1
|
Kim CH, Kim Y, Karna S, Yoo SM, Lee JH, Kim YJ, Lee JH, Jo WM, Park SH, Kim TH. Three-dimensional customized artificial grafts functionalized with biomimetic softness and anticoagulant heparin-dopamine surface modification: Preclinical study for practical applications. Int J Biol Macromol 2025; 299:140002. [PMID: 39828176 DOI: 10.1016/j.ijbiomac.2025.140002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/14/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Artificial vascular grafts, as blood vessel substitutes, are a prime challenge in tissue engineering and biomaterial research. An ideal artificial graft must have physiological and mechanical properties similar to those of a natural blood vessel, and hemocompatibility on its surface. We designed and fabricated artificial grafts by applying 3D printing and templated technology, which is endowed with morphologically patient-specific vascular reconstruction. To optimize mechanical properties, the graft wall was engineered with a controllable hybrid porous structure through a multilayer combination of porous and nonporous coatings, thereby achieving biomimetic mechanical flexibility with reduced stiffness. Further, we successfully synthesized dopamine-conjugated heparin (Hep-DA) utilizing carbodiimide chemistry, and coated it on a 3D porous graft to improve both surface adhesion and anticoagulant ability. The Hep-DA-coated 3D graft did not show significant cytotoxic effects with a long-term sustained heparin release. We performed a preclinical study in swine using the developed graft along with commercially available graft ePTFE and Dacron as a reference. They were implanted in the swine aorta for 28 days and the implanted grafts were harvested for further analysis. Histopathology study results showed the feasibility of the developed artificial vascular grafts that have less calcification, fibrosis, and collagen deposition than commercially available grafts.
Collapse
Affiliation(s)
- Chae Hwa Kim
- Textile Innovation R&D Department, Korea Institute of Industrial Technology, Ansan 15588, Republic of Korea
| | - Yuseok Kim
- School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, 63 Beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Sandeep Karna
- Department of Thoracic & Cardiovascular Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Sung Mook Yoo
- Department of Thoracic & Cardiovascular Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Ju Han Lee
- Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Yun Ju Kim
- User Convenience Technology R&D Department, Korea Institute of Industrial Technology, Ansan 15588, Republic of Korea
| | - Jun Hyuk Lee
- Textile Innovation R&D Department, Korea Institute of Industrial Technology, Ansan 15588, Republic of Korea
| | - Won-Min Jo
- Department of Thoracic & Cardiovascular Surgery, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea.
| | - Suk-Hee Park
- School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, 63 Beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Tae Hee Kim
- Textile Innovation R&D Department, Korea Institute of Industrial Technology, Ansan 15588, Republic of Korea.
| |
Collapse
|
2
|
Imeidopf G, Khaimov D, John S, Merna N. Optimization and Standardization of Plant-Derived Vascular Scaffolds. Int J Mol Sci 2025; 26:2752. [PMID: 40141394 PMCID: PMC11942841 DOI: 10.3390/ijms26062752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Vascular graft failure rates remain unacceptably high due to thrombosis and poor integration, necessitating innovative solutions. This study optimized plant-derived extracellular matrix scaffolds as a scalable and biocompatible alternative to synthetic grafts and autologous vessels. We refined decellularization protocols to achieve >95% DNA removal while preserving mechanical properties comparable to native vessels, significantly enhancing endothelial cell seeding. Leatherleaf viburnum leaves were decellularized using sodium dodecyl sulfate-based and Trypsin/Tergitol-based treatments, achieved via clearing in bleach and Triton X-100 for 6 to 72 h. To assess the environmental influence on scaffold performance, leaves from multiple collection sites were processed using sodium dodecyl sulfate-based protocols. Scaffold performance was evaluated through tensile testing and histological analysis to assess structural integrity, while DNA quantification and endothelial cell recellularization measured biological compatibility. Sodium dodecyl sulfate-treated scaffolds with shorter clearing durations demonstrated the highest DNA removal (≥95%) while preserving mechanical properties, significantly outperforming Trypsin/Tergitol treatments. Longer clearing times reduced fiber diameter by 60%, compromising scaffold strength. Shorter clearing times preserved extracellular matrix integrity and significantly improved endothelial cell seeding efficiency. Larger leaves supported significantly higher endothelial cell densities than smaller leaves, highlighting the need for standardized material sources. Permeability tests demonstrated minimal leakage at 120 mmHg and structural stability under dynamic flow conditions, suggesting their suitability for vascular applications. These findings establish a reliable framework for optimizing plant-derived grafts, improving their reproducibility and performance for tissue engineering applications.
