1
|
Khandoker Minu M, Enamul Kabir Talukder M, Mothana RA, Injamamul Islam S, Alanzi AR, Hasson S, Irfan Sadique M, Arfat Raihan Chowdhury M, Shajid Khan M, Ahammad F, Mohammad F. In-vitro and in-silico evaluation of rue herb for SARS-CoV-2 treatment. Int Immunopharmacol 2024; 143:113318. [PMID: 39393270 DOI: 10.1016/j.intimp.2024.113318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/27/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
SARS-CoV-2, a β-coronavirus responsible for the COVID-19 pandemic, has resulted in approximately 4.9 million fatalities worldwide. Despite the urgent need, there is currently no specific therapeutic developed for treating or preventing SARS-CoV-2 infections. The virus enters the host by engaging in a molecular interaction between the viral Spike glycoprotein (S protein) and the host ACE2 receptor, facilitating membrane fusion and initiating infection. Inhibiting this interaction could impede viral activity. Therefore, this study aimed to identify natural small molecules from perennial rue herb (Ruta graveolens) as potential inhibitors against the S protein, thus preventing virus infection. Initially, a screening process was conducted on 53 compounds identified from rue herbs, utilizing pharmacophore-based virtual screening approaches. This analysis resulted in the identification of 12 hit compounds. Four compounds, namely Amentoflavone (CID: 5281600), Agathisflavone (CID: 5281599), Vitamin P (CID: 24832108), and Daphnoretin (CID: 5281406), emerged as potential S protein inhibitors through molecular docking simulations, exhibiting binding energies in kcal/mol of -9.2, -8.8, -8.2, and -8.0, respectively. ADMET analysis revealed favorable pharmacokinetics and toxicity profiles for these compounds. The compounds' stability with respect to the target S protein was evaluated using MD simulation and MM-GBSA approaches. The analysis revealed the stability of the selected compounds with the target protein. Also, PCA revealed distinctive movement patterns in four selected compounds, offered valuable insights into their functional behaviors and potential interactions. In-vitro assays revealed that rue herb extracts containing these compounds displayed potential inhibitory properties against the virus, with an IC50 value of 1.299 mg/mL and a cytotoxic concentration (CC50) value of 11.991 mg/mL. The compounds derived from rue herb, specifically Amentoflavone, Agathisflavone, Vitamin P, and Daphnoretin, show promise as candidates for the therapeutic intervention of SARS-CoV-2-related complications.
Collapse
Affiliation(s)
- Maliha Khandoker Minu
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7430, Bangladesh
| | - Md Enamul Kabir Talukder
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7430, Bangladesh
| | - Ramzi A Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sk Injamamul Islam
- The International Graduate Program of Veterinary Science and Technology (VST), Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Abdullah R Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sidgi Hasson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L33AF, UK
| | - Md Irfan Sadique
- Department of Biological Science, Carnegie Mellon University 24866 Doha, Qatar
| | | | - Md Shajid Khan
- Chemical Engineering Program, Texas A&M University at Qatar, Doha 4290, Qatar
| | - Foysal Ahammad
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7430, Bangladesh; Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha 34110, Qatar.
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha 34110, Qatar.
| |
Collapse
|
2
|
Kokorina VE, Bykov IA. [Evaluation of the clinical efficacy of the effect of herbal medicine on the symptoms of SARS-COV-2 associated pharyngitis and the formation of post-covid syndrome]. Vestn Otorinolaringol 2023; 88:35-43. [PMID: 36867142 DOI: 10.17116/otorino20228801135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Pharyngitis is one of the manifestations of SARS-CoV-2 infection, which features specific changes in the pharyngoscopic pattern, long fluctuating course and increase in symptoms severity after a physical exercise, which requires long-term therapy with topical agents. A comparative analysis of Tonsilgon N effect on the course of SARS-CoV-2 associated pharyngitis as well as post-COVID syndrome development was carried out in this study. 164 patients with acute pharyngitis associated with SARS-CoV-2 were included in the study. Main group (n=81) received Tonsilgon N oral drops in addition to the standard treatment regimens for pharyngitis and control group (n=83) received standard regimen alone. Treatment regimen lasted for 21 days for both groups, followed by follow up examination in 12 weeks for assessment of post-COVID syndrome development. Patients taking Tonsilgon N showed a statistically significant symptoms improvement in throat pain relief (p=0.002) and throat discomfort (p=0.004), however, no statistically significant difference in two groups were observed in inflammation severity based on pharyngoscopy examination (p=0.558). Addition of Tolzilgon N to the regimen reduced occurrence of secondary bacterial infections and therefore use of antibiotics more than 2.8 times (p<0.001). Compared with the control group long term topical therapy with Tolzilgon N showed no increase in occurrence of side effects such as allergic reactions (p=0.311) as well as subjective burning sensations in the throat (p=0.849). In main group occurrence of post-COVID syndrome was observed 3.3 times less than in the control group (7.2% vs 25.9%, p=0.001). These results give us the ground for indication of Tonsilgon N use in the treatment of viral pharyngitis associated with SARS-CoV 2 infection and in prevention of post-COVID syndrome.
