1
|
Hoog C, Koulibaly PM, Sas N, Imbert L, Le Rouzic G, Popoff R, Badel JN, Ferrer L. 360° CZT-SPECT/CT cameras: 99mTc- and 177Lu-phantom-based evaluation under clinical conditions. EJNMMI Phys 2024; 11:89. [PMID: 39446222 PMCID: PMC11502619 DOI: 10.1186/s40658-024-00684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
PURPOSE For the first time, three currently available 360° CZT-SPECT/CT cameras were compared under clinical conditions using phantom-based measurements. METHODS A 99mTc- and a 177Lu-customized NEMA IEC body phantom were imaged with three different cameras, StarGuide (GE Healthcare), VERITON-CT versions 200 (V200) and 400 (V400) (Spectrum Dynamics Medical) under the same clinical conditions. Energy resolution and volumetric sensitivity were evaluated from energy spectra. Vendors provided the best reconstruction parameters dedicated to visualization and/or quantification, based on their respective software developments. For both 99mTc- and 177Lu-phantoms, noise level, quantification accuracy, and recovery coefficient (RC) were performed with 3DSlicer. Image quality metrics from an approach called "task-based" were computed with iQMetrix-CT on 99mTc visual reconstructions to assess, through spatial frequencies, noise texture in the background (NPS) and contrast restitution of a hot insert (TTF). Spatial resolution indices were calculated from frequencies corresponding to TTF10% and TTF50%. RESULTS Despite the higher sensitivity of VERITON cameras and the enhanced energy resolution of the V400 (3.2% at 140 keV, 5.2% at 113 keV, and 3.6% at 208 keV), StarGuide presents comparable image quality. This highlights the need to differentiate sensitivity from count quality, which is influenced by hardware design (collimator, detector block) and conditions image quality as well as the reconstruction process (algorithms, scatter correction, noise regulation). For 99mTc imaging, the quantitative image optimization approach based on RCmean for StarGuide versus RCmax for V200 and V400 systems (RCmean/RCmax: 0.9/1.8; 0.5/0.9; 0.5/0.9 respectively-Ø37 mm). SRTB10/50 showed nearly equivalent spatial resolution performances across the different reconstructed images. For 177Lu imaging, the 113 keV imaging of the V200 and V400 systems demonstrated strong performances in both image quality and quantification, while StarGuide and V400 systems offer even better potential due to their ability to exploit signals from both the 113 and 208 keV peaks. 177Lu quantification was optimized according to RCmax for all cameras and reconstructions (1.07 ± 0.09-Ø37 mm). CONCLUSIONS The three cameras have equivalent potential for 99mTc imaging, while StarGuide and V400 have demonstrated higher potential for 177Lu. Dedicated visual or quantitative reconstructions offer better specific performances compared to the unified visual/quantitative reconstruction. The task-based approach appears to be promising for in-depth comparison of images in the context of system characterization/comparison and protocol optimization.
Collapse
Affiliation(s)
- Christopher Hoog
- Medical Physics Department, Institut Godinot Comprehensive Cancer Center, Reims, France.
| | - Pierre-Malick Koulibaly
- Department of Diagnostic Radiology and Nuclear Medicine, Antoine Lacassagne Comprehensive Cancer Center, Université Nice-Côte d'Azur, 33 Avenue de Valombrose, 06189, Nice, France
| | - Nicolas Sas
- Department of Medical Physics, Jean Perrin Comprehensive Cancer Center, 63000, Clermont-Ferrand, France
| | - Laetitia Imbert
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU-Nancy, Université de Lorraine, 54000, Nancy, France
| | - Gilles Le Rouzic
- Nuclear Medicine Department, CHU Orleans, 14 Avenue de l'Hôpital, 45100, Orleans, France
| | - Romain Popoff
- Department of Medical Physics, Georges-François Leclerc Cancer Center, 1 Rue du Professeur Marion, 21000, Dijon, France
- ICMUB, UMR 6302, CNRS, Dijon, France
| | - Jean-Noël Badel
- Centre de Lutte Contre le Cancer Léon-Bérard, CREATIS CNRS UMR 5220 INSERM U 1044, Université de Lyon, INSA-Lyon, Lyon, France
| | - Ludovic Ferrer
- Medical Physics Department, ICO René Gauducheau, Saint Herblain, 44805, France
- CRCINA, UMR 1232, INSERM, Nantes, France
| |
Collapse
|
2
|
Verger A, Cecchin D, Guedj E, Albert NL, Brendel M, Fraioli F, Tolboom N, Traub-Weidinger T, Yakushev I, Van Weehaeghe D, Fernandez PA, Garibotto V, Imbert L. EANM perspectives for CZT SPECT in brain applications. Eur J Nucl Med Mol Imaging 2024; 51:3680-3684. [PMID: 38858281 DOI: 10.1007/s00259-024-06788-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Affiliation(s)
- Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, Université de Lorraine, IADI, INSERM U1254, Allée du Morvan, Nancy, 54500, France.
