1
|
Bolamperti S, Villa I, di Filippo L. Growth hormone and bone: a basic perspective. Pituitary 2024; 27:745-751. [PMID: 39476263 DOI: 10.1007/s11102-024-01464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 12/12/2024]
Abstract
Growth hormone is fundamental for growth during childhood and for maintaining bone mass and homeostasis in the adults. GH deficiency causes decreased bone growth and osteopenia, whereas GH excess causes increased bone fragility and decreased bone quality. In the past, it was common knowledge that GH effects on the skeletal system were due to the production of IGF1 from the liver, which has a huge bone anabolic effect per se. However, with the progress of basic research techniques new light has been shed on the mechanisms underlying GH effect in bone, and it is now clear that GH has effects that go beyond the downstream activation of liver IGFs. Therefore, the purpose of this review is to summarize the milestones in basic research that led to the discovery of GH local activity on bone.
Collapse
Affiliation(s)
- Simona Bolamperti
- Endocrine and Osteometabolic Lab, Institute of Endocrine and Metabolic Sciences, IRCCS San Raffaele Hospital, Via Olgettina 58, Milan, 20132, Italy.
| | - Isabella Villa
- Endocrine and Osteometabolic Lab, Institute of Endocrine and Metabolic Sciences, IRCCS San Raffaele Hospital, Via Olgettina 58, Milan, 20132, Italy
| | - Luigi di Filippo
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
2
|
Tarnawski J, Czub M, Dymecki M, Sunil M, Folwarski M. Anabolic Strategies for ICU-Acquired Weakness. What Can We Learn from Bodybuilders? Nutrients 2024; 16:2011. [PMID: 38999759 PMCID: PMC11243134 DOI: 10.3390/nu16132011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
The study aimed to show the potential clinical application of supplements used among sportsmen for patients suffering from Intensive Care Unit-acquired Weakness (ICUAW) treatment. ICUAW is a common complication affecting approximately 40% of critically ill patients, often leading to long-term functional disability. ICUAW comprises critical illness polyneuropathy, critical illness myopathy, or a combination of both, such as critical illness polyneuromyopathy. Muscle degeneration begins shortly after the initiation of mechanical ventilation and persists post-ICU discharge until proteolysis and autophagy processes normalize. Several factors, including prolonged bedrest and muscle electrical silencing, contribute to muscle weakness, resulting from an imbalance between protein degradation and synthesis. ICUAW is associated with tissue hypoxia, oxidative stress, insulin resistance, reduced glucose uptake, lower adenosine triphosphate (ATP) formation, mitochondrial dysfunction, and increased free-radical production. Several well-studied dietary supplements and pharmaceuticals commonly used by athletes are proven to prevent the aforementioned mechanisms or aid in muscle building, regeneration, and maintenance. While there is no standardized treatment to prevent the occurrence of ICUAW, nutritional interventions have demonstrated the potential for its mitigation. The use of ergogenic substances, popular among muscle-building sociates, may offer potential benefits in preventing muscle loss and aiding recovery based on their work mechanisms.
Collapse
Affiliation(s)
| | - Maja Czub
- Department of Endocrinology and Internal Diseases, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Marta Dymecki
- Independent Public Health Care Center, Ministry of Internal Affairs and Administration, 80-104 Gdańsk, Poland
| | - Medha Sunil
- Students' Scientific Circle of Clinical Nutrition, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Marcin Folwarski
- Department of Clinical Nutrition and Dietetics, Medical University of Gdansk, 80-210 Gdańsk, Poland
- Home Enteral and Parenteral Nutrition Unit, General Surgery, Nicolaus Copernicus Hospital, 80-803 Gdansk, Poland
| |
Collapse
|
3
|
Fleseriu M, Christ-Crain M, Langlois F, Gadelha M, Melmed S. Hypopituitarism. Lancet 2024; 403:2632-2648. [PMID: 38735295 DOI: 10.1016/s0140-6736(24)00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 05/14/2024]
Abstract
Partial or complete deficiency of anterior or posterior pituitary hormone production leads to central hypoadrenalism, central hypothyroidism, hypogonadotropic hypogonadism, growth hormone deficiency, or arginine vasopressin deficiency depending on the hormones affected. Hypopituitarism is rare and likely to be underdiagnosed, with an unknown but rising incidence and prevalence. The most common cause is compressive growth or ablation of a pituitary or hypothalamic mass. Less common causes include genetic mutations, hypophysitis (especially in the context of cancer immunotherapy), infiltrative and infectious disease, and traumatic brain injury. Clinical features vary with timing of onset, cause, and number of pituitary axes disrupted. Diagnosis requires measurement of basal circulating hormone concentrations and confirmatory hormone stimulation testing as needed. Treatment is aimed at replacement of deficient hormones. Increased mortality might persist despite treatment, particularly in younger patients, females, and those with arginine vasopressin deficiency. Patients with complex diagnoses, pregnant patients, and adolescent pituitary-deficient patients transitioning to adulthood should ideally be managed at a pituitary tumour centre of excellence.
Collapse
Affiliation(s)
- Maria Fleseriu
- Department of Medicine, Division of Endocrinology, Diabetes and Clinical Nutrition, Oregon Health and Science University, Portland, OR, USA; Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA; Pituitary Center, Oregon Health and Science University, Portland, OR, USA.
| | - Mirjam Christ-Crain
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Fabienne Langlois
- Department of Medicine, Division of Endocrinology, Centre intégré universitaire de santé et de services sociaux de l'Estrie, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Mônica Gadelha
- Endocrine Unit and Neuroendocrinology Research Center, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Shlomo Melmed
- Department of Medicine and Pituitary Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
4
|
Attia N, Moussa K, Altwaim A, Al-Agha AE, Amir AA, Almuhareb A. Tackling access and payer barriers for growth hormone therapy in Saudi Arabia: a consensus statement for the Saudi Working Group for Pediatric Endocrinology. J Pediatr Endocrinol Metab 2024; 37:387-399. [PMID: 38547465 DOI: 10.1515/jpem-2024-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/13/2024] [Indexed: 05/05/2024]
Abstract
Prompt diagnosis and early treatment are key goals to optimize the outcomes of children with growth hormone deficiency (GHD) and attain the genetically expected adult height. Nonetheless, several barriers can hinder prompt diagnosis and treatment of GHD, including payer-related issues. In Saudi Arabia, moderate-to-severe short stature was reported in 13.1 and 11.7 % of healthy boys and girls, respectively. Several access and payer barriers can face pediatric endocrinologists during the diagnosis and treatment of GHD in Saudi Arabia. Insurance coverage policies can restrict access to diagnostic tests for GHD and recombinant human growth hormone (rhGH) due to their high costs and lack of gold-standard criteria. Some insurance policies may limit the duration of treatment with rhGH or the amount of medication covered per month. This consensus article gathered the insights of pediatric endocrinologists from Saudi Arabia to reflect the access and payer barriers to the diagnostic tests and treatment options of children with short stature. We also discussed the current payer-related challenges endocrinologists face during the investigations of children with short stature. The consensus identified potential strategies to overcome these challenges and optimize patient management.