Collapse
Affiliation(s)
- Gianna Imeidopf
- Fred DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, NY 11549, USA; (G.I.); (D.K.); (S.J.)
| | - Dara Khaimov
- Fred DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, NY 11549, USA; (G.I.); (D.K.); (S.J.)
| | - Sashane John
- Fred DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, NY 11549, USA; (G.I.); (D.K.); (S.J.)
- Cardiothoracic Surgery, Northwell Health, New York, NY 10022, USA
| | - Nick Merna
- Fred DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, NY 11549, USA; (G.I.); (D.K.); (S.J.)
| |
Collapse
|
3
|
Zhang J, Tabima DM, Vereide D, Zeng W, Albano NJ, Lyon S, Nicksic PJ, Shaffrey EC, George RE, Probasco MD, Perrin ES, Xu Y, Brown ME, Stewart R, Chesler NC, Turng LS, Poore SO, Slukvin II, Thomson JA, Maufort JP. Small-diameter artery grafts engineered from pluripotent stem cells maintain 100% patency in an allogeneic rhesus macaque model. Cell Rep Med 2025; 6:102002. [PMID: 40068684 DOI: 10.1016/j.xcrm.2025.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/18/2024] [Accepted: 02/12/2025] [Indexed: 03/21/2025]
Abstract
Autologous vascular grafts, the only clinically approved option for small-diameter (<6 mm) revascularizations, require invasive harvesting and have limited availability and variable quality. To address these challenges, we develop a 3-mm-diameter artery graft by using arterial endothelial cells (AECs) derived from pluripotent stem cells (PSCs). After establishing technologies for pure AEC generation and expanded polytetrafluoroethylene (ePTFE) graft coating, we engineer artery grafts by seeding the inner lumen of ePTFE vascular grafts with either major histocompatibility complex (MHC) mismatched unmodified-wild-type (MHC-WT) AECs or MHC class I/II double knockout (MHC-DKO) AECs. Their function is evaluated in a rhesus arterial interposition grafting model. MHC-WT grafts maintained 100% patency for 6 months, significantly better than naked and MHC-DKO grafts. Additionally, the endothelium of MHC-WT grafts is repopulated with host cells, supporting long-term patency. Collectively, our study demonstrates that PSC-derived MHC-WT artery grafts provide an unlimited homogenous resource for allogeneic arterial revascularization.
Collapse
Affiliation(s)
- Jue Zhang
- Morgridge Institute for Research, Madison, WI 53715, USA.
| | - Diana Marcela Tabima
- Morgridge Institute for Research, Madison, WI 53715, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - David Vereide
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Weifeng Zeng
- School of Medicine and Public Health, Division of Plastic and Reconstructive Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Nicholas J Albano
- School of Medicine and Public Health, Division of Plastic and Reconstructive Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Sarah Lyon
- School of Medicine and Public Health, Division of Plastic and Reconstructive Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Peter J Nicksic
- School of Medicine and Public Health, Division of Plastic and Reconstructive Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Ellen C Shaffrey
- School of Medicine and Public Health, Division of Plastic and Reconstructive Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Robert E George
- School of Medicine and Public Health, Division of Plastic and Reconstructive Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | | | - Elizabeth S Perrin
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Yiyang Xu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Matthew E Brown
- School of Medicine and Public Health, Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Naomi C Chesler
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California Irvine, Irvine, CA 92617, USA
| | - Lih-Sheng Turng
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samuel O Poore
- School of Medicine and Public Health, Division of Plastic and Reconstructive Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Igor I Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Cell & Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - James A Thomson
- Morgridge Institute for Research, Madison, WI 53715, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - John P Maufort
- Morgridge Institute for Research, Madison, WI 53715, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
4
|
Zhou SY, Li L, Cao JH, Yang XB, Wu DY. Transition from Procoagulation to Antiplatelet Effect: Application and Mechanism of Aspirin-Modified Chitosan in Small-Diameter Vascular Grafts. ACS APPLIED BIO MATERIALS 2025; 8:763-773. [PMID: 39829269 DOI: 10.1021/acsabm.4c01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Chitosan is generally considered to be a procoagulant effect, which may cause adverse phenomena such as blood clotting when used in small-diameter vascular grafts. However, it also shows good biocompatibility and anti-inflammatory properties, which can facilitate vascular reconstruction. Therefore, it is significant to transition the effect of chitosan from coagulation promotion to antiplatelet while still harnessing its bioactivity. The procoagulant mechanism of chitosan is primarily attributed to the presence of protonated amino groups in the molecular chain. If the number of amino groups in chitosan is reduced, the procoagulant effect will be diminished as well. Aspirin has a strong antiplatelet function, and its molecular structure contains numerous active carboxyl groups, which can couple with the amino groups in chitosan. Aspirin-modified chitosan retains the biological activity of chitosan while also imparting an antiplatelet effect. In our study, we used a heparinized electrospun graft as the substrate and coated it with aspirin-modified chitosan to create a functional vascular graft. The blood clotting index of the graft remained above 80% after 45 min, and the platelet activation degree was only 4.03%. Additionally, the graft maintained complete patency with stable blood flow after 4 weeks of implantation and the vascular structure was largely rebuilt.