Collapse
Affiliation(s)
- V E Kokorina
- Postgraduate Institute for Public Health Workers, Khabarovsk, Russia
| | - I A Bykov
- Far Eastern State Medical University, Khabarovsk, Russia
| |
Collapse
|
3
|
Tran HTT, Peterburs P, Seibel J, Abramov-Sommariva D, Lamy E. In vitro Screening of Herbal Medicinal Products for Their Supportive Curing Potential in the Context of SARS-CoV-2. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8038195. [PMID: 36110194 PMCID: PMC9470301 DOI: 10.1155/2022/8038195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/06/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022]
Abstract
COVID-19 herbal medicinal products may have the potential for symptom relief in nonsevere or moderate disease cases. In this in vitro study we screened the five herbal medicinal products Sinupret extract (SINx), Bronchipret thyme-ivy (BRO-TE), Bronchipret thyme-primula (BRO TP), Imupret (IMU), and Tonsipret (TOP) with regard to their potential to (i) interfere with the binding of the human angiotensin-converting enzyme 2 (ACE2) receptor with the SARS-CoV-2 spike S1 protein, (ii) modulate the release of the human defensin HBD1 and cathelicidin LL-37 from human A549 lung cells upon spike S1 protein stimulation, and (iii) modulate the release of IFN-γ from activated human peripheral blood mononuclear cells (PBMC). The effect of the extracts on the interaction of spike S1 protein and the human ACE2 receptor was measured by ELISA. The effects on the intracellular IFN-γ expression in stimulated human PBMC were measured by flow cytometry. Regulation of HBD1 and LL-37 expression and secretion was assessed in 25 d long-term cultured human lung A549 epithelial cells by RT-PCR and ELISA. IMU and BRO-TE concentration-dependently inhibited the interaction between spike S1 protein and the ACE2 receptor. SINx, TOP, and BRO-TE significantly upregulated the intracellular expression of anti-viral IFN-γ from stimulated PBMC. Cotreatment of A549 cells with IMU or BRO TP together with SARS-CoV-2 spike protein significantly upregulated mRNA expression (IMU) and release of HBD1 (IMU and BRO TP) and LL-37 (BRO TP). The in vitro screening results provide first evidence for an immune-activating potential of some of the tested herbal medicinal extracts in the context of SARS-CoV-2. Whether these could be supportive in symptom relief or curing from SARS-CoV-2 infection needs deeper understanding of the observations.
Collapse
Affiliation(s)
- Hoai Thi Thu Tran
- Molecular Preventive Medicine, University of Freiburg, Medical Center and Faculty of Medicine, Engesserstraße 4, 79108 Freiburg, Germany
| | | | - Jan Seibel
- Bionorica SE, Kerschensteinerstraße 11-15, 92318 Neumarkt, Germany
| | | | - Evelyn Lamy
- Molecular Preventive Medicine, University of Freiburg, Medical Center and Faculty of Medicine, Engesserstraße 4, 79108 Freiburg, Germany
| |
Collapse
|
4
|
Hanafy NAN, El-Kemary MA. Silymarin/curcumin loaded albumin nanoparticles coated by chitosan as muco-inhalable delivery system observing anti-inflammatory and anti COVID-19 characterizations in oleic acid triggered lung injury and in vitro COVID-19 experiment. Int J Biol Macromol 2022; 198:101-110. [PMID: 34968533 PMCID: PMC8712435 DOI: 10.1016/j.ijbiomac.2021.12.073] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/28/2021] [Accepted: 12/11/2021] [Indexed: 02/08/2023]
Abstract
Respiratory infected by COVID-19 represents a major global health problem at moment even after recovery from virus corona. Since, the lung lesions for infected patients are still sufferings from acute respiratory distress syndrome including alveolar septal edema, pneumonia, hyperplasia, and hyaline membranes Therefore, there is an urgent need to identify additional candidates having ability to overcome inflammatory process and can enhance efficacy in the treatment of COVID-19. The polypenolic extracts were integrated into moeties of bovine serum albumin (BSA) and then were coated by chitosan as a mucoadhesion polymer. The results of interleukin-6, and c-reactive protein showed significant reduction in group treated by Encap. SIL + CUR (64 ± 0.8 Pg/μL & 6 ± 0.5 μg/μL) compared to group treated by Cham. + CUR (102 ± 0.8 Pg/μL & 7 ± 0.5 μg/μL) respectively and free capsules (with no any drug inside) (148 ± 0.6 Pg/μL & 10 ± 0.6 μg/μL) respectively. Histopathology profile was improved completely. Additionally, encapsulating silymarin showed anti-viral activity in vitro COVID-19 experiment. It can be summarized that muco-inhalable delivery system (MIDS) loaded by silymarin can be used to overcome inflammation induced by oleic acid and to overcome COVID-19.