Collapse
Affiliation(s)
- Najya Attia
- Department of Pediatric Endocrinology, 4917 King Abdulaziz Medical City/King Saud bin Abdulaziz University for Health Sciences/King Abdullah International Medical Research Center , Jeddah, Saudi Arabia
| | | | - Abdulaziz Altwaim
- King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- International Diabetes Care Center, Jeddah, Saudi Arabia
| | - Abdulmoein Eid Al-Agha
- Pediatric Department, Pediatric Endocrinology & Diabetes Section, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | | | | |
Collapse
|
5
|
Sleumer B, van Faassen M, Vos MJ, den Besten G, Kema IP, van de Merbel NC. Simultaneous quantification of the 22-kDa isoforms of human growth hormone 1 and 2 in human plasma by multiplexed immunocapture and LC-MS/MS. Clin Chim Acta 2024; 554:117736. [PMID: 38142804 DOI: 10.1016/j.cca.2023.117736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
An LC-MS/MS method is presented for the simultaneous quantification of two structurally closely related protein biomarker isoforms, the 22-kDa isoforms of human growth hormone 1 and human growth hormone 2, in human plasma. It is based on multiplexed immunocapture using two monoclonal antibodies immobilized on magnetic beads, tryptic digestion and quantification of two specific signature peptides plus an additional peptide for estimation of total growth hormone related concentrations. A full validation according to international guidelines was performed across the clinically relevant concentration ranges of 0.5 to 50 ng/mL for growth hormone 1, and 2 to 50 ng/mL for growth hormone 2 and demonstrated satisfactory method performance in terms of accuracy, precision, stability and absence of interference. The method's applicability for routine analysis and its ability to effectively distinguish between GH1 and GH2 was demonstrated by the analysis of plasma samples from pregnant individuals to study the changes in growth hormone levels during pregnancy.
Collapse
Affiliation(s)
- Bas Sleumer
- ICON Bioanalytical Laboratories, Amerikaweg 18, 9407 TK Assen, the Netherlands; Department of Analytical Biochemistry University of Groningen, A. Deusinglaan 1, 9700 AV Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, EA61, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, EA61, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| | - Michel J Vos
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, EA61, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| | - Gijs den Besten
- Department of Clinical Chemistry, Isala, Dr. Van Heesweg 2, 8025 AB Zwolle, the Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, EA61, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| | - Nico C van de Merbel
- ICON Bioanalytical Laboratories, Amerikaweg 18, 9407 TK Assen, the Netherlands; Department of Analytical Biochemistry University of Groningen, A. Deusinglaan 1, 9700 AV Groningen, the Netherlands.
| |
Collapse
|
6
|
Karaoglan M. Short Stature due to Bioinactive Growth Hormone (Kowarski Syndrome). Endocr Pract 2023; 29:902-911. [PMID: 37657628 DOI: 10.1016/j.eprac.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
OBJECTIVE Bioinactive growth hormone (BGH) is a structurally abnormal, biologically inactive, but immunoreactive form of growth hormone encoded by pathogenic growth hormone 1 gene variants. The underlying cause of the defective physiology is decreased BGH binding affinity to both growth hormone binding proteins and growth hormone receptors (GHRs). GHR cannot dimerize when it is in a quiescent state because BGH cannot activate it. Nondimerized GHR is unable to activate intracytoplasmic signaling pathway molecules such as Janus kinase 2 and signal transducer and activator of transcription, which initiate insulin-like growth factor-1 (IGF-1) transcription. IGF-1 cannot therefore be synthesized and IGF-1 levels in the circulation decrease. In contrast to children with growth hormone insensitivity, children with short stature due to BGH, known as Kowarski syndrome, exhibit an outstanding linear growth response to recombinant growth hormone therapy. For a number of reasons, differential diagnosis presents some difficulties. Similar diseases caused by genetic abnormalities that cause short stature range in severity from minor to severe clinical spectrum. Furthermore, some patients with Kowarski syndrome have previously been diagnosed with familial short stature, constitutional delayed puberty, and idiopathic short stature. This paper aims to review the particular clinical and laboratory findings of BGH. METHODS This study collected clinical and laboratory data from KS cases reported in the literature. RESULTS This review reports that KS cases have lower SDSs for height and IGF-1 compared to growth hormone deficiency. CONCLUSION The diversity of genetic defects underlying Kowarski syndrome (KS) will provide new insights into growth hormone insensitivity. As the availability of genetic analysis, including functional investigations expands, researchers will identify new underlying genetic pathways.
Collapse
Affiliation(s)
- Murat Karaoglan
- Department of Pediatric Endocrinology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey.
| |
Collapse
|
7
|
Wu G, Dong Y, Hu Q, Ma H, Xu Q, Xu K, Chen H, Yang Z, He M. HGH1 and the immune landscape: a novel prognostic marker for immune-desert tumor microenvironment identification and immunotherapy outcome prediction in human cancers. Cell Cycle 2023; 22:1969-1985. [PMID: 37811868 PMCID: PMC10761050 DOI: 10.1080/15384101.2023.2260163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/21/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
HGH1 homolog, a protein-coding gene, plays a crucial role in human growth and development. However, its role in human cancer remains unclear. For the first time, this study comprehensively evaluated the potential involvement of HGH1 in cancer prognosis and immunological function. To achieve this, data from various databases, including The Cancer Genome Atlas, Genotype Tissue Expression, Cancer Cell Lineage Encyclopedia, Human Protein Atlas, cBioPortal, Tumor Immune Estimation Resource and Immune Cell Abundance Identifier, were collated, as well as from one large clinical study, three immunotherapy cohorts and in vitro experiments. This study aims to elucidate the role of HGH1 expression in cancer prognosis and immune response. Our findings revealed a significant association between increased HGH1 expression and a worse prognosis across various cancer types. Predominantly, copy number variations were identified as the most common genetic mutations. Additionally, HGH1 was observed to not only regulate cell cycle-related functions to promote cell proliferation but also influence autoimmunity-related functions within both the innate and adaptive immune systems, along with other relevant immune-related signaling pathways. Gene set enrichment analysis and gene set variation analysis were used to substantiate these findings. HGH1 overexpression contributed to an immune-deficient (immune-desert) tumor microenvironment, which was characterized by a significant expression of immune-related features such as immune-related gene and pathway expression and the number of immune-infiltrating cells. Furthermore, the correlation between HGH1 expression and tumor mutational burden in four cancers and microsatellite instability in eight cancers was observed. This suggests that HGH1 has potential as an immunotherapeutic target. Immunotherapy data analysis supports this notion, demonstrating that patients with low HGH1 expression treated with immune checkpoint inhibitors exhibit improved survival rates and a higher likelihood of responding to immunotherapy than patients with high HGH1 expression. Collectively, these findings highlight the significant role of HGH1 in human cancers, illuminating its involvement in tumorigenesis and cancer immunity. Elevated HGH1 expression was identified to be indicative of an immune-desert tumor microenvironment. Consequently, the targeting of HGH1, particularly in combination with immune checkpoint inhibitor therapy, holds promise for enhancing therapeutic outcomes in patients with cancer.
