1
|
Stenvall A, Ceric Andelius I, Nilsson E, Lindvall A, Larsson E, Gustafsson J. Bias and precision of SPECT-based 177Lu activity-concentration estimation using a ring-configured solid-state versus a dual-headed anger system. EJNMMI Phys 2024; 11:91. [PMID: 39489825 PMCID: PMC11532328 DOI: 10.1186/s40658-024-00693-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND The aim was to compare bias and precision for 177Lu-SPECT activity-concentration estimation using a dual-headed Anger SPECT system and a ring-configured CZT SPECT system. This was investigated for imaging at 208 keV and 113 keV, respectively. METHODS Phantom experiments were performed on a GE Discovery 670 system with 5/8'' NaI(Tl) crystal (dual-headed Anger system) and a GE StarGuide (ring-configured CZT system). Six spheres (1.2 mL to 113 mL) in a NEMA PET body phantom were filled with 99mTc and 177Lu, separately. Mean relative errors and coefficients of variation (CV) in estimated sphere activity concentration were studied over six timeframes of 10 min each for the two systems. For 177Lu, similar acquisitions were also performed for an anthropomorphic phantom with two spheres (10 mL and 25 mL) in a liver with non-radioactive background and a sphere-to-background ratio of 15:1. Tomographic reconstruction was performed using OS-EM with 10 subsets with compensation for attenuation, scatter, and distance-dependent spatial resolution. For the Anger system, up to 40 iterations were used and for the ring-configured CZT system up to 30 iterations were used. RESULTS The two systems showed similar mean relative errors and CVs for 177Lu when using an energy window around 208 keV, while the ring-configured system demonstrated a lower bias for a similar CV compared to the Anger system for 99mTc and for 177Lu when using an energy window around 113 keV. However, total activity in the phantom tended to be overestimated in both systems for these cases. CONCLUSIONS The ring-configured CZT system is a viable alternative to the dual-headed Anger system equipped with medium-energy collimators for 177Lu-SPECT and shows a potential advantage for activity-concentration estimation when operated at 113 keV. However, further consideration of the preservation of total activity is warranted.
Collapse
Affiliation(s)
- Anna Stenvall
- Radiation Physics, Department of Haematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Irma Ceric Andelius
- Radiation Physics, Department of Haematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Department of Translational Medicine and Wallenberg Centre of Molecular Medicine, Lund University, Malmö, Sweden
| | - Elias Nilsson
- Radiation Physics, Department of Haematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Albin Lindvall
- Department of Nuclear Medicine and Medical Physics, Karolinska University Hospital, Stockholm, Sweden
| | - Erik Larsson
- Radiation Physics, Department of Haematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | | |
Collapse
|
2
|
Hoog C, Koulibaly PM, Sas N, Imbert L, Le Rouzic G, Popoff R, Badel JN, Ferrer L. 360° CZT-SPECT/CT cameras: 99mTc- and 177Lu-phantom-based evaluation under clinical conditions. EJNMMI Phys 2024; 11:89. [PMID: 39446222 PMCID: PMC11502619 DOI: 10.1186/s40658-024-00684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
PURPOSE For the first time, three currently available 360° CZT-SPECT/CT cameras were compared under clinical conditions using phantom-based measurements. METHODS A 99mTc- and a 177Lu-customized NEMA IEC body phantom were imaged with three different cameras, StarGuide (GE Healthcare), VERITON-CT versions 200 (V200) and 400 (V400) (Spectrum Dynamics Medical) under the same clinical conditions. Energy resolution and volumetric sensitivity were evaluated from energy spectra. Vendors provided the best reconstruction parameters dedicated to visualization and/or quantification, based on their respective software developments. For both 99mTc- and 177Lu-phantoms, noise level, quantification accuracy, and recovery coefficient (RC) were performed with 3DSlicer. Image quality metrics from an approach called "task-based" were computed with iQMetrix-CT on 99mTc visual reconstructions to assess, through spatial frequencies, noise texture in the background (NPS) and contrast restitution of a hot insert (TTF). Spatial resolution indices were calculated from frequencies corresponding to TTF10% and TTF50%. RESULTS Despite the higher sensitivity of VERITON cameras and the enhanced energy resolution of the V400 (3.2% at 140 keV, 5.2% at 113 keV, and 3.6% at 208 keV), StarGuide presents comparable image quality. This highlights the need to differentiate sensitivity from count quality, which is influenced by hardware design (collimator, detector block) and conditions image quality as well as the reconstruction process (algorithms, scatter correction, noise regulation). For 99mTc imaging, the quantitative image optimization approach based on RCmean for StarGuide versus RCmax for V200 and V400 systems (RCmean/RCmax: 0.9/1.8; 0.5/0.9; 0.5/0.9 respectively-Ø37 mm). SRTB10/50 showed nearly equivalent spatial resolution performances across the different reconstructed images. For 177Lu imaging, the 113 keV imaging of the V200 and V400 systems demonstrated strong performances in both image quality and quantification, while StarGuide and V400 systems offer even better potential due to their ability to exploit signals from both the 113 and 208 keV peaks. 177Lu quantification was optimized according to RCmax for all cameras and reconstructions (1.07 ± 0.09-Ø37 mm). CONCLUSIONS The three cameras have equivalent potential for 99mTc imaging, while StarGuide and V400 have demonstrated higher potential for 177Lu. Dedicated visual or quantitative reconstructions offer better specific performances compared to the unified visual/quantitative reconstruction. The task-based approach appears to be promising for in-depth comparison of images in the context of system characterization/comparison and protocol optimization.
Collapse
Affiliation(s)
- Christopher Hoog
- Medical Physics Department, Institut Godinot Comprehensive Cancer Center, Reims, France.
| | - Pierre-Malick Koulibaly
- Department of Diagnostic Radiology and Nuclear Medicine, Antoine Lacassagne Comprehensive Cancer Center, Université Nice-Côte d'Azur, 33 Avenue de Valombrose, 06189, Nice, France
| | - Nicolas Sas
- Department of Medical Physics, Jean Perrin Comprehensive Cancer Center, 63000, Clermont-Ferrand, France
| | - Laetitia Imbert
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU-Nancy, Université de Lorraine, 54000, Nancy, France
| | - Gilles Le Rouzic
- Nuclear Medicine Department, CHU Orleans, 14 Avenue de l'Hôpital, 45100, Orleans, France
| | - Romain Popoff
- Department of Medical Physics, Georges-François Leclerc Cancer Center, 1 Rue du Professeur Marion, 21000, Dijon, France
- ICMUB, UMR 6302, CNRS, Dijon, France
| | - Jean-Noël Badel
- Centre de Lutte Contre le Cancer Léon-Bérard, CREATIS CNRS UMR 5220 INSERM U 1044, Université de Lyon, INSA-Lyon, Lyon, France
| | - Ludovic Ferrer
- Medical Physics Department, ICO René Gauducheau, Saint Herblain, 44805, France
- CRCINA, UMR 1232, INSERM, Nantes, France
| |
Collapse
|
3
|
Verger A, Cecchin D, Guedj E, Albert NL, Brendel M, Fraioli F, Tolboom N, Traub-Weidinger T, Yakushev I, Van Weehaeghe D, Fernandez PA, Garibotto V, Imbert L. EANM perspectives for CZT SPECT in brain applications. Eur J Nucl Med Mol Imaging 2024; 51:3680-3684. [PMID: 38858281 DOI: 10.1007/s00259-024-06788-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Affiliation(s)
- Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, Université de Lorraine, IADI, INSERM U1254, Allée du Morvan, Nancy, 54500, France.
| | - Diego Cecchin
- Department of Medicine, Unit of Nuclear Medicine, University Hospital of Padova, Padova, Italy
| | - Eric Guedj
- Département de Médecine Nucléaire, Aix Marseille Univ, APHM, CNRS, Centrale Marseille, Institut Fresnel, Hôpital de La Timone, CERIMED, Marseille, France
| | - Nathalie L Albert
- Department of Nuclear Medicine, LMU Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Francesco Fraioli
- Institute of Nuclear Medicine, University College London (UCL), London, UK
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Tatjana Traub-Weidinger
- Department of Diagnostic and Therapeutic Nuclear Medicine, Clinic Donaustadt, Vienna Health Care Group, Vienna, Austria
| | - Igor Yakushev
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts dr Isar, Technical University of Munich, Munich, Germany
| | - Donatienne Van Weehaeghe
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, C. Heymanslaan 10, Ghent, 9000, Belgium
| | - Pablo Aguiar Fernandez
- CIMUS, Universidade Santiago de Compostela & Nuclear Medicine Department, Univ. Hospital IDIS, Santiago de Compostela, Spain
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, Geneva, 1205, Switzerland
- NIMTLab, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Geneva, Switzerland
| | - Laetitia Imbert
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, Université de Lorraine, IADI, INSERM U1254, Allée du Morvan, Nancy, 54500, France
| |
Collapse
|
4
|
Kato T, Ichikawa H, Kawakami K, Hosoya T, Banno T, Kato T, Ito S. [Feasibility of Adapting Various Tumor-to-normal Bone Ratio Images on an Automatic Quantification Package for Phantom-based Image Quality Assessment in Bone SPECT]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2024:2024-1497. [PMID: 39343536 DOI: 10.6009/jjrt.2024-1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
We investigated the impact of the tumor-to-normal bone ratio (TNR) on the concordance rate between a detectability score classified by software (DSsoft) using an automatic quantification package for bone SPECT (Hone Graph) and a detectability score classified by visual assessment (DSvisual), and considered the feasibility of applying this software to various TNR images. 99mTc solution was filled into a SIM2 bone phantom to achieve TNRs of 4, 6, and 8, performed by dynamic SPECT acquisitions performed for 12 minutes; reconstructions were performed using ordered subset expectation maximization at timepoints ranging from 4 to 12 minutes. This yielded a total of 384 lesions (96 SPECT images). We investigated the weighted kappa (κw) coefficient between DSsoft and DSvisual at various TNRs and evaluated the change in analysis accuracy before and after applying newly created analysis parameters. DSs were defined on a 4-point scale (4: excellent, 3: adequate, 2: average, 1: poor), and visual evaluations were conducted by three board-certified nuclear medicine technologists. The κw coefficients between DSsoft and DSvisual were 0.75, 0.97, and 0.93 for TNRs 4, 6, and 8, respectively, with each κw coefficient being significant (p<0.01). In the TNR 4 image group, κw coefficients significantly increased with the implementation of new parameters proposed in this study. We concluded that the software's automatic analysis would be closer to a visual assessment within the TNR range of 4-8 and that applying new parameters derived from this study to images with TNR 4 further improves the software's automatic analysis accuracy of DSsoft. We suggest that software will be a useful tool for optimizing bone SPECT imaging techniques.