Collapse
Affiliation(s)
- Si-Yuan Zhou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jian-Hua Cao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiu-Bin Yang
- Department of Cardiac Surgery, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Da-Yong Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
5
|
Xiang L, Zhang Y, Zhao Z, Tao Y, Wang W, Liu J, Chen Y, Jiang J, Zhang J, Zeng H. Mechanically Robust, Superlubricating and Antifouling Bilayer Nanocoating for Micro-Bioimplants via a Dual-Function Metal Coordination Approach. ACS NANO 2025; 19:1316-1326. [PMID: 39729076 DOI: 10.1021/acsnano.4c13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Nanometer-thick ultrathin coatings with superior mechanical strength and desirable lubricating and antifouling performance are critical for the miniaturization of implantable medical devices. However, integrating these properties at the nanoscale remains challenging due to the inherent trade-off between mechanical strength and hydration as well as limitations in coating thickness. In this work, we address these challenges by employing dual-function metal coordination to construct a ∼25 nm thick bilayer structure. Contact mechanics and interfacial molecular force measurements confirm the dual role of vanadium (VIII) ions in forming this bilayer: VIII ions bridge the ligand sites to reinforce the protein bottom layer, and simultaneously anchor the end blocks of the designed ABA triblock hydrophilic polymers to form a hydrated, looping top layer. This VIII-enabled structure demonstrates remarkable load-bearing capacity and lubricating performance (i.e., friction coefficient μ on the order of 10-3 over 100 cycles under ∼10 MPa), while it also exhibits excellent resistance to biofouling in complex biological fluids. This work presents a useful strategy for integrating seemingly incompatible properties into ultrathin coatings, offering the potential for customizing multifunctional surfaces for micro-devices/machines toward bioengineering applications.
Collapse
Affiliation(s)
- Li Xiang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yuhao Zhang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China
| | - Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yi Tao
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China
| | - Wenda Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jifang Liu
- Cancer Center, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510700, People's Republic of China
| | - Yunfei Chen
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People's Republic of China
| | - Jinyang Jiang
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, People's Republic of China
| | - Jiawen Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, People's Republic of China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
6
|
Hasan ML, Lee JR, Rahaman KA, Yang DH, Joung YK. Versatile effects of galectin-1 protein-containing lipid bilayer coating for cardiovascular applications. Bioact Mater 2024; 42:207-225. [PMID: 39285911 PMCID: PMC11403261 DOI: 10.1016/j.bioactmat.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024] Open
Abstract
Modulating inflammatory cells in an implantation site leads to severe complications and still unsolved challenges for blood-contacting medical devices. Inspired by the role of galectin-1 (Gal-1) in selective functions on multiple cells and immunomodulatory processes, we prepared a biologically target-specific surface coated with the lipid bilayer containing Gal-1 (Gal-1-SLB) and investigate the proof of the biological effects. First, lipoamido-dPEG-acid was deposited on a gold-coated substrate to form a self-assembled monolayer and then conjugated dioleoylphosphatidylethanolamine (DOPE) onto that to produce a lower leaflet of the supported lipid bilayer (SLB) before fusing membrane-derived vesicles extracted from B16-F10 cells. The Gal-1-SLB showed the expected anti-fouling activity by revealing the resistance to protein adsorption and bacterial adhesion. In vitro studies showed that the Gal-1-SLB can promote endothelial function and inhibit smooth muscle cell proliferation. Moreover, Gal-1- SLB presents potential function for endothelial cell migration and angiogenic activities. In vitro macrophage culture studies showed that the Gal-1-SLB attenuated the LPS-induced inflammation and the production of macrophage-secreted inflammatory cytokines. Finally, the implanted Gal-1-SLB reduced the infiltration of immune cells at the tissue-implant interface and increased markers for M2 polarization and blood vessel formation in vivo. This straightforward surface coating with Gal-1 can be a useful strategy for modulating the vascular and immune cells around a blood-contacting device.