Collapse
Affiliation(s)
- Gujie Wu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Yipeng Dong
- School of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qin Hu
- Shanghai Medical College, Fudan University, Shanghai, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Huiyun Ma
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Qun Xu
- School of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kun Xu
- Department of Chemotherapy, Jiangsu Cancer Hospital, Nanjing Medical University, Nanjing, China
| | - Hongyu Chen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Min He
- Shanghai Medical College, Fudan University, Shanghai, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
8
|
Stelmachowska-Banaś M, Ostrowska M, Goszczyński T, Kowalski K, Korbonits M, Kapuścińska R, Zgliczyński W, Glinicki P. Macro-GH - a clinical entity causing a diagnostic challenge - a case report. Clin Chim Acta 2023; 546:117392. [PMID: 37187223 DOI: 10.1016/j.cca.2023.117392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
AIM Presentation of a new case of a patient with macro-GH, that may interfere with different GH assays leading to false-positive results in serum samples. CASE PRESENTATION A 61-year-old female was referred with a pituitary macroadenoma and elevated growth hormone levels The laboratory tests showed increased fasting GH level, measured by a sandwich chemiluminescence immunoassay (LIAISON® XL) without suppression on oral glucose tolerance test and normal IGF-1. The patient did not have the typical signs and symptoms of acromegaly. The patient underwent a transsphenoidal resection of a pituitary tumor, showing only α-subunit immunostaining. Postoperative GH levels remained elevated. An interference in the determination of GH level was suspected. GH was analyzed by three different immunoassays, UniCel DxI 600, Cobas e411 and hGH-IRMA. Heterophilic antibodies and rheumatoid factor were not detected in serum sample. GH recovery after precipitation with 25% polyethylene glycol (PEG) was 12%. Size-exclusion chromatography confirmed the presence of macro-GH in serum sample. CONCLUSION If results of laboratory tests are not consistent with the clinical findings, the presence of an interference within immunochemical assays could be suspected. To identify interference caused by the macro-GH, the PEG method and size-exclusion chromatography should be used.
Collapse
Affiliation(s)
| | - Magdalena Ostrowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland.
| | - Tomasz Goszczyński
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Wrocław, Poland.
| | | | - Márta Korbonits
- Department of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK.
| | - Renata Kapuścińska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland.
| | - Wojciech Zgliczyński
- Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland.
| | - Piotr Glinicki
- Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland.
| |
Collapse
|
9
|
Melmed S, Kaiser UB, Lopes MB, Bertherat J, Syro LV, Raverot G, Reincke M, Johannsson G, Beckers A, Fleseriu M, Giustina A, Wass JAH, Ho KKY. Clinical Biology of the Pituitary Adenoma. Endocr Rev 2022; 43:1003-1037. [PMID: 35395078 PMCID: PMC9695123 DOI: 10.1210/endrev/bnac010] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 02/06/2023]
Abstract
All endocrine glands are susceptible to neoplastic growth, yet the health consequences of these neoplasms differ between endocrine tissues. Pituitary neoplasms are highly prevalent and overwhelmingly benign, exhibiting a spectrum of diverse behaviors and impact on health. To understand the clinical biology of these common yet often innocuous neoplasms, we review pituitary physiology and adenoma epidemiology, pathophysiology, behavior, and clinical consequences. The anterior pituitary develops in response to a range of complex brain signals integrating with intrinsic ectodermal cell transcriptional events that together determine gland growth, cell type differentiation, and hormonal production, in turn maintaining optimal endocrine health. Pituitary adenomas occur in 10% of the population; however, the overwhelming majority remain harmless during life. Triggered by somatic or germline mutations, disease-causing adenomas manifest pathogenic mechanisms that disrupt intrapituitary signaling to promote benign cell proliferation associated with chromosomal instability. Cellular senescence acts as a mechanistic buffer protecting against malignant transformation, an extremely rare event. It is estimated that fewer than one-thousandth of all pituitary adenomas cause clinically significant disease. Adenomas variably and adversely affect morbidity and mortality depending on cell type, hormone secretory activity, and growth behavior. For most clinically apparent adenomas, multimodal therapy controlling hormone secretion and adenoma growth lead to improved quality of life and normalized mortality. The clinical biology of pituitary adenomas, and particularly their benign nature, stands in marked contrast to other tumors of the endocrine system, such as thyroid and neuroendocrine tumors.
Collapse
Affiliation(s)
| | - Ursula B Kaiser
- Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - M Beatriz Lopes
- University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jerome Bertherat
- Université de Paris, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Luis V Syro
- Hospital Pablo Tobon Uribe and Clinica Medellin - Grupo Quirónsalud, Medellin, Colombia
| | - Gerald Raverot
- Hospices Civils de Lyon and Lyon 1 University, Lyon, France
| | - Martin Reincke
- University Hospital of LMU, Ludwig-Maximilians-Universität, Munich, Germany
| | - Gudmundur Johannsson
- Sahlgrenska University Hospital & Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Andrea Giustina
- San Raffaele Vita-Salute University and IRCCS Hospital, Milan, Italy
| | | | - Ken K Y Ho
- The Garvan Institute of Medical Research and St. Vincents Hospital, Sydney, Australia
| |
Collapse
|
10
|
Braunstein GD. Spurious Serum Hormone Immunoassay Results: Causes, Recognition, Management. TOUCHREVIEWS IN ENDOCRINOLOGY 2022; 18:141-147. [PMID: 36694886 PMCID: PMC9835809 DOI: 10.17925/ee.2022.18.2.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022]
Abstract
For over 50 years, immunoassays have been extensively used to quantitate hormones in blood, other fluids and tissues. Each assay has its own sensitivity, specificity and other analytical components. Despite the differences between commercial products, these assays provide important clinical information about hormone levels in patients. However, inaccurate results can occur because of technical issues, as well as patient-specific factors that can interfere with immunoassay hormone measurements. The latter include excessive normal blood or serum components, the presence of cross-reacting substances, extremely high levels of hormones leading to the high-dose hook effect, and interference from a variety of endogenous factors such as human antibodies that interact with the assay components or high levels of biotin in the serum from exogenous ingestion. This article briefly reviews the sources and recognition of endogenous interference, and describes methods to determine the correct serum hormone concentration.