Collapse
Affiliation(s)
- Toyohiro Kato
- Department of Radiology, Toyohashi Municipal Hospital
| | - Hajime Ichikawa
- Department of Radiology, Toyohashi Municipal Hospital
- Department of Quantum Medical Technology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | | | | | - Tomoya Banno
- Department of Radiology, Toyohashi Municipal Hospital
| | - Taiki Kato
- Department of Radiology, Toyohashi Municipal Hospital
| | - Satomi Ito
- Department of Radiology, Toyohashi Municipal Hospital
| |
Collapse
|
5
|
Zamani-Siahkali N, Mirshahvalad SA, Farbod A, Divband G, Pirich C, Veit-Haibach P, Cook G, Beheshti M. SPECT/CT, PET/CT, and PET/MRI for Response Assessment of Bone Metastases. Semin Nucl Med 2024; 54:356-370. [PMID: 38172001 DOI: 10.1053/j.semnuclmed.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
Recent developments in hybrid SPECT/CT systems and the use of cadmium-zinc-telluride (CZT) detectors have improved the diagnostic accuracy of bone scintigraphy. These advancements have paved the way for novel quantitative approaches to accurate and reproducible treatment monitoring of bone metastases. PET/CT imaging using [18F]F-FDG and [18F]F-NaF have shown promising clinical utility in bone metastases assessment and monitoring response to therapy and prediction of treatment response in a broad range of malignancies. Additionally, specific tumor-targeting tracers like [99mTc]Tc-PSMA, [68Ga]Ga-PSMA, or [11C]C- or [18F]F-Choline revealed high diagnostic performance for early assessment and prognostication of bone metastases, particularly in prostate cancer. PET/MRI appears highly accurate imaging modality, but has associated limitations notably, limited availability, more complex logistics and high installation costs. Advances in artificial intelligence (Al) seem to improve the accuracy of imaging modalities and provide an assistant role in the evaluation of treatment response of bone metastases.
Collapse
Affiliation(s)
- Nazanin Zamani-Siahkali
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirshahvalad
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, Canada
| | - Abolfazl Farbod
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Patrick Veit-Haibach
- Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, Canada
| | - Gary Cook
- Cancer Imaging Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
6
|
Cerić Andelius I, Minarik D, Persson E, Mosén H, Valind K, Trägårdh E, Oddstig J. First clinical experience of a ring-configured cadmium zinc telluride camera: A comparative study versus conventional gamma camera systems. Clin Physiol Funct Imaging 2024; 44:79-88. [PMID: 37592454 DOI: 10.1111/cpf.12853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/08/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND A novel semiconductor cadmium zinc telluride (CZT) gamma camera system using a block sequential regularized expectation maximization (BSREM) reconstruction algorithm is now clinically available. Here we investigate how a multi-purpose ring-configurated CZT system can be safely applied in clinics and describe the initial optimization process. METHOD Seventy-six patients (bone-, cardiac- and lung scan) were scanned on a conventional gamma camera (planar and/or single-photon emission computed tomography [SPECT]/SPECT-CT) used in clinical routine and on the ring-configurated CZT camera Starguide (GE Healthcare). These data were used to validate and optimize the Starguide system for routine clinical use. RESULTS Comparable image quality for the Starguide system, to that of the conventional gamma camera, was achieved for bone scan (4 min/bed position [BP] using a relative difference prior [RDP] with gamma 2 and beta 0.4, along with 10 iterations and 10 subsets), cardiac scan (8 min [stress] and 3 min 20 s [rest] using median root prior [MRP] with beta 0.07 non attenuation corrected and 0.008 attenuation corrected and 50 interations and 10 subsets for both stress and rest) and lung scan (10 min [vent] and 5 min [perf] using RDP with gamma 0.5 and beta 0.03 [vent] and 0.02 [perf] and 20 interations and 10 subsets for both vent and perf). CONCLUSIONS It was possible to transition from a conventional gamma camera to the Starguide system as part of the clinical routine, with acceptable image quality. Images from the Starguide system were deemed to be at least as good as those from a conventional gamma camera.
Collapse
Affiliation(s)
| | - David Minarik
- Radiation Physics, Skåne University Hospital, Lund/Malmö, Sweden
- Department of Translational Medicine and Wallenberg Centre of Molecular Medicine, Lund University, Malmö, Sweden
| | - Eva Persson
- Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund/Malmö, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Henrik Mosén
- Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund/Malmö, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kristian Valind
- Department of Translational Medicine and Wallenberg Centre of Molecular Medicine, Lund University, Malmö, Sweden
- Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund/Malmö, Sweden
| | - Elin Trägårdh
- Department of Translational Medicine and Wallenberg Centre of Molecular Medicine, Lund University, Malmö, Sweden
- Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund/Malmö, Sweden
| | - Jenny Oddstig
- Radiation Physics, Skåne University Hospital, Lund/Malmö, Sweden
- Department of Translational Medicine and Wallenberg Centre of Molecular Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
7
|
Cerić Andelius I, Fridriksdóttir R, Minarik D, Hedeer F, Stenvall A, Trägårdh E, Oddstig J. Verification of reprojected planar images generated from a ring-configured cadmium zinc telluride gamma camera in scintigraphy for diagnosing transthyretin cardiac amyloidosis. EUROPEAN HEART JOURNAL. IMAGING METHODS AND PRACTICE 2024; 2:qyae051. [PMID: 39224107 PMCID: PMC11367964 DOI: 10.1093/ehjimp/qyae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/23/2024] [Indexed: 09/04/2024]
Abstract
Aims Non-invasive diagnosis of amyloid transthyretin (ATTR) cardiac amyloidosis using planar scintigraphy and single-photon emission computed tomography-computed tomography (SPECT-CT) with [99mTc]Tc-3,3-diphosphono-1,2-propanodicarboxylic acid ([99mTc]Tc-DPD) has high specificity and sensitivity. However, the introduction of ring-configured cadmium zinc telluride (CZT) gamma cameras warrants an update in the acquisition method since these systems are not able to perform planar scintigraphy. We aimed to verify the use of reprojected planar images from SPECT-CT as a replacement for planar scintigraphy in evaluating ATTR-amyloidosis. Methods and results The study examined 30 patients referred for clinically indicated [99mTc]Tc-DPD scintigraphy who were scanned with both a conventional gamma camera and a ring-configured CZT gamma camera. Planar scintigraphy from the conventional gamma camera was compared with reprojected planar images from the ring-configured CZT gamma camera. The images were evaluated in regard to image quality and Perugini visual score in a blinded fashion by three nuclear medicine physicians. Heart-to-contralateral (H/CL) ratios were calculated. There were 27 patients who had an identical Perugini score in planar and reprojected planar images, yielding a strong level of agreement and inter-rater reliability among the three readers. The H/CL ratios showed a strong correlation ratio (r = 0.98, P < 0.0001). A shift towards lower image quality was seen for the reprojected images. Conclusion Reprojected planar images generated from a ring-configured CZT gamma camera combined with SPECT-CT can be used to score ATTR amyloidosis and extract H/CL ratios in the same way as planar images and SPECT-CT from a conventional gamma camera.
Collapse
Affiliation(s)
- Irma Cerić Andelius
- Radiation Physics, Department of Haematology, Oncology and Radiation Physicis, Skåne University Hospital, 221 85 Lund, Sweden
- Department of Translational Medicine and Wallenberg Centre of Molecular Medicine, Lund University, Carl Bertil Laurells gata 9, 205 02 Malmö, Sweden
| | - Ragnheidur Fridriksdóttir
- Department of Translational Medicine and Wallenberg Centre of Molecular Medicine, Lund University, Carl Bertil Laurells gata 9, 205 02 Malmö, Sweden
- Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Entrégatan 7, 221 85 Lund/Inga Marie Nilssons gata 47, 205 02 Malmö, Sweden
| | - David Minarik
- Radiation Physics, Department of Haematology, Oncology and Radiation Physicis, Skåne University Hospital, 221 85 Lund, Sweden
- Department of Translational Medicine and Wallenberg Centre of Molecular Medicine, Lund University, Carl Bertil Laurells gata 9, 205 02 Malmö, Sweden
| | - Fredrik Hedeer
- Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Entrégatan 7, 221 85 Lund/Inga Marie Nilssons gata 47, 205 02 Malmö, Sweden
- Department of Clinical Sciences, Lund University, Sölvegatan 19, 221 84 Lund, Sweden
| | - Anna Stenvall
- Radiation Physics, Department of Haematology, Oncology and Radiation Physicis, Skåne University Hospital, 221 85 Lund, Sweden
| | - Elin Trägårdh
- Department of Translational Medicine and Wallenberg Centre of Molecular Medicine, Lund University, Carl Bertil Laurells gata 9, 205 02 Malmö, Sweden
- Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Entrégatan 7, 221 85 Lund/Inga Marie Nilssons gata 47, 205 02 Malmö, Sweden
| | - Jenny Oddstig
- Radiation Physics, Department of Haematology, Oncology and Radiation Physicis, Skåne University Hospital, 221 85 Lund, Sweden
- Department of Translational Medicine and Wallenberg Centre of Molecular Medicine, Lund University, Carl Bertil Laurells gata 9, 205 02 Malmö, Sweden
| |
Collapse
|
8
|
Valdés Olmos RA, Vidal-Sicart S. Nuclear medicine contribution to precision surgery in breast cancer. Rev Esp Med Nucl Imagen Mol 2023; 42:343-351. [PMID: 37422262 DOI: 10.1016/j.remnie.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Nuclear medicine has significantly contributed to precision surgery in breast cancer in the past decades. Radioguided surgery (RGS) has enabled sentinel node (SN) biopsy in assessing regional nodal involvement modifying the management of patients with early breast cancer. For the axilla the SN procedure has resulted in fewer complications and better quality of life when compared with axillary lymph node dissection. Originally, SN biopsy principally concerned cT 1-2 tumours without evidence of axillary lymph node metastases. However, in last years SN biopsy is also being offered to patients with large or multifocal tumours, ductal carcinoma in situ, ipsilateral breast cancer relapse, and to patients receiving neoadjuvant systemic treatment (NST) for breast sparing surgery. Parallel to this evolution various scientific associations are trying to homogenise issues such as radiotracer choice, breast injection site, preoperative imaging standardisation and SN biopsy timing in relation to NST as well as management of non-axillary SN metastasis (e.g. internal mammary chain). Additionally, RGS is currently used to accomplish primary breast tumour excision either by intralesional radiocolloid injection or by radioactive iodine seed implantation which is also employed to target metastatic axillary lymph nodes. This latter procedure contributes to manage the node-positive axilla in combination with 18F-FDG PET/CT in an effort to tailor systemic and loco regional treatment.