Collapse
Affiliation(s)
- Md Lemon Hasan
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), 113 Gwahangno, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Ju Ro Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Khandoker Asiqur Rahaman
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Dae Hyeok Yang
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), 113 Gwahangno, Yuseong-gu, Daejeon, 34113, Republic of Korea
- KHU-KIST Department of Conversing Science and Technology, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Zuo X, Xiao Y, Yang J, He Y, He Y, Liu K, Chen X, Guo J. Engineering collagen-based biomaterials for cardiovascular medicine. COLLAGEN AND LEATHER 2024; 6:33. [DOI: 10.1186/s42825-024-00174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/25/2024] [Accepted: 08/21/2024] [Indexed: 01/06/2025]
Abstract
AbstractCardiovascular diseases have been the leading cause of global mortality and disability. In addition to traditional drug and surgical treatment, more and more studies investigate tissue engineering therapeutic strategies in cardiovascular medicine. Collagen interweaves in the form of trimeric chains to form the physiological network framework of the extracellular matrix of cardiac and vascular cells, possessing excellent biological properties (such as low immunogenicity and good biocompatibility) and adjustable mechanical properties, which renders it a vital tissue engineering biomaterial for the treatment of cardiovascular diseases. In recent years, promising advances have been made in the application of collagen materials in blood vessel prostheses, injectable cardiac hydrogels, cardiac patches, and hemostatic materials, although their clinical translation still faces some obstacles. Thus, we reviewed these findings and systematically summarizes the application progress as well as problems of clinical translation of collagen biomaterials in the cardiovascular field. The present review contributes to a comprehensive understanding of the application of collagen biomaterials in cardiovascular medicine.
Graphical abstract
Collapse
|
8
|
Li W, Li J, Pan C, Lee JS, Kim BS, Gao G. Light-based 3D bioprinting techniques for illuminating the advances of vascular tissue engineering. Mater Today Bio 2024; 29:101286. [PMID: 39435375 PMCID: PMC11492625 DOI: 10.1016/j.mtbio.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Vascular tissue engineering faces significant challenges in creating in vitro vascular disease models, implantable vascular grafts, and vascularized tissue/organ constructs due to limitations in manufacturing precision, structural complexity, replicating the composited architecture, and mimicking the mechanical properties of natural vessels. Light-based 3D bioprinting, leveraging the unique advantages of light including high resolution, rapid curing, multi-material adaptability, and tunable photochemistry, offers transformative solutions to these obstacles. With the emergence of diverse light-based 3D bioprinting techniques and innovative strategies, the advances in vascular tissue engineering have been significantly accelerated. This review provides an overview of the human vascular system and its physiological functions, followed by an in-depth discussion of advancements in light-based 3D bioprinting, including light-dominated and light-assisted techniques. We explore the application of these technologies in vascular tissue engineering for creating in vitro vascular disease models recapitulating key pathological features, implantable blood vessel grafts, and tissue analogs with the integration of capillary-like vasculatures. Finally, we provide readers with insights into the future perspectives of light-based 3D bioprinting to revolutionize vascular tissue engineering.
Collapse
Affiliation(s)
- Wei Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology (BIT), Zhuhai 519088, China
| | - Chen Pan
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan, 050024, China
| | - Jae-Seong Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
| |
Collapse
|
9
|
Luo X, Pang Z, Li J, Anh M, Kim BS, Gao G. Bioengineered human arterial equivalent and its applications from vascular graft to in vitro disease modeling. iScience 2024; 27:111215. [PMID: 39555400 PMCID: PMC11565542 DOI: 10.1016/j.isci.2024.111215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Arterial disorders such as atherosclerosis, thrombosis, and aneurysm pose significant health risks, necessitating advanced interventions. Despite progress in artificial blood vessels and animal models aimed at understanding pathogenesis and developing therapies, limitations in graft functionality and species discrepancies restrict their clinical and research utility. Addressing these issues, bioengineered arterial equivalents (AEs) with enhanced vascular functions have been developed, incorporating innovative technologies that improve clinical outcomes and enhance disease progression modeling. This review offers a comprehensive overview of recent advancements in bioengineered AEs, systematically summarizing the bioengineered technologies used to construct these AEs, and discussing their implications for clinical application and pathogenesis understanding. Highlighting current breakthroughs and future perspectives, this review aims to inform and inspire ongoing research in the field, potentially transforming vascular medicine and offering new avenues for preclinical and clinical advances.