Collapse
Affiliation(s)
- Glenn D Braunstein
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
11
|
Huynh HH, Forrest K, Becker JO, Emrick MA, Miller GD, Moncrieffe D, Cowan DA, Thomas A, Thevis M, MacCoss MJ, Hoffstrom B, Byers PH, Eichner D, Hoofnagle AN. A Targeted Liquid Chromatography-Tandem Mass Spectrometry Method for Simultaneous Quantification of Peptides from the Carboxyl-terminal Region of Type III Procollagen, Biomarkers of Collagen Turnover. Clin Chem 2022; 68:1281-1291. [PMID: 35906802 DOI: 10.1093/clinchem/hvac119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/10/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND The development of analytical approaches to help reduce the risk of growth hormone (GH) doping is important to fair competition and the health of athletes. However, the reliable detection of GH use remains challenging. The identification of novel biomarkers of GH administration could lead to a better understanding of the physiological response to GH, more sensitive detection of the illicit use of GH in sport, and better management of patients treated for GH disorders. METHODS We developed a targeted liquid chromatography-tandem mass spectrometry method to simultaneously quantify the carboxyl-terminal propeptide of type III procollagen (P-III-CP) and type III collagen degradation products in human serum. Following proteolysis, we instituted a simple acid precipitation step to reduce digested sample complexity before peptide immunoenrichment, which improved the recovery of one target peptide from serum. We evaluated the concentration of each biomarker at different age ranges and after GH administration in healthy participants. RESULTS The assay was linear over an estimated concentration range of 0.3 to1.0 nM and 0.1 to 0.4 nM for each surrogate peptide of P-III-CP and collagen fragments, respectively. Intra-day and inter-day coefficients of variation were ≤15%. Biomarker concentrations appeared to vary with age and to reflect age-specific collagen turnover. Moreover, their concentrations changed after GH administration. CONCLUSIONS Our method quantifies the proteins belonging to the family of P-III-CP and type III collagen degradation products in human serum, which could be used to detect GH administration in athletes and better understand diseases involving GH therapy or altered type III collagen turnover.
Collapse
Affiliation(s)
- Huu-Hien Huynh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Katrina Forrest
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Jessica O Becker
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Michelle A Emrick
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Geoffrey D Miller
- Sports Medicine Research and Testing Laboratory, Salt Lake City, UT, USA
| | - Danielle Moncrieffe
- Drug Control Centre, Department of Analytical, Environmental and Forensic Science, King's College London, London, UK.,Department of Analytical, Environmental & Forensic Sciences, King's College London, London, UK
| | - David A Cowan
- Department of Analytical, Environmental & Forensic Sciences, King's College London, London, UK
| | - Andreas Thomas
- Center for Preventive Doping Research (ZePraeDo), Institute of Biochemistry, German Sport University, Cologne, Germany
| | - Mario Thevis
- Center for Preventive Doping Research (ZePraeDo), Institute of Biochemistry, German Sport University, Cologne, Germany
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Ben Hoffstrom
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter H Byers
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - Daniel Eichner
- Sports Medicine Research and Testing Laboratory, Salt Lake City, UT, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Selective quantification of the 22-kDa isoform of human growth hormone 1 in serum and plasma by immunocapture and LC-MS/MS. Anal Bioanal Chem 2022; 414:6187-6200. [PMID: 35838770 PMCID: PMC9314277 DOI: 10.1007/s00216-022-04188-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/16/2022] [Accepted: 06/20/2022] [Indexed: 11/01/2022]
Abstract
The human growth hormone GH1 (22 kDa) is a commonly measured biomarker for diagnosis and during treatment of growth disorders, but its quantification by ligand binding assays may be compromised by the occurrence of a number of isoforms. These can interfere in the assays and lead to differences in results between laboratories and potentially even in the treatment of patients. We present an LC-MS/MS method that is able to distinguish the major growth hormone isoform (GH1, 22 kDa) from other isoforms and quantify it without any interference across the clinically relevant concentration range of 0.5 to 50 ng/mL. Analysis involves purification of a 100-µL serum sample by immunocapture using an anti-GH-directed antibody, tryptic digestion, and LC-MS/MS quantification of an isoform-specific signature peptide for GH1 (22 kDa). A tryptic peptide occurring in all GH isoforms is monitored in the same 16-min analytical run as a read-out for total GH. Stable-isotope-labeled forms of these two peptides are included as internal standards. Full validation of the method according to recent guidelines, against a recombinant form of the analyte in rat plasma calibrators, demonstrated intra-assay and inter-assay imprecision below 6% across the calibration range for both signature peptides and recoveries between 94 and 102%. An excellent correlation was found between nominal and measured concentrations of the WHO reference standard for GH1 (22 kDa). Addition of up to 1000 ng/mL biotin or the presence of a 100-fold excess of GH binding protein did not affect the measurement. Equivalent method performance was found for analysis of GH in serum, EDTA, and heparin plasma. Analyte stability was demonstrated during all normal sample storage conditions. Comparison with the IDS-iSYS GH immunoassay showed a good correlation with the LC-MS/MS method for the isoform-specific signature peptide, but a significant positive bias was observed for the LC-MS/MS results of the peptide representing total GH. This seems to confirm the actual occurrence of other GH isoforms in serum. Finally, in serum from pregnant individuals, no quantifiable GH1 (22 kDa) was found, but relatively high concentrations of total GH.
Collapse
|
13
|
Paragliola RM, Carrozza C, Corsello SM, Salvatori R. The biochemical diagnosis of acromegaly: revising the role of measurement of IGF-I and GH after glucose load in 5 questions. Expert Rev Endocrinol Metab 2022; 17:205-224. [PMID: 35485763 DOI: 10.1080/17446651.2022.2069558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Acromegaly is a rare disorder characterized by the excessive secretion of growth hormone (GH), mostly caused by pituitary adenomas. While in full-blown cases the diagnosis is easy to establish, milder cases are more challenging. Additionally, establishing whether full cure after surgery is reached may be difficult. AREAS COVERED In this article, we will review the challenges posed by the variability in measurements of GH and its main effector insulin-like growth factor I (IGF-I) due to both biological changes, co-morbidities, and assays variability. EXPERT OPINION Interpretation of GH and IGF-I assays is important in establishing an early diagnosis of acromegaly, in avoiding misdiagnosis, and in establishing if cure is achieved by surgery. Physicians should be familiar with the variables that affect measurements of these 2 hormones, and with the performance of the assays available in their practice.