| | - Diego Cecchin
- Department of Medicine, Unit of Nuclear Medicine, University Hospital of Padova, Padova, Italy
| | - Eric Guedj
- Département de Médecine Nucléaire, Aix Marseille Univ, APHM, CNRS, Centrale Marseille, Institut Fresnel, Hôpital de La Timone, CERIMED, Marseille, France
| | - Nathalie L Albert
- Department of Nuclear Medicine, LMU Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Francesco Fraioli
- Institute of Nuclear Medicine, University College London (UCL), London, UK
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Tatjana Traub-Weidinger
- Department of Diagnostic and Therapeutic Nuclear Medicine, Clinic Donaustadt, Vienna Health Care Group, Vienna, Austria
| | - Igor Yakushev
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts dr Isar, Technical University of Munich, Munich, Germany
| | - Donatienne Van Weehaeghe
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, C. Heymanslaan 10, Ghent, 9000, Belgium
| | - Pablo Aguiar Fernandez
- CIMUS, Universidade Santiago de Compostela & Nuclear Medicine Department, Univ. Hospital IDIS, Santiago de Compostela, Spain
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, Geneva, 1205, Switzerland
- NIMTLab, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Geneva, Switzerland
| | - Laetitia Imbert
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, Université de Lorraine, IADI, INSERM U1254, Allée du Morvan, Nancy, 54500, France
| |
Collapse
|
3
|
Kato T, Ichikawa H, Kawakami K, Hosoya T, Banno T, Kato T, Ito S. [Feasibility of Adapting Various Tumor-to-normal Bone Ratio Images on an Automatic Quantification Package for Phantom-based Image Quality Assessment in Bone SPECT]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2024:2024-1497. [PMID: 39343536 DOI: 10.6009/jjrt.2024-1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
We investigated the impact of the tumor-to-normal bone ratio (TNR) on the concordance rate between a detectability score classified by software (DSsoft) using an automatic quantification package for bone SPECT (Hone Graph) and a detectability score classified by visual assessment (DSvisual), and considered the feasibility of applying this software to various TNR images. 99mTc solution was filled into a SIM2 bone phantom to achieve TNRs of 4, 6, and 8, performed by dynamic SPECT acquisitions performed for 12 minutes; reconstructions were performed using ordered subset expectation maximization at timepoints ranging from 4 to 12 minutes. This yielded a total of 384 lesions (96 SPECT images). We investigated the weighted kappa (κw) coefficient between DSsoft and DSvisual at various TNRs and evaluated the change in analysis accuracy before and after applying newly created analysis parameters. DSs were defined on a 4-point scale (4: excellent, 3: adequate, 2: average, 1: poor), and visual evaluations were conducted by three board-certified nuclear medicine technologists. The κw coefficients between DSsoft and DSvisual were 0.75, 0.97, and 0.93 for TNRs 4, 6, and 8, respectively, with each κw coefficient being significant (p<0.01). In the TNR 4 image group, κw coefficients significantly increased with the implementation of new parameters proposed in this study. We concluded that the software's automatic analysis would be closer to a visual assessment within the TNR range of 4-8 and that applying new parameters derived from this study to images with TNR 4 further improves the software's automatic analysis accuracy of DSsoft. We suggest that software will be a useful tool for optimizing bone SPECT imaging techniques.
Collapse
Affiliation(s)
- Toyohiro Kato
- Department of Radiology, Toyohashi Municipal Hospital
| | - Hajime Ichikawa
- Department of Radiology, Toyohashi Municipal Hospital
- Department of Quantum Medical Technology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | | | | | - Tomoya Banno
- Department of Radiology, Toyohashi Municipal Hospital
| | - Taiki Kato
- Department of Radiology, Toyohashi Municipal Hospital
| | - Satomi Ito
- Department of Radiology, Toyohashi Municipal Hospital
| |
Collapse
|
4
|
Zorz A, Rossato MA, Turco P, Colombo Gomez LM, Bettinelli A, De Monte F, Paiusco M, Zucchetta P, Cecchin D. Performance evaluation of the 3D-ring cadmium-zinc-telluride (CZT) StarGuide system according to the NEMA NU 1-2018 standard. EJNMMI Phys 2024; 11:69. [PMID: 39052176 PMCID: PMC11272762 DOI: 10.1186/s40658-024-00671-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND The application of semi-conductor detectors such as cadmium-zinc-telluride (CZT) in nuclear medicine improves extrinsic energy resolution and count sensitivity due to the direct conversion of gamma photons into electric signals. A 3D-ring pixelated CZT system named StarGuide was recently developed and implemented by GE HealthCare for SPECT acquisition. The system consists of 12 detector columns with seven modules of 16 × 16 CZT pixelated crystals, each with an integrated parallel-hole tungsten collimator. The axial coverage is 27.5 cm. The detector thickness is 7.25 mm, which allows acquisitions in the energy range [40-279] keV. Since there is currently no performance characterization specific to 3D-ring CZT SPECT systems, the National Electrical Manufacturers Association (NEMA) NU 1-2018 clinical standard can be tailored to these cameras. The aim of this study was to evaluate the performance of the SPECT/CT StarGuide system according to the NEMA NU 1-2018 clinical standard specifically adapted to characterize the new 3D-ring CZT. RESULTS Due to the integrated collimator, the system geometry and the pixelated nature of the detector, some NEMA tests have been adapted to the features of the system. The extrinsic measured energy resolution was about 5-6% for the tested isotopes (99mTc, 123I and 57Co); the maximum count rate was 760 kcps and the observed count rate at 20% loss was 917 kcps. The system spatial resolution in air extrapolated at 10 cm with 99mTc was 7.2 mm, while the SPECT spatial resolutions with scatter were 4.2, 3.7 and 3.6 mm in a central, radial and tangential direction respectively. Single head sensitivity value for 99mTc was 97 cps/MBq; with 12 detector columns, the system volumetric sensitivity reached 520 kcps MBq-1 cc-1. CONCLUSIONS The performance tests of the StarGuide can be performed according to the NEMA NU 1-2018 standard with some adaptations. The system has shown promising results, particularly in terms of energy resolution, spatial resolution and volumetric sensitivity, potentially leading to higher quality clinical images.
Collapse
Affiliation(s)
- Alessandra Zorz
- Medical Physics Department, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy.