Collapse
Affiliation(s)
- Xi Luo
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zherui Pang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology, Zhuhai 519088, China
| | - Minjun Anh
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byoung Soo Kim
- Medical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
| |
Collapse
|
10
|
Rashidi S, Bagherpour G, Abbasi‐Malati Z, Khosrowshahi ND, Chegeni SA, Roozbahani G, Lotfimehr H, Sokullu E, Rahbarghazi R. Endothelial progenitor cells for fabrication of engineered vascular units and angiogenesis induction. Cell Prolif 2024; 57:e13716. [PMID: 39051852 PMCID: PMC11503262 DOI: 10.1111/cpr.13716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
The promotion of vascularization and angiogenesis in the grafts is a crucial phenomenon in the healing process and tissue engineering. It has been shown that stem cells, especially endothelial progenitor cells (EPCs), can stimulate blood vessel formation inside the engineered hydrogels after being transplanted into the target sites. The incorporation of EPCs into the hydrogel can last the retention time, long-term survival, on-target delivery effects, migration and differentiation into mature endothelial cells. Despite these advantages, further modifications are mandatory to increase the dynamic growth and angiogenesis potential of EPCs in in vitro and in vivo conditions. Chemical modifications of distinct composites with distinct physical properties can yield better regenerative potential and angiogenesis during several pathologies. Here, we aimed to collect recent findings related to the application of EPCs in engineered vascular grafts and/or hydrogels for improving vascularization in the grafts. Data from the present article can help us in the application of EPCs as valid cell sources in the tissue engineering of several ischemic tissues.
Collapse
Affiliation(s)
- Somayyeh Rashidi
- Department of Medical Biotechnology, Faculty of MedicineZanjan University of Medical SciencesZanjanIran
| | - Ghasem Bagherpour
- Department of Medical Biotechnology, Faculty of MedicineZanjan University of Medical SciencesZanjanIran
- Zanjan Pharmaceutical Biotechnology Research CenterZanjan University of Medical SciencesZanjanIran
| | - Zahra Abbasi‐Malati
- Student Research CenterTabriz University of Medical SciencesTabrizIran
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Sara Aghakhani Chegeni
- Department of Clinical Biochemistry and Laboratory MedicineTabriz University of Medical SciencesTabrizIran
| | - Golbarg Roozbahani
- Department of Plant, Cell and Molecular Biology, Faculty of Natural SciencesUniversity of TabrizTabrizIran
| | - Hamid Lotfimehr
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| | - Emel Sokullu
- Research Center for Translational Medicine (KUTTAM)Koç UniversityIstanbulTurkey
- Biophysics DepartmentKoç University School of MedicineIstanbulTurkey
| | - Reza Rahbarghazi
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
11
|
Yang C, Yuan W, Liao G, Tang Z, Zhu T, Jia Y, Yu Q, Wang L. Customized Vascular Repair Microenvironment: Poly(lactic acid)-Gelatin Nanofibrous Scaffold Decorated with bFGF and Ag@Fe 3O 4 Core-Shell Nanowires. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40787-40804. [PMID: 39072379 DOI: 10.1021/acsami.4c09269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Vascular defects caused by trauma or vascular diseases can significantly impact normal blood circulation, resulting in serious health complications. Vascular grafts have evolved as a popular approach for vascular reconstruction with promising outcomes. However, four of the greatest challenges for successful application of small-diameter vascular grafts are (1) postoperative anti-infection, (2) preventing thrombosis formation, (3) utilizing the inflammatory response to the graft to induce tissue regeneration and repair, and (4) noninvasive monitoring of the scaffold and integration. The present study demonstrated a basic fibroblast growth factor (bFGF) and oleic acid dispersed Ag@Fe3O4 core-shell nanowires (OA-Ag@Fe3O4 CSNWs) codecorated poly(lactic acid) (PLA)/gelatin (Gel) multifunctional electrospun vascular grafts (bAPG). The Ag@Fe3O4 CSNWs have sustained Ag+ release and exceptional photothermal capabilities to effectively suppress bacterial infections both in vitro and in vivo, noninvasive magnetic resonance imaging (MRI) modality to monitor the position of the graft, and antiplatelet adhesion properties to promise long-term patency. The gradually released bFGF from the bAPG scaffold promotes the M2 macrophage polarization and enhances the recruitment of macrophages, endothelial cells (ECs) and fibroblast cells. This significant regulation of diverse cell behavior has been proven to be beneficial to vascular repair and regeneration both in vitro and in vivo. Therefore, this study supplies a method to prepare multifunctional vascular-repair materials and is expected to represent a significant guidance and reference to the development of biomaterials for vascular tissue engineering.
