1
|
Okamoto Y, Kitakaze K, Takenouchi Y, Matsui R, Koga D, Miyashima R, Ishimaru H, Tsuboi K. GPR176 promotes fibroblast-to-myofibroblast transition in organ fibrosis progression. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119798. [PMID: 39047914 DOI: 10.1016/j.bbamcr.2024.119798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/20/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Fibrosis is characterized by excessive deposition of extracellular matrix proteins, particularly collagen, caused by myofibroblasts in response to chronic inflammation. Although G protein-coupled receptors (GPCRs) are among the targets of current antifibrotic drugs, no drug has yet been approved to stop fibrosis progression. Herein, we aimed to identify GPCRs with profibrotic effects. In gene expression analysis of mouse lungs with induced fibrosis, eight GPCRs were identified, showing a >2-fold increase in mRNA expression after fibrosis induction. Among them, we focused on Gpr176 owing to its significant correlation with a myofibroblast marker α-smooth muscle actin (αSMA), the profibrotic factor transforming growth factor β1 (TGFβ1), and collagen in a human lung gene expression database. Similar to the lung fibrosis model, increased Gpr176 expression was also observed in other organs affected by fibrosis, including the kidney, liver, and heart, suggesting its role in fibrosis across various organs. Furthermore, fibroblasts abundantly expressed Gpr176 compared to alveolar epithelial cells, endothelial cells, and macrophages in the fibrotic lung. GPR176 expression was unaffected by TGFβ1 stimulation in rat renal fibroblast NRK-49 cells, whereas knockdown of Gpr176 by siRNA reduced TGFβ1-induced expression of αSMA, fibronectin, and collagen as well as Smad2 phosphorylation. This suggested that Gpr176 regulates fibroblast activation. Consequently, Gpr176 acts in a profibrotic manner, and inhibiting its activity could potentially prevent myofibroblast differentiation and improve fibrosis. Developing a GPR176 inverse agonist or allosteric modulator is a promising therapeutic approach for fibrosis.
Collapse
Affiliation(s)
- Yasuo Okamoto
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan.
| | - Keisuke Kitakaze
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Yasuhiro Takenouchi
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Rena Matsui
- Department of Medical Technology, Kawasaki University of Medical Welfare, Kurashiki, Okayama 701-0192, Japan
| | - Daisuke Koga
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Ryo Miyashima
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Hironobu Ishimaru
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Kazuhito Tsuboi
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| |
Collapse
|
2
|
Levy K, Barnea A, Tauber E, Ayali A. Crickets in the spotlight: exploring the impact of light on circadian behavior. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:267-279. [PMID: 38252321 PMCID: PMC10994875 DOI: 10.1007/s00359-023-01686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Crickets serve as a well-established model organism in biological research spanning various fields, such as behavior, physiology, neurobiology, and ecology. Cricket circadian behavior was first reported over a century ago and prompted a wealth of studies delving into their chronobiology. Circadian rhythms have been described in relation to fundamental cricket behaviors, encompassing stridulation and locomotion, but also in hormonal secretion and gene expression. Here we review how changes in illumination patterns and light intensity differentially impact the different cricket behaviors as well as circadian gene expression. We further describe the cricket's circadian pacemaker. Ample anatomical manipulations support the location of a major circadian pacemaker in the cricket optic lobes and another in the central brain, possibly interconnected via signaling of the neuropeptide PDF. The cricket circadian machinery comprises a molecular cascade based on two major transcriptional/translational negative feedback loops, deviating somewhat from the canonical model of Drosophila and emphasizing the significance of exploring alternative models. Finally, the nocturnal nature of crickets has provided a unique avenue for investigating the repercussions of artificial light at night on cricket behavior and ecology, underscoring the critical role played by natural light cycles in synchronizing cricket behaviors and populations, further supporting the use of the cricket model in the study of the effects of light on insects. Some gaps in our knowledge and challenges for future studies are discussed.
