1
|
Darabuş DM, Dărăbuş RG, Munteanu M. The Diagnosis and Treatment of Branch Retinal Vein Occlusions: An Update. Biomedicines 2025; 13:105. [PMID: 39857689 PMCID: PMC11763247 DOI: 10.3390/biomedicines13010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Branch retinal vein occlusion (BRVO) is a common retinal vascular condition and a significant contributor to vision loss worldwide, particularly in middle-aged and elderly populations. This review synthesizes current knowledge on the epidemiology, pathogenesis, and clinical features of BRVO, alongside recent advancements in diagnostic and therapeutic strategies. BRVO is approximately four times more prevalent than central retinal vein occlusion (CRVO) and often leads to significant vision impairment. By focusing on BRVO, this review aims to address the specific challenges and advancements in its diagnosis and management. The pathophysiology of BRVO is complex, involving factors such as venous compression, inflammation, and increased levels of vascular endothelial growth factor (VEGF). Diagnostic approaches such as optical coherence tomography (OCT) and fluorescein angiography are highlighted for their roles in assessing disease severity and guiding treatment decisions. Therapeutic interventions, including laser photocoagulation, anti-VEGF therapy, and intravitreal corticosteroids, are critically evaluated, emphasizing emerging treatments such as gene therapy, peptide-based agents, and small-molecule inhibitors. Despite advancements in management strategies, the recurrence of macular edema and treatment resistance remain significant challenges. Continued research is essential to refine therapeutic protocols and improve long-term visual outcomes for patients with BRVO.
Collapse
Affiliation(s)
- Diana-Maria Darabuş
- Department of Ophthalmology, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (D.-M.D.); (M.M.)
| | | | - Mihnea Munteanu
- Department of Ophthalmology, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (D.-M.D.); (M.M.)
| |
Collapse
|
2
|
Stanga PE, Valentín-Bravo FJ, Reinstein UI, Saladino A, Arrigo A, Stanga SEF. The role of ultra-widefield imaging with navigated central and peripheral cross-sectional and three-dimensional swept source optical coherence tomography in ophthalmology: Clinical applications. Saudi J Ophthalmol 2024; 38:101-111. [PMID: 38988788 PMCID: PMC11232741 DOI: 10.4103/sjopt.sjopt_59_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 07/12/2024] Open
Abstract
PURPOSE To assess central and peripheral retinal and choroidal diseases using ultra-widefield (UWF) fundus imaging in combination with navigated central and peripheral cross-sectional and three-dimensional (3D) swept source optical coherence tomography (SS-OCT) scans. METHODS Retrospective study involving 332 consecutive patients, with a nearly equal distribution of males and females. The mean age of patients was 52 years (range 18-92 years). Average refractive error was -3.80 D (range +7.75 to -20.75 D). RESULTS The observations in this study demonstrate the efficacy of peripheral navigated SS-OCT in assessing various ocular conditions. The technology provides high-quality images of the peripheral vitreous, vitreoretinal interface, retina, and choroid, enabling visualization of vitreous floaters and opacities, retinal holes and tears, pigmented lesions, and peripheral retinal degenerations. 3D OCT scans enhance the visualization of these abnormalities and improve diagnostic and therapeutic decisions. CONCLUSION Navigated central and peripheral cross-sectional and 3D SS-OCT scans offer significant complementary benefits in the assessment and management of retinal diseases. Their addition to UWF imaging provides a comprehensive view of central and peripheral ocular structures, aiding in early detection, precise anatomical measurements, and objective monitoring of disease progression. In addition, this technology serves as a valuable tool for patient education, a teaching tool for trainees, and documentation for medico-legal purposes.