Collapse
Affiliation(s)
- Nemany A N Hanafy
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| | - Maged A El-Kemary
- Nanomedicine group, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| |
Collapse
|
5
|
Rizvi ZA, Tripathy MR, Sharma N, Goswami S, Srikanth N, Sastry JLN, Mani S, Surjit M, Awasthi A, Dikshit M. Effect of Prophylactic Use of Intranasal Oil Formulations in the Hamster Model of COVID-19. Front Pharmacol 2021; 12:746729. [PMID: 34721035 PMCID: PMC8551705 DOI: 10.3389/fphar.2021.746729] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/10/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection initiates with viral entry in the upper respiratory tract, leading to coronavirus disease 2019 (COVID-19). Severe COVID-19 is characterized by pulmonary pathologies associated with respiratory failure. Thus, therapeutics aimed at inhibiting the entry of the virus or its internalization in the upper respiratory tract are of interest. Herein, we report the prophylactic application of two intranasal formulations provided by the National Medicinal Plant Board (NMPB), Anu oil and til tailya, in the hamster model of SARS-CoV-2 infection. Prophylactic intra-nasal instillation of these oil formulations exhibited reduced viral load in lungs and resulted in reduced body weight loss and lung-pneumonitis. In line with reduced viral load, histopathological analysis revealed a reduction in lung pathology in the Anu oil group as compared to the control infected group. However, the til tailya group did not show a significant reduction in lung pathology. Furthermore, molecular analysis using mRNA expression profiling indicated reduced expression of pro-inflammatory cytokine genes, including Th1 and Th17 cytokines for both the intranasal formulations as a result of decreased viral load. Together, the prophylactic intranasal application of Anu oil seems to be useful in limiting both viral load and severity in SARS-CoV2 infection in the hamster model.
Collapse
Affiliation(s)
- Zaigham Abbas Rizvi
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| | - Manas Ranjan Tripathy
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| | - Nishant Sharma
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| | - Sandeep Goswami
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| | - N Srikanth
- DG(I/C), Central Council for Ayurvedic Sciences, New Delhi, India
| | - J L N Sastry
- CEO-National Medicinal Plants Board, Ministry of AYUSH, New Delhi, India
| | - Shailendra Mani
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| | - Milan Surjit
- Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| | - Amit Awasthi
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| | - Madhu Dikshit
- Non-communicable Disease Centre, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| |
Collapse
|
6
|
Uberti F, Ruga S, Farghali M, Galla R, Molinari C. A Combination of α-Lipoic Acid (ALA) and Palmitoylethanolamide (PEA) Blocks Endotoxin-Induced Oxidative Stress and Cytokine Storm: A Possible Intervention for COVID-19. J Diet Suppl 2021; 20:133-155. [PMID: 34405764 DOI: 10.1080/19390211.2021.1966152] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The global scientific community is striving to understand the pathophysiological mechanisms and develop effective therapeutic strategies for COVID-19. Despite overwhelming data, there is limited knowledge about the molecular mechanisms involved in the prominent cytokine storm syndrome and multiple organ failure and fatality in COVID-19 cases. The aim of this work is to investigate the possible role of of α-lipoic acid (ALA) and palmitoylethanolamide (PEA), in countering the mechanisms in overproduction of reactive oxygen species (ROS), and inflammatory cytokines. An in vitro model of lipopolysaccharide (LPS)-stimulated human epithelial lung cells that mimics the pathogen-associated molecular pattern and reproduces the cell signaling pathways in cytokine storm syndrome has been used. In this model of acute lung injury, the combination effects of ALAPEA, administered before and after LPS injury, were investigated. Our data demonstrated that a combination of 50 µM ALA + 5 µM PEA can reduce ROS and nitric oxide (NO) levels modulating the major cytokines involved on COVID-19 infection when administered either before or after LPS-induced damage. The best outcome was observed when administered after LPS, thus reinforcing the hypothesis that ALA combined with PEA to modulate the key point of cytokine storm syndrome. This work supports for the first time that the combination of ALA with PEA may represent a novel intervention strategy to counteract inflammatory damage related to COVID-19 by restoring the cascade activation of the immune response and acting as a powerful antioxidant.
Collapse
Affiliation(s)
- Francesca Uberti
- Laboratory Physiology, Department of Translational Medicine, UPO, Novara, Italy
| | - Sara Ruga
- Laboratory Physiology, Department of Translational Medicine, UPO, Novara, Italy
| | - Mahitab Farghali
- Laboratory Physiology, Department of Translational Medicine, UPO, Novara, Italy
| | - Rebecca Galla
- Laboratory Physiology, Department of Translational Medicine, UPO, Novara, Italy
| | - Claudio Molinari
- Laboratory Physiology, Department of Translational Medicine, UPO, Novara, Italy
| |
Collapse
|