Collapse
Affiliation(s)
- Keren Levy
- School of Zoology, Tel Aviv University, 6997801, Tel-Aviv, Israel.
| | - Anat Barnea
- Department of Natural Sciences, The Open University of Israel, 4353701, Ra'anana, Israel
| | - Eran Tauber
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, 3103301, Haifa, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, 6997801, Tel-Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel-Aviv, Israel.
| |
Collapse
|
3
|
Wei Q, Feng ZL, Cai YD, He JC, Lai FX, Wan PJ, Wang WX, Yao Q, Chiu JC, Fu Q. Characterization of light-dependent rhythm of courtship vibrational signals in Nilaparvata lugens: essential involvement of cryptochrome genes. PEST MANAGEMENT SCIENCE 2024; 80:508-517. [PMID: 37735824 DOI: 10.1002/ps.7782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Vibrational signal plays a crucial role in courtship communication in many insects. However, it remains unclear whether insect vibrational signals exhibit daily rhythmicity in response to changes in environmental cues. RESULTS In this study, we observed daily rhythms of both female vibrational signals (FVS) and male vibrational signals (MVS) in the brown planthopper (BPH), Nilaparvata lugens (Stål), one of the most notorious rice pests across Asia. Notably, oscillations of FVS and MVS in paired BPHs were synchronized as part of male-female duetting interactions, displaying significant day-night rhythmicity. Furthermore, we observed light dependency of FVS emissions under different photoperiodic regimes (18 L:6 D and 6 L:18 D) and illumination intensity levels (>300 lx, 50 lx, and 25 lx). Subsequently, the potential role of circadian clock genes cryptochromes (Nlcry1 and Nlcry2) in regulating FVS daily oscillations was examined using gene knockdown via RNA interference. We observed sharp declines and disrupted rhythms in FVS frequencies when either of the Nlcrys was downregulated, with Nlcry2 knockdown showing a more prominent effect. Moreover, we recorded a novel FVS variant (with a dominant frequency of 361.76 ± 4.31 Hz) emitted by dsNlcry1-treated BPH females, which significantly diminished the impact of courtship stimuli on receptive males. CONCLUSION We observed light-dependent daily rhythms of substrate-borne vibrational signals (SBVS) in BPH and demonstrated essential yet distinct roles of the two Nlcrys. These findings enhanced our understanding of insect SBVS and illustrated the potential of novel precision physical control strategies for disrupting mating behaviors in this rice pest. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qi Wei
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Ze-Lin Feng
- School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yao D Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, California, USA
| | - Jia-Chun He
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Feng-Xiang Lai
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Pin-Jun Wan
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Wei-Xia Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Qing Yao
- School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou, China
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, California, USA
| | - Qiang Fu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
4
|
Wang Y, Beukeboom LW, Wertheim B, Hut RA. Transcriptomic Analysis of Light-Induced Genes in Nasonia vitripennis: Possible Implications for Circadian Light Entrainment Pathways. BIOLOGY 2023; 12:1215. [PMID: 37759614 PMCID: PMC10525998 DOI: 10.3390/biology12091215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023]
Abstract
Circadian entrainment to the environmental day-night cycle is essential for the optimal use of environmental resources. In insects, opsin-based photoreception in the compound eye and ocelli and CRYPTOCHROME1 (CRY1) in circadian clock neurons are thought to be involved in sensing photic information, but the genetic regulation of circadian light entrainment in species without light-sensitive CRY1 remains unclear. To elucidate a possible CRY1-independent light transduction cascade, we analyzed light-induced gene expression through RNA-sequencing in Nasonia vitripennis. Entrained wasps were subjected to a light pulse in the subjective night to reset the circadian clock, and light-induced changes in gene expression were characterized at four different time points in wasp heads. We used co-expression, functional annotation, and transcription factor binding motif analyses to gain insight into the molecular pathways in response to acute light stimulus and to form hypotheses about the circadian light-resetting pathway. Maximal gene induction was found after 2 h of light stimulation (1432 genes), and this included the opsin gene opblue and the core clock genes cry2 and npas2. Pathway and cluster analyses revealed light activation of glutamatergic and GABA-ergic neurotransmission, including CREB and AP-1 transcription pathway signaling. This suggests that circadian photic entrainment in Nasonia may require pathways that are similar to those in mammals. We propose a model for hymenopteran circadian light-resetting that involves opsin-based photoreception, glutamatergic neurotransmission, and gene induction of cry2 and npas2 to reset the circadian clock.
