1
|
Shayan N, Ghiyasimoghaddam N, Mirkatuli HA, Baghbani M, Ranjbarzadhagh Z, Mohtasham N. The biomarkers for maintenance Cancer stem cell features can be applicable in precision medicine of head and neck squamous cell carcinoma. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101906. [PMID: 38688401 DOI: 10.1016/j.jormas.2024.101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/30/2024] [Accepted: 04/27/2024] [Indexed: 05/02/2024]
Abstract
Cancer stem cells (CSCs) play a crucial role in tumor relapse, proliferation, invasion, and drug resistance in head and neck squamous cell carcinoma (HNSCC). This narrative review aims to synthesize data from articles published between 2019 and 2023 on biomarkers for detecting CSCs in HNSCC and changes in molecular pathways, genetics, epigenetics, and non-coding RNAs (ncRNAs) in CSCs relevant to precision medicine approaches in HNSCC management. The search encompassed 41 in vitro studies and 22 clinical studies. CSCs exhibit diverse molecular profiles and unique biomarker expression patterns, offering significant potential for HNSCC diagnosis, treatment, and prognosis, thereby enhancing patient survival. Their remarkable self-renewal ability and adaptability are closely linked to tumorigenicity development and maintenance. Assessing biomarkers before and after therapy can aid in identifying various cell types associated with cancer progression and relapse. Screening for CSCs, senescent tumor cells, and cells correlated with the senescence process post-treatment has proven highly beneficial. However, the clinical application of precision medicine in HNSCC management is hindered by the lack of specific and definitive CSC biomarkers. Furthermore, our limited understanding of CSC plasticity, governed by genomic, transcriptomic, and epigenomic alterations during tumorigenesis, as well as the bidirectional interaction of CSCs with the tumor microenvironment, underscores the need for further research. Well-designed studies involving large patient cohorts are, therefore, essential to establish a standardized protocol and address these unresolved queries.
Collapse
Affiliation(s)
- Navidreza Shayan
- Department of Medical Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Negin Ghiyasimoghaddam
- Department of Emergency Medicine, Bohlool Hospital, Gonabad University of Medical Sciences, Gonabad, Iran
| | | | | | - Zahra Ranjbarzadhagh
- Department of Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nooshin Mohtasham
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Liu Y, Wei C, Wang S, Ding S, Li Y, Li Y, Zhang D, Zhu G, Meng Z. Role of prognostic gene DKK1 in oral squamous cell carcinoma. Oncol Lett 2024; 27:52. [PMID: 38268623 PMCID: PMC10806357 DOI: 10.3892/ol.2023.14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/25/2023] [Indexed: 01/26/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common squamous cell carcinomas of the head and neck. The morbidity and mortality rates of OSCC have increased in recent years. However, the pathogenesis of this disease remains unknown. The present study aimed to identify predictive biomarkers and therapeutic targets for OSCC. Bioinformatics screening of differentially expressed genes in OSCC was performed based on data from The Cancer Genome Atlas and Gene Expression Omnibus databases. Dickkopf Wnt signaling pathway inhibitor 1 (DKK1) was identified to be associated with survival, tumor immunity and DNA repair in OSCC. Furthermore, the effects of DKK1 were evaluated by the knockdown of DKK1 in two OSCC cell lines. The proliferation, clonogenicity, migration and invasion of the cells were assessed in vitro using Cell Counting Kit-8, colony formation, wound healing and Transwell assays, respectively, and were found to be inhibited by DKK1 knockdown. The present study suggests that DKK1 may be used in the prognosis of patients with OSCC and that targeting DKK1 is a potential strategy for OSCC therapy.