Collapse
Affiliation(s)
- Congyi Yang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Weiwen Yuan
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Guoxing Liao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Zhe Tang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Tong Zhu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Yifan Jia
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Qianqian Yu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - LinGe Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
12
|
Bartolf-Kopp M, Jungst T. The Past, Present, and Future of Tubular Melt Electrowritten Constructs to Mimic Small Diameter Blood Vessels - A Stable Process? Adv Healthc Mater 2024; 13:e2400426. [PMID: 38607966 DOI: 10.1002/adhm.202400426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/20/2024] [Indexed: 04/14/2024]
Abstract
Melt Electrowriting (MEW) is a continuously growing manufacturing platform. Its advantage is the consistent production of micro- to nanometer fibers, that stack intricately, forming complex geometrical shapes. MEW allows tuning of the mechanical properties of constructs via the geometry of deposited fibers. Due to this, MEW can create complex mechanics only seen in multi-material compounds and serve as guiding structures for cellular alignment. The advantage of MEW is also shown in combination with other biotechnological manufacturing methods to create multilayered constructs that increase mechanical approximation to native tissues, biocompatibility, and cellular response. These features make MEW constructs a perfect candidate for small-diameter vascular graft structures. Recently, studies have presented fascinating results in this regard, but is this truly the direction that tubular MEW will follow or are there also other options on the horizon? This perspective will explore the origins and developments of tubular MEW and present its growing importance in the field of artificial small-diameter vascular grafts with mechanical modulation and improved biomimicry and the impact of it in convergence with other manufacturing methods and how future technologies like AI may influence its progress.
Collapse
Affiliation(s)
- Michael Bartolf-Kopp
- Department for Functional Materials in Medicine and Dentistry, Institute of Biofabrication and Functional Materials, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg, Germany
| | - Tomasz Jungst
- Department for Functional Materials in Medicine and Dentistry, Institute of Biofabrication and Functional Materials, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg, Germany
- Department of Orthopedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
13
|
Hernandez-Sanchez D, Comtois-Bona M, Muñoz M, Ruel M, Suuronen EJ, Alarcon EI. Manufacturing and validation of small-diameter vascular grafts: A mini review. iScience 2024; 27:109845. [PMID: 38799581 PMCID: PMC11126982 DOI: 10.1016/j.isci.2024.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
The field of small-diameter vascular grafts remains a challenge for biomaterials scientists. While decades of research have brought us much closer to developing biomimetic materials for regenerating tissues and organs, the physiological challenges involved in manufacturing small conduits that can transport blood while not inducing an immune response or promoting blood clots continue to limit progress in this area. In this short review, we present some of the most recent methods and advancements made by researchers working in the field of small-diameter vascular grafts. We also discuss some of the most critical aspects biomaterials scientists should consider when developing lab-made small-diameter vascular grafts.
Collapse
Affiliation(s)
- Deyanira Hernandez-Sanchez
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Maxime Comtois-Bona
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Marcelo Muñoz
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
| | - Marc Ruel
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, 451 Smyth Road, Ottawa ON K1H8M5, Canada
| | - Erik J. Suuronen
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, 451 Smyth Road, Ottawa ON K1H8M5, Canada
| | - Emilio I. Alarcon
- BioEngineering and Therapeutic Solutions (BEaTS) Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H8M5, Canada
| |
Collapse
|
14
|
Laowpanitchakorn P, Zeng J, Piantino M, Uchida K, Katsuyama M, Matsusaki M. Biofabrication of engineered blood vessels for biomedical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2330339. [PMID: 38633881 PMCID: PMC11022926 DOI: 10.1080/14686996.2024.2330339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/10/2024] [Indexed: 04/19/2024]
Abstract
To successfully engineer large-sized tissues, establishing vascular structures is essential for providing oxygen, nutrients, growth factors and cells to prevent necrosis at the core of the tissue. The diameter scale of the biofabricated vasculatures should range from 100 to 1,000 µm to support the mm-size tissue while being controllably aligned and spaced within the diffusion limit of oxygen. In this review, insights regarding biofabrication considerations and techniques for engineered blood vessels will be presented. Initially, polymers of natural and synthetic origins can be selected, modified, and combined with each other to support maturation of vascular tissue while also being biocompatible. After they are shaped into scaffold structures by different fabrication techniques, surface properties such as physical topography, stiffness, and surface chemistry play a major role in the endothelialization process after transplantation. Furthermore, biological cues such as growth factors (GFs) and endothelial cells (ECs) can be incorporated into the fabricated structures. As variously reported, fabrication techniques, especially 3D printing by extrusion and 3D printing by photopolymerization, allow the construction of vessels at a high resolution with diameters in the desired range. Strategies to fabricate of stable tubular structures with defined channels will also be discussed. This paper provides an overview of the many advances in blood vessel engineering and combinations of different fabrication techniques up to the present time.