Collapse
Affiliation(s)
- Yifan Wang
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, The Netherlands; (L.W.B.); (R.A.H.)
| | | | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, The Netherlands; (L.W.B.); (R.A.H.)
| | | |
Collapse
|
5
|
Levy K, Barnea A, Ayali A. Exposure to a nocturnal light pulse simultaneously and differentially affects stridulation and locomotion behaviors in crickets. Front Physiol 2023; 14:1151570. [PMID: 37008009 PMCID: PMC10061070 DOI: 10.3389/fphys.2023.1151570] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
It is crucial for living organisms to be in synchrony with their environment and to anticipate circadian and annual changes. The circadian clock is responsible for entraining organisms' activity to the day-night rhythmicity. Artificial light at night (ALAN) was shown to obstruct the natural light cycle, leading to desynchronized behavioral patterns. Our knowledge of the mechanisms behind these adverse effects of ALAN, however, is far from complete. Here we monitored the stridulation and locomotion behavior of male field crickets (Gryllus bimaculatus), raised under light:dark conditions, before, during, and after exposure to a nocturnal 3-h pulse of different ALAN intensities. The experimental insects were then placed under a constant light regime (of different intensities); their behavior was continuously monitored; and the period of their daily activity rhythms was calculated. The light pulse treatment induced a simultaneous negative (suppressing stridulation) and positive (inducing locomotion) effect, manifested in significant changes in the average level of the specific activity on the night of the pulse compared to the preceding and the following nights. The transition to constant light conditions led to significant changes in the period of the circadian rhythms. Both effects were light-intensity-dependent, indicating the importance of dark nights for both individual and population synchronization.
Collapse
Affiliation(s)
- Keren Levy
- School of Zoology, Tel Aviv University, Tel-Aviv, Israel
| | - Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel, Ra’anana, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
6
|
Wang Y, Belušič G, Pen I, Beukeboom LW, Wertheim B, Stavenga DG, Hut RA. Circadian rhythm entrainment of the jewel wasp, Nasonia vitripennis, by antagonistic interactions of multiple spectral inputs. Proc Biol Sci 2023; 290:20222319. [PMID: 36750184 PMCID: PMC9904953 DOI: 10.1098/rspb.2022.2319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Circadian light entrainment in some insects is regulated by blue-light-sensitive cryptochrome (CRY) protein that is expressed in the clock neurons, but this is not the case in hymenopterans. The hymenopteran clock does contain CRY, but it appears to be light-insensitive. Therefore, we investigated the role of retinal photoreceptors in the photic entrainment of the jewel wasp Nasonia vitripennis. Application of monochromatic light stimuli at different light intensities caused phase shifts in the wasp's circadian activity from which an action spectrum with three distinct peaks was derived. Electrophysiological recordings from the compound eyes and ocelli revealed the presence of three photoreceptor classes, with peak sensitivities at 340 nm (ultraviolet), 450 nm (blue) and 530 nm (green). An additional photoreceptor class in the ocelli with sensitivity maximum at 560-580 nm (red) was found. Whereas a simple sum of photoreceptor spectral sensitivities could not explain the action spectrum of the circadian phase shifts, modelling of the action spectrum indicates antagonistic interactions between pairs of spectral photoreceptors, residing in the compound eyes and the ocelli. Our findings imply that the photic entrainment mechanism in N. vitripennis encompasses the neural pathways for measuring the absolute luminance as well as the circuits mediating colour opponency.