Collapse
Affiliation(s)
- Renato A Valdés Olmos
- Department of Radiology, Section of Nuclear Medicine & Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands
| | - Sergi Vidal-Sicart
- Department of Nuclear Medicine, Hospital Clinic Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
9
|
Wu W, Zhang R, Zhou Y, Wang S, Shen Y, Li N, Tan J, Zheng W, Jia Q, Meng Z. Impacts of different reconstruction methods on the image quality of cadmium-zinc-telluride-based single photon emission computed tomography/computed tomography pulmonary perfusion imaging. Nucl Med Commun 2023; 44:673-681. [PMID: 37233601 DOI: 10.1097/mnm.0000000000001710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
OBJECTIVE The objective was to evaluate the impacts of different reconstruction methods [filtered back projection (FBP) and ordered subset expectation maximization (OSEM)] and different filters (Butterworth filter and Gaussian filter) on the image quality in cadmium-zinc-telluride (CZT)-based single photon emission computed tomography (SPECT)/computed tomography (CT) pulmonary perfusion imaging. METHODS A combinations including FBP with Butterworth filter, OSEM with Butterworth filter (OSEM + Butterworth filter ), and OSEM with Gaussian filter (OSEM + Gaussian filter) were used during SPECT image reconstruction. Visual and quantitative parameters [root mean square (RMS) noise, contrast and contrast-to-noise ratio (CNR)] were used to evaluate image quality. RESULTS The OSEM + Gaussian filter had better RMS noise and CNR than those of the FBP + Butterworth filter or OSEM + Butterworth filter, while the OSEM + Butterworth filter had the best contrast. The highest visual scores were obtained by OSEM + Gaussian filter ( P < 0.0001). In the lesion size <2 cm group, the contrast ( P < 0.01) and visual scores ( P < 0.001) of OSEM + Butterworth filter were better than those of the other two groups. In the lesion size ≥2 cm group, the RMS noise and visual scores of OSEM + Gaussian filter were better than those of the other two groups. CONCLUSION In CZT SPECT/CT pulmonary perfusion imaging, this study recommended the clinical use of the OSEM + Gaussian filter combination for reconstruction in both conventional and larger lesions, the OSEM + Butterworth filter image postprocessing method might be advantageous in small lesions.
Collapse
Affiliation(s)
- Weiming Wu
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin
| | - Ruyi Zhang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin
| | - Yaqian Zhou
- Department of Nuclear Medicine, Renji Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shen Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin
| | - Yiming Shen
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin
| | - Ning Li
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin
| | - Jian Tan
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin
| | - Wei Zheng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin
| | - Qiang Jia
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin
| |
Collapse
|
10
|
Callaud A, Metrard G, Bailly M. 3D-Ring CZT System With New Low- and Medium-Energy Range: Ultrafast Dual-Isotope Lung SPECT/CT Improvement. Clin Nucl Med 2023; 48:716-718. [PMID: 37200461 PMCID: PMC10317294 DOI: 10.1097/rlu.0000000000004706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/01/2023] [Indexed: 05/20/2023]
Abstract
ABSTRACT New 3D-ring CZT systems with low- and medium-energy-range detectors allow for simultaneous dual-isotope lung scintigraphy. We compared 10-, 7-, 5-, and 3-minute acquisitions for 99m Tc and 81m Kr performed simultaneously on StarGuide CZT-SPECT/CT and reframed in 50 patients. Ventilation/perfusion mismatches were calculated (mean, 15.6% ± 28%), and Spearman correlation coefficients of mismatches were 0.994, 0.994, and 0.984 between 10- and 7-, 5-, and 3-minute acquisitions, respectively. No visual difference in image quality or final diagnosis was found. 3D-ring CZT-SPECT with low and medium energy range detectors allows ultrafast dual-isotope lung scintigraphy up to 3 minutes.
Collapse
|
11
|
Huh Y, Caravaca J, Kim J, Cui Y, Huang Q, Gullberg G, Seo Y. Simulation studies of a full-ring, CZT SPECT system for whole-body imaging of 99m Tc and 177 Lu. Med Phys 2023; 50:3726-3737. [PMID: 36916755 PMCID: PMC10503418 DOI: 10.1002/mp.16360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/26/2023] [Accepted: 02/26/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Single photon emission computed tomography (SPECT) is an imaging modality that has demonstrated its utility in a number of clinical indications. Despite this progress, a high sensitivity, high spatial resolution, multi-tracer SPECT with a large field of view suitable for whole-body imaging of a broad range of radiotracers for theranostics is not available. PURPOSE With the goal of filling this technological gap, we have designed a cadmium zinc telluride (CZT) full-ring SPECT scanner instrumented with a broad-energy tungsten collimator. The final purpose is to provide a multi-tracer solution for brain and whole-body imaging. Our static SPECT does not rely on the dual- and the triple-head rotational SPECT standard paradigm, enabling a larger effective area in each scan to increase the sensitivity. We provide a demonstration of the performance of our design using a realistic model of our detector with simulated body-sized phantoms filled with 99m Tc and 177 Lu. METHODS We create a realistic model of our detector by using a combination of a Geant4 Application for Tomographic Emission (GATE) Monte Carlo simulation and a finite element model for the CZT response, accounting for low-energy tail effects in CZT that affects the sensitivity and the scatter correction. We implement a modified dual-energy-window scatter correction adapted for CZT. Other corrections for attenuation, detector and collimator response, and detector gaps and edges are also included. The images are reconstructed using the maximum-likelihood expectation-maximization. Detector and reconstruction performance are characterized with point sources, Derenzo phantoms, and a body-sized National Electrical Manufacturers Association (NEMA) Image Quality (IQ) phantom for both 99m Tc and 177 Lu. RESULTS Our SPECT design can resolve 7.9 mm rods for 99m Tc (140 keV) and 9.5 mm for 177 Lu (208 keV) in a hot-rod Derenzo phantom with a 3-min exposure and reach an image contrast of 78% for 99m Tc and 57% for 177 Lu using the NEMA IQ phantom with a 6-min exposure. Our modified scatter correction shows an improved contrast-recovery ratio compared to a standard correction. CONCLUSIONS In this paper, we demonstrate the good performance of our design for whole-body imaging purposes. This adds to our previous demonstration of improved qualitative and quantitative 99m Tc imaging of brain perfusion and 123 I imaging of dopamine transport with respect to state-of-the-art NaI dual-head cameras. We show that our design provides similar IQ and contrast to the commercial full-ring SPECT VERITON for 99m Tc. Regarding 177 Lu imaging of the 208 keV emissions, our design provides similar contrast to that of other state-of-the-art SPECTs with a significant reduction in exposure. The high sensitivity and extended energy range up to 250 keV makes our SPECT design a promising alternative for clinical imaging and theranostics of emerging radionuclides.
Collapse
Affiliation(s)
- Yoonsuk Huh
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Javier Caravaca
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Jaehyuk Kim
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yonggang Cui
- Department of Nonproliferation and National Security, Brookhaven National Laboratory, Upton, New York, USA
| | - Qiu Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Grant Gullberg
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Joint Graduate Group in Bioengineering, University of California, San Francisco, Berkeley, California, USA
- Department of Nuclear Engineering, University of California, Berkeley, California, USA
| |
Collapse
|
12
|
Yang C, Zannoni EM, Meng LJ. Joint estimation of interaction position and energy deposition in semiconductor SPECT imaging sensors using fully connected neural network. Phys Med Biol 2023; 68:10.1088/1361-6560/aca740. [PMID: 36595331 PMCID: PMC10329845 DOI: 10.1088/1361-6560/aca740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022]
Abstract
Objective.Pixelated semiconductor detectors such as CdTe and CZT sensors suffer spatial resolution and spectral performance degradation induced by charge-sharing effects. It is critical to enhance the detector property through recovering the energy-deposition and position estimation.Approach.In this work, we proposed a fully-connected-neural-network-based charge-sharing reconstruction algorithm to correct the charge-loss and estimate the sub-pixel position for every multi-pixel charge-sharing event.Main results.Evident energy resolution improvement can be observed by comparing the spectrum produced by a simple charge-sharing addition method and the proposed energy correction methods. We also demonstrate that sub-pixel resolution can be achieved in projections obtained with a small pinhole collimator and an innovative micro-ring collimator.Significance.These achievements are crucial for multiple-tracer SPECT imaging applications, and for other semiconductor detector-based imaging modalities.
