1
|
Setoyama D, Han D, Tian J, Lee H, Shin H, Nga H, Nguyen T, Moon J, Jang H, Kim E, Choe S, Ju S, Choi D, Kwon O, Yi H. Comparative Analysis of Primary Sarcopenia and End-Stage Renal Disease-Related Muscle Wasting Using Multi-Omics Approaches. J Cachexia Sarcopenia Muscle 2025; 16:e13749. [PMID: 40207397 PMCID: PMC11982700 DOI: 10.1002/jcsm.13749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/16/2024] [Accepted: 01/29/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Age-related primary sarcopenia and end-stage renal disease (ESRD)-related muscle wasting are discrete entities; however, both manifest as a decline in skeletal muscle mass and strength. The etiological pathways differ, with aging factors implicated in sarcopenia and a combination of uremic factors, including haemodialysis, contributing to ESRD-related muscle wasting. Understanding these molecular nuances is imperative for targeted interventions, and the integration of proteomic and metabolomic data elucidate these intricate processes. METHODS We generated detailed clinical data and multi-omics data (plasma proteomics and metabolomics) for 78 participants to characterise sarcopenia (n = 28; mean age, 72.6 ± 7.0 years) or ESRD (n = 22; 61.6 ± 5.5 years) compared with controls (n = 28; 69.3 ± 5.7 years). Muscle mass was measured using bioelectrical impedance analysis and handgrip strength. Five-times sit-to-stand test performance was measured for all participants. Sarcopenia was diagnosed in accordance with the 2019 Consensus Guidelines from the Asian Working Group for Sarcopenia. An abundance of 234 metabolites and 722 protein groups was quantified in all plasma samples using liquid chromatography with tandem mass spectrometry. RESULTS Muscle mass, handgrip strength and lower limb muscle function significantly lower in the sarcopenia group and the ESRD group compared with those in the control group. Metabolomics revealed altered metabolites, highlighting exclusive differences in ESRD-related muscle wasting. Metabolite set enrichment analysis revealed the involvement of numerous metabolic intermediates associated with urea cycle, amino acid metabolism and nucleic acid metabolism. Catecholamines, including epinephrine, dopamine and serotonin, are significantly elevated in the plasma of patients within the ESRD group. Proteomics data exhibited a clearer distinction among the three groups compared with the metabolomics data, particularly in distinguishing the control group from the sarcopenia group. The ciliary neurotrophic factor receptor was top-ranked in terms of the variable importance of projection scores. Plasma AHNAK protein levels was higher in the sarcopenia group but was lower in the ESRD group. Proteomic set enrichment analysis revealed enrichment of several pathways related to sarcopenia, such as hemopexin, defence response and cell differentiation, in sarcopenia group. Multi-omic integration analysis revealed associations between relevant metabolites, including catecholamines, and a group of annotated proteins in extracellular exosomes. CONCLUSIONS We identified distinct multi-omic signatures in individuals with ESRD or sarcopenia, providing new insights into the mechanisms underlying ESRD-related muscle wasting, which differ from primary sarcopenia. These findings may support interventions for context-dependent muscle loss and contribute to the development of targeted treatments and preventive strategies for muscle wasting.