Collapse
Affiliation(s)
- Paulo E. Stanga
- The Retina Clinic London, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | | - Alessandro Arrigo
- The Retina Clinic London, London, United Kingdom
- Ophthalmology Unit, IRCCS Scientific Institute, San Raffaele Hospital, Milan, Italy
| | | |
Collapse
|
3
|
Valentín-Bravo FJ, Stanga PE, Reinstein UI, Stanga SEF, Martínez-Tapia SA, Pastor-Idoate S. Silicone oil emulsification: A literature review and role of widefield imaging and ultra-widefield imaging with navigated central and peripheral optical coherence tomography technology. Saudi J Ophthalmol 2024; 38:112-122. [PMID: 38988778 PMCID: PMC11232747 DOI: 10.4103/sjopt.sjopt_193_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 07/12/2024] Open
Abstract
Silicone oil (SO) emulsification is a significant concern in vitreoretinal surgery, leading to various complications. Despite the high prevalence of SO emulsification within the eye, there is currently no standardized method for its early detection. The recent introduction of widefield (WF) imaging and ultra-WF (UWF) imaging with navigated central and peripheral optical coherence tomography (OCT) techniques have shown promising results in providing high-resolution images of the peripheral vitreous, vitreoretinal interface, retina, and choroid. This enhanced visualization capability enables the early identification of emulsified SO droplets, facilitating a proactive therapeutic approach, and mitigating associated adverse events. This comprehensive literature review aims to provide an updated overview of the topic, focusing on the role of WFimaging and UWF imaging and navigated central and peripheral swept-source OCT (SS-OCT) in the early detection and management of SO emulsification. The review discusses the current understanding of SO emulsification, its associated complications, and the limitations of existing detection methods. In addition, it highlights the potential of WF and UWF imaging and peripheral OCT as advanced imaging modalities for improved visualization of SO emulsification. This review serves as a valuable resource for clinicians and researchers, providing insights into the latest advancements in the field of vitreoretinal surgery and the promising role of WF imaging and UWF imaging and navigated central and peripheral SS-OCT in the management of SO.
Collapse
Affiliation(s)
| | - Paulo E. Stanga
- The Retina Clinic London, London, UK
- Department of Ophthalmology, Institute of Ophthalmology, University College London, London, UK
| | | | | | | | - Salvador Pastor-Idoate
- Department of Ophthalmology, Clinical University Hospital, Valladolid, Spain
- Department of Ophthalmology, Ioba Eye Institute, University of Valladolid, Valladolid, Spain
- Networks of Cooperative Research Oriented to Health Results (RICORS), National Institute of Health Carlos III, ISCIII, Madrid, Spain
| |
Collapse
|
4
|
Soecknick F, Breher K, Nafar Z, Kubach S, Straub J, Wahl S, Ziemssen F. The clinical evaluation of a widefield lens to expand the field of view in optical coherence tomography (OCT-A). Sci Rep 2024; 14:6936. [PMID: 38521801 PMCID: PMC10960788 DOI: 10.1038/s41598-024-57405-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
This study aimed to evaluate the clinical benefits of incorporating a widefield lens (WFL) in optical coherence tomography angiography (OCT-A) in patients with retinal vascular diseases in comparison to standard single-shot OCT-A scans. Sixty patients with retinal vascular diseases including diabetic retinopathy (DR) and retinal vein occlusion (RVO) were recruited. OCT-A imaging (PlexElite 9000) with and without WFL was performed in randomized order. The assessment included patient comfort, time, field of view (FoV), image quality and pathology detection. Statistical analysis included paired t-tests, Mann-Whitney U-tests and Bonferroni correction for multiple tests, with inter-grader agreement using the kappa coefficient. Using a WFL did not lead to statistically significant differences in DR and RVO group test times. Patient comfort remained high, with similar responses for WFL and non-WFL measurements. The WFL notably expanded the scan field (1.6× FoV increase), enhancing peripheral retinal visibility. However, image quality varied due to pathology and eye dominance, affecting the detection of peripheral issues in RVO and DR cases. The use of a WFL widens the scan field, aiding vascular retinal disease imaging with minor effects on comfort, time, and image quality. Further enhancements are needed for broader view angles, enabling improved quantification of non-perfused areas and more reliable peripheral proliferation detection.