Collapse
Affiliation(s)
- Yujiao Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250000, P.R. China
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng University, Liaocheng, Shandong 252000, P.R. China
| | - Congcong Wei
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng University, Liaocheng, Shandong 252000, P.R. China
| | - Song Wang
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng University, Liaocheng, Shandong 252000, P.R. China
| | - Shuxin Ding
- School of Stomatology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Yanan Li
- Biomedical Laboratory, Medical School of Liaocheng University, Liaocheng, Shandong 252000, P.R. China
| | - Yongguo Li
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng University, Liaocheng, Shandong 252000, P.R. China
| | - Dongping Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250000, P.R. China
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng University, Liaocheng, Shandong 252000, P.R. China
| | - Guoxiong Zhu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250000, P.R. China
- Department of Stomatology, PLA 960th Hospital, Jinan, Shandong 250000, P.R. China
| | - Zhen Meng
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Liaocheng University, Liaocheng, Shandong 252000, P.R. China
- Biomedical Laboratory, Medical School of Liaocheng University, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
3
|
Inchanalkar M, Srivatsa S, Ambatipudi S, Bhosale PG, Patil A, Schäffer AA, Beerenwinkel N, Mahimkar MB. Genome-wide DNA methylation profiling of HPV-negative leukoplakia and gingivobuccal complex cancers. Clin Epigenetics 2023; 15:93. [PMID: 37245006 DOI: 10.1186/s13148-023-01510-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/21/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Gingivobuccal complex oral squamous cell carcinoma (GBC-OSCC) is an aggressive malignancy with high mortality often preceded by premalignant lesions, including leukoplakia. Previous studies have reported genomic drivers in OSCC, but much remains to be elucidated about DNA methylation patterns across different stages of oral carcinogenesis. RESULTS There is a serious lack of biomarkers and clinical application of biomarkers for early detection and prognosis of gingivobuccal complex cancers. Hence, in search of novel biomarkers, we measured genome-wide DNA methylation in 22 normal oral tissues, 22 leukoplakia, and 74 GBC-OSCC tissue samples. Both leukoplakia and GBC-OSCC had distinct methylation profiles as compared to normal oral tissue samples. Aberrant DNA methylation increases during the different stages of oral carcinogenesis, from premalignant lesions to carcinoma. We identified 846 and 5111 differentially methylated promoters in leukoplakia and GBC-OSCC, respectively, with a sizable fraction shared between the two sets. Further, we identified potential biomarkers from integrative analysis in gingivobuccal complex cancers and validated them in an independent cohort. Integration of genome, epigenome, and transcriptome data revealed candidate genes with gene expression synergistically regulated by copy number and DNA methylation changes. Regularised Cox regression identified 32 genes associated with patient survival. In an independent set of samples, we validated eight genes (FAT1, GLDC, HOXB13, CST7, CYB5A, MLLT11, GHR, LY75) from the integrative analysis and 30 genes from previously published reports. Bisulfite pyrosequencing validated GLDC (P = 0.036), HOXB13 (P < 0.0001) promoter hypermethylation, and FAT1 (P < 0.0001) hypomethylation in GBC-OSCC compared to normal controls. CONCLUSIONS Our findings identified methylation signatures associated with leukoplakia and gingivobuccal complex cancers. The integrative analysis in GBC-OSCC identified putative biomarkers that enhance existing knowledge of oral carcinogenesis and may potentially help in risk stratification and prognosis of GBC-OSCC.
Collapse
Affiliation(s)
- Mayuri Inchanalkar
- Mahimkar Lab, Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Sumana Srivatsa
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Srikant Ambatipudi
- Mahimkar Lab, Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Achutha Menon Centre for Health Science Studies, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India
| | - Priyanka G Bhosale
- Mahimkar Lab, Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Centre for Gene Therapy and Regenerative Medicine, Guy's Hospital, King's College London, Tower Wing, London, UK
| | - Asawari Patil
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Alejandro A Schäffer
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, and National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Manoj B Mahimkar
- Mahimkar Lab, Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India.
| |
Collapse
|
4
|
Li W, Zhan Y, Peng C, Wang Z, Xu T, Liu M. A model based on immune-related lncRNA pairs and its potential prognostic value in immunotherapy for melanoma. Funct Integr Genomics 2023; 23:91. [PMID: 36939945 DOI: 10.1007/s10142-023-01029-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/21/2023]
Abstract
A model based on long non-coding RNA (lncRNA) pairs independent of expression quantification was constructed to evaluate prognosis melanoma and response to immunotherapy in melanoma. RNA sequencing data and clinical information were retrieved and downloaded from The Cancer Genome Atlas and the Genotype-Tissue Expression databases. We identified differentially expressed immune-related lncRNAs (DEirlncRNAs), matched them, and used least absolute shrinkage and selection operator and Cox regression to construct predictive models. The optimal cutoff value of the model was determined using a receiver operating characteristic curve and used to categorize melanoma cases into high-risk and low-risk groups. The predictive efficacy of the model with respect to prognosis was compared with that of clinical data and ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data). Then, we analyzed the correlations of risk score with clinical characteristics, immune cell invasion, anti-tumor, and tumor-promoting activities. Differences in survival, degree of immune cell infiltration, and intensity of anti-tumor and tumor-promoting activities were also evaluated in the high- and low-risk groups. A model based on 21 DEirlncRNA pairs was established. Compared with ESTIMATE score and clinical data, this model could better predict outcomes of melanoma patients. Follow-up analysis of the model's effectiveness showed that patients in the high-risk group had poorer prognosis and were less likely to benefit from immunotherapy compared with those in the low-risk group. Moreover, there were differences in tumor-infiltrating immune cells between the high-risk and low-risk groups. By pairing the DEirlncRNA, we constructed a model to evaluate the prognosis of cutaneous melanoma independent of a specific level of lncRNA expression.