Collapse
Affiliation(s)
- Daiki Setoyama
- Department of Clinical Chemistry and Laboratory MedicineKyushu University HospitalFukuokaJapan
| | - Dohyun Han
- Proteomics Core FacilitySeoul National University Hospital Biomedical Research InstituteSeoulSouth Korea
| | - Jingwen Tian
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonSouth Korea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonSouth Korea
| | - Ho Yeop Lee
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonSouth Korea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonSouth Korea
| | - Hyun Suk Shin
- Proteomics Core FacilitySeoul National University Hospital Biomedical Research InstituteSeoulSouth Korea
| | - Ha Thi Nga
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonSouth Korea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonSouth Korea
| | - Thi Linh Nguyen
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonSouth Korea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonSouth Korea
| | - Ji Sun Moon
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonSouth Korea
| | - Hyo Ju Jang
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonSouth Korea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonSouth Korea
| | - Evonne Kim
- Department of Biomedical Sciences, BK21 FOUR Biomedical Science ProgramSeoul National University College of MedicineSeoulSouth Korea
| | - Seong‐Kyu Choe
- Department of Medicine, Graduate SchoolWonkwang UniversityIksanSouth Korea
- Sarcopenia Total Solution CenterWonkwang UniversityIksanSouth Korea
| | - Sang Hyeon Ju
- Department of Internal MedicineChungnam National University School of MedicineDaejeonSouth Korea
| | - Dae Eun Choi
- Department of Internal MedicineChungnam National University School of MedicineDaejeonSouth Korea
| | - Obin Kwon
- Department of Biomedical Sciences, BK21 FOUR Biomedical Science ProgramSeoul National University College of MedicineSeoulSouth Korea
- Department of Biochemistry and Molecular BiologySeoul National University College of MedicineSeoulSouth Korea
- Genomic Medicine Institute, Medical Research CenterSeoul National UniversitySeoulSouth Korea
| | - Hyon‐Seung Yi
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonSouth Korea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonSouth Korea
- Sarcopenia Total Solution CenterWonkwang UniversityIksanSouth Korea
- Department of Internal MedicineChungnam National University School of MedicineDaejeonSouth Korea
| |
Collapse
|
2
|
Aguirre F, Tacchi F, Valero-Breton M, Orozco-Aguilar J, Conejeros-Lillo S, Bonicioli J, Iturriaga-Jofré R, Cabrera D, Soto JA, Castro-Sepúlveda M, Portal-Rodríguez M, Elorza ÁA, Matamoros A, Simon F, Cabello-Verrugio C. CCL5 Induces a Sarcopenic-like Phenotype via the CCR5 Receptor. Antioxidants (Basel) 2025; 14:84. [PMID: 39857418 PMCID: PMC11760477 DOI: 10.3390/antiox14010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Sarcopenia corresponds to a decrease in muscle mass and strength. CCL5 is a new myokine whose expression, along with the CCR5 receptor, is increased in sarcopenic muscle. Therefore, we evaluated whether CCL5 and CCR5 induce a sarcopenic-like effect on skeletal muscle tissue and cultured muscle cells. Electroporation in the tibialis anterior (TA) muscle of mice was used to overexpress CCL5. The TA muscles were analyzed by measuring the fiber diameter, the content of sarcomeric proteins, and the gene expression of E3-ligases. C2C12 myotubes and single-isolated flexor digitorum brevis (FDB) fibers were also treated with recombinant CCL5 (rCCL5). The participation of CCR5 was evaluated using the antagonist maraviroc (MVC). Protein and structural analyses were performed. The results showed that TA overexpression of CCL5 led to sarcopenia by reducing muscle strength and mass, muscle-fiber diameter, and sarcomeric protein content, and by upregulating E3-ligases. The same sarcopenic phenotype was observed in myotubes and FDB fibers. We showed increased reactive oxygen species (ROS) production and carbonylated proteins, denoting oxidative stress induced by CCL5. When the CCR5 was antagonized, the effects produced by rCCL5 were prevented. In conclusion, we report for the first time that CCL5 is a novel myokine that exerts a sarcopenic-like effect through the CCR5 receptor.
Collapse
Affiliation(s)
- Francisco Aguirre
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Franco Tacchi
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Mayalen Valero-Breton
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Josué Orozco-Aguilar
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Sabrina Conejeros-Lillo
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Josefa Bonicioli
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Renata Iturriaga-Jofré
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Daniel Cabrera
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago 7620001, Chile;
- Facultad de Ciencias de la Salud, Escuela de Kinesiología, Universidad Bernardo O Higgins, Santiago 8370993, Chile
| | - Jorge A. Soto
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
- Translational Immunology Laboratory, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
| | - Mauricio Castro-Sepúlveda
- Exercise Physiology and Metabolism Laboratory, School of Kinesiology, Faculty of Medicine, Finis Terrae University, Santiago 7501014, Chile;
| | - Marianny Portal-Rodríguez
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Álvaro A. Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile; (Á.A.E.); (A.M.)
| | - Andrea Matamoros
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370071, Chile; (Á.A.E.); (A.M.)