Collapse
Affiliation(s)
- Yifan Wang
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, the Netherlands
| | - Gregor Belušič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Ido Pen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, the Netherlands
| | - Leo W. Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, the Netherlands
| | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, the Netherlands
| | - Doekele G. Stavenga
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, the Netherlands
| | - Roelof A. Hut
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9712 CP Groningen, the Netherlands
| |
Collapse
|
7
|
Takeuchi K, Matsuka M, Shinohara T, Hamada M, Tomiyama Y, Tomioka K. Fbxl4 Regulates the Photic Entrainment of Circadian Locomotor Rhythms in the Cricket Gryllus bimaculatus. Zoolog Sci 2023; 40:53-63. [PMID: 36744710 DOI: 10.2108/zs220047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/12/2022] [Indexed: 01/18/2023]
Abstract
Photic entrainment is an essential property of the circadian clock that sets the appropriate timing of daily behavioral and physiological events. However, the molecular mechanisms underlying the entrainment remain largely unknown. In the cricket Gryllus bimaculatus, the immediate early gene c-fosB plays an important role in photic entrainment, followed by a mechanism involving cryptochromes (crys). However, the association between c-fosB expression and crys remains unclear. In the present study, using RNA-sequencing analysis, we found that five Fbxl family genes (Fbxl4, Fbxl5, Fbxl16, Fbxl-like1, and Fbxl-like2) encoding F-box and leucine-rich repeat proteins are likely involved in the mechanism following light-dependent c-fosB induction. RNA interference (RNAi) of c-fosA/B significantly downregulated Fbxls expression, whereas RNAi of the Fbxl genes exerted no effect on c-fosB expression. The Fbxl genes showed rhythmic expression under light-dark cycles (LDs) with higher expression levels in early day (Fbxl16), whole day (Fbxl-like1), or day-to-early night (Fbxl4, Fbxl5, and Fbxl-like2), whereas their expression was reduced in the dark. We then examined the effect of their RNAi on the photic entrainment of the locomotor rhythm and found that RNAi of Fbxl4 either disrupted or significantly delayed the re-entrainment of the locomotor rhythm to shifted LDs. These results suggest that light-induced c-fosB expression stimulates Fbxl4 expression to reset the circadian clock.
Collapse
Affiliation(s)
- Kazuki Takeuchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Mirai Matsuka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Tsugumichi Shinohara
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Mayuko Hamada
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Okayama 701-4303, Japan
| | - Yasuaki Tomiyama
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan,
| |
Collapse
|
8
|
Levy K, Fishman B, Barnea A, Ayali A, Tauber E. Transcriptional Response of Circadian Clock Genes to an ‘Artificial Light at Night’ Pulse in the Cricket Gryllus bimaculatus. Int J Mol Sci 2022; 23:ijms231911358. [PMID: 36232659 PMCID: PMC9570371 DOI: 10.3390/ijms231911358] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Light is the major signal entraining the circadian clock that regulates physiological and behavioral rhythms in most organisms, including insects. Artificial light at night (ALAN) disrupts the natural light–dark cycle and negatively impacts animals at various levels. We simulated ALAN using dim light stimuli and tested their impact on gene expression in the cricket Gryllus bimaculatus, a model of insect physiology and chronobiology. At night, adult light–dark-regime-raised crickets were exposed for 30 min to a light pulse of 2–40 lx. The relative expression of five circadian-clock-associated genes was compared using qPCR. A dim ALAN pulse elicited tissue-dependent differential expression in some of these genes. The strongest effect was observed in the brain and in the optic lobe, the cricket’s circadian pacemaker. The expression of opsin-Long Wave (opLW) was upregulated, as well as cryptochrome1-2 (cry) and period (per). Our findings demonstrate that even a dim ALAN exposure may affect insects at the molecular level, underscoring the impact of ALAN on the circadian clock system.