| | - Marco Andrea Rossato
- Medical Physics Department, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Paolo Turco
- Unit of Nuclear Medicine, University Hospital of Padova, Padua, Italy
| | | | - Andrea Bettinelli
- Medical Physics Department, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Francesca De Monte
- Medical Physics Department, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Marta Paiusco
- Medical Physics Department, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Pietro Zucchetta
- Unit of Nuclear Medicine, University Hospital of Padova, Padua, Italy
| | - Diego Cecchin
- Unit of Nuclear Medicine, Department of Medicine (DIMED), University Hospital of Padova, Padua, Italy
| |
Collapse
|
5
|
Traub-Weidinger T, Arbizu J, Barthel H, Boellaard R, Borgwardt L, Brendel M, Cecchin D, Chassoux F, Fraioli F, Garibotto V, Guedj E, Hammers A, Law I, Morbelli S, Tolboom N, Van Weehaeghe D, Verger A, Van Paesschen W, von Oertzen TJ, Zucchetta P, Semah F. EANM practice guidelines for an appropriate use of PET and SPECT for patients with epilepsy. Eur J Nucl Med Mol Imaging 2024; 51:1891-1908. [PMID: 38393374 PMCID: PMC11139752 DOI: 10.1007/s00259-024-06656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Epilepsy is one of the most frequent neurological conditions with an estimated prevalence of more than 50 million people worldwide and an annual incidence of two million. Although pharmacotherapy with anti-seizure medication (ASM) is the treatment of choice, ~30% of patients with epilepsy do not respond to ASM and become drug resistant. Focal epilepsy is the most frequent form of epilepsy. In patients with drug-resistant focal epilepsy, epilepsy surgery is a treatment option depending on the localisation of the seizure focus for seizure relief or seizure freedom with consecutive improvement in quality of life. Beside examinations such as scalp video/electroencephalography (EEG) telemetry, structural, and functional magnetic resonance imaging (MRI), which are primary standard tools for the diagnostic work-up and therapy management of epilepsy patients, molecular neuroimaging using different radiopharmaceuticals with single-photon emission computed tomography (SPECT) and positron emission tomography (PET) influences and impacts on therapy decisions. To date, there are no literature-based praxis recommendations for the use of Nuclear Medicine (NM) imaging procedures in epilepsy. The aims of these guidelines are to assist in understanding the role and challenges of radiotracer imaging for epilepsy; to provide practical information for performing different molecular imaging procedures for epilepsy; and to provide an algorithm for selecting the most appropriate imaging procedures in specific clinical situations based on current literature. These guidelines are written and authorized by the European Association of Nuclear Medicine (EANM) to promote optimal epilepsy imaging, especially in the presurgical setting in children, adolescents, and adults with focal epilepsy. They will assist NM healthcare professionals and also specialists such as Neurologists, Neurophysiologists, Neurosurgeons, Psychiatrists, Psychologists, and others involved in epilepsy management in the detection and interpretation of epileptic seizure onset zone (SOZ) for further treatment decision. The information provided should be applied according to local laws and regulations as well as the availability of various radiopharmaceuticals and imaging modalities.
Collapse
Affiliation(s)
- Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Javier Arbizu
- Department of Nuclear Medicine, University of Navarra Clinic, Pamplona, Spain
| | - Henryk Barthel
- Department of Nuclear Medicine, Leipzig University Medical Centre, Leipzig, Germany
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Lise Borgwardt
- Department of Clinical Physiology and Nuclear Medicine, University of Copenhagen, Blegdamsvej 9, DK-2100, RigshospitaletCopenhagen, Denmark
| | - Matthias Brendel
- Department of Nuclear Medicine, Ludwig Maximilian-University of Munich, Munich, Germany
- DZNE-German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine-DIMED, University-Hospital of Padova, Padova, Italy
| | - Francine Chassoux
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, 91401, Orsay, France
| | - Francesco Fraioli
- Institute of Nuclear Medicine, University College London (UCL), London, UK
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
- NIMTLab, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Geneva, Switzerland
| | - Eric Guedj
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix Marseille Univ, Marseille, France
| | - Alexander Hammers
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London & Guy's and St Thomas' PET Centre, King's College London, London, UK
| | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Silvia Morbelli
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, Université de Lorraine, IADI, INSERM U1254, Nancy, France
| | - Wim Van Paesschen
- Laboratory for Epilepsy Research, KU Leuven and Department of Neurology, University Hospitals, Leuven, Belgium
| | - Tim J von Oertzen
- Depts of Neurology 1&2, Kepler University Hospital, Johannes Kepler University, Linz, Austria
| | - Pietro Zucchetta
- Nuclear Medicine Unit, Department of Medicine-DIMED, University-Hospital of Padova, Padova, Italy
| | - Franck Semah
- Nuclear Medicine Department, University Hospital, Inserm, CHU Lille, U1172-LilNCog-Lille, F-59000, Lille, France.
| |
Collapse
|
6
|
Barlatey SL, Mignardot CG, Friedrichs-Maeder C, Schindler K, Wiest R, Nowacki A, Haenggi M, Z'Graggen WJ, Pollo C, Rominger A, Pyka T, Baud MO. Triggered Seizures for Ictal SPECT Imaging: A Case Series and Feasibility Study. J Nucl Med 2024; 65:470-474. [PMID: 38212073 DOI: 10.2967/jnumed.123.266515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Ictal SPECT is an informative seizure imaging technique to tailor epilepsy surgery. However, capturing the onset of unpredictable seizures is a medical and logistic challenge. Here, we sought to image planned seizures triggered by direct stimulation of epileptic networks via stereotactic electroencephalography (sEEG) electrodes. Methods: In this case series of 3 adult participants with left temporal epilepsy, we identified and stimulated sEEG contacts able to trigger patient-typical seizures. We administered 99mTc-HMPAO within 12 s of ictal onset and acquired SPECT images within 40 min without any adverse events. Results: Ictal hyperperfusion maps partially overlapped concomitant sEEG seizure activity. In both participants known for periictal aphasia, SPECT imaging revealed hyperperfusion in the speech cortex lacking sEEG coverage. Conclusion: Triggering of seizures for ictal SPECT complements discrete sEEG sampling with spatially complete images of early seizure propagation. This readily implementable method revives interest in seizure imaging to guide resective epilepsy surgery.