Collapse
Affiliation(s)
- Wenshuai Li
- Department of Clinical Laboratory, Key Laboratory of Laboratory Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Yingxuan Zhan
- Department of Clinical Laboratory, Key Laboratory of Laboratory Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Chong Peng
- Department of Clinical Laboratory, Key Laboratory of Laboratory Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Zhan Wang
- Department of Clinical Laboratory, Key Laboratory of Laboratory Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Tiantian Xu
- Department of Clinical Laboratory, Key Laboratory of Laboratory Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Mingjun Liu
- Department of Clinical Laboratory, Key Laboratory of Laboratory Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| |
Collapse
|
5
|
Peng Y, Yin D, Li X, Wang K, Li W, Huang Y, Liu X, Ren Z, Yang X, Zhang Z, Zhang S, Fan T. Integration of transcriptomics and metabolomics reveals a novel gene signature guided by FN1 associated with immune response in oral squamous cell carcinoma tumorigenesis. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04572-x. [PMID: 36656379 DOI: 10.1007/s00432-023-04572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023]
Abstract
PURPOSE Oral squamous cell carcinomas (OSCCs) are primary head and neck malignant tumours with a high incidence and mortality. However, the molecular mechanisms involved in OSCC tumorigenesis are not fully understood. METHODS OSCC and paired para-carcinoma samples were collected and used to perform multi-omics study. Transcriptomic analysis was used to reveal significant alterations in inflammatory and immune processes in OSCC. Ingenuity Pathway Analysis (IPA) combined with the LASSO Cox algorithm was used to identify and optimize a crucial gene signature. Metabolomics analysis was performed to identify the important metabolites which linked to the crucial gene signature. The public data TCGA-HNSCC cohort was used to perform the multiple bioinformatic analysis. RESULTS These findings identified a FN1-mediated crucial network that was composed of immune-relevant genes (FN1, ACP5, CCL5, COL1A1, THBS1, BCAT1, PLAU, IGF2BP3, TNF, CSF2, CXCL1 and CXCL5) associated with immune infiltration and influences the tumour microenvironment, which may contribute to OSCC tumorigenesis and progression. Moreover, we integrated the relevant genes with altered metabolites identified by metabolic profiling and identified 7 crucial metabolites (Glu-Glu-Lys, Ser-Ala, Ser-Ala, N-(octadecanoyl) sphing-4-enine-1-phosphocholine, N-methylnicotinamide, pyrrhoxanthinol and xanthine) as potential downstream targets of the FN1-associated gene signature in OSCC. Importantly, FN1 expression is positively correlated with immune infiltration levels in HNSCC, which was confirmed at the single-cell level. CONCLUSIONS Overall, these results revealed the differential genetic and metabolic patterns associated with OSCC tumorigenesis and identified an essential molecular network that plays an oncogenic role in OSCC by affecting amino acid and purine metabolism. These genes and metabolites might, therefore, serve as predictive biomarkers of survival outcomes and potential targets for therapeutic intervention in OSCC.
Collapse
Affiliation(s)
- Yongchun Peng
- Department of Oral and Maxillofacial Surgery, Zhang Zhiyuan Academician Workstation, Hainan Western Central Hospital, Shanghai Ninth People's Hospital, Danzhou, Hainan, China
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Danhui Yin
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoxuan Li
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Kai Wang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yuxuan Huang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinyu Liu
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhenhu Ren
- Department of Oral and Maxillofacial Surgery, Zhang Zhiyuan Academician Workstation, Hainan Western Central Hospital, Shanghai Ninth People's Hospital, Danzhou, Hainan, China
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Yang
- Department of Oral and Maxillofacial Surgery, Zhang Zhiyuan Academician Workstation, Hainan Western Central Hospital, Shanghai Ninth People's Hospital, Danzhou, Hainan, China
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial Surgery, Zhang Zhiyuan Academician Workstation, Hainan Western Central Hospital, Shanghai Ninth People's Hospital, Danzhou, Hainan, China.
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Sheng Zhang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Tengfei Fan
- Department of Oral and Maxillofacial Surgery, Zhang Zhiyuan Academician Workstation, Hainan Western Central Hospital, Shanghai Ninth People's Hospital, Danzhou, Hainan, China.
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Department of Oral and Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Callahan SC, Kochat V, Liu Z, Raman AT, Divenko M, Schulz J, Terranova CJ, Ghosh AK, Tang M, Johnson FM, Wang J, Skinner HD, Pickering CR, Myers JN, Rai K. High enhancer activity is an epigenetic feature of HPV negative atypical head and neck squamous cell carcinoma. Front Cell Dev Biol 2022; 10:936168. [PMID: 35927986 PMCID: PMC9343809 DOI: 10.3389/fcell.2022.936168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease with significant mortality and frequent recurrence. Prior efforts to transcriptionally classify HNSCC into groups of varying prognoses have identified four accepted molecular subtypes of the disease: Atypical (AT), Basal (BA), Classical (