Collapse
Affiliation(s)
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Marie Piantino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- The Consortium for Future Innovation by Cultured Meat, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Kentaro Uchida
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation, Kadoma, Osaka, Japan
| | - Misa Katsuyama
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation, Kadoma, Osaka, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- The Consortium for Future Innovation by Cultured Meat, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
15
|
Macías-Naranjo M, Sánchez-Domínguez M, Rubio-Valle JF, Rodríguez CA, Martín-Alfonso JE, García-López E, Vazquez-Lepe E. A Study of PLA Thin Film on SS 316L Coronary Stents Using a Dip Coating Technique. Polymers (Basel) 2024; 16:284. [PMID: 38276692 PMCID: PMC10818791 DOI: 10.3390/polym16020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
The dip coating process is one of the recognized techniques used to generate polymeric coatings on stents in an easy and low-cost way. However, there is a lack of information about the influence of the process parameters of this technique on complex geometries such as stents. This paper studies the dip coating process parameters used to provide a uniform coating of PLA with a 4-10 µm thickness. A stainless-steel tube (AISI 316L) was laser-cut, electropolished, and dip-coated in a polylactic acid (PLA) solution whilst changing the process parameters. The samples were characterized to examine the coating's uniformity, thickness, surface roughness, weight, and chemical composition. FTIR and Raman investigations indicated the presence of PLA on the stent's surface, the chemical stability of PLA during the coating process, and the absence of residual chloroform in the coatings. Additionally, the water contact angle was measured to determine the hydrophilicity of the coating. Our results indicate that, when using entry and withdrawal speeds of 500 mm min-1 and a 15 s immersion time, a uniform coating thickness was achieved throughout the tube and in the stent with an average thickness of 7.8 µm.
Collapse
Affiliation(s)
- Mariana Macías-Naranjo
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico; (M.M.-N.); (C.A.R.)
| | - Margarita Sánchez-Domínguez
- Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Unidad Monterrey, Alianza Norte 202, Apodaca 66628, Nuevo León, Mexico;
| | - J. F. Rubio-Valle
- Pro2TecS—Chemical Product and Process Technology Research Center, Department of Chemical Engineering and Materials Science, ETSI, Universidad de Huelva, Campus de “El Carmen”, 21071 Huelva, Spain; (J.F.R.-V.); (J.E.M.-A.)
| | - Ciro A. Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico; (M.M.-N.); (C.A.R.)
| | - J. E. Martín-Alfonso
- Pro2TecS—Chemical Product and Process Technology Research Center, Department of Chemical Engineering and Materials Science, ETSI, Universidad de Huelva, Campus de “El Carmen”, 21071 Huelva, Spain; (J.F.R.-V.); (J.E.M.-A.)
| | - Erika García-López
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico; (M.M.-N.); (C.A.R.)
| | - Elisa Vazquez-Lepe
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico; (M.M.-N.); (C.A.R.)
| |
Collapse
|
16
|
Jeong JO, Ju YM, Kang HW, Atala A, Yoo JJ, Lee SJ. Biofunctionalized Electrospun Vascular Scaffolds for Enhanced Antithrombotic Properties and In Situ Endothelialization. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37923557 DOI: 10.1021/acsami.3c13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The development of innovative vascular substitutes has become increasingly significant due to the prevalence of vascular diseases. In this study, we designed a biofunctionalized electrospun vascular scaffold by chemically conjugating heparin molecules as an antithrombotic agent with an endothelial cell (EC)-specific antibody to promote in situ endothelialization. To optimize this biofunctionalized electrospun vascular scaffolding system, we examined various parameters, including material compositions, cross-linker concentrations, and cross-linking and conjugation processes. The findings revealed that a higher degree of heparin conjugation onto the vascular scaffold resulted in improved antithrombotic properties, as confirmed by the platelet adhesion test. Additionally, the flow chamber study demonstrated that the EC-specific antibody immobilization enhanced the scaffold's EC-capturing capability compared to a nonconjugated vascular scaffold. The optimized biofunctionalized vascular scaffolds also displayed exceptional mechanical properties, such as suture retention strength and tensile properties. Our research demonstrated that the biofunctionalized vascular scaffolds and the directed immobilization of bioactive molecules could provide the necessary elements for successful acellular vascular tissue engineering applications.