Collapse
Affiliation(s)
- Can Yang
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, United States of America
| | - Elena Maria Zannoni
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, United States of America
| | - Ling-Jian Meng
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, United States of America
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, United States of America
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, United States of America
| |
Collapse
|
13
|
Thiele F, Schau F, Rogasch JMM, Wetz C, Bluemel S, Brenner W, Amthauer H, Lange C, Schatka I. Same same but different: dopamine transporter SPECT on scanners with CZT vs. NaI detectors. EJNMMI Res 2023; 13:24. [PMID: 36949290 PMCID: PMC10033816 DOI: 10.1186/s13550-023-00973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/12/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND The aims of this study were to establish a normal database (NDB) for semiquantification of dopamine transporter (DAT) single-photon emission computed tomography (SPECT) with [123I]FP-CIT on a cadmium zinc telluride (CZT) camera, test the preexisting NaI-derived NDB for use in CZT scans, and compare the diagnostic findings in subjects imaged with a CZT scanner with either the preexisting NaI-based NDB or our newly defined CZT NDB. METHODS The sample comprised 73 subjects with clinically uncertain parkinsonian syndrome (PS) who prospectively underwent [123I]FP-CIT SPECT on a CZT camera according to standard guidelines with identical acquisition and reconstruction protocols (DaTQUANT). Two experienced readers visually assessed the images and binarized the subjects into "non-neurodegenerative PS" and "neurodegenerative PS". Twenty-five subjects from the "non-neurodegenerative PS" subgroup were randomly selected to establish a CZT NDB. The remaining 48 subjects were defined as "test group". DaTQUANT was used to determine the specific binding ratio (SBR). For the test group, SBR values were transformed to z-scores for the putamen utilizing both the CZT NDB and the manufacturer-provided NaI-based NDB (GE NDB). A predefined fixed cut-off of -2 was used for dichotomization of z-scores to classify neurodegenerative and non-neurodegenerative PS. Performance of semiquantification using the two NDB to identify subjects with neurodegenerative PS was assessed in comparison with the visual rating. Furthermore, a randomized head-to-head comparison of both detector systems was performed semiquantitatively in a subset of 32 out of all 73 subjects. RESULTS Compared to the visual rating as reference, semiquantification based on the dedicated CZT NDB led to fewer discordant ratings than the GE NDB in CZT scans (3 vs. 8 out of 48 subjects). This can be attributed to the putaminal z-scores being consistently higher with the GE NDB on a CZT camera (median absolute difference of 1.68), suggesting an optimal cut-off of -0.5 for the GE NDB instead of -2.0. Average binding ratios and z-scores were significantly lower in CZT compared to NaI data. CONCLUSIONS Use of a dedicated, CZT-derived NDB is recommended in [123I]FP-CIT SPECT with a CZT camera since it improves agreement between semiquantification and visual assessment.
Collapse
Affiliation(s)
- Felix Thiele
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
| | - Franziska Schau
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Julian M M Rogasch
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Wetz
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Stephanie Bluemel
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Holger Amthauer
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Catharina Lange
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Imke Schatka
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| |
Collapse
|
14
|
Bailly M, Le Rouzic G, Metrard G. Ultra-fast high resolution whole-body SPECT after treatment with 153Sm-EDTMP using 3D-ring CZT: applying new technology to an old tracer. Eur J Nucl Med Mol Imaging 2023; 50:968-969. [PMID: 36342522 DOI: 10.1007/s00259-022-06029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Matthieu Bailly
- Nuclear Medicine Department, CHR Orleans, 14 Avenue de L'Hôpital, 45100, Orleans, France.
| | - Gilles Le Rouzic
- Nuclear Medicine Department, CHR Orleans, 14 Avenue de L'Hôpital, 45100, Orleans, France
| | - Gilles Metrard
- Nuclear Medicine Department, CHR Orleans, 14 Avenue de L'Hôpital, 45100, Orleans, France
| |
Collapse
|
15
|
Bailly M, Callaud A, Metrard G. Dynamic cardiac SPECT with flow measurement using 3D-ring CZT: when SPECT is inspired by PET. Eur J Nucl Med Mol Imaging 2023; 50:1837-1839. [PMID: 36622405 DOI: 10.1007/s00259-022-06106-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023]
Affiliation(s)
- Matthieu Bailly
- Nuclear Medicine Department, CHR ORLEANS, 14 Avenue de L'Hôpital, 45100, Orleans, France. .,CBM, UPR 4301, CNRS Orleans, Orleans, France.
| | - Aurélien Callaud
- Nuclear Medicine Department, CHR ORLEANS, 14 Avenue de L'Hôpital, 45100, Orleans, France
| | - Gilles Metrard
- Nuclear Medicine Department, CHR ORLEANS, 14 Avenue de L'Hôpital, 45100, Orleans, France
| |
Collapse
|
16
|
Desmonts C, Aide N, Austins H, Jaudet C, Lasnon C. Feasibility of Imaging Small Animals on a 360° Whole-Body Cadmium Zinc Telluride SPECT Camera: a Phantom Study. Mol Imaging Biol 2022; 24:1018-1027. [PMID: 35835951 DOI: 10.1007/s11307-022-01753-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/03/2022] [Accepted: 07/01/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE Single-photon emission computed tomography has found an important place in preclinical cancer research. Nevertheless, the cameras dedicated to small animals are not widely available. The present study aimed to assess the feasibility of imaging small animals by a newly released 360° cadmium zinc telluride camera (VERITON, Spectrum Dynamics, Israel) dedicated to human patients. PROCEDURES A cylindrical phantom containing hot spheres was used to evaluate the intrinsic performance of the camera first without the presence of background activity and then with two contrasts between background and hot spheres (1/4 and 1/10). Acquisitions were repeated with different scan durations (10 and 20 min), two tested radioisotopes (Tc-99 m and I-123), and a set of reconstruction parameters (10 iterations [i] 8 subsets [s], 10i16s, 10i32s). A 3D-printed phantom mimicking a rat with four subcutaneous tumours was then used to test the camera under preclinical conditions. RESULTS The results obtained from the micro-hollow sphere phantom showed that it was possible to visualize spheres with an inner diameter of 3.95 mm without background activity. Moreover, spheres with diameters of 4.95 mm can be seen in the condition of high contrast between background and spheres (1/10) and 7.86 mm with lower contrast (1/4). The rat-sized phantom acquisitions showed that 10- and 8-mm subcutaneous tumours were visible with a good contrast obtained for the two radioisotopes tested in this study. Both Tc-99 m and I-123 measurements demonstrated that a 10-min acquisition reconstructed with an ordered subset expectation maximization algorithm applying 10i32s was optimal to obtain sufficient image quality in terms of noise, resolution, and contrast. CONCLUSION Phantom results showed the ability of the system to detect sub-centimetre lesions for various radioisotopes. It seemed feasible to image small animals using a 360° cadmium zinc telluride gamma camera for preclinical cancer research purposes.
Collapse
Affiliation(s)
- Cedric Desmonts
- Nuclear Medicine Department, University Hospital of Caen, Avenue de la Côte de Nacre, 14033, Caen, Cedex 9, France. .,INSERM U1086 ANTICIPE, Normandy University, UNICAEN, Caen, France.
| | - Nicolas Aide
- Nuclear Medicine Department, University Hospital of Caen, Avenue de la Côte de Nacre, 14033, Caen, Cedex 9, France.,INSERM U1086 ANTICIPE, Normandy University, UNICAEN, Caen, France
| | - Henry Austins
- Biomedical Department, Comprehensive Cancer Center F. Baclesse, UNICANCER, Caen, France
| | - Cyril Jaudet
- Medical Physics Department, Comprehensive Cancer Center F. Baclesse, UNICANCER, Caen, France
| | - Charline Lasnon
- INSERM U1086 ANTICIPE, Normandy University, UNICAEN, Caen, France.,Nuclear Medicine Department, Comprehensive Cancer Center F. Baclesse, UNICANCER, Caen, France
| |
Collapse
|
17
|
Quantitative Scintigraphy Imaging of Lingual Raynaud’s Phenomenon Using 3-Dimensional-Ring Cadmium-Zinc-Telluride Single-Photon Emission Computed Tomography/Computed Tomography. Tomography 2022; 8:2042-2048. [PMID: 36006069 PMCID: PMC9414660 DOI: 10.3390/tomography8040171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Perfusion scintigraphy with the acquisition of planar blood flow and pool images of bilateral hands has been used to aid diagnosis and to evaluate treatment response to Raynaud’s phenomenon (decreased blood flow to hand or foot). However, because of the difficulty in imaging the tongue area with a conventional gamma camera, perfusion scintigraphy imaging of patients with lingual Raynaud’s phenomenon has yet to be reported. Here, we report the case of a 59-year-old man with lingual Raynaud’s phenomenon in which blood pool imaging of the tongue was performed using three-dimensional (3D)-ring cadmium-zinc-telluride (CZT) single-photon emission computed tomography/computed tomography (SPECT/CT). During follow-up, the patient’s lingual symptoms had worsened, and follow-up blood pool SPECT/CT images also revealed decreased blood pool uptake of the tongue, showing a decreased blood pool of more than 25% on quantitative analysis. This case suggests that blood pool imaging of the tongue using 3D-ring CZT SPECT/CT has clinical significance in evaluating patients with lingual Raynaud’s phenomenon.