Collapse
Affiliation(s)
- Sabry L Barlatey
- Department of Neurosurgery, University Hospital of Bern, Bern, Switzerland
| | - Camille G Mignardot
- Sleep-Wake-Epilepsy Center and NeuroTec, Center for Experimental Neurology, Department of Neurology, University Hospital of Bern, Bern, Switzerland
| | - Cecilia Friedrichs-Maeder
- Sleep-Wake-Epilepsy Center and NeuroTec, Center for Experimental Neurology, Department of Neurology, University Hospital of Bern, Bern, Switzerland
| | - Kaspar Schindler
- Sleep-Wake-Epilepsy Center and NeuroTec, Center for Experimental Neurology, Department of Neurology, University Hospital of Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging, University Institute of Diagnostic and Interventional Neuroradiology, University Hospital of Bern, Bern, Switzerland
| | - Andreas Nowacki
- Department of Neurosurgery, University Hospital of Bern, Bern, Switzerland
| | - Matthias Haenggi
- Department of Intensive Care Medicine, University Hospital of Bern, Bern, Switzerland; and
| | - Werner J Z'Graggen
- Department of Neurosurgery, University Hospital of Bern, Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, University Hospital of Bern, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, University Hospital of Bern, Bern, Switzerland
| | - Thomas Pyka
- Department of Nuclear Medicine, University Hospital of Bern, Bern, Switzerland
| | - Maxime O Baud
- Sleep-Wake-Epilepsy Center and NeuroTec, Center for Experimental Neurology, Department of Neurology, University Hospital of Bern, Bern, Switzerland;
| |
Collapse
|
7
|
Wu W, Zhang R, Zhou Y, Wang S, Shen Y, Li N, Tan J, Zheng W, Jia Q, Meng Z. Impacts of different reconstruction methods on the image quality of cadmium-zinc-telluride-based single photon emission computed tomography/computed tomography pulmonary perfusion imaging. Nucl Med Commun 2023; 44:673-681. [PMID: 37233601 DOI: 10.1097/mnm.0000000000001710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
OBJECTIVE The objective was to evaluate the impacts of different reconstruction methods [filtered back projection (FBP) and ordered subset expectation maximization (OSEM)] and different filters (Butterworth filter and Gaussian filter) on the image quality in cadmium-zinc-telluride (CZT)-based single photon emission computed tomography (SPECT)/computed tomography (CT) pulmonary perfusion imaging. METHODS A combinations including FBP with Butterworth filter, OSEM with Butterworth filter (OSEM + Butterworth filter ), and OSEM with Gaussian filter (OSEM + Gaussian filter) were used during SPECT image reconstruction. Visual and quantitative parameters [root mean square (RMS) noise, contrast and contrast-to-noise ratio (CNR)] were used to evaluate image quality. RESULTS The OSEM + Gaussian filter had better RMS noise and CNR than those of the FBP + Butterworth filter or OSEM + Butterworth filter, while the OSEM + Butterworth filter had the best contrast. The highest visual scores were obtained by OSEM + Gaussian filter ( P < 0.0001). In the lesion size <2 cm group, the contrast ( P < 0.01) and visual scores ( P < 0.001) of OSEM + Butterworth filter were better than those of the other two groups. In the lesion size ≥2 cm group, the RMS noise and visual scores of OSEM + Gaussian filter were better than those of the other two groups. CONCLUSION In CZT SPECT/CT pulmonary perfusion imaging, this study recommended the clinical use of the OSEM + Gaussian filter combination for reconstruction in both conventional and larger lesions, the OSEM + Butterworth filter image postprocessing method might be advantageous in small lesions.
Collapse
Affiliation(s)
- Weiming Wu
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin
| | - Ruyi Zhang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin
| | - Yaqian Zhou
- Department of Nuclear Medicine, Renji Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shen Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin
| | - Yiming Shen
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin
| | - Ning Li
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin
| | - Jian Tan
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin
| | - Wei Zheng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin
| | - Qiang Jia
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin
| |
Collapse
|
8
|
Doyen M, Hossu G, Heyer S, Zaragori T, Imbert L, Verger A. Identification of resting-state networks using dynamic brain perfusion SPECT imaging: A fSPECT case report. Front Hum Neurosci 2023; 17:1125765. [PMID: 37151905 PMCID: PMC10157397 DOI: 10.3389/fnhum.2023.1125765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/21/2023] [Indexed: 05/09/2023] Open
Abstract
Connectivity studies with nuclear medicine systems are scarce in literature. They mainly employ PET imaging and group level analyses due to the low temporal resolution of PET and especially SPECT imaging. Our current study analyses connectivity at an individual level using dynamic SPECT imaging, which has been enabled by the improved temporal resolution performances provided by the 360°CZT cameras. We present the case of an 80-year-old man referred for brain perfusion SPECT imaging for cognitive disorders for whom a dynamic SPECT acquisition was performed utilizing a 360°CZT camera (temporal sampling of 15 frames × 3 s, 10 frames × 15 s, 14 frames × 30 s), followed by a conventional static acquisition of 15 m. Functional SPECT connectivity (fSPECT) was assessed through a seed correlation analysis and 5 well-known resting-state networks were identified: the executive, the default mode, the sensory motor, the salience, and the visual networks. This case report supports the feasibility of fSPECT imaging to identify well known resting-state networks, thanks to the novel properties of a 360°CZT camera, and opens the way to the development of more dedicated functional connectivity studies using brain perfusion SPECT imaging.
Collapse
Affiliation(s)
- Matthieu Doyen
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, Université de Lorraine, Nancy, France
- IADI, INSERM U1254, Université de Lorraine, Nancy, France
- *Correspondence: Matthieu Doyen,
| | - Gabriela Hossu
- IADI, INSERM U1254, Université de Lorraine, Nancy, France
- CHRU-Nancy, INSERM, CIC, Innovation Technologique, Université de Lorraine, Nancy, France
| | - Sébastien Heyer
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, Université de Lorraine, Nancy, France
| | | | - Laetitia Imbert
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, Université de Lorraine, Nancy, France
- IADI, INSERM U1254, Université de Lorraine, Nancy, France
| | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU Nancy, Université de Lorraine, Nancy, France
- IADI, INSERM U1254, Université de Lorraine, Nancy, France
| |
Collapse
|
9
|
Prange S, Theis H, Banwinkler M, van Eimeren T. Molecular Imaging in Parkinsonian Disorders—What’s New and Hot? Brain Sci 2022; 12:brainsci12091146. [PMID: 36138882 PMCID: PMC9496752 DOI: 10.3390/brainsci12091146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Highlights Abstract Neurodegenerative parkinsonian disorders are characterized by a great diversity of clinical symptoms and underlying neuropathology, yet differential diagnosis during lifetime remains probabilistic. Molecular imaging is a powerful method to detect pathological changes in vivo on a cellular and molecular level with high specificity. Thereby, molecular imaging enables to investigate functional changes and pathological hallmarks in neurodegenerative disorders, thus allowing to better differentiate between different forms of degenerative parkinsonism, improve the accuracy of the clinical diagnosis and disentangle the pathophysiology of disease-related symptoms. The past decade led to significant progress in the field of molecular imaging, including the development of multiple new and promising radioactive tracers for single photon emission computed tomography (SPECT) and positron emission tomography (PET) as well as novel analytical methods. Here, we review the most recent advances in molecular imaging for the diagnosis, prognosis, and mechanistic understanding of parkinsonian disorders. First, advances in imaging of neurotransmission abnormalities, metabolism, synaptic density, inflammation, and pathological protein aggregation are reviewed, highlighting our renewed understanding regarding the multiplicity of neurodegenerative processes involved in parkinsonian disorders. Consequently, we review the role of molecular imaging in the context of disease-modifying interventions to follow neurodegeneration, ensure stratification, and target engagement in clinical trials.