Collapse
Affiliation(s)
- Rosa Maria Paragliola
- Unit of Endocrinology, Department of Translational Medicine and Surgery - Universita' Cattolica del Sacro Cuore, Fondazione Policlinico "Gemelli", IRCCS, Rome, Italy
| | - Cinzia Carrozza
- Unit of Chemistry, Biochemistry and Clinical Molecular Biology - Università Cattolica Del Sacro Cuore, Fondazione Policlinico "Gemelli," IRCCS, Rome, Italy
| | - Salvatore M Corsello
- Unit of Endocrinology, Department of Translational Medicine and Surgery - Universita' Cattolica del Sacro Cuore, Fondazione Policlinico "Gemelli", IRCCS, Rome, Italy
- UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Roberto Salvatori
- Division of Endocrinology Diabetes and Metabolism and Pituitary Center, Johns Hopkins University, Baltimore MD, USA
| |
Collapse
|
14
|
Yau M, Rapaport R. Growth Hormone Stimulation Testing: To Test or Not to Test? That Is One of the Questions. Front Endocrinol (Lausanne) 2022; 13:902364. [PMID: 35757429 PMCID: PMC9218712 DOI: 10.3389/fendo.2022.902364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
The evaluation of children with short stature includes monitoring over a prolonged period to establish a growth pattern as well as the exclusion of chronic medical conditions that affect growth. After a period of monitoring, evaluation, and screening, growth hormone stimulation testing is considered when the diagnosis of growth hormone deficiency (GHD) is entertained. Though flawed, growth hormone stimulation tests remain part of the comprehensive evaluation of growth and are essential for the diagnosis of growth hormone (GH) deficiency. Variables including testing length, growth hormone assay and diagnostic cut off affect results. Beyond the intrinsic issues of testing, results of GH stimulation testing can be influenced by patient characteristics. Various factors including age, gender, puberty, nutritional status and body weight modulate the secretion of GH.
Collapse
|
15
|
Сахнова ЕЕ, Пржиялковская ЕГ, Белая ЖЕ, Мельниченко ГА. [Discordant parameters of insulin-like growth factor 1 and growth hormone in the diagnosis and monitoring of acromegaly]. PROBLEMY ENDOKRINOLOGII 2021; 68:40-48. [PMID: 35262296 PMCID: PMC9761869 DOI: 10.14341/probl12791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023]
Abstract
Acromegaly is a rare endocrine disorder associated with multiple complications and increased mortality. Timely diagnosis and adequate treatment can bring the life expectancy of patients with acromegaly closer to the general population level. The tests for the diagnosis of acromegaly are measurement of both serum GH, and GH after oral glucose administration; serum insulin-like growth factor-1 (IGF-1). However, in clinical practice, up to 39% of patients with discordant results are found. The patients with discordant GH and IGF-1levels, are the most difficult to manage. This review discusses the prevalence of discordant GH and IGF-1 outcomes in patients with acromegaly; factors causing this discrepancy; the impact of hormone levels on treatment outcomes. Although endocrinologists are used to dealing with this discrepancy in clinical practice for many years, discordant patients'outcome remains uncertain and undefined The optimal treatment should be individually tailored for each patient, taking into account all clinical parameters.
Collapse
Affiliation(s)
- Е. Е. Сахнова
- Национальный медицинский исследовательский центр эндокринологии
| | | | - Ж. Е. Белая
- Национальный медицинский исследовательский центр эндокринологии
| | | |
Collapse
|
16
|
Lotierzo M, Olaru-Soare F, Dupuy AM, Plawecki M, Paris F, Cristol JP. Comparative study of human growth hormone measurements: impact on clinical interpretation. Clin Chem Lab Med 2021; 60:191-197. [PMID: 34850616 DOI: 10.1515/cclm-2021-1109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/23/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Human growth hormone (hGH) provocation test is an essential tool to assess growth hormone deficiency (GHD) in children and young adults. It is important to have a robust method to determine the hGH peak of stimulation. This work aimed to compare three common automated immunoassays for hGH quantification and to ascertain whether there are still result-related differences which can impact clinical decision. METHODS We analyzed the GH provocation test for 39 young subjects from pediatric department of Montpellier hospital, admitted for suspicion of growth hormone deficiency. The full range of measurements as well as the peak level of serum GH were compared using three automated immunoassays on three different immunoanalyzers: IDS-hGH on iSYS, LIAISON-hGH on Liaison XL and Elecsys ROCHE-hGH, on COBAS 8000. RESULTS A good correlation was obtained between methods for all measurements (r 2>0.99) by using Passing-Bablok regression analysis. Bland-Altman analysis showed the best agreement between IDS-hGH and LIAISON-hGH systems (bias=-14.5%) compared to Elecsys ROCHE-hGH (bias=28.3%). When considering stratification of the study population and a unique cutoff, there were some discrepancies in interpretation of the results especially concerning the more recent Elecsys ROCHE-hGH assay. Nevertheless, when the adequate cutoff for each method was taken into account results were well correlated for all systems. CONCLUSIONS A cutoff for Elecsys Roche-hGH method was established to better explain the results. Clinician must be aware of the use of assay-specific cutoff to correctly integrate the results of GH tests in the GHD diagnosis.