Collapse
|
18
|
Horowitz T, Grimaldi S, Azulay JP, Guedj E. Molecular imaging in Parkinsonism: The essential for clinical practice and future perspectives. Rev Neurol (Paris) 2022; 178:484-489. [DOI: 10.1016/j.neurol.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
|
19
|
Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23:5023. [PMID: 35563414 PMCID: PMC9103893 DOI: 10.3390/ijms23095023] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) uses radioactive tracers and enables the functional imaging of several metabolic processes, blood flow measurements, regional chemical composition, and/or chemical absorption. Depending on the targeted processes within the living organism, different tracers are used for various medical conditions, such as cancer, particular brain pathologies, cardiac events, and bone lesions, where the most commonly used tracers are radiolabeled with 18F (e.g., [18F]-FDG and NA [18F]). Oxygen-15 isotope is mostly involved in blood flow measurements, whereas a wide array of 11C-based compounds have also been developed for neuronal disorders according to the affected neuroreceptors, prostate cancer, and lung carcinomas. In contrast, the single-photon emission computed tomography (SPECT) technique uses gamma-emitting radioisotopes and can be used to diagnose strokes, seizures, bone illnesses, and infections by gauging the blood flow and radio distribution within tissues and organs. The radioisotopes typically used in SPECT imaging are iodine-123, technetium-99m, xenon-133, thallium-201, and indium-111. This systematic review article aims to clarify and disseminate the available scientific literature focused on PET/SPECT radiotracers and to provide an overview of the conducted research within the past decade, with an additional focus on the novel radiopharmaceuticals developed for medical imaging.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | | | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
| | - Gabriel Andrieș
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Călin Căinap
- The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Republicii 34-36, 400015 Cluj-Napoca, Romania;
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
20
|
Zhou Y, Wang S, Wang P, Li N, Wang X, Zheng W. Optimization of image reconstruction method of cerebral blood flow perfusion imaging with digital CZT SPECT. Nucl Med Commun 2022; 43:398-409. [PMID: 35102075 DOI: 10.1097/mnm.0000000000001540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of this study is to evaluate the effects of filtered back projection (FBP), ordered subset expectation maximisation (OSEM), and different filters on cadmium zinc telluride single-photon emission computed tomography [CZT single-photon emission computed tomography (SPECT)] cerebral blood perfusion image quality to optimise the image reconstruction method. METHODS Under routine clinical conditions, tomographic imaging was performed on the phantom and patients. Image processing included image reconstruction using FBP and OSEM, and the filtering method used Butterworth (Bw) and Gaussian (Gs) filters. Visual and semi-quantitative parameters [integral uniformity, root mean square (RMS) noise and contrast and contrast-to-noise ratio (CNR)] were used to evaluate image quality to optimise image reconstruction parameters. One-way and two-way analysis of variance were used to process phantom and clinical data. RESULTS In the tomographic images of the phantom, the semi-quantitative analysis showed that the integral uniformity of FBP+Bw was better than that of OSEM+Bw and OSEM+Gs (P < 0.05), and that the RMS noise of FBP+Bw was lower than that of OSEM+Bw and OSEM+Gs (P < 0.001). The contrast of FBP+Bw and OSEM+Bw in the cold area diameter ≥2 cm group was higher than that of OSEM+Gs (P < 0.001), whereas the CNR of FBP+Bw was higher than that of OSEM+Bw and OSEM+Gs (P < 0.001); the contrast of OSEM+Bw cold area diameter <2 cm was higher than that of FBP+Bw (P < 0.01). The semi-quantitative analysis results of the clinical images were consistent with the phantom's. CONCLUSION In CZT SPECT cerebral blood flow perfusion imaging, it is suggested that the image postprocessing method of FBP+Bw (fc = 0.40; n = 10) should be used routinely in clinical application, and if there are uncertain small lesions in the processed image, it is suggested to use the reconstruction method of OSEM+Bw (EM-equivalent iterations = 60; fc = 0.45; n = 10) instead.
Collapse
Affiliation(s)
- Yaqian Zhou
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | | | | | | | | | | |
Collapse
|
21
|
Ritt P. Recent Developments in SPECT/CT. Semin Nucl Med 2022; 52:276-285. [DOI: 10.1053/j.semnuclmed.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 01/31/2023]
|
22
|
Sentinel lymph node biopsy in head & neck cancers. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
23
|
Suzuki Y, Kurihara M. [[SPECT] 3. The New SPECT Shape with CZT Semiconductor Detectors]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2022; 78:779-786. [PMID: 35858786 DOI: 10.6009/jjrt.2022-2052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|
24
|
Sentinel node detection in breast cancer. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Sentinel node in melanoma. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
26
|
Piatkova Y, Payoux P, Boursier C, Bordonne M, Roch V, Marie PY, Hossu G, Imbert L, Verger A. Prospective Paired Comparison of 123I-FP-CIT SPECT Images Obtained With a 360°-CZT and a Conventional Camera. Clin Nucl Med 2022; 47:14-20. [PMID: 34874345 DOI: 10.1097/rlu.0000000000003969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE This study aimed to compare 123I-FP-CIT SPECT imaging obtained from a 360° cadmium-zinc-telluride (CZT) camera with different focus configurations and from a conventional Anger camera. METHODS This prospective study (NCT03980418) included patients referred to 123I-FP-CIT SPECT imaging who consecutively underwent a 30-minute acquisition on a conventional camera immediately followed by two 15-minute acquisitions on the 360°-CZT camera with, respectively, striatum and brain focus and reconstruction parameters to give equivalent contrast ratios, albeit with higher spatial resolution for the CZT camera. Tomographic count sensitivities were calculated. The images were analyzed through visual, according to 5 independent physicians, and automatic semiquantitative analyses. RESULTS Ninety-two patients were included in this study. The 360°-CZT camera tomographic count sensitivities showed increases of +25% and +18% for striatum and brain focus, respectively, as well as significantly higher quality scores (P ≤ 0.04) in comparison to the conventional camera. The κ scores of consensual visual analysis were 0.80 and 0.85, and correlation coefficients of semiquantitative analysis for striatum uptakes were 0.75 and 0.76 for the comparisons of images obtained with the 2 cameras, with striatum and brain focus, respectively, for the CZT camera. Advanced age was the single predictor of discordant cases (10/92 [11%]) showing systematically abnormal scans with the conventional camera, potentially as a result of partial volume effect. CONCLUSIONS Irrespective of focus mode, this high-sensitivity 360°-CZT camera provides concordant 123I-FP-CIT SPECT results when compared with a conventional camera, but with shorter acquisition times, higher image quality, and few discordant cases possibly explained by its higher spatial resolution.
Collapse
Affiliation(s)
- Yuliya Piatkova
- From the Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, Nancy
| | | | - Caroline Boursier
- From the Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, Nancy
| | - Manon Bordonne
- From the Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, Nancy
| | - Veronique Roch
- From the Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, Nancy
| | | | - Gabriela Hossu
- Université de Lorraine, IADI, INSERM U1254, Nancy, France
| | | | | |
Collapse
|
27
|
Zannoni EM, Yang C, Meng LJ. Design Study of an Ultrahigh Resolution Brain SPECT System Using a Synthetic Compound-Eye Camera Design With Micro-Slit and Micro-Ring Apertures. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3711-3727. [PMID: 34255626 PMCID: PMC8711775 DOI: 10.1109/tmi.2021.3096920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper, we discuss the design study for a brain SPECT imaging system, referred to as the HelmetSPECT system, based on a spherical synthetic compound-eye (SCE) gamma camera design. The design utilizes a large number ( ∼ 500 ) of semiconductor detector modules, each coupled to an aperture with a very narrow opening for high-resolution SPECT imaging applications. In this study, we demonstrate that this novel system design could provide an excellent spatial resolution, a very high sensitivity, and a rich angular sampling without scanning motion over a clinically relevant field-of-view (FOV). These properties make the proposed HelmetSPECT system attractive for dynamic imaging of epileptic patients during seizures. In ictal SPECT, there is typically no prior information on where the seizures would happen, and both the imaging resolution and quantitative accuracy of the dynamic SPECT images would provide critical information for staging the seizures outbreak and refining the plans for subsequent surgical intervention.We report the performance evaluation and comparison among similar system geometries using non-conventional apertures, such as micro-ring and micro-slit, and traditional lofthole apertures. We demonstrate that the combination of ultrahigh-resolution imaging detectors, the SCE gamma camera design, and the micro-ring and micro-slit apertures would offer an interesting approach for the future ultrahigh-resolution clinical SPECT imaging systems without sacrificing system sensitivity and FOV.
Collapse
|
28
|
Slomka P. Do we need dedicated cardiac SPECT systems? J Nucl Cardiol 2021; 28:1331-1333. [PMID: 31650495 DOI: 10.1007/s12350-019-01921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Piotr Slomka
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, USA.
| |
Collapse
|
29
|
Charge Sharing and Charge Loss in High-Flux Capable Pixelated CdZnTe Detectors. SENSORS 2021; 21:s21093260. [PMID: 34066764 PMCID: PMC8125915 DOI: 10.3390/s21093260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 12/03/2022]
Abstract
Cadmium zinc telluride (CdZnTe) detectors are known to suffer from polarization effects under high photon flux due to poor hole transport in the crystal material. This has led to the development of a high-flux capable CdZnTe material (HF-CdZnTe). Detectors with the HF-CdZnTe material have shown promising results at mitigating the onset of the polarization phenomenon, likely linked to improved crystal quality and hole carrier transport. Better hole transport will have an impact on charge collection, particularly in pixelated detector designs and thick sensors (>1 mm). In this paper, the presence of charge sharing and the magnitude of charge loss were calculated for a 2 mm thick pixelated HF-CdZnTe detector with 250 μm pixel pitch and 25 μm pixel gaps, bonded to the STFC HEXITEC ASIC. Results are compared with a CdTe detector as a reference point and supported with simulations from a Monte-Carlo detector model. Charge sharing events showed minimal charge loss in the HF-CdZnTe, resulting in a spectral resolution of 1.63 ± 0.08 keV Full Width at Half Maximum (FWHM) for bipixel charge sharing events at 59.5 keV. Depth of interaction effects were shown to influence charge loss in shared events. The performance is discussed in relation to the improved hole transport of HF-CdZnTe and comparison with simulated results provided evidence of a uniform electric field.