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
- Laboratory of Integrative Physiopathology, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile; (F.A.); (F.T.); (M.V.-B.); (J.O.-A.); (S.C.-L.); (J.B.); (R.I.-J.); (M.P.-R.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile;
| |
Collapse
|
3
|
Milivojac T, Grabež M, Krivokuća A, Maličević U, Gajić Bojić M, Đukanović Đ, Uletilović S, Mandić-Kovačević N, Cvjetković T, Barudžija M, Vojinović N, Šmitran A, Amidžić L, Stojiljković MP, Čolić M, Mikov M, Škrbić R. Ursodeoxycholic and chenodeoxycholic bile acids attenuate systemic and liver inflammation induced by lipopolysaccharide in rats. Mol Cell Biochem 2025; 480:563-576. [PMID: 38578526 PMCID: PMC11695453 DOI: 10.1007/s11010-024-04994-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/17/2024] [Indexed: 04/06/2024]
Abstract
Bacterial lipopolysaccharide (LPS) induces general inflammation, by activating pathways involving cytokine production, blood coagulation, complement system activation, and acute phase protein release. The key cellular players are leukocytes and endothelial cells, that lead to tissue injury and organ failure. The aim of this study was to explore the anti-inflammatory, antioxidant, and cytoprotective properties of two bile acids, ursodeoxycholic acid (UDCA) and chenodeoxycholic acid (CDCA) in LPS-induced endotoxemia in rats. The experiment involved six distinct groups of Wistar rats, each subjected to different pretreatment conditions: control and LPS groups were pretreated with propylene glycol, as a bile acid solvent, while the other groups were pretreated with UDCA or CDCA for 10 days followed by an LPS injection on day 10. The results showed that both UDCA and CDCA reduced the production of pro-inflammatory cytokines: TNF-α, GM-CSF, IL-2, IFNγ, IL-6, and IL-1β and expression of nuclear factor-κB (NF-κB) induced by LPS. In addition, pretreatment with these bile acids showed a positive impact on lipid profiles, a decrease in ICAM levels, an increase in antioxidant activity (SOD, |CAT, GSH), and a decrease in prooxidant markers (H2O2 and O2-). Furthermore, both bile acids alleviated LPS-induced liver injury. While UDCA and CDCA pretreatment attenuated homocysteine levels in LPS-treated rats, only UDCA pretreatment showed reductions in other serum biochemical markers, including creatine kinase, lactate dehydrogenase, and high-sensitivity troponin I. It can be concluded that both, UDCA and CDCA, although exerted slightly different effects, can prevent the inflammatory responses induced by LPS, improve oxidative stress status, and attenuate LPS-induced liver injury.
Collapse
Affiliation(s)
- T Milivojac
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - M Grabež
- Department of Hygiene, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - A Krivokuća
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Department of Pathophysiology, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - U Maličević
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Department of Pathophysiology, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - M Gajić Bojić
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - Đ Đukanović
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Department of Pharmacy, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - S Uletilović
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Department of Medical Biochemistry and Chemistry, Faculty of Medicine, The Republic of Srpska, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - N Mandić-Kovačević
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Department of Pharmacy, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - T Cvjetković
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Department of Medical Biochemistry and Chemistry, Faculty of Medicine, The Republic of Srpska, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - M Barudžija
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Department of Histology and Embryology, Faculty of Medicine, The Republic of Srpska, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - N Vojinović
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - A Šmitran
- Department of Microbiology and Immunology, Faculty of Medicine, The Republic of Srpska, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Lj Amidžić
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - M P Stojiljković
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - M Čolić
- Medical Faculty Foča, University of East Sarajevo, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - M Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - R Škrbić
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina.
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, The Republic of Srpska, Banja Luka, Bosnia and Herzegovina.
| |
Collapse
|
4
|
Xu X, Zheng X, Zhou Q, Sun C, Wang A, Zhu A, Zhang Y, Liu B. The Bile Acid Metabolism of Intestinal Microorganisms Mediates the Effect of Different Protein Sources on Muscle Protein Deposition in Procambarus clarkii. Microorganisms 2024; 13:11. [PMID: 39858779 PMCID: PMC11768069 DOI: 10.3390/microorganisms13010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
The most economically important trait of the Procambarus clarkii is meat quality. Protein deposition is essential in muscle growth and nutritional quality formation. The effects and potential mechanisms of feed protein sources on crustaceans' muscle protein deposition have not been elucidated. This study established an all-animal protein source (AP) and an all-plant protein source group (PP), with a feeding period of 8 weeks (four replicates per group, 45 individuals per replicate). The results demonstrated that muscle protein deposition, muscle fiber diameter, and hardness were significantly higher in the PP group (p < 0.05). The transcript levels of genes involved in protein synthesis were notably upregulated, while those of protein hydrolysis and negative regulators of myogenesis notably downregulated in PP group (p < 0.05). Furthermore, protein sources shaped differential intestinal microbiota composition and microbial metabolites profiles, as evidenced by a significant decrease in g_Bacteroides (p = 0.030), and a significant increase in taurochenodeoxycholic acid (TCDCA) in PP group (p = 0.027). A significant correlation was further established by Pearson correlation analysis between the g_Bacteroides, TCDCA, and genes involved in the MSTN-mediated protein deposition pathway (p < 0.05). In vitro anaerobic fermentation confirmed the ability of the two groups of intestinal flora to metabolically produce differential TCDCA (p = 0.038). Our results demonstrated that the 'Bacteroides-TCDCA-MSTN' axis may mediate the effects of different protein sources on muscle development and protein deposition in P. clarkii, which was anticipated to represent a novel target for the muscle quality modulation in crustaceans.