Collapse
Affiliation(s)
- Manuela Lotierzo
- Département de Biochimie et Hormonologie, Centre de Ressources Biologiques, CHU de Montpellier, Montpellier, France.,Département de Biochimie et Hormonologie, PhyMedExp, Université de Montpellier, INSERM, CNRS, Centre de Ressources Biologiques, CHU de Montpellier, Montpellier, France
| | - Florin Olaru-Soare
- Département de Biochimie et Hormonologie, Centre de Ressources Biologiques, CHU de Montpellier, Montpellier, France
| | - Anne-Marie Dupuy
- Département de Biochimie et Hormonologie, Centre de Ressources Biologiques, CHU de Montpellier, Montpellier, France
| | - Maëlle Plawecki
- Département de Biochimie et Hormonologie, Centre de Ressources Biologiques, CHU de Montpellier, Montpellier, France.,Département de Biochimie et Hormonologie, PhyMedExp, Université de Montpellier, INSERM, CNRS, Centre de Ressources Biologiques, CHU de Montpellier, Montpellier, France
| | - Françoise Paris
- Département de Biochimie et Hormonologie, Centre de Ressources Biologiques, CHU de Montpellier, Montpellier, France.,Département de Pédiatrie, Unité d'Endocrinologie-Gynécologie Pédiatrique, Hôpital A.-de-Villeneuve, CHU Montpellier et Université Montpellier, Montpellier, France
| | - Jean-Paul Cristol
- Département de Biochimie et Hormonologie, Centre de Ressources Biologiques, CHU de Montpellier, Montpellier, France.,Département de Biochimie et Hormonologie, PhyMedExp, Université de Montpellier, INSERM, CNRS, Centre de Ressources Biologiques, CHU de Montpellier, Montpellier, France
| |
Collapse
|
17
|
Carosi G, Mangone A, Sala E, Del Sindaco G, Mungari R, Cremaschi A, Ferrante E, Arosio M, Mantovani G. Clinical and hormonal findings in patients presenting with high IGF-1 and growth hormone suppression after oral glucose load: a retrospective cohort study. Eur J Endocrinol 2021; 185:289-297. [PMID: 34081617 PMCID: PMC8284905 DOI: 10.1530/eje-21-0024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE High insulin-like growth factor 1 (IGF-1) and unsuppressed growth hormone (GH) levels after glucose load confirm the diagnosis of acromegaly. Management of patients with conflicting results could be challenging. Our aim was to evaluate the clinical and hormonal evolution over a long follow-up in patients with high IGF-1 but normal GH nadir (GHn < 0.4 μg/L according to the latest guidelines). DESIGN Retrospective cohort study. METHODS We enrolled 53 patients presenting high IGF-1 and GHn < 0.4 μg/L, assessed because of clinical suspicion of acromegaly or in other endocrinological contexts (e.g. pituitary incidentaloma). Clinical and hormonal data collected at the first and last visit were analyzed. RESULTS At the first evaluation, the mean age was 54.1 ± 15.4 years, 34/53 were females, median IGF-1 and GHn were +3.1 SDS and 0.06 μg/L, respectively. In the whole group, over a median time of 6 years, IGF-1 and GHn levels did not significantly change (IGF-1 mean of differences: -0.58, P = 0.15; GHn +0.03, P = 0.29). In patients with clinical features of acromegaly, the prevalence of acromegalic comorbidities was higher than in the others (median of 3 vs 1 comorbidities per patient, P = 0.005), especially malignancies (36% vs 6%, P = 0.03), and the clinical worsening overtime was more pronounced (4 vs 1 comorbidities at the last visit). CONCLUSIONS In patients presenting high IGF-1 but GHn < 0.4 μg/L, a hormonal progression is improbable, likely excluding classical acromegaly in its early stage. However, despite persistently low GH nadir values, patients with acromegalic features present more acromegalic comorbidities whose rate increases over time. Close clinical surveillance of this group is advised.
Collapse
Affiliation(s)
- Giulia Carosi
- Endocrinology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Mangone
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elisa Sala
- Endocrinology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Del Sindaco
- Endocrinology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Roberta Mungari
- Endocrinology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Arianna Cremaschi
- Endocrinology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Emanuele Ferrante
- Endocrinology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maura Arosio
- Endocrinology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Endocrinology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Correspondence should be addressed to G Mantovani;
| |
Collapse
|
18
|
Kamoun C, Hawkes CP, Grimberg A. Provocative growth hormone testing in children: how did we get here and where do we go now? J Pediatr Endocrinol Metab 2021; 34:679-696. [PMID: 33838090 PMCID: PMC8165022 DOI: 10.1515/jpem-2021-0045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Provocative growth hormone (GH) tests are widely used for diagnosing pediatric GH deficiency (GHD). A thorough understanding of the evidence behind commonly used interpretations and the limitations of these tests is important for improving clinical practice. CONTENT To place current practice into a historical context, the supporting evidence behind the use of provocative GH tests is presented. By reviewing GH measurement techniques and examining the early data supporting the most common tests and later studies that compared provocative agents to establish reference ranges, the low sensitivity and specificity of these tests become readily apparent. Studies that assess the effects of patient factors, such as obesity and sex steroids, on GH testing further bring the appropriateness of commonly used cutoffs for diagnosing GHD into question. SUMMARY AND OUTLOOK Despite the widely recognized poor performance of provocative GH tests in distinguishing GH sufficiency from deficiency, limited progress has been made in improving them. New diagnostic modalities are needed, but until they become available, clinicians can improve the clinical application of provocative GH tests by taking into account the multiple factors that influence their results.
Collapse
Affiliation(s)
- Camilia Kamoun
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Colin Patrick Hawkes
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adda Grimberg
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Schmitt J, Thornton P, Shah AN, Rahman AKMF, Kubota E, Rizzuto P, Gupta A, Orsdemir S, Kaplowitz PB. Brain MRIs may be of low value in most children diagnosed with isolated growth hormone deficiency. J Pediatr Endocrinol Metab 2021; 34:333-340. [PMID: 33618442 DOI: 10.1515/jpem-2020-0579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/10/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Brain MRIs are considered essential in the evaluation of children diagnosed with growth hormone deficiency (GHD), but there is uncertainty about the appropriate cut-off for diagnosis of GHD and little data about the yield of significant abnormal findings in patients with peak growth hormone (GH) of 7-10 ng/mL. We aimed to assess the frequency of pathogenic MRIs and associated risk factors in relation to peak GH concentrations. METHODS In this retrospective multicenter study, charts of patients diagnosed with GHD who subsequently had a brain MRI were reviewed. MRIs findings were categorized as normal, incidental, of uncertain significance, or pathogenic (pituitary hypoplasia, small stalk and/or ectopic posterior pituitary and tumors). Charges for brain MRIs and sedation were collected. RESULTS In 499 patients, 68.1% had normal MRIs, 18.2% had incidental findings, 6.6% had uncertain findings, and 7.0% had pathogenic MRIs. Those with peak GH<3 ng/mL had the highest frequency of pathogenic MRIs (23%). Only three of 194 patients (1.5%) with peak GH 7-10 ng/mL had pathogenic MRIs, none of which altered management. Two patients (0.4%) with central hypothyroidism and peak GH<4 ng/mL had craniopharyngioma. CONCLUSIONS Pathogenic MRIs were uncommon in patients diagnosed with GHD except in the group with peak GH<3 ng/mL. There was a high frequency of incidental findings which often resulted in referrals to neurosurgery and repeat MRIs. Given the high cost of brain MRIs, their routine use in patients diagnosed with isolated GHD, especially patients with peak GH of 7-10 ng/mL, should be reconsidered.