Collapse
Affiliation(s)
- Stéphane Prange
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Université de Lyon, 69675 Bron, France
- Correspondence: (S.P.); (T.v.E.); Tel.: +49-221-47882843 (T.v.E.)
| | - Hendrik Theis
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Magdalena Banwinkler
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Correspondence: (S.P.); (T.v.E.); Tel.: +49-221-47882843 (T.v.E.)
| |
Collapse
|
10
|
Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23:5023. [PMID: 35563414 PMCID: PMC9103893 DOI: 10.3390/ijms23095023] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) uses radioactive tracers and enables the functional imaging of several metabolic processes, blood flow measurements, regional chemical composition, and/or chemical absorption. Depending on the targeted processes within the living organism, different tracers are used for various medical conditions, such as cancer, particular brain pathologies, cardiac events, and bone lesions, where the most commonly used tracers are radiolabeled with 18F (e.g., [18F]-FDG and NA [18F]). Oxygen-15 isotope is mostly involved in blood flow measurements, whereas a wide array of 11C-based compounds have also been developed for neuronal disorders according to the affected neuroreceptors, prostate cancer, and lung carcinomas. In contrast, the single-photon emission computed tomography (SPECT) technique uses gamma-emitting radioisotopes and can be used to diagnose strokes, seizures, bone illnesses, and infections by gauging the blood flow and radio distribution within tissues and organs. The radioisotopes typically used in SPECT imaging are iodine-123, technetium-99m, xenon-133, thallium-201, and indium-111. This systematic review article aims to clarify and disseminate the available scientific literature focused on PET/SPECT radiotracers and to provide an overview of the conducted research within the past decade, with an additional focus on the novel radiopharmaceuticals developed for medical imaging.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | | | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
| | - Gabriel Andrieș
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Călin Căinap
- The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Republicii 34-36, 400015 Cluj-Napoca, Romania;
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
11
|
Relationship Between Vitamin D Status and Brain Perfusion in Neuropsychiatric Lupus. Nucl Med Mol Imaging 2022; 56:158-168. [DOI: 10.1007/s13139-022-00741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
|
12
|
Ritt P. Recent Developments in SPECT/CT. Semin Nucl Med 2022; 52:276-285. [DOI: 10.1053/j.semnuclmed.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 01/31/2023]
|
13
|
Suzuki Y, Kurihara M. [[SPECT] 3. The New SPECT Shape with CZT Semiconductor Detectors]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2022; 78:779-786. [PMID: 35858786 DOI: 10.6009/jjrt.2022-2052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|
14
|
Onwanna J, Chantadisai M, Tepmongkol S, Fahey F, Ouyang J, Rakvongthai Y. Impact of reconstruction parameters on lesion detection and localization in joint ictal/inter-ictal SPECT reconstruction. Ann Nucl Med 2022; 36:24-32. [PMID: 34559366 DOI: 10.1007/s12149-021-01680-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Previously, a joint ictal/inter-ictal SPECT reconstruction was proposed to reconstruct a differential image representing the change of brain SPECT image from an inter-ictal to an ictal study. The so-called joint method yielded better performance for epileptic foci localization than the conventional subtraction method. In this study, we evaluated the performance of different reconstruction settings of the joint reconstruction of ictal/inter-ictal SPECT data, which creates a differential image showing the difference between ictal and inter-ictal images, in lesion detection and localization in epilepsy imaging. METHODS Differential images reconstructed from phantom data using the joint and the subtraction methods were compared based on lesion detection performance (channelized Hotelling observer signal-to-noise ratio (SNRCHO) averaged across four lesion-to-background contrast levels) at the optimal iteration. The joint-initial method which was the joint method that was initialized by the subtraction method at optimal iteration was also used to reconstruct differential images. These three methods with respective optimal iteration and the subtraction method with four iterations were applied to epileptic patient datasets. A human observer lesion localization study was performed based on localization receiver operating characteristic (LROC) analysis. RESULTS From the phantom study, at their respective optimal iteration, the joint method yielded an improvement in lesion detection performance over the subtraction method of 26%, which increased to 145% when using the joint-initial method. From the patient study, the joint-initial method yielded the highest area under the LROC curve as compared with those of the joint and the subtraction methods with optimal iteration and with 4 iterations (0.44 vs 0.41, 0.39 and 0.36, respectively). CONCLUSIONS In lesion detection and localization, the joint method at optimal iteration outperformed the subtraction method at optimal iteration and at iteration typically used in clinical practice. Furthermore, initialization by the subtraction method improved the performance of the joint method.