Collapse
Affiliation(s)
- Jin-Oh Jeong
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
- Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Young Min Ju
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Hyun-Wook Kang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
- Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
17
|
Di Francesco D, Pigliafreddo A, Casarella S, Di Nunno L, Mantovani D, Boccafoschi F. Biological Materials for Tissue-Engineered Vascular Grafts: Overview of Recent Advancements. Biomolecules 2023; 13:1389. [PMID: 37759789 PMCID: PMC10526356 DOI: 10.3390/biom13091389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The clinical demand for tissue-engineered vascular grafts is still rising, and there are many challenges that need to be overcome, in particular, to obtain functional small-diameter grafts. The many advances made in cell culture, biomaterials, manufacturing techniques, and tissue engineering methods have led to various promising solutions for vascular graft production, with available options able to recapitulate both biological and mechanical properties of native blood vessels. Due to the rising interest in materials with bioactive potentials, materials from natural sources have also recently gained more attention for vascular tissue engineering, and new strategies have been developed to solve the disadvantages related to their use. In this review, the progress made in tissue-engineered vascular graft production is discussed. We highlight, in particular, the use of natural materials as scaffolds for vascular tissue engineering.
Collapse
Affiliation(s)
- Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Alexa Pigliafreddo
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Luca Di Nunno
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| |
Collapse
|
18
|
Rosalia M, Grisoli P, Dorati R, Chiesa E, Pisani S, Bruni G, Genta I, Conti B. Influence of Electrospun Fibre Secondary Morphology on Antibiotic Release Kinetic and Its Impact on Antimicrobic Efficacy. Int J Mol Sci 2023; 24:12108. [PMID: 37569489 PMCID: PMC10418872 DOI: 10.3390/ijms241512108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Vascular graft infections are a severe complication in vascular surgery, with a high morbidity and mortality. Prevention and treatment involve the use of antibiotic- or antiseptic-impregnated artificial vascular grafts, but currently, there are no commercially available infection-proof small-diameter vascular grafts (SDVGs). In this work we investigated the antimicrobic activity of two SDVGs prototypes loaded with tobramycin and produced via the electrospinning of drug-doped PLGA (polylactide-co-glycolide) solutions. Differences in rheological and conductivity properties of the polymer solutions resulted in non-identical fibre morphology that deeply influenced the hydration profile and consequently the in vitro cumulative drug release, which was investigated by using a spectrofluorimetric technique. Using DDSolver Excel add-in, modelling of the drug release kinetic was performed to evaluate the release mechanism involved: Prototype 1 showed a sustained and diffusive driven drug release, which allowed for the complete elution of tobramycin within 2 weeks, whereas Prototype 2 resulted in a more extended drug release controlled by both diffusion and matrix relaxation. Time-kill assays performed on S. aureus and E. coli highlighted the influence of burst drug release on the decay rate of bacterial populations, with Prototype 1 being more efficient on both microorganisms. Nevertheless, both prototypes showed good antimicrobic activity over the 5 days of in vitro testing.
Collapse
Affiliation(s)
- Mariella Rosalia
- Department of Drug Sciences, Pharmaceutical Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (M.R.); (R.D.); (E.C.); (S.P.); (I.G.)
| | - Pietro Grisoli
- Department of Drug Sciences, Pharmacological Section, University of Pavia, Via Taramelli 16, 27100 Pavia, Italy
| | - Rossella Dorati
- Department of Drug Sciences, Pharmaceutical Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (M.R.); (R.D.); (E.C.); (S.P.); (I.G.)
| | - Enrica Chiesa
- Department of Drug Sciences, Pharmaceutical Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (M.R.); (R.D.); (E.C.); (S.P.); (I.G.)
| | - Silvia Pisani
- Department of Drug Sciences, Pharmaceutical Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (M.R.); (R.D.); (E.C.); (S.P.); (I.G.)
| | - Giovanna Bruni
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (C.S.G.I.), Department of Chemistry, Physical Chemistry Section, University of Pavia, Via Taramelli 10, 27100 Pavia, Italy;
| | - Ida Genta
- Department of Drug Sciences, Pharmaceutical Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (M.R.); (R.D.); (E.C.); (S.P.); (I.G.)
| | - Bice Conti
- Department of Drug Sciences, Pharmaceutical Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (M.R.); (R.D.); (E.C.); (S.P.); (I.G.)
| |
Collapse
|