Collapse
Affiliation(s)
- Keren Levy
- School of Zoology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Bettina Fishman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel, Raanana 4353701, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, Tel-Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv 6997801, Israel
- Correspondence: (A.A.); (E.T.)
| | - Eran Tauber
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel
- Correspondence: (A.A.); (E.T.)
| |
Collapse
|
9
|
Moriyama Y, Takeuchi K, Shinohara T, Miyagawa K, Matsuka M, Yoshii T, Tomioka K. Timeless Plays an Important Role in Compound Eye-Dependent Photic Entrainment of the Circadian Rhythm in the Cricket Gryllus bimaculatus. Zoolog Sci 2022; 39. [PMID: 35960036 DOI: 10.2108/zs220011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/16/2022] [Indexed: 11/17/2022]
Abstract
The light cycle is the most powerful Zeitgeber entraining the circadian clock in most organisms. Insects use CRYPTOCHROMEs (CRYs) and/or the compound eye for the light perception necessary for photic entrainment. The molecular mechanism underlying CRY-dependent entrainment is well understood, while that of the compound eye-dependent entrainment remains to be elucidated. Using molecular and behavioral experiments, we investigated the role of timeless (tim) in the photic entrainment mechanism in the cricket Gryllus bimaculatus. RNA interference of tim (timRNAi) disrupted the entrainment or prolonged the transients for resynchronization to phase-delayed light-dark cycles. The treatment reduced the magnitude of phase delay caused by delayed light-off, but augmented advance shifts caused by light exposure at late night. TIM protein levels showed daily cycling with an increase during the night and reduction by light exposure at both early and late night. These results suggest that tim plays a critical role in the entrainment to delayed light cycles.
Collapse
Affiliation(s)
- Yoshiyuki Moriyama
- Department of Natural Sciences, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Kazuki Takeuchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Tsugumichi Shinohara
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Koichi Miyagawa
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Mirai Matsuka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan,
| |
Collapse
|
10
|
Moriyama Y, Takeuchi K, Tomioka K. Constant Light, Pdp1, and Tim Exert Influence on Free-Running Period of Locomotor Rhythms in the Cricket Gryllus bimaculatus. Zoolog Sci 2022; 39:459-467. [DOI: 10.2108/zs220014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Yoshiyuki Moriyama
- Department of Natural Sciences, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Kazuki Takeuchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
11
|
ATF4-mediated transcriptional regulation protects against β-cell loss during endoplasmic reticulum stress in a mouse model. Mol Metab 2021; 54:101338. [PMID: 34547510 PMCID: PMC8487982 DOI: 10.1016/j.molmet.2021.101338] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Activating transcription factor 4 (ATF4) is a transcriptional regulator of the unfolded protein response and integrated stress response (ISR) that promote the restoration of normal endoplasmic reticulum (ER) function. Previous reports demonstrated that dysregulation of the ISR led to development of severe diabetes. However, the contribution of ATF4 to pancreatic β-cells remains poorly understood. In this study, we aimed to analyze the effect of ISR enhancer Sephin1 and ATF4-deficient β-cells to clarify the role of ATF4 in β-cells under ER stress conditions. METHODS To examine the role of ATF4 in vivo, ISR enhancer Sephin1 (5 mg/kg body weight, p.o.) was administered daily for 21 days to Akita mice. We also established β-cell-specific Atf4 knockout (βAtf4-KO) mice that were further crossed with Akita mice. These mice were analyzed for characteristics of diabetes, β-cell function, and morphology of the islets. To identify the