Collapse
Affiliation(s)
- Jaruwan Onwanna
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
- Chulalongkorn University Biomedical Imaging Group, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Maythinee Chantadisai
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Supatporn Tepmongkol
- Chulalongkorn University Biomedical Imaging Group, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Frederic Fahey
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Boston Children's Hospital, Boston, USA
- Department of Radiology, Harvard Medical School, Boston, USA
| | - Jinsong Ouyang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, USA
- Department of Radiology, Harvard Medical School, Boston, USA
| | - Yothin Rakvongthai
- Chulalongkorn University Biomedical Imaging Group, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
15
|
Imbert L, Bahloul A, Verger A, Marie PY. 360° CZT gamma cameras for nuclear medicine and molecular imaging. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Piatkova Y, Payoux P, Boursier C, Bordonne M, Roch V, Marie PY, Hossu G, Imbert L, Verger A. Prospective Paired Comparison of 123I-FP-CIT SPECT Images Obtained With a 360°-CZT and a Conventional Camera. Clin Nucl Med 2022; 47:14-20. [PMID: 34874345 DOI: 10.1097/rlu.0000000000003969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE This study aimed to compare 123I-FP-CIT SPECT imaging obtained from a 360° cadmium-zinc-telluride (CZT) camera with different focus configurations and from a conventional Anger camera. METHODS This prospective study (NCT03980418) included patients referred to 123I-FP-CIT SPECT imaging who consecutively underwent a 30-minute acquisition on a conventional camera immediately followed by two 15-minute acquisitions on the 360°-CZT camera with, respectively, striatum and brain focus and reconstruction parameters to give equivalent contrast ratios, albeit with higher spatial resolution for the CZT camera. Tomographic count sensitivities were calculated. The images were analyzed through visual, according to 5 independent physicians, and automatic semiquantitative analyses. RESULTS Ninety-two patients were included in this study. The 360°-CZT camera tomographic count sensitivities showed increases of +25% and +18% for striatum and brain focus, respectively, as well as significantly higher quality scores (P ≤ 0.04) in comparison to the conventional camera. The κ scores of consensual visual analysis were 0.80 and 0.85, and correlation coefficients of semiquantitative analysis for striatum uptakes were 0.75 and 0.76 for the comparisons of images obtained with the 2 cameras, with striatum and brain focus, respectively, for the CZT camera. Advanced age was the single predictor of discordant cases (10/92 [11%]) showing systematically abnormal scans with the conventional camera, potentially as a result of partial volume effect. CONCLUSIONS Irrespective of focus mode, this high-sensitivity 360°-CZT camera provides concordant 123I-FP-CIT SPECT results when compared with a conventional camera, but with shorter acquisition times, higher image quality, and few discordant cases possibly explained by its higher spatial resolution.
Collapse
Affiliation(s)
- Yuliya Piatkova
- From the Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, Nancy
| | | | - Caroline Boursier
- From the Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, Nancy
| | - Manon Bordonne
- From the Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, Nancy
| | - Veronique Roch
- From the Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, Nancy
| | | | - Gabriela Hossu
- Université de Lorraine, IADI, INSERM U1254, Nancy, France
| | | | | |
Collapse
|
17
|
|
18
|
Yamane T, Takahashi M, Matsusaka Y, Fukushima K, Seto A, Kuji I, Matsunari I. Satisfied quantitative value can be acquired by short-time bone SPECT/CT using a whole-body cadmium-zinc-telluride gamma camera. Sci Rep 2021; 11:24320. [PMID: 34934145 PMCID: PMC8692318 DOI: 10.1038/s41598-021-03853-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/10/2021] [Indexed: 11/15/2022] Open
Abstract
The aim of this study was to evaluate the quantitative values of short-time scan (STS) of metastatic lesions compared with a standard scan (SS) when acquired by whole-body bone SPECT/CT with cadmium-zinc-telluride (CZT) detectors. We retrospectively reviewed 13 patients with bone metastases from prostate cancer, who underwent SPECT/CT performed on whole-body CZT gamma cameras. STSs were obtained using 75, 50, 25, 10, and 5% of the list-mode data for SS, respectively. Regions of interest (ROIs) were set on the increased uptake areas diagnosed as metastases. Intraclass correlation coefficients (ICCs) of standardized uptake values (SUVs) for the ROIs were calculated between the SS and each STS, and ICC ≥ 0.8 was set as a perfect correlation. Moreover, the repeatability coefficient (RC) was calculated, and RC ≤ 20% was defined as acceptable. A total of 152 metastatic lesions were included in the analysis. The ICCs between the SS vs. 75%-STS, 50%-STS, 25%-STS, 10%-STS, and 5%-STS were 0.999, 0.997, 0.994, 0.983, and 0.955, respectively. The RCs of the SS vs. 75%-STS, 50%-STS, 25%-STS, 10%-STS, and 5%-STS were 7.9, 12.4, 19.8, 30.8, and 41.3%, respectively. When evaluating the quality of CZT bone SPECT/CT acquired by a standard protocol, 25%-STS may provide adequate quantitative values.
Collapse
Affiliation(s)
- Tomohiko Yamane
- Division of Nuclear Medicine, Department of Radiology, Saitama Medical University Hospital, 38 Moro-Hongo, Moroyama, 350-0495, Japan.
- Department of Nuclear Medicine, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, 350-0491, Japan.
| | - Masafumi Takahashi
- Department of Central Radiological Technology, Saitama Medical University Hospital, 38 Moro-Hongo, Moroyama, 350-0495, Japan
| | - Yohji Matsusaka
- Department of Nuclear Medicine, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, 350-0491, Japan
| | - Kenji Fukushima
- Department of Nuclear Medicine, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, 350-0491, Japan
| | - Akira Seto
- Department of Nuclear Medicine, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, 350-0491, Japan
| | - Ichiei Kuji
- Department of Nuclear Medicine, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, 350-0491, Japan
| | - Ichiro Matsunari
- Division of Nuclear Medicine, Department of Radiology, Saitama Medical University Hospital, 38 Moro-Hongo, Moroyama, 350-0495, Japan
| |
Collapse
|
19
|
Brücke T, Brücke C. Dopamine transporter (DAT) imaging in Parkinson's disease and related disorders. J Neural Transm (Vienna) 2021; 129:581-594. [PMID: 34910248 DOI: 10.1007/s00702-021-02452-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022]
Abstract
This review gives an insight into the beginnings of dopamine transporter (DAT) imaging in the early 1990s, focussing on single photon emission tomography (SPECT). The development of the method and its consolidation as a now widely used clinical tool is described. The role of DAT-SPECT in the diagnosis and differential diagnosis of PD, atypical parkinsonian syndromes and several other different neurological disorders is reviewed. Finally the clinical research using DAT-SPECT as a biomarker for the progression of PD, for the detection of a preclinical dopaminergic lesion and its correlation with neuropathological findings is outlined.