Collapse
Affiliation(s)
- Xiaodi Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China; (X.X.); (Q.Z.); (C.S.)
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China
| | - Xiaochuan Zheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China; (X.X.); (Q.Z.); (C.S.)
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China
| | - Qunlan Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China; (X.X.); (Q.Z.); (C.S.)
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China
| | - Cunxin Sun
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China; (X.X.); (Q.Z.); (C.S.)
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China
| | - Aimin Wang
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, China;
| | - Aimin Zhu
- Yancheng Academy of Fishery Science, Yancheng 224051, China; zam--
| | - Yuanyuan Zhang
- Shandong Freshwater Fisheries Research Institute, Jinan 250013, China;
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China; (X.X.); (Q.Z.); (C.S.)
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China
| |
Collapse
|
5
|
Herrmann M, Rodriguez-Blanco G, Balasso M, Sobolewska K, Semeraro MD, Alonso N, Herrmann W. The role of bile acid metabolism in bone and muscle: from analytics to mechanisms. Crit Rev Clin Lab Sci 2024; 61:510-528. [PMID: 38488591 DOI: 10.1080/10408363.2024.2323132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 08/25/2024]
Abstract
Osteoporosis and sarcopenia are both common age-related disorders that are associated with increased morbidity and mortality. Bone and muscle are metabolically very active tissues that require large amounts of energy. Bile acids (BAs), a group of liver-derived steroid compounds, are primarily known as emulsifiers that facilitate the resorption of dietary fat and lipids. In addition, they have pleiotropic metabolic functions in lipoprotein and glucose metabolism, inflammation, and intestinal bacterial growth. Through these effects, they are related to metabolic diseases, such as diabetes, hypertriglyceridemia, atherosclerosis, and nonalcoholic steatohepatitis. BAs mediate their metabolic effects through receptor dependent and receptor-independent mechanisms. Emerging evidence suggests that BAs are also involved in bone and muscle metabolism. Under normal circumstances, BAs support bone health by shifting the delicate equilibrium of bone turnover toward bone formation. In contrast, low or excessive amounts of BAs promote bone resorption. In cholestatic liver disease, BAs accumulate in the liver, reach toxic concentrations in the circulation, and thus may contribute to bone loss and muscle wasting. In addition, the measurement of BAs is in rapid evolution with modern mass spectrometry techniques that allow for the detection of a continuously growing number of BAs. This review provides a comprehensive overview of the biochemistry, physiology and measurement of bile acids. Furthermore, it summarizes the existing literature regarding their role in bone and muscle.
Collapse
Affiliation(s)
- Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Giovanny Rodriguez-Blanco
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Marco Balasso
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Katarzyna Sobolewska
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Maria Donatella Semeraro
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Nerea Alonso
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Wolfgang Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Le Cosquer G, Vergnolle N, Motta JP. Gut microb-aging and its relevance to frailty aging. Microbes Infect 2024; 26:105309. [PMID: 38316374 DOI: 10.1016/j.micinf.2024.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
This review explores 'microb-aging' in the gut and its potential link to frailty aging. We explore this connection through alterations in microbiota's taxonomy and metabolism, as well as with concepts of ecological resilience, pathobionts emergence, and biogeography. We examine microb-aging in interconnected body organs, emphasizing the bidirectional relationship with 'inflammaging'. Finally, we discuss how targeting microb-aging could improve screening, diagnostic, and therapeutic approaches in geriatrics.