Collapse
Affiliation(s)
- Jessica Schmitt
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham,AL, USA
| | | | - Avni N Shah
- Division of Endocrinology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston,TX, USA
| | - A K M Falzur Rahman
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham,AL, USA
| | - Elizabeth Kubota
- Division of Endocrinology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston,TX, USA
| | - Patrick Rizzuto
- Department of Pediatrics, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond,VA, USA
| | - Anshu Gupta
- Department of Pediatrics, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond,VA, USA
| | - Sena Orsdemir
- Pediatric Endocrinology, Loma Linda University Health, Loma Linda,CA, USA
| | - Paul B Kaplowitz
- Division of Endocrinology, Children's National Hospital, Washington,DC, USA
| |
Collapse
|
20
|
Cozzi R, Ambrosio MR, Attanasio R, Bozzao A, De Marinis L, De Menis E, Guastamacchia E, Lania A, Lasio G, Logoluso F, Maffei P, Poggi M, Toscano V, Zini M, Chanson P, Katznelson L. Italian Association of Clinical Endocrinologists (AME) and Italian AACE Chapter Position Statement for Clinical Practice: Acromegaly - Part 1: Diagnostic and Clinical Issues. Endocr Metab Immune Disord Drug Targets 2020; 20:1133-1143. [PMID: 31985386 PMCID: PMC7579251 DOI: 10.2174/1871530320666200127103320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022]
Abstract
Acromegaly is a rare disease. Improvements in lifespan in these patients have recently been reported due to transsphenoidal surgery (TSS), advances in medical therapy, and strict criteria for defining disease remission. This document reports the opinions of a group of Italian experts who have gathered together their prolonged clinical experience in the diagnostic and therapeutic challenges of acromegaly patients. Both GH and IGF-I (only IGF-I in those treated with Pegvisomant) are needed in the diagnosis and follow-up. Comorbidities (cardio-cerebrovascular disease, sleep apnea, metabolic derangement, neoplasms, and bone/joint disease) should be specifically addressed. Any newly diagnosed patient should be referred to a multidisciplinary team experienced in the treatment of pituitary adenomas.
Collapse
Affiliation(s)
- Renato Cozzi
- Address correspondence to this author at the Endocrinologia, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162 Milano, Italy; Tel: +39.347.5225490; E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yuen KCJ, Biller BMK, Radovick S, Carmichael JD, Jasim S, Pantalone KM, Hoffman AR. AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF ENDOCRINOLOGY GUIDELINES FOR MANAGEMENT OF GROWTH HORMONE DEFICIENCY IN ADULTS AND PATIENTS TRANSITIONING FROM PEDIATRIC TO ADULT CARE. Endocr Pract 2019; 25:1191-1232. [PMID: 31760824 DOI: 10.4158/gl-2019-0405] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: The development of these guidelines is sponsored by the American Association of Clinical Endocrinologists (AACE) Board of Directors and American College of Endocrinology (ACE) Board of Trustees and adheres with published AACE protocols for the standardized production of clinical practice guidelines (CPG). Methods: Recommendations are based on diligent reviews of clinical evidence with transparent incorporation of subjective factors, according to established AACE/ACE guidelines for guidelines protocols. Results: The Executive Summary of this 2019 updated guideline contains 58 numbered recommendations: 12 are Grade A (21%), 19 are Grade B (33%), 21 are Grade C (36%), and 6 are Grade D (10%). These detailed, evidence-based recommendations allow for nuance-based clinical decision-making that addresses multiple aspects of real-world care of patients. The evidence base presented in the subsequent Appendix provides relevant supporting information for the Executive Summary recommendations. This update contains 357 citations of which 51 (14%) are evidence level (EL) 1 (strong), 168 (47%) are EL 2 (intermediate), 61 (17%) are EL 3 (weak), and 77 (22%) are EL 4 (no clinical evidence). Conclusion: This CPG is a practical tool that practicing endocrinologists and regulatory bodies can refer to regarding the identification, diagnosis, and treatment of adults and patients transitioning from pediatric to adult-care services with growth hormone deficiency (GHD). It provides guidelines on assessment, screening, diagnostic testing, and treatment recommendations for a range of individuals with various causes of adult GHD. The recommendations emphasize the importance of considering testing patients with a reasonable level of clinical suspicion of GHD using appropriate growth hormone (GH) cut-points for various GH-stimulation tests to accurately diagnose adult GHD, and to exercise caution interpreting serum GH and insulin-like growth factor-1 (IGF-1) levels, as various GH and IGF-1 assays are used to support treatment decisions. The intention to treat often requires sound clinical judgment and careful assessment of the benefits and risks specific to each individual patient. Unapproved uses of GH, long-term safety, and the current status of long-acting GH preparations are also discussed in this document. LAY ABSTRACT This updated guideline provides evidence-based recommendations regarding the identification, screening, assessment, diagnosis, and treatment for a range of individuals with various causes of adult growth-hormone deficiency (GHD) and patients with childhood-onset GHD transitioning to adult care. The update summarizes the most current knowledge about the accuracy of available GH-stimulation tests, safety of recombinant human GH (rhGH) replacement, unapproved uses of rhGH related to sports and aging, and new developments such as long-acting GH preparations that use a variety of technologies to prolong GH action. Recommendations offer a framework for physicians to manage patients with GHD effectively during transition to adult care and adulthood. Establishing a correct diagnosis is essential before consideration of replacement therapy with rhGH. Since the diagnosis of GHD in adults can be challenging, GH-stimulation tests are recommended based on individual patient circumstances and use of appropriate GH cut-points. Available GH-stimulation tests are discussed regarding variability, accuracy, reproducibility, safety, and contraindications, among other factors. The regimen for starting and maintaining rhGH treatment now uses individualized dose adjustments, which has improved effectiveness and reduced reported side effects, dependent on age, gender, body mass index, and various other individual characteristics. With careful dosing of rhGH replacement, many features of adult GHD are reversible and side effects of therapy can be minimized. Scientific studies have consistently shown rhGH therapy to be beneficial for adults with GHD, including improvements in body composition and quality of life, and have demonstrated the safety of short- and long-term rhGH replacement. Abbreviations: AACE = American Association of Clinical Endocrinologists; ACE = American College of Endocrinology; AHSG = alpha-2-HS-glycoprotein; AO-GHD = adult-onset growth hormone deficiency; ARG = arginine; BEL = best evidence level; BMD = bone mineral density; BMI = body mass index; CI = confidence interval; CO-GHD = childhood-onset growth hormone deficiency; CPG = clinical practice guideline; CRP = C-reactive protein; DM = diabetes mellitus; DXA = dual-energy X-ray absorptiometry; EL = evidence level; FDA = Food and Drug Administration; FD-GST = fixed-dose glucagon stimulation test; GeNeSIS = Genetics and Neuroendocrinology of Short Stature International Study; GH = growth hormone; GHD = growth hormone deficiency; GHRH = growth hormone-releasing hormone; GST = glucagon stimulation test; HDL = high-density lipoprotein; HypoCCS = Hypopituitary Control and Complications Study; IGF-1 = insulin-like growth factor-1; IGFBP = insulin-like growth factor-binding protein; IGHD = isolated growth hormone deficiency; ITT = insulin tolerance test; KIMS = Kabi International Metabolic Surveillance; LAGH = long-acting growth hormone; LDL = low-density lipoprotein; LIF = leukemia inhibitory factor; MPHD = multiple pituitary hormone deficiencies; MRI = magnetic resonance imaging; P-III-NP = procollagen type-III amino-terminal pro-peptide; PHD = pituitary hormone deficiencies; QoL = quality of life; rhGH = recombinant human growth hormone; ROC = receiver operating characteristic; RR = relative risk; SAH = subarachnoid hemorrhage; SDS = standard deviation score; SIR = standardized incidence ratio; SN = secondary neoplasms; T3 = triiodothyronine; TBI = traumatic brain injury; VDBP = vitamin D-binding protein; WADA = World Anti-Doping Agency; WB-GST = weight-based glucagon stimulation test.