Collapse
Affiliation(s)
- Fritz Soecknick
- Department of Ophthalmology, University of Tübingen, Tübingen, Germany.
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | - Siegfried Wahl
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Carl Zeiss Vision International GmbH, Aalen, Germany
| | - Focke Ziemssen
- Department of Ophthalmology, University of Tübingen, Tübingen, Germany
- Department of Ophthalmology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
5
|
Tomkins-Netzer O, Niederer R, Greenwood J, Fabian ID, Serlin Y, Friedman A, Lightman S. Mechanisms of blood-retinal barrier disruption related to intraocular inflammation and malignancy. Prog Retin Eye Res 2024; 99:101245. [PMID: 38242492 DOI: 10.1016/j.preteyeres.2024.101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Blood-retinal barrier (BRB) disruption is a common accompaniment of intermediate, posterior and panuveitis causing leakage into the retina and macular oedema resulting in vision loss. It is much less common in anterior uveitis or in patients with intraocular lymphoma who may have marked signs of intraocular inflammation. New drugs used for chemotherapy (cytarabine, immune checkpoint inhibitors, BRAF inhibitors, EGFR inhibitors, bispecific anti-EGFR inhibitors, MET receptor inhibitors and Bruton tyrosine kinase inhibitors) can also cause different types of uveitis and BRB disruption. As malignant disease itself can cause uveitis, particularly from breast, lung and gastrointestinal tract cancers, it can be clinically difficult to sort out the cause of BRB disruption. Immunosuppression due to malignant disease and/or chemotherapy can lead to infection which can also cause BRB disruption and intraocular infection. In this paper we address the pathophysiology of BRB disruption related to intraocular inflammation and malignancy, methods for estimating the extent and effect of the disruption and examine why some types of intraocular inflammation and malignancy cause BRB disruption and others do not. Understanding this may help sort and manage these patients, as well as devise future therapeutic approaches.
Collapse
Affiliation(s)
- Oren Tomkins-Netzer
- Department of Ophthalmology, Lady Davis Carmel Medical Centre, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Rachael Niederer
- Department of Ophthalmology, Te Whatu Ora, Auckland, New Zealand; Department of Ophthalmology, University of Auckland, Auckland, New Zealand
| | - John Greenwood
- Institute of Ophthalmology, University College London, London, UK
| | - Ido Didi Fabian
- The Goldschleger Eye Institute, Sheba Medical Centre, Tel Hashomer, Tel Aviv University, Tel Aviv, Israel
| | - Yonatan Serlin
- Department of Medical Neuroscience and the Brain Repair Centre, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Alon Friedman
- Department of Medical Neuroscience and the Brain Repair Centre, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada; Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlotowski Centre for Neuroscience, Ben- Gurion University of the Negev, Beer-Sheva, Israel
| | - Sue Lightman
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
6
|
Tan TE, Ibrahim F, Chandrasekaran PR, Teo KYC. Clinical utility of ultra-widefield fluorescein angiography and optical coherence tomography angiography for retinal vein occlusions. Front Med (Lausanne) 2023; 10:1110166. [PMID: 37359003 PMCID: PMC10285461 DOI: 10.3389/fmed.2023.1110166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Retinal vein occlusions (RVOs) are the second most common retinal vascular disease after diabetic retinopathy, and are a significant cause of visual impairment, especially in the elderly population. RVOs result in visual loss due to macular ischemia, cystoid macular edema (CME), and complications related to neovascularization. Vascular assessment in RVOs traditionally relies on standard fluorescein angiography (FA) for assessment of macular and retinal ischemia, which aids in prognostication and guides intervention. Standard FA has significant limitations-it is time-consuming, requires invasive dye administration, allows for limited assessment of the peripheral retina, and is usually evaluated semi-qualitatively, by ophthalmologists with tertiary expertise. More recently, the introduction of ultra-widefield FA (UWF FA) and optical coherence tomography angiography (OCTA) into clinical practice has changed the tools available for vascular evaluation in RVOs. UWF FA allows for evaluation of peripheral retinal perfusion, and OCTA is non-invasive, rapidly-acquired, and provides more information on capillary perfusion. Both modalities can be used to provide more quantitative parameters related to retinal perfusion. In this article, we review the clinical utility and impact of UWF FA and OCTA in the evaluation and management of patients with RVOs.