Collapse
|
30
|
Huh Y, Yang J, Dim OU, Cui Y, Tao W, Huang Q, Gullberg GT, Seo Y. Evaluation of a variable-aperture full-ring SPECT system using large-area pixelated CZT modules: A simulation study for brain SPECT applications. Med Phys 2021; 48:2301-2314. [PMID: 33704793 DOI: 10.1002/mp.14836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 01/28/2021] [Accepted: 03/03/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Single photon emission computed tomography (SPECT) scanners using cadmium zinc telluride (CZT) offer compact, lightweight, and improved imaging capability over conventional NaI(Tl)-based SPECT scanners. The main purpose in this study is to propose a full-ring SPECT system design with eight large-area CZT detectors that can be used for a broad spectrum of SPECT radiopharmaceuticals and demonstrate the performance of our system in comparison to the reference conventional NaI(Tl)-based two-head Anger cameras. METHODS A newly designed full-ring SPECT system is composed of eight large-area CZT cameras (128 mm × 179.2 mm effective area) that can be independently swiveled around their own axes of rotation independently and can have radial motion for varying aperture sizes that can be adapted to different sizes of imaging volume. Extended projection data were generated by conjoining projections of two adjacent detectors to overcome the limited field-of-view (FOV) by each CZT camera. Using Monte Carlo simulations, we evaluated this new system design with digital phantoms including a Derenzo hot rod phantom and a Zubal brain phantom. Comparison of performance metrics such as spatial resolution, sensitivity, contrast-to-noise ratio (CNR), and contrast-recovery ratio was made between our design and conventional SPECT scanners having different pixel sizes and radii of rotation (one clinically well-known type and two arbitrary types matched to our proposed CZT-SPECT geometries). RESULTS The proposed scanner could result in up to about three times faster in acquisition time over conventional scan time at same acquisition time per step. The spatial resolution improvement, or deterioration, of our proposed scanner compared to the clinical-type scanner was dependent upon the location of the point source. However, there were overall performance improvements over the three different setups of the conventional scanner particularly in volume sensitivity (approximately up to 1.7 times). Overall, we successfully reconstructed the phantom image for both 99m Tc-based perfusion and 123 I-based dopamine transporter (DaT) brain studies simulated for our new design. In particular, the striatal/background contrast-recovery ratio in 3-to-1 reference ratio was over 0.8 for the 123 I-based DaT study. CONCLUSIONS We proposed a variable-aperture full-ring SPECT system using combined pixelated CZT and energy-optimized parallel-hole collimator modules and evaluated the performance of this scanner using relevant digital phantoms and MC simulations. Our studies demonstrated the potential of our new full-ring CZT-SPECT design, showing reduced acquisition time and improved sensitivity with acceptable CNR and spatial resolution.
Collapse
Affiliation(s)
- Yoonsuk Huh
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Jaewon Yang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Odera U Dim
- Department of Nonproliferation and National Security, Brookhaven National Laboratory, Upton, NY, USA
| | - Yonggang Cui
- Department of Nonproliferation and National Security, Brookhaven National Laboratory, Upton, NY, USA
| | - Weijie Tao
- Department of Nuclear Medicine, Ruijin Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiu Huang
- Department of Nuclear Medicine, Ruijin Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Grant T Gullberg
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.,Department of Radiation Oncology, University of California, San Francisco, CA, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Joint Graduate Group in Bioengineering, University of California, San Francisco, CA, USA.,Department of Nuclear Engineering, University of California, Berkeley, CA, USA
| |
Collapse
|
31
|
Guberman D, Paoletti R, Rugliancich A, Wunderlich C, Passeri A. Large-Area SiPM Pixels (LASiPs): A cost-effective solution towards compact large SPECT cameras. Phys Med 2021; 82:171-184. [PMID: 33640837 DOI: 10.1016/j.ejmp.2021.01.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/11/2020] [Accepted: 01/13/2021] [Indexed: 11/30/2022] Open
Abstract
Single Photon Emission Computed Tomography (SPECT) scanners based on photomultiplier tubes (PMTs) are still largely employed in the clinical environment. A standard camera for full-body SPECT employs ~50-100 PMTs of 4-8 cm diameter and is shielded by a thick layer of lead, becoming a heavy and bulky system that can weight a few hundred kilograms. The volume, weight and cost of a camera can be significantly reduced if the PMTs are replaced by silicon photomultipliers (SiPMs). The main obstacle to use SiPMs in full-body SPECT is the limited size of their sensitive area. A few thousand channels would be needed to fill a camera if using the largest commercially-available SiPMs of 6 × 6 mm2. As a solution, we propose to use Large-Area SiPM Pixels (LASiPs), built by summing individual currents of several SiPMs into a single output. We developed a LASiP prototype that has a sensitive area 8 times larger than a 6 × 6 mm2 SiPM. We built a proof-of-concept micro-camera consisting of a 40 × 40 × 8 mm3 NaI(Tl) crystal coupled to 4 LASiPs. We evaluated its performance in a central region of 15×15 mm2, where we were able to reconstruct images of a 99mTc capillary with an intrinsic spatial resolution of ~2 mm and an energy resolution of ~11.6% at 140 keV. We used these measurements to validate Geant4 simulations of the system. This can be extended to simulate a larger camera with more and larger pixels, which could be used to optimize the implementation of LASiPs in large SPECT cameras. We provide some guidelines towards this implementation.
Collapse
Affiliation(s)
- D Guberman
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa, I-56126 Pisa, Italy; Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Universitá di Siena, I-53100 Siena, Italy.
| | - R Paoletti
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa, I-56126 Pisa, Italy; Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Universitá di Siena, I-53100 Siena, Italy
| | - A Rugliancich
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa, I-56126 Pisa, Italy
| | - C Wunderlich
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa, I-56126 Pisa, Italy; Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Universitá di Siena, I-53100 Siena, Italy
| | - A Passeri
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche (SBSC), Universitá di Firenze, I-50134 Florence, Italy
| |
Collapse
|
32
|
Aldridge MD, Peet C, Wan S, Shankar A, Gains JE, Bomanji JB, Gaze MN. Paediatric Molecular Radiotherapy: Challenges and Opportunities. Clin Oncol (R Coll Radiol) 2021; 33:80-91. [PMID: 33246658 DOI: 10.1016/j.clon.2020.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022]
Abstract
The common contemporary indications for paediatric molecular radiotherapy (pMRT) are differentiated thyroid cancer and neuroblastoma. It may also have value in neuroendocrine cancers, and it is being investigated in clinical trials for other diseases. pMRT is the prototypical biomarker-driven, precision therapy, with a unique mode of delivery and mechanism of action. It is safe and well tolerated, compared with other treatments. However, its full potential has not yet been achieved, and its wider use faces a number of challenges and obstacles. Paradoxically, the success of radioactive iodine as a curative treatment for metastatic thyroid cancer has led to a 'one size fits all' approach and limited academic enquiry into optimisation of the conventional treatment regimen, until very recently. Second, the specialised requirements for the delivery of pMRT are available in only a very limited number of centres. This limited capacity and geographical coverage results in reduced accessibility. With few enthusiastic advocates for this treatment modality, investment in research to improve treatments and broaden indications from both industry and national and charitable research funders has historically been suboptimal. Nonetheless, there is now an increasing interest in the opportunities offered by pMRT. Increased research funding has been allocated, and technical developments that will permit innovative approaches in pMRT are available for exploration. A new portfolio of clinical trials is being assembled. These studies should help to move at least some paediatric treatments from simply palliative use into potentially curative protocols. Therapeutic strategies require modification and optimisation to achieve this. The delivery should be personalised and tailored appropriately, with a comprehensive evaluation of tumour and organ-at-risk dosimetry, in alignment with the external beam model of radiotherapy. This article gives an overview of the current status of pMRT, indicating the barriers to progress and identifying ways in which these may be overcome.
Collapse
Affiliation(s)
- M D Aldridge
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK; Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - C Peet
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - S Wan
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - A Shankar
- Department of Paediatric and Adolescent Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - J E Gains
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - J B Bomanji
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - M N Gaze
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
33
|
Zannoni EM, Wilson MD, Bolz K, Goede M, Lauba F, Schöne D, Zhang J, Veale MC, Verhoeven M, Meng LJ. Development of a multi-detector readout circuitry for ultrahigh energy resolution single-photon imaging applications. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT 2020; 981:164531. [PMID: 32968332 PMCID: PMC7505227 DOI: 10.1016/j.nima.2020.164531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, we present the design and preliminary performance evaluation of a novel external multi-channel readout circuitry for small-pixel room-temperature semiconductor detectors, namely CdZnTe (CZT) and CdTe, that provide an excellent intrinsic spatial (250 and 500 μm pixel size) and an ultrahigh energy resolution (~1% at 122 keV) for X-ray and gamma-ray imaging applications. An analog front-end printed circuit board (PCB) was designed and developed for data digitization, data transfer and ASIC control of pixelated CZT or CdTe detectors. Each detector unit is 2 cm × 2 cm in size and 1 or 2 mm in thickness, being bump-bonded onto a HEXITEC ASIC, and wire-bonded to a readout detector module PCB. The detectors' front-end is then connected, through flexible cables of up to 10 m in length, to a remote data acquisition system that interfaces with a PC through USB3.0 connection. We present the design and performance of a prototype multi-channel readout system that can read out up to 24 detector modules synchronously. Our experimental results demonstrated that the readout circuitry offers an ultrahigh spectral resolution (0.8 keV at 60 keV and 1.05 keV at 122 keV) with the Cd(Zn)Te/HEXITEC ASIC modules tested. This architecture was designed to allow easy expansion to accommodate a larger number of detector modules, and the flexibility of arranging the detector modules in a large and deformable detector array without degrading the excellent energy resolution.