Collapse
|
22
|
Schilbach K, Bidlingmaier M. Laboratory investigations in the diagnosis and follow-up of GH-related disorders. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2019; 63:618-629. [PMID: 31939487 PMCID: PMC10522234 DOI: 10.20945/2359-3997000000192] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/12/2019] [Indexed: 11/23/2022]
Abstract
In addition to auxiological, clinical and metabolic features measurements of growth hormone (GH) and insulin-like growth factor I (IGF-I) complement our tools in diagnosis and follow-up of GH-related disorders. While comparably robust during the pre-analytical phase, measurement and interpretation of concentrations of both hormones can be challenging due to analytical issues and biological confounders. Assay methods differ in terms of antibody specificity, interference from binding proteins, reference preparations and sensitivity. GH assays have different specificity towards different GH-isoforms (e.g. 20 kDa GH, placental GH) and interference from the GH antagonist Pegvisomant. The efficacy to prevent binding protein interference is most important in IGF-I assays. Methodological differences between assays require that reference intervals and diagnostic cut-offs are assay-specific. Among biological variables, pubertal development and age are most relevant for IGF-I, making detailed reference intervals mandatory for interpretation. GH has pulsatile secretion and short half-life. Its concentration is modified by acute factors such as stress, exercise and sleep, but also by intake of oral estrogens and anthropometric factors (e.g. BMI). Other GH dependent biomarkers such as free IGF-I, IGF binding protein 3 (IGFBP 3) and acid labile subunit (ALS) have been proposed. Their concentrations largely mirror the information obtained through measurement of IGF-I, but their measurement can be helpful in particular situations. In this review, we describe the evolution of analytical methods to measure biomarkers of GH action, the impact of the methodological changes on laboratory results and the need to include biological variables in their interpretation. Arch Endocrinol Metab. 2019;63(6):618-29.
Collapse
Affiliation(s)
- Katharina Schilbach
- Medizinische Klinik und Poliklinik IVKlinikum der Universität MünchenMunichGermanyMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Martin Bidlingmaier
- Medizinische Klinik und Poliklinik IVKlinikum der Universität MünchenMunichGermanyMedizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| |
Collapse
|
23
|
Hannon AM, O'Shea T, Thompson CA, Hannon MJ, Dineen R, Khattak A, Gibney J, O'Halloran DJ, Hunter S, Thompson CJ, Sherlock M. Pregnancy in acromegaly is safe and is associated with improvements in IGF-1 concentrations. Eur J Endocrinol 2019; 180:K21-K29. [PMID: 30620709 DOI: 10.1530/eje-18-0688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/08/2019] [Indexed: 01/15/2023]
Abstract
Pregnancy is rarely reported in acromegaly. Many patients are diagnosed in later life and younger patients may have subfertility due to hypopituitarism. We present a case series of 17 pregnancies in 12 women with acromegaly. Twelve women with acromegaly who completed pregnancy were identified from centres involved in the Irish Pituitary Study. Eleven women had pituitary macroadenomas and one woman had a microadenoma. Only 5/17 pregnancies had optimal biochemical control of acromegaly preconception, as defined by IGF-1 concentration in the age-related reference level and plasma GH concentration of <2 μg/L. In 6/17 pregnancies, dopamine agonist treatment was continued during pregnancy; all other acromegaly treatments were discontinued during pregnancy. Effect of pregnancy on acromegaly: No patient developed new visual field abnormalities, or symptoms suggestive of tumour expansion during pregnancy. In 9/12 patients, plasma IGF-1 concentrations that were elevated preconception normalised during pregnancy. There was a reduction in plasma IGF-1 concentrations, though not into the normal range, in a further two pregnancies. Effect of acromegaly on pregnancy: 15 healthy babies were born at term; one patient underwent emergency C-section at 32 weeks for pre-eclampsia, and one twin pregnancy had an elective C-section at 35 weeks' gestation. Blood pressure remained within normal limits in the remainder of the pregnancies. Gestational diabetes did not develop in any pregnancy. Our data suggests that pregnancy in women with acromegaly is generally safe, from a maternal and foetal perspective. Furthermore, biochemical control tends to improve despite the withdrawal of somatostatin analogue therapy during pregnancy.
Collapse
Affiliation(s)
- Anne Marie Hannon
- Department of Endocrinology, Beaumont Hospital, Dublin, Ireland
- Royal College of Surgeons in Ireland
| | - Triona O'Shea
- Department of Endocrinology, Beaumont Hospital, Dublin, Ireland
| | | | - Mark J Hannon
- Department of Endocrinology, Beaumont Hospital, Dublin, Ireland
| | - Rosemary Dineen
- Department of Endocrinology, Beaumont Hospital, Dublin, Ireland
- Royal College of Surgeons in Ireland
- Department of Endocrinology, Adelaide and Meath Hospital, Tallaght, Dublin, Ireland
| | - Aftab Khattak
- Department of Endocrinology and Diabetes, Cork University Hospital, Cork, Ireland
| | - James Gibney
- Department of Endocrinology, Adelaide and Meath Hospital, Tallaght, Dublin, Ireland
| | | | - Steven Hunter
- Department of Endocrinology and Diabetes, Royal Victoria Hospital, Belfast, Ireland
| | - Christopher J Thompson
- Department of Endocrinology, Beaumont Hospital, Dublin, Ireland
- Royal College of Surgeons in Ireland
| | - Mark Sherlock
- Department of Endocrinology, Beaumont Hospital, Dublin, Ireland
- Royal College of Surgeons in Ireland
| |
Collapse
|