downstream factors of ATF4 in β-cells, the islets of βAtf4-KO mice were subjected to cDNA microarray analyses. To examine the transcriptional regulation by ATF4, we also performed in situ PCR analysis of pancreatic sections from mice and ChIP-qPCR analysis of CT215 β-cells. RESULTS Administration of the ISR enhancer Sephin1 improved glucose metabolism in Akita mice. Sephin1 also increased the insulin-immunopositive area and ATF4 expression in the pancreatic islets. Akita/βAtf4-KO mice exhibited dramatically exacerbated diabetes, shown by hyperglycemia at an early age, as well as a remarkably short lifespan owing to diabetic ketoacidosis. Moreover, the islets of Akita/βAtf4-KO mice presented increased numbers of cells stained for glucagon, somatostatin, and pancreatic polypeptide and increased expression of aldehyde dehydrogenase 1 family member 3, a marker of dedifferentiation. Using microarray analysis, we identified atonal BHLH transcription factor 8 (ATOH8) as a downstream factor of ATF4. Deletion of ATF4 in β-cells showed reduced Atoh8 expression and increased expression of undifferentiated markers, Nanog and Pou5f1. Atoh8 expression was also abolished in the islets of Akita/βAtf4-KO mice. CONCLUSIONS We conclude that transcriptional regulation by ATF4 maintains β-cell identity via ISR modulation. This mechanism provides a promising target for the treatment of diabetes.
Collapse
|
12
|
Colizzi FS, Beer K, Cuti P, Deppisch P, Martínez Torres D, Yoshii T, Helfrich-Förster C. Antibodies Against the Clock Proteins Period and Cryptochrome Reveal the Neuronal Organization of the Circadian Clock in the Pea Aphid. Front Physiol 2021; 12:705048. [PMID: 34366893 PMCID: PMC8336691 DOI: 10.3389/fphys.2021.705048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Circadian clocks prepare the organism to cyclic environmental changes in light, temperature, or food availability. Here, we characterized the master clock in the brain of a strongly photoperiodic insect, the aphid Acyrthosiphon pisum, immunohistochemically with antibodies against A. pisum Period (PER), Drosophila melanogaster Cryptochrome (CRY1), and crab Pigment-Dispersing Hormone (PDH). The latter antibody detects all so far known PDHs and PDFs (Pigment-Dispersing Factors), which play a dominant role in the circadian system of many arthropods. We found that, under long days, PER and CRY are expressed in a rhythmic manner in three regions of the brain: the dorsal and lateral protocerebrum and the lamina. No staining was detected with anti-PDH, suggesting that aphids lack PDF. All the CRY1-positive cells co-expressed PER and showed daily PER/CRY1 oscillations of high amplitude, while the PER oscillations of the CRY1-negative PER neurons were of considerable lower amplitude. The CRY1 oscillations were highly synchronous in all neurons, suggesting that aphid CRY1, similarly to Drosophila CRY1, is light sensitive and its oscillations are synchronized by light-dark cycles. Nevertheless, in contrast to Drosophila CRY1, aphid CRY1 was not degraded by light, but steadily increased during the day and decreased during the night. PER was always located in the nuclei of the clock neurons, while CRY was predominantly cytoplasmic and revealed the projections of the PER/CRY1-positive neurons. We traced the PER/CRY1-positive neurons through the aphid protocerebrum discovering striking similarities with the circadian clock of D. melanogaster: The CRY1 fibers innervate the dorsal and lateral protocerebrum and putatively connect the different PER-positive neurons with each other. They also run toward the pars intercerebralis, which controls hormone release via the neurohemal organ, the corpora cardiaca. In contrast to Drosophila, the CRY1-positive fibers additionally travel directly toward the corpora cardiaca and the close-by endocrine gland, corpora allata. This suggests a direct link between the circadian clock and the photoperiodic control of hormone release that can be studied in the future.