Collapse
Affiliation(s)
- Elena Maria Zannoni
- Bioengineering, University of Illinois at Urbana-Champaign, United States of America
| | - Matthew D. Wilson
- Science and Technology Facilities Council, Rutherford Appleton Laboratory, United Kingdom
| | - Krystian Bolz
- aSpect Systems GmbH, Eisenbahnstrasse 2, 01097 Dresden, Germany
| | - Mario Goede
- aSpect Systems GmbH, Eisenbahnstrasse 2, 01097 Dresden, Germany
| | - Frank Lauba
- aSpect Systems GmbH, Eisenbahnstrasse 2, 01097 Dresden, Germany
| | - Daniel Schöne
- aSpect Systems GmbH, Eisenbahnstrasse 2, 01097 Dresden, Germany
| | - Jiajin Zhang
- Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, United States of America
| | - Matthew C. Veale
- Science and Technology Facilities Council, Rutherford Appleton Laboratory, United Kingdom
| | | | - Ling-Jian Meng
- Bioengineering, University of Illinois at Urbana-Champaign, United States of America
- Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, United States of America
| |
Collapse
|
34
|
Bordonne M, Chawki MB, Marie PY, Zaragori T, Roch V, Grignon R, Imbert L, Verger A. High-quality brain perfusion SPECT images may be achieved with a high-speed recording using 360° CZT camera. EJNMMI Phys 2020; 7:65. [PMID: 33146804 PMCID: PMC7642149 DOI: 10.1186/s40658-020-00334-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Objective The aim of this study was to compare brain perfusion SPECT obtained from a 360° CZT and a conventional Anger camera. Methods The 360° CZT camera utilizing a brain configuration, with 12 detectors surrounding the head, was compared to a 2-head Anger camera for count sensitivity and image quality on 30-min SPECT recordings from a brain phantom and from 99mTc-HMPAO brain perfusion in 2 groups of 21 patients investigated with the CZT and Anger cameras, respectively. Image reconstruction was adjusted according to image contrast for each camera. Results The CZT camera provided more than 2-fold increase in count sensitivity, as compared with the Anger camera, as well as (1) lower sharpness indexes, giving evidence of higher spatial resolution, for both peripheral/central brain structures, with respective median values of 5.2%/3.7% versus 2.4%/1.9% for CZT and Anger camera respectively in patients (p < 0.01), and 8.0%/6.9% versus 6.2%/3.7% on phantom; and (2) higher gray/white matter contrast on peripheral/central structures, with respective ratio median values of 1.56/1.35 versus 1.11/1.20 for CZT and Anger camera respectively in patients (p < 0.05), and 2.57/2.17 versus 1.40/1.12 on phantom; and (3) no change in noise level. Image quality, scored visually by experienced physicians, was also significantly higher on CZT than on the Anger camera (+ 80%, p < 0.01), and all these results were unchanged on the CZT images obtained with only a 15 min recording time. Conclusion The 360° CZT camera provides brain perfusion images of much higher quality than a conventional Anger camera, even with high-speed recordings, thus demonstrating the potential for repositioning brain perfusion SPECT to the forefront of brain imaging. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-020-00334-7.
Collapse
Affiliation(s)
- Manon Bordonne
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU-Nancy, Université de Lorraine, F-54000, Nancy, France.,Médecine Nucléaire, CHRU-Nancy Brabois, Allée du Morvan, 54500 Vandoeuvre-lès-, Nancy, France
| | - Mohammad B Chawki
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU-Nancy, Université de Lorraine, F-54000, Nancy, France
| | - Pierre-Yves Marie
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU-Nancy, Université de Lorraine, F-54000, Nancy, France.,Université de Lorraine, INSERM, UMR-1116 DCAC, F-54000, Nancy, France
| | | | - Véronique Roch
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU-Nancy, Université de Lorraine, F-54000, Nancy, France
| | - Rachel Grignon
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU-Nancy, Université de Lorraine, F-54000, Nancy, France
| | - Laetitia Imbert
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU-Nancy, Université de Lorraine, F-54000, Nancy, France. .,Médecine Nucléaire, CHRU-Nancy Brabois, Allée du Morvan, 54500 Vandoeuvre-lès-, Nancy, France. .,Université de Lorraine, INSERM U1254, IADI, F-54000, Nancy, France.
| | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU-Nancy, Université de Lorraine, F-54000, Nancy, France.,Université de Lorraine, INSERM U1254, IADI, F-54000, Nancy, France
| |
Collapse
|
35
|
Beyer T, Bidaut L, Dickson J, Kachelriess M, Kiessling F, Leitgeb R, Ma J, Shiyam Sundar LK, Theek B, Mawlawi O. What scans we will read: imaging instrumentation trends in clinical oncology. Cancer Imaging 2020; 20:38. [PMID: 32517801 PMCID: PMC7285725 DOI: 10.1186/s40644-020-00312-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
Oncological diseases account for a significant portion of the burden on public healthcare systems with associated costs driven primarily by complex and long-lasting therapies. Through the visualization of patient-specific morphology and functional-molecular pathways, cancerous tissue can be detected and characterized non-invasively, so as to provide referring oncologists with essential information to support therapy management decisions. Following the onset of stand-alone anatomical and functional imaging, we witness a push towards integrating molecular image information through various methods, including anato-metabolic imaging (e.g., PET/CT), advanced MRI, optical or ultrasound imaging.This perspective paper highlights a number of key technological and methodological advances in imaging instrumentation related to anatomical, functional, molecular medicine and hybrid imaging, that is understood as the hardware-based combination of complementary anatomical and molecular imaging. These include novel detector technologies for ionizing radiation used in CT and nuclear medicine imaging, and novel system developments in MRI and optical as well as opto-acoustic imaging. We will also highlight new data processing methods for improved non-invasive tissue characterization. Following a general introduction to the role of imaging in oncology patient management we introduce imaging methods with well-defined clinical applications and potential for clinical translation. For each modality, we report first on the status quo and, then point to perceived technological and methodological advances in a subsequent status go section. Considering the breadth and dynamics of these developments, this perspective ends with a critical reflection on where the authors, with the majority of them being imaging experts with a background in physics and engineering, believe imaging methods will be in a few years from now.Overall, methodological and technological medical imaging advances are geared towards increased image contrast, the derivation of reproducible quantitative parameters, an increase in volume sensitivity and a reduction in overall examination time. To ensure full translation to the clinic, this progress in technologies and instrumentation is complemented by advances in relevant acquisition and image-processing protocols and improved data analysis. To this end, we should accept diagnostic images as "data", and - through the wider adoption of advanced analysis, including machine learning approaches and a "big data" concept - move to the next stage of non-invasive tumour phenotyping. The scans we will be reading in 10 years from now will likely be composed of highly diverse multi-dimensional data from multiple sources, which mandate the use of advanced and interactive visualization and analysis platforms powered by Artificial Intelligence (AI) for real-time data handling by cross-specialty clinical experts with a domain knowledge that will need to go beyond that of plain imaging.
Collapse
Affiliation(s)
- Thomas Beyer
- QIMP Team, Centre for Medical Physics and Biomedical Engineering, Medical University Vienna, Währinger Gürtel 18-20/4L, 1090, Vienna, Austria.
| | - Luc Bidaut
- College of Science, University of Lincoln, Lincoln, UK
| | - John Dickson
- Institute of Nuclear Medicine, University College London Hospital, London, UK
| | - Marc Kachelriess
- Division of X-ray imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, DE, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074, Aachen, DE, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Am Fallturm 1, 28359, Bremen, DE, Germany
| | - Rainer Leitgeb
- Centre for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, AT, Austria
| | - Jingfei Ma
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lalith Kumar Shiyam Sundar
- QIMP Team, Centre for Medical Physics and Biomedical Engineering, Medical University Vienna, Währinger Gürtel 18-20/4L, 1090, Vienna, Austria
| | - Benjamin Theek
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074, Aachen, DE, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Am Fallturm 1, 28359, Bremen, DE, Germany
| | - Osama Mawlawi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
36
|
Carminati M, D'Adda I, Morahan AJ, Erlandsson K, Nagy K, Czeller M, Tolgyesi B, Nyitrai Z, Savi A, van Mullekom P, Hutton BF, Fiorini C. Clinical SiPM-Based MRI-Compatible SPECT: Preliminary Characterization. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2019.2951355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Desmonts C, Bouthiba MA, Enilorac B, Nganoa C, Agostini D, Aide N. Evaluation of a new multipurpose whole-body CzT-based camera: comparison with a dual-head Anger camera and first clinical images. EJNMMI Phys 2020; 7:18. [PMID: 32185566 PMCID: PMC7078403 DOI: 10.1186/s40658-020-0284-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/26/2020] [Indexed: 11/23/2022] Open
Abstract
Background Evaluate the physical performance of the VERITON CzT camera (Spectrum Dynamics, Caesarea, Israel) that benefits from new detection architecture enabling whole-body imaging compared to that of a conventional dual-head Anger camera. Methods Different line sources and phantom measurements were performed on each system to evaluate spatial resolution, sensitivity, energy resolution and image quality with acquisition and reconstruction parameters similar to those used in clinical routine. Extrinsic resolution was assessed using 99mTc capillary sources placed successively in air, in a head and in a body phantom filled with background activity. Spectral acquisitions for various radioelements used in nuclear medicine (99mTc, 123I, 201Tl, 111In) were performed to evaluate energy resolution by computing the FWHM of the measured photoelectric peak. Tomographic sensitivity was calculated by recording the total number of counts detected during tomographic acquisition for a set of source geometries representative of different clinical situations. Sensitivity was also evaluated in focus mode for the CzT camera, which consisted of forcing detectors to collect data in a reduced field-of-view. Image quality was assessed with a Jaszczak phantom filled with 350 MBq of 99mTc and scanned on each system with 30-,20-,10- and 5-min acquisition times. Results Extrinsic and tomographic resolution in the brain and body phantoms at the centre of the FOV was estimated at 3.55, 7.72 and 6.66 mm for the CzT system and 2.47, 7.75 and 7.72 mm for the conventional system, respectively. The energy resolution measured at 140 keV was 5.46% versus 9.21% for the Anger camera and was higher in a same manner for all energy peaks tested. Tomographic sensitivity for a point source in air was estimated at 236 counts·s−1·MBq−1 and increased to 1159 counts·s−1·MBq−1 using focus mode, which was 1.6 times and 8 times greater than the sensitivity measured on the scintillation camera (144 counts·s−1·MBq−1). Head and body measurements also showed higher sensitivity for the CzT camera in particular with focus mode. The Jaszczak phantom showed high image contrast uniformity and a high signal-to-noise ratio on the CzT system, even when decreasing acquisition time by 6-fold. Representative clinical cases are shown to illustrate these results. Conclusion The CzT camera has a superior sensitivity, higher energy resolution and better image contrast than the conventional SPECT camera, whereas spatial resolution remains similar. Introduction of this new technology may change current practices in nuclear medicine such as decreasing acquisition time and activity injected to patient.
