structural Engineering, University of California, San Diego, San Diego, CA, United States
| | - Robert Csapo
- Research Unit for Orthopaediic Sports Medicine and Injury Prevention, ISAG, Private University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Ryuta Kinugasa
- Department of Human Sciences, Kanagawa University, Yokohama, Japan.,Computational Engineering Applications Unit, Advanced Center for Computing and Communication, RIKEN, Saitama, Japan
| | - Marco Vincenzo Narici
- Institute of Physiology, Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Shantanu Sinha
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
37
|
Salt-and-Pepper Noise Sign on Fat-Fraction Maps by Chemical-Shift–Encoded MRI: A Useful Sign to Differentiate Bone Islands From Osteoblastic Metastases—A Preliminary Study. AJR Am J Roentgenol 2020; 214:1139-1145. [DOI: 10.2214/ajr.19.22177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
38
|
Jeong SY, Lee J, Kim KW, Jang JK, Kwon HJ, Song GW, Lee SG. Estimation of the Right Posterior Section Volume in Live Liver Donors: Semiautomated CT Volumetry Using Portal Vein Segmentation. Acad Radiol 2020; 27:210-218. [PMID: 31060982 DOI: 10.1016/j.acra.2019.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
Abstract
RATIONALE AND OBJECTIVES To determine the accuracy of semiautomated CT volumetry using portal vein (PV) segmentation to estimate volume of the right posterior section (RPS) graft compared to intraoperative measured weight (W) in live liver donors. MATERIALS AND METHODS Among 23 donors who donated RPS grafts for liver transplantation in our institution from April 2003 to August 2016, 17 donors with CT scans within 3 months of liver procurement and PV anatomy of type I-III were included. RPS volumes were retrospectively evaluated by semiautomated CT volumetry (RPSVCTV) and by measurement of standard liver volume (SLV) and PV area ratio (RPSVSLV). RPS volumes were compared to W for correlation coefficients, (absolute) difference, and (absolute) percentage deviation. Linear fitting was performed to identify the method that yielded the greatest correlation with W. RESULTS Mean values of RPSVCTV, RPSVSLV, and W were 503.4 ± 97.8 mL (346.6-686.0), 516.54 ± 146.20 (274.06-776.32), and 518.8 ± 122.4 (370.0-789.0), respectively. RPSVCTV was strongly correlated with W (r = 0.9414; p < 0.0001), whereas RPSVSLV was only moderately did (r = 0.5899; p = 0.0127). RPSVCTV showed a significantly smaller absolute difference (35.20 ± 30.82 vs. 104.79 ± 60.27, p = 0.004) and absolute percentage deviation (6.61 ± 4.90 vs. 19.92 ± 10.37, p < 0.0001) from W. Equation correlating RPSVCTV and W was W = -74.7191 + 1.1791 RPSVCTV (R2 = 0.8862; p < 0.001). CONCLUSION RPSVCTV yields smaller absolute difference than RPSVSLV for estimating intraoperative measured weight of RPS in live liver donors. Semiautomated CT volumetry using PV segmentation is feasible for the estimation of the volume of the RPS of the liver, and RPSVCTV was strongly correlated with W (r = 0.9414; p < 0.0001).
Collapse
|
39
|
Gulani V, Seiberlich N. Quantitative MRI: Rationale and Challenges. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/b978-0-12-817057-1.00001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|