Collapse
Affiliation(s)
- Thomas Brücke
- Ottakring Clinic, Neurological Department, Verein zur Förderung der Wissenschaftlichen Forschung am Wilhelminenspital (FWFW), Montleartstrasse 37, 1160, Vienna, Austria.
- , Linke Wienzeile 12, 1060, Vienna, Austria.
| | - Christof Brücke
- Department for Neurology, Medical University Vienna, Währingergürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
20
|
Guedj E, Varrone A, Boellaard R, Albert NL, Barthel H, van Berckel B, Brendel M, Cecchin D, Ekmekcioglu O, Garibotto V, Lammertsma AA, Law I, Peñuelas I, Semah F, Traub-Weidinger T, van de Giessen E, Van Weehaeghe D, Morbelli S. EANM procedure guidelines for brain PET imaging using [ 18F]FDG, version 3. Eur J Nucl Med Mol Imaging 2021; 49:632-651. [PMID: 34882261 PMCID: PMC8803744 DOI: 10.1007/s00259-021-05603-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022]
Abstract
The present procedural guidelines summarize the current views of the EANM Neuro-Imaging Committee (NIC). The purpose of these guidelines is to assist nuclear medicine practitioners in making recommendations, performing, interpreting, and reporting results of [18F]FDG-PET imaging of the brain. The aim is to help achieve a high-quality standard of [18F]FDG brain imaging and to further increase the diagnostic impact of this technique in neurological, neurosurgical, and psychiatric practice. The present document replaces a former version of the guidelines that have been published in 2009. These new guidelines include an update in the light of advances in PET technology such as the introduction of digital PET and hybrid PET/MR systems, advances in individual PET semiquantitative analysis, and current broadening clinical indications (e.g., for encephalitis and brain lymphoma). Further insight has also become available about hyperglycemia effects in patients who undergo brain [18F]FDG-PET. Accordingly, the patient preparation procedure has been updated. Finally, most typical brain patterns of metabolic changes are summarized for neurodegenerative diseases. The present guidelines are specifically intended to present information related to the European practice. The information provided should be taken in the context of local conditions and regulations.
Collapse
Affiliation(s)
- Eric Guedj
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix Marseille Univ, Marseille, France. .,Service Central de Biophysique et Médecine Nucléaire, Hôpital de la Timone, 264 rue Saint Pierre, 13005, Marseille, France.
| | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Healthcare Services, Stockholm, Sweden
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, Leipzig University, Leipzig, Germany
| | - Bart van Berckel
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Matthias Brendel
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany.,German Centre of Neurodegenerative Diseases (DZNE), Site Munich, Bonn, Germany
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Ozgul Ekmekcioglu
- Sisli Hamidiye Etfal Education and Research Hospital, Nuclear Medicine Dept., University of Health Sciences, Istanbul, Turkey
| | - Valentina Garibotto
- NIMTLab, Faculty of Medicine, Geneva University, Geneva, Switzerland.,Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Iván Peñuelas
- Department of Nuclear Medicine, Clinica Universidad de Navarra, IdiSNA, University of Navarra, Pamplona, Spain
| | - Franck Semah
- Nuclear Medicine Department, University Hospital, Lille, France
| | - Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Meibergdreef 9, Amsterdam, The Netherlands
| | | | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Nuclear Medicine Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
21
|
Bahloul A, Verger A, Blum A, Chawki MB, Perrin M, Melki S, Karcher G, Marie PY, Imbert L. Bone Scintigraphy of Vertebral Fractures With a Whole-Body CZT Camera in a PET-Like Utilization. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2021; 1:740275. [PMID: 39355639 PMCID: PMC11440846 DOI: 10.3389/fnume.2021.740275] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/04/2021] [Indexed: 10/03/2024]
Abstract
Objective: An image display with a standardized uptake value (SUV) scale is recommended for analyzing PET exams, thus requiring the reconstruction of accurate images for both SUV measurement and visual analysis. This study aimed to determine whether such images may also be obtained with a high-speed CZT-SPECT/CT system, with a further application for the longitudinal monitoring of vertebral fractures. Materials and Methods: SPECT image reconstruction was optimized with an IEC phantom according to both image quality parameters and accuracy of measured activity. The optimized reconstruction process was applied to ≤15 min 99mTc-HDP SPECT spine recordings previously acquired from 25 patients (74 ± 12 years old) at both early (1.3 ± 1.1 months) and late (5.2 ± 2.3 months) stages after an acute vertebral fracture. Results: A SPECT reconstruction with 32 equivalent iterations was selected based on the association of high detectability for spheres down to 0.6 ml in volume, with accurate measured activity, although the latter was affected by partial volume effect for spheres ≤5.6 ml. Coherent measurements were obtained on these high-quality SPECT images for the SUVmax from the intact vertebrae of patients, which were stable between basal SPECT/CT and follow-up SPECT/CT (for T1 vertebrae: 5.7 ± 1.1 vs. 5.8 ± 1.1, p = 0.76), and from initially fractured vertebrae, which were dramatically higher on the basal compared with the follow-up SPECT (21.0 ± 8.5 vs. 11.2 ± 4.2, p < 0.001), whereas inverse changes in SUVmax were observed for newly compacted fractures identified on follow-up SPECT (74.4 ± 2.0 vs. 21.8 ± 10.3, p = 0.002). Finally, an image display with an SUV scale was shown to be advantageous for highlighting areas with >7.5 SUV, a level reached by 98% of vertebral fractures of <7 months and 4% of reference intact vertebrae. Conclusion: Bone scintigraphy of vertebral fractures may be obtained with this CZT-SPECT/CT system with fast 3D acquisitions and high-quality images displayed with a reliable SUV scale, approaching what is achieved and recommended for PET imaging.