Collapse
Affiliation(s)
- Francesca Sara Colizzi
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Paolo Cuti
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain
| | - Peter Deppisch
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - David Martínez Torres
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Ohguro C, Moriyama Y, Tomioka K. The Compound Eye Possesses a Self-Sustaining Circadian Oscillator in the Cricket Gryllus bimaculatus. Zoolog Sci 2021; 38:82-89. [PMID: 33639722 DOI: 10.2108/zs200118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/28/2020] [Indexed: 11/17/2022]
Abstract
Many insects show daily and circadian changes in morphology and physiology in their compound eye. In this study, we investigated whether the compound eye had an intrinsic circadian rhythm in the cricket Gryllus bimaculatus. We found that clock genes period (per), timeless (tim), cryptochrome 2 (cry2), and cycle (cyc) were rhythmically expressed in the compound eye under 12-h light/12-h dark cycles (LD 12:12) and constant darkness (DD) at a constant temperature. After the optic nerves were severed (ONX), a weak but significant rhythmic expression persisted for per and tim under LD 12:12, while under DD, tim and cyc showed rhythmic expression. We also found that more than half of the ONX compound eyes exhibited weak but significant circadian electroretinographic rhythms. These results clearly demonstrate that the cricket compound eye possesses an intrinsic circadian oscillator which can drive the circadian light sensitivity rhythm in the eye, and that the circadian clock in the optic lobe exerts its influence on the oscillator in the eye.
Collapse
Affiliation(s)
- Chikako Ohguro
- Department of Biology, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Yoshiyuki Moriyama
- Department of Natural Sciences, Kawasaki Medical School, Kurashiki 701-0192, Japan
| | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan,
| |
Collapse
|
14
|
Beer K, Helfrich-Förster C. Model and Non-model Insects in Chronobiology. Front Behav Neurosci 2020; 14:601676. [PMID: 33328925 PMCID: PMC7732648 DOI: 10.3389/fnbeh.2020.601676] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022] Open
Abstract
The fruit fly Drosophila melanogaster is an established model organism in chronobiology, because genetic manipulation and breeding in the laboratory are easy. The circadian clock neuroanatomy in D. melanogaster is one of the best-known clock networks in insects and basic circadian behavior has been characterized in detail in this insect. Another model in chronobiology is the honey bee Apis mellifera, of which diurnal foraging behavior has been described already in the early twentieth century. A. mellifera hallmarks the research on the interplay between the clock and sociality and complex behaviors like sun compass navigation and time-place-learning. Nevertheless, there are aspects of clock structure and function, like for example the role of the clock in photoperiodism and diapause, which can be only insufficiently investigated in these two models. Unlike high-latitude flies such as Chymomyza costata or D. ezoana, cosmopolitan D. melanogaster flies do not display a photoperiodic diapause. Similarly, A. mellifera bees do not go into "real" diapause, but most solitary bee species exhibit an obligatory diapause. Furthermore, sociality evolved in different Hymenoptera independently, wherefore it might be misleading to study the social clock only in one social insect. Consequently, additional research on non-model insects is required to understand the circadian clock in Diptera and Hymenoptera. In this review, we introduce the two chronobiology model insects D. melanogaster and A. mellifera, compare them with other insects and show their advantages and limitations as general models for insect circadian clocks.