Collapse
Affiliation(s)
- Tien-En Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Farah Ibrahim
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | | | - Kelvin Yi Chong Teo
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
7
|
Ong CJT, Wong MYZ, Cheong KX, Zhao J, Teo KYC, Tan TE. Optical Coherence Tomography Angiography in Retinal Vascular Disorders. Diagnostics (Basel) 2023; 13:diagnostics13091620. [PMID: 37175011 PMCID: PMC10178415 DOI: 10.3390/diagnostics13091620] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Traditionally, abnormalities of the retinal vasculature and perfusion in retinal vascular disorders, such as diabetic retinopathy and retinal vascular occlusions, have been visualized with dye-based fluorescein angiography (FA). Optical coherence tomography angiography (OCTA) is a newer, alternative modality for imaging the retinal vasculature, which has some advantages over FA, such as its dye-free, non-invasive nature, and depth resolution. The depth resolution of OCTA allows for characterization of the retinal microvasculature in distinct anatomic layers, and commercial OCTA platforms also provide automated quantitative vascular and perfusion metrics. Quantitative and qualitative OCTA analysis in various retinal vascular disorders has facilitated the detection of pre-clinical vascular changes, greater understanding of known clinical signs, and the development of imaging biomarkers to prognosticate and guide treatment. With further technological improvements, such as a greater field of view and better image quality processing algorithms, it is likely that OCTA will play an integral role in the study and management of retinal vascular disorders. Artificial intelligence methods-in particular, deep learning-show promise in refining the insights to be gained from the use of OCTA in retinal vascular disorders. This review aims to summarize the current literature on this imaging modality in relation to common retinal vascular disorders.
Collapse
Affiliation(s)
- Charles Jit Teng Ong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Mark Yu Zheng Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Kai Xiong Cheong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Jinzhi Zhao
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Kelvin Yi Chong Teo
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore 169857, Singapore
| | - Tien-En Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
8
|
Abbasnejad A, Tomkins-Netzer O, Winter A, Friedman A, Cruess A, Serlin Y, Levy J. A fluorescein angiography-based computer-aided algorithm for assessing the retinal vasculature in diabetic retinopathy. Eye (Lond) 2023; 37:1293-1301. [PMID: 35643792 PMCID: PMC10170131 DOI: 10.1038/s41433-022-02120-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/24/2022] [Accepted: 05/20/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE To present a fluorescein angiography (FA)‒based computer algorithm for quantifying retinal blood flow, perfusion, and permeability, in patients with diabetic retinopathy (DR). Secondary objectives were to quantitatively assess treatment efficacy following panretinal photocoagulation (PRP) and define thresholds for pathology based on a new retinovascular function (RVF) score for quantifying disease severity. METHODS FA images of 65 subjects (58 patients and 7 healthy volunteers) were included. Dye intensity kinetics were derived using pixel-wise linear regression as a measure of retinal blood flow, perfusion, and permeability. Maps corresponding to each measure were then generated for each subject and segmented further using an ETDRS grid. Non-parametric statistical analyses were performed between all ETDRS subfields. For 16 patients, the effect of PRP was measured using the same parameters, and an amalgam of RVF was used to create an RVF index. For ten post-treatment patients, the change in FA-derived data was compared to the macular thickness measured using optical coherence tomography. RESULTS Compared to healthy controls, patients had significantly lower retinal and regional perfusion and flow, as well as higher retinal permeability (p < 0.05). Moreover, retinal flow was inversely correlated with permeability (R = -0.41; p < 0.0001). PRP significantly reduced retinal permeability (p < 0.05). The earliest marker of DR was reduced retinal blood flow, followed by increased permeability. FA-based RVF index was a more sensitive indicator of treatment efficacy than macular thickness. CONCLUSIONS Our algorithm can be used to quantify retinovascular function, providing an earlier diagnosis and an objective characterisation of disease state, disease progression, and response to treatment.