Collapse
Affiliation(s)
- Achraf Bahloul
- Université de Lorraine, CHRU-Nancy, Department of Nuclear Medicine and Nancyclotep Imaging Platform, Nancy, France
| | - Antoine Verger
- Université de Lorraine, CHRU-Nancy, Department of Nuclear Medicine and Nancyclotep Imaging Platform, Nancy, France
- Université de Lorraine, INSERM U1254, IADI, Nancy, France
| | - Alain Blum
- Université de Lorraine, CHRU-Nancy, Department of Radiology Guilloz, Nancy, France
| | - Mohammad Bilal Chawki
- Université de Lorraine, CHRU-Nancy, Department of Nuclear Medicine and Nancyclotep Imaging Platform, Nancy, France
| | - Mathieu Perrin
- Université de Lorraine, CHRU-Nancy, Department of Nuclear Medicine and Nancyclotep Imaging Platform, Nancy, France
| | - Saifeddine Melki
- Université de Lorraine, CHRU-Nancy, Department of Nuclear Medicine and Nancyclotep Imaging Platform, Nancy, France
| | - Gilles Karcher
- Université de Lorraine, CHRU-Nancy, Department of Nuclear Medicine and Nancyclotep Imaging Platform, Nancy, France
- Université de Lorraine, INSERM U1254, IADI, Nancy, France
| | - Pierre-Yves Marie
- Université de Lorraine, CHRU-Nancy, Department of Nuclear Medicine and Nancyclotep Imaging Platform, Nancy, France
- Université de Lorraine, INSERM, UMR-1116 DCAC, Nancy, France
| | - Laetitia Imbert
- Université de Lorraine, CHRU-Nancy, Department of Nuclear Medicine and Nancyclotep Imaging Platform, Nancy, France
- Université de Lorraine, INSERM U1254, IADI, Nancy, France
| |
Collapse
|
22
|
Verger A, Grimaldi S, Ribeiro MJ, Frismand S, Guedj E. Single Photon Emission Computed Tomography/Positron Emission Tomography Molecular Imaging for Parkinsonism: A Fast-Developing Field. Ann Neurol 2021; 90:711-719. [PMID: 34338333 PMCID: PMC9291534 DOI: 10.1002/ana.26187] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 11/26/2022]
Abstract
The early differential diagnosis of Parkinson disease and atypical parkinsonism is a major challenge. The use of single photon emission computed tomography (SPECT)/positron emission tomography (PET) molecular imaging to investigate parkinsonism is a fast‐developing field. Imaging biomarker research may potentially lead to more accurate disease detection, enabling earlier diagnosis and treatment. This review summarizes recent SPECT/PET advances in radiopharmaceuticals and imaging technologies/analyses that improve the diagnosis of neurodegenerative parkinsonism. We are currently witnessing a turning point in the field. Integrating molecular imaging as a diagnostic technique represents an opportunity to reassess the strategies for diagnosing neurodegenerative parkinsonism. ANN NEUROL 2021;90:711–719
Collapse
Affiliation(s)
- Antoine Verger
- Department of Nuclear Medicine & Nancyclotep Imaging Platform, Centre Hospitalier Régional Universitaire Nancy, Lorraine University, Nancy, France.,Imagerie Adaptative Diagnostique et Interventionnelle, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1254, Lorraine University, Nancy, France
| | - Stephan Grimaldi
- Department of Neurology and Movement Disorders, Public Assistance Hospitals of Marseille, Timone University Hospital, Marseille, France
| | - Maria-Joao Ribeiro
- Unité Mixte de Recherche 1253, iBrain, University of Tours, Institut National de la Santé et de la Recherche Médicale Centre d'Investigation Clinique 1415, Centre Hospitalier Régional Universitaire Tours, Tours, France
| | - Solène Frismand
- Department of Neurology, Centre Hospitalier Régional Universitaire Nancy, Lorraine University, Nancy, France
| | - Eric Guedj
- Aix-Marseille University, Centre National de Recherche Scientifique, Central School of Marseille, Unité Mixte de Recherche 7249, Fresnel Institute, Marseille, France.,Department of Nuclear Medicine, Public Assistance Hospitals of Marseille, Timone University Hospital, Marseille, France.,Centre Européen de Recherche en Imagerie Médicale, Aix-Marseille University, Marseille, France
| |
Collapse
|
23
|
Bermo M, Saqr M, Hoffman H, Patterson D, Sharar S, Minoshima S, Lewis DH. Utility of SPECT Functional Neuroimaging of Pain. Front Psychiatry 2021; 12:705242. [PMID: 34393862 PMCID: PMC8358271 DOI: 10.3389/fpsyt.2021.705242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022] Open
Abstract
Functional neuroimaging modalities vary in spatial and temporal resolution. One major limitation of most functional neuroimaging modalities is that only neural activation taking place inside the scanner can be imaged. This limitation makes functional neuroimaging in many clinical scenarios extremely difficult or impossible. The most commonly used radiopharmaceutical in Single Photon Emission Tomography (SPECT) functional brain imaging is Technetium 99 m-labeled Ethyl Cysteinate Dimer (ECD). ECD is a lipophilic compound with unique pharmacodynamics. It crosses the blood brain barrier and has high first pass extraction by the neurons proportional to regional brain perfusion at the time of injection. It reaches peak activity in the brain 1 min after injection and is then slowly cleared from the brain following a biexponential mode. This allows for a practical imaging window of 1 or 2 h after injection. In other words, it freezes a snapshot of brain perfusion at the time of injection that is kept and can be imaged later. This unique feature allows for designing functional brain imaging studies that do not require the patient to be inside the scanner at the time of brain activation. Functional brain imaging during severe burn wound care is an example that has been extensively studied using this technique. Not only does SPECT allow for imaging of brain activity under extreme pain conditions in clinical settings, but it also allows for imaging of brain activity modulation in response to analgesic maneuvers whether pharmacologic or non-traditional such as using virtual reality analgesia. Together with its utility in extreme situations, SPECTS is also helpful in investigating brain activation under typical pain conditions such as experimental controlled pain and chronic pain syndromes.
Collapse
Affiliation(s)
- Mohammed Bermo
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Mohammed Saqr
- School of Computing, University of Eastern Finland, Joensuu Campus, Joensuu, Finland.,EECS - School of Electrical Engineering and Computer Science, Media Technology & Interaction Design, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | | | - Sam Sharar
- University of Washington, Seattle, WA, United States
| | | | - David H Lewis
- University of Washington, Seattle, WA, United States
| |
Collapse
|