Collapse
Affiliation(s)
- Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocentre, Am Hubland, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
15
|
Werckenthin A, Huber J, Arnold T, Koziarek S, Plath MJA, Plath JA, Stursberg O, Herzel H, Stengl M. Neither per, nor tim1, nor cry2 alone are essential components of the molecular circadian clockwork in the Madeira cockroach. PLoS One 2020; 15:e0235930. [PMID: 32750054 PMCID: PMC7402517 DOI: 10.1371/journal.pone.0235930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/25/2020] [Indexed: 12/30/2022] Open
Abstract
Circadian clocks control rhythms in physiology and behavior entrained to 24 h light-dark cycles. Despite of conserved general schemes, molecular circadian clockworks differ between insect species. With RNA interference (RNAi) we examined an ancient circadian clockwork in a basic insect, the hemimetabolous Madeira cockroach Rhyparobia maderae. With injections of double-stranded RNA (dsRNA) of cockroach period (Rm´per), timeless 1 (Rm´tim1), or cryptochrome 2 (Rm´cry2) we searched for essential components of the clock´s core negative feedback loop. Single injections of dsRNA of each clock gene into adult cockroaches successfully and permanently knocked down respective mRNA levels within ~two weeks deleting daytime-dependent mRNA rhythms for Rm´per and Rm´cry2. Rm´perRNAi or Rm´cry2RNAi affected total mRNA levels of both genes, while Rm´tim1 transcription was independent of both, also keeping rhythmic expression. Unexpectedly, circadian locomotor activity of most cockroaches remained rhythmic for each clock gene knockdown employed. It expressed weakened rhythms and unchanged periods for Rm´perRNAi and shorter periods for Rm´tim1RNAi and Rm´cry2RNAi.As a hypothesis of the cockroach´s molecular clockwork, a basic network of switched differential equations was developed to model the oscillatory behavior of clock cells expressing respective clock genes. Data were consistent with two synchronized main groups of coupled oscillator cells, a leading (morning) oscillator, or a lagging (evening) oscillator that couple via mutual inhibition. The morning oscillators express shorter, the evening oscillators longer endogenous periods based on core feedback loops with either PER, TIM1, or CRY2/PER complexes as dominant negative feedback of the clockwork. We hypothesize that dominant morning oscillator cells with shorter periods express PER, but not CRY2, or TIM1 as suppressor of clock gene expression, while two groups of evening oscillator cells with longer periods either comprise TIM1 or CRY2/PER suppressing complexes. Modelling suggests that there is an additional negative feedback next to Rm´PER in cockroach morning oscillator cells.
Collapse
Affiliation(s)
- Achim Werckenthin
- Department of Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Jannik Huber
- Department of Control and System Theory, University of Kassel, Kassel, Germany
| | - Thordis Arnold
- Department of Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Susanne Koziarek
- Department of Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Marcus J. A. Plath
- Department of Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Jenny A. Plath
- Department of Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Olaf Stursberg
- Department of Control and System Theory, University of Kassel, Kassel, Germany
| | - Hanspeter Herzel
- Department of Theoretical Biology, Charité Berlin, Berlin, Germany
| | - Monika Stengl
- Department of Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| |
Collapse
|
16
|
Helfrich-Förster C. Light input pathways to the circadian clock of insects with an emphasis on the fruit fly Drosophila melanogaster. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:259-272. [PMID: 31691095 PMCID: PMC7069913 DOI: 10.1007/s00359-019-01379-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/19/2019] [Accepted: 10/26/2019] [Indexed: 12/26/2022]
Abstract
Light is the most important Zeitgeber for entraining animal activity rhythms to the 24-h day. In all animals, the eyes are the main visual organs that are not only responsible for motion and colour (image) vision, but also transfer light information to the circadian clock in the brain. The way in which light entrains the circadian clock appears, however, variable in different species. As do vertebrates, insects possess extraretinal photoreceptors in addition to their eyes (and ocelli) that are sometimes located close to (underneath) the eyes, but sometimes even in the central brain. These extraretinal photoreceptors contribute to entrainment of their circadian clocks to different degrees. The fruit fly Drosophila melanogaster is special, because it expresses the blue light-sensitive cryptochrome (CRY) directly in its circadian clock neurons, and CRY is usually regarded as the fly’s main circadian photoreceptor. Nevertheless, recent studies show that the retinal and extraretinal eyes transfer light information to almost every clock neuron and that the eyes are similarly important for entraining the fly’s activity rhythm as in other insects, or more generally spoken in other animals. Here, I compare the light input pathways between selected insect species with a focus on Drosophila’s special case.
Collapse
|