Collapse
Affiliation(s)
- Guillaume Le Cosquer
- Institute of Digestive Health Research, IRSD, Toulouse University, INSERM U1220, INRAe, ENVT, UPS, 31300 Toulouse, France; Department of Gastroenterology and Pancreatology, Toulouse University Hospital, Toulouse Paul Sabatier University, 31059 Toulouse, France
| | - Nathalie Vergnolle
- Institute of Digestive Health Research, IRSD, Toulouse University, INSERM U1220, INRAe, ENVT, UPS, 31300 Toulouse, France; Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jean-Paul Motta
- Institute of Digestive Health Research, IRSD, Toulouse University, INSERM U1220, INRAe, ENVT, UPS, 31300 Toulouse, France.
| |
Collapse
|
7
|
Zhu Z, Xu Y, Xia Y, Jia X, Chen Y, Liu Y, Zhang L, Chai H, Sun L. Review on chronic metabolic diseases surrounding bile acids and gut microbiota: What we have explored so far. Life Sci 2024; 336:122304. [PMID: 38016578 DOI: 10.1016/j.lfs.2023.122304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Bile acid, the final product of cholesterol breakdown, functions as a complex regulator and signaling factor in human metabolism. Chronic metabolic diseases pose significant medical challenges. Growing research underscores bile acids' capacity to enhance metabolism via diverse pathways, regulating disorders and offering treatment potential. Numerous bile-acid-triggered pathways have become treatment targets. This review outlines bile acid synthesis, its role as a signal in chronic metabolic diseases, and highlights its interaction with gut microbiota in different metabolic conditions. Exploring host-bacteria-bile acid links emerges as a valuable future research direction with clinical implications.
Collapse
Affiliation(s)
- Zhenzheng Zhu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuemiao Xu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuwei Xia
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinru Jia
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yixin Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuyue Liu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Leyin Zhang
- Department of Medical Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Hui Chai
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Leitao Sun
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
8
|
Cifuentes-Silva E, Cabello-Verrugio C. Bile Acids as Signaling Molecules: Role of Ursodeoxycholic Acid in Cholestatic Liver Disease. Curr Protein Pept Sci 2024; 25:206-214. [PMID: 37594109 DOI: 10.2174/1389203724666230818092800] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
Ursodeoxycholic acid (UDCA) is a natural substance physiologically produced in the liver. Initially used to dissolve gallstones, it is now successfully used in treating primary biliary cirrhosis and as adjuvant therapy for various hepatobiliary cholestatic diseases. However, the mechanisms underlying its beneficial effects still need to be clarified. Evidence suggests three mechanisms of action for UDCA that could benefit humans with cholestatic liver disease (CLD): protection of cholangiocytes against hydrophobic bile acid (BA) cytotoxicity, stimulation of hepatobiliary excretion, and protection of hepatocytes against BA-induced apoptosis. These mechanisms may act individually or together to potentiate them. At the molecular level, it has been observed that UDCA can generate modifications in the transcription and translation of proteins essential in the transport of BA, correcting the deficit in BA secretion in CLD, in addition to activating signaling pathways to translocate these transporters to the sites where they should fulfill their function. Inhibition of BA-induced hepatocyte apoptosis may play a role in CLD, characterized by BA retention in the hepatocyte. Thus, different mechanisms of action contribute to the improvement after UDCA administration in CLD. On the other hand, the effects of UDCA on tissues that possess receptors that may interact with BAs in pathological contexts, such as skeletal muscle, are still unclear. This work aims to describe the main molecular mechanisms by which UDCA acts in the human body, emphasizing the interaction in tissues other than the liver.
Collapse
Affiliation(s)
- Eduardo Cifuentes-Silva
- Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility, and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
9
|
Chen M, Cao Y, Ji G, Zhang L. Lean nonalcoholic fatty liver disease and sarcopenia. Front Endocrinol (Lausanne) 2023; 14:1217249. [PMID: 37424859 PMCID: PMC10327437 DOI: 10.3389/fendo.2023.1217249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases in the world. The risk factor for NAFLD is often considered to be obesity, but it can also occur in people with lean type, which is defined as lean NAFLD. Lean NAFLD is commonly associated with sarcopenia, a progressive loss of muscle quantity and quality. The pathological features of lean NAFLD such as visceral obesity, insulin resistance, and metabolic inflammation are inducers of sarcopenia, whereas loss of muscle mass and function further exacerbates ectopic fat accumulation and lean NAFLD. Therefore, we discussed the association of sarcopenia and lean NAFLD, summarized the underlying pathological mechanisms, and proposed potential strategies to reduce the risks of lean NAFLD and sarcopenia in this review.
Collapse
|