Collapse
Affiliation(s)
- Cédric Desmonts
- Department of Nuclear Medicine, Caen University Hospital, Avenue de la côte de Nacre, 14033, Caen Cedex 9, France.
| | | | - Blandine Enilorac
- Department of Nuclear Medicine, Caen University Hospital, Avenue de la côte de Nacre, 14033, Caen Cedex 9, France
| | - Catherine Nganoa
- Department of Nuclear Medicine, Caen University Hospital, Avenue de la côte de Nacre, 14033, Caen Cedex 9, France
| | - Denis Agostini
- Department of Nuclear Medicine, Caen University Hospital, Avenue de la côte de Nacre, 14033, Caen Cedex 9, France.,Normandie University, Caen, France
| | - Nicolas Aide
- Department of Nuclear Medicine, Caen University Hospital, Avenue de la côte de Nacre, 14033, Caen Cedex 9, France.,Normandie University, Caen, France.,Inserm Anticipe, Normandie University, Caen, France
| |
Collapse
|
38
|
Si-Mohamed S, Moreau-Triby C, Tylski P, Tatard-Leitman V, Wdowik Q, Boccalini S, Dessouky R, Douek P, Boussel L. Head-to-head comparison of lung perfusion with dual-energy CT and SPECT-CT. Diagn Interv Imaging 2020; 101:299-310. [PMID: 32173289 DOI: 10.1016/j.diii.2020.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE To compare the quantitative and qualitative lung perfusion data acquired with dual energy CT (DECT) to that acquired with a large field-of-view cadmium-zinc-telluride camera single-photon emission CT coupled to a CT system (SPECT-CT). MATERIALS AND METHODS A total of 53 patients who underwent both dual-layer DECT angiography and perfusion SPECT-CT for pulmonary hypertension or pre-operative lobar resection surgery were retrospectively included. There were 30 men and 23 women with a mean age of 65.4±17.5 (SD)years (range: 18-88years). Relative lobar perfusion was calculated by dividing the amount (of radiotracer or iodinated contrast agent) per lobe by the total amount in both lungs. Linear regression, Bland-Altman analysis, and Pearson's correlation coefficient were also calculated. Kappa test was used to test agreements in morphology and severity of perfusion defects assessed on SPECT-CT and on DECT iodine maps with a one-month interval. Wilcoxon rank sum test was used to compare the sharpness of perfusion defects and radiation dose among modalities. RESULTS Strong correlations for relative lobar perfusion using linear regression analysis and Pearson's correlation coefficient (r=0.93) were found. Bland-Altman analysis revealed a -0.10 bias, with limits of agreement between [-6.01; 5.81]. With respect to SPECT- CT as standard of reference, the sensitivity, specificity, PPV, NPV, accuracy for lobar perfusion defects were 89.4% (95%
CI: 82.6-93.4%), 96.5% (95% CI: 92.1-98.5%), 95.6% (95% CI:
90.9-97.8%), 91.4% (95% CI: 85.6-94.9%) and 93.0% (95% CI:
87.6-96.1%) respectively. High level of agreement was found for morphology and severity of perfusion defects between modalities (Kappa=0.84 and 0.86 respectively) and on DECT images among readers (Kappa=0.94 and 0.89 respectively). A significantly sharper delineation of perfusion defects was found on DECT images (P<0.0001) using a significantly lower equivalent dose of 4.1±2.3 (SD) mSv (range: 1.9-11.85mSv) compared to an equivalent dose of 5.3±1.1 (SD) mSv (range: 2.8-7.3mSv) for SPECT-CT, corresponding to a 21.2% dose reduction (P=0.0004). CONCLUSION DECT imaging shows strong quantitative correlations and qualitative agreements with SPECT-CT for the evaluation of lung perfusion.
Collapse
Affiliation(s)
- S Si-Mohamed
- Department of Radiology, Hospices Civils de Lyon, 69500 Bron, France; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Lyon, France.
| | - C Moreau-Triby
- Department of Nuclear Medicine, Hospices Civils de Lyon, 69500 Bron, France
| | - P Tylski
- Medical Physics and Radioprotection, Hospices Civils de Lyon, 69500 Bron, France
| | - V Tatard-Leitman
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Lyon, France
| | - Q Wdowik
- Department of Radiology, Hospices Civils de Lyon, 69500 Bron, France
| | - S Boccalini
- Department of Radiology, Hospices Civils de Lyon, 69500 Bron, France
| | - R Dessouky
- Department of Radiology, Faculty of Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - P Douek
- Department of Radiology, Hospices Civils de Lyon, 69500 Bron, France; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Lyon, France
| | - L Boussel
- Department of Radiology, Hospices Civils de Lyon, 69500 Bron, France; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Lyon, France
| |
Collapse
|
39
|
Melki S, Chawki MB, Marie PY, Imbert L, Verger A. Augmented planar bone scintigraphy obtained from a whole-body SPECT recording of less than 20 min with a high-sensitivity 360° CZT camera. Eur J Nucl Med Mol Imaging 2019; 47:1329-1331. [PMID: 31606830 DOI: 10.1007/s00259-019-04525-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/04/2019] [Indexed: 11/26/2022]
Affiliation(s)
| | | | - Pierre-Yves Marie
- Nuclear Medicine Department, CHRU-Nancy, Nancy, France
- Nancyclotep Imaging Platform, CHRU-Nancy, Nancy, France
| | - Laetitia Imbert
- Nuclear Medicine Department, CHRU-Nancy, Nancy, France.
- Nancyclotep Imaging Platform, CHRU-Nancy, Nancy, France.
- INSERM U1254, IADI, Lorraine University, Nancy, France.
| | - Antoine Verger
- Nuclear Medicine Department, CHRU-Nancy, Nancy, France
- Nancyclotep Imaging Platform, CHRU-Nancy, Nancy, France
- INSERM U1254, IADI, Lorraine University, Nancy, France
| |
Collapse
|
40
|
Slomka PJ, Miller RJ, Hu LH, Germano G, Berman DS. Solid-State Detector SPECT Myocardial Perfusion Imaging. J Nucl Med 2019; 60:1194-1204. [DOI: 10.2967/jnumed.118.220657] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
|
41
|
Okano N, Osawa I, Tsuchihashi S, Takahashi M, Niitsu M, Matsunari I. High-speed scanning of planar images showing 123I-MIBG uptake using a whole-body CZT camera: a phantom and clinical study. EJNMMI Res 2019; 9:22. [PMID: 30806836 PMCID: PMC6391509 DOI: 10.1186/s13550-019-0491-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/11/2019] [Indexed: 11/10/2022] Open
Abstract
Background The heart-to-mediastinum ratio (HMR) obtained in myocardial sympathetic innervation imaging using 123I-metaiodobenzylguanidine (MIBG) is used for heart failure or Lewy body diseases (LBD). Discovery NM/CT 670 CZT, a novel whole-body scanner, enables direct HMR measurements in planar images, in contrast to cardiac-dedicated CZT-based cameras which require specific post-processing reconstruction. We sought to investigate the clinical utility of the Discovery NM/CT 670 CZT for myocardial innervation imaging and the potential time reduction. Results Following preliminary phantom examinations, 123I-MIBG planar imaging was performed in 36 patients with suspected or known LBD to measure HMRs with a collection time of 300 s. Images for different collection times were subsequently reframed using already acquired data, and changes in HMRs were evaluated. The HMRs for patients with versus without clinically diagnosed LBD were 1.63 ± 0.08 versus 2.21 ± 0.08 at early phase (p < 0.001) and 1.54 ± 0.09 versus 2.08 ± 0.09 at delayed phase (p < 0.001). The difference of HMRs (300 s − other collection time) became greater as the collection time became shorter. There was good consistency in HMRs between the 300-s images (reference) and the 200-s (intra-class correlation (ICC) coefficients > 0.99), 100-s (ICC coefficients > 0.97), and 50-s (ICC coefficients > 0.89) images. Conclusions In planar images with a whole-body CZT-based camera, the HMRs of patients with LBD were significantly lower than those without. HMRs with the collection time of 50 s and longer showed good consistency with those of 300 s in the ICC analysis. These findings indicate a clinical utility of this novel scanner for HMR measurements and potential time reductions. Electronic supplementary material The online version of this article (10.1186/s13550-019-0491-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nanami Okano
- Department of Radiology, Saitama Medical University Hospital, 38 Morohongo, Moroyama, Iruma, Saitama, 350-0495, Japan.
| | - Iichiro Osawa
- Department of Radiology, Saitama Medical University Hospital, 38 Morohongo, Moroyama, Iruma, Saitama, 350-0495, Japan
| | - Saki Tsuchihashi
- Department of Radiology, Saitama Medical University Hospital, 38 Morohongo, Moroyama, Iruma, Saitama, 350-0495, Japan
| | - Masafumi Takahashi
- Department of Central Radiological Technology, Saitama Medical University Hospital, Saitama, Japan
| | - Mamoru Niitsu
- Department of Radiology, Saitama Medical University Hospital, 38 Morohongo, Moroyama, Iruma, Saitama, 350-0495, Japan
| | - Ichiro Matsunari
- Division of Nuclear Medicine, Department of Radiology, Saitama Medical University Hospital, Saitama, Japan
| |
Collapse
|