Collapse
Affiliation(s)
- Amir Abbasnejad
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
- Emagix, Inc., Halifax, NS, Canada
| | - Oren Tomkins-Netzer
- Department of Ophthalmology, Faculty of Medicine, Carmel Medical Center, Technion, Haifa, Israel
| | - Aaron Winter
- Department of Ophthalmology, QEII Hospital, Dalhousie University, Halifax, NS, Canada
| | - Alon Friedman
- Emagix, Inc., Halifax, NS, Canada
- Departments of Medical Neuroscience and Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Alan Cruess
- Department of Ophthalmology, QEII Hospital, Dalhousie University, Halifax, NS, Canada
| | - Yonatan Serlin
- Neurology Residency Training Program and Department of Neurology and Neurosurgery, Jewish General Hospital (J.M.), McGill University, Montreal, QC, Canada
| | - Jaime Levy
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
9
|
Häner NU, Dysli C, Munk MR. Imaging in retinal vascular disease: A review. Clin Exp Ophthalmol 2023; 51:217-228. [PMID: 36597823 DOI: 10.1111/ceo.14203] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/06/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023]
Abstract
Retinal vascular diseases represent a broad field of ocular pathologies. Retinal imaging is an important tool for diagnosis, prognosis and follow up of retinal vascular diseases. It includes a wide variety of imaging techniques ranging from colour fundus photography and optical coherence tomography to dynamic diagnostic options such as fluorescein angiography, and optical coherence tomography angiography. The newest developments in respective imaging techniques include widefield imaging to assess the retinal periphery, which is of especial interest in retinal vascular diseases. Automatic image analysis and artificial intelligence may support the image analysis and may prove valuable for prognostic purposes. This review provides a broad overview of the imaging techniques that have been used in the past, today and maybe in the future to stage and monitor retinal vascular disease with focus on the main disease entities including diabetic retinopathy, retinal vein occlusion, and retinal artery occlusion.
Collapse
Affiliation(s)
- Nathanael U Häner
- Department of Ophthalmology, Inselspital University Hospital, Bern, Switzerland
| | - Chantal Dysli
- Department of Ophthalmology, Inselspital University Hospital, Bern, Switzerland
| | - Marion R Munk
- Department of Ophthalmology, Inselspital University Hospital, Bern, Switzerland
| |
Collapse
|
10
|
Turczyńska MJ, Krajewski P, Brydak-Godowska JE. Wide-Field Fluorescein Angiography in the Diagnosis and Management of Retinal Vein Occlusion: A Retrospective Single-Center Study. Med Sci Monit 2021; 27:e927782. [PMID: 33449920 PMCID: PMC7814513 DOI: 10.12659/msm.927782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background The aim of this retrospective study was to evaluate the role of wide-field fluorescein angiography (WF-FA) in the diagnosis and management of retinal vein occlusion (RVO) at a single center in Poland. Material/Methods This study included 106 patients (112 eyes) diagnosed with RVO (102 eyes) or impending RVO (10 eyes) (54% women and 46% men, aged 26 to 86 years). The medical records of the participants were reviewed in search of documentation on ocular and systemic diseases. Results of FA of central and peripheral retina and optical coherence tomography (OCT) scans, which had been used to establish treatment indications, were analyzed. WF-FA was performed with Spectralis HRA+OCT or Optos Tx200. Results Actual RVO was found in 102 eyes. Of those cases, 46.1% were CRVO (central retinal vein occlusion), 40.2% branch retinal vein occlusion, 11.8% small tributary vein occlusion, and 1.9% hemispheric retinal vein occlusion. Neovascularization on an optic disc, neovascularization elsewhere, and veno-venous collateral vessels were observed in 32.3%, 17.4%, and 41.2% of the eyes, respectively. Peripheral ischemic zones were present in 59.8% of the eyes, in 20.6% of which, ischemia was not observed in the posterior pole. Dye leaks limited to peripheral vessels, peripheral vascular amputations, and central macular edema in OCT were observed in 17.6%, 43.1%, and 63.7% of the eyes, respectively. Retinal laser photocoagulation was conducted on 73.5% of the eyes. Conclusions Decision-making about management of patients with RVO should be done after physical examination and analysis of central and peripheral retina FA. In 20.6% of patients, assessment of the peripheral retina resulted in a change in treatment. The first changes suggestive of progression of thrombotic disease to the ischemic form appeared on the periphery in images from WF-FA.
Collapse
Affiliation(s)
- Monika J Turczyńska
- Department of Ophthalmology, Infant Jesus Clinical Hospital, University Clinical Center, Medical University of Warsaw, Warsaw, Poland
| | - Przemysław Krajewski
- Department of Ophthalmology, Infant Jesus Clinical Hospital, University Clinical Center, Medical University of Warsaw, Warsaw, Poland
| | - Joanna E Brydak-Godowska
- Department of Ophthalmology, Infant Jesus Clinical Hospital, University Clinical Center, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Heier JS, Singh RP, Wykoff CC, Csaky KG, Lai TYY, Loewenstein A, Schlottmann PG, Paris LP, Westenskow PD, Quezada-Ruiz C. THE ANGIOPOIETIN/TIE PATHWAY IN RETINAL VASCULAR DISEASES: A Review. Retina 2021; 41:1-19. [PMID: 33136975 DOI: 10.1097/iae.0000000000003003] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To provide a concise overview for ophthalmologists and practicing retina specialists of available clinical evidence of manipulating the angiopoietin/tyrosine kinase with immunoglobulin-like and endothelial growth factor-like domains (Tie) pathway and its potential as a therapeutic target in retinal vascular diseases. METHODS A literature search for articles on the angiopoietin/Tie pathway and molecules targeting this pathway that have reached Phase 2 or 3 trials was undertaken on PubMed, Association for Research in Vision and Ophthalmology meeting abstracts (2014-2019), and ClinicalTrials.gov databases. Additional information on identified pipeline drugs was obtained from publicly available information on company websites. RESULTS The PubMed and Association for Research in Vision and Ophthalmology meeting abstract search yielded 462 results, of which 251 publications not relevant to the scope of the review were excluded. Of the 141 trials related to the angiopoietin/Tie pathway on ClinicalTrials.gov, seven trials focusing on diseases covered in this review were selected. Vision/anatomic outcomes from key clinical trials on molecules targeting the angiopoietin/Tie pathway in patients with retinal vascular diseases are discussed. CONCLUSION Initial clinical evidence suggests a potential benefit of targeting the angiopoietin/Tie pathway and vascular endothelial growth factor-A over anti-vascular endothelial growth factor-A monotherapy alone, in part due to of the synergistic nature of the pathways.
Collapse
Affiliation(s)
| | - Rishi P Singh
- Department of Ophthalmology, Center for Ophthalmic Bioinformatics, Cleveland Clinic, Cleveland, Ohio
| | - Charles C Wykoff
- Retina Consultants of Houston, Retina Consultants of America, Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas
| | - Karl G Csaky
- Retina Foundation of the Southwest, Dallas, Texas
| | - Timothy Y Y Lai
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Anat Loewenstein
- Department of Ophthalmology, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | - Carlos Quezada-Ruiz
- Genentech, Inc., South San Francisco, California; and
- Retina y Vitreo, Clínica de Ojos Garza Viejo, San Pedro Garza Garcia, Mexico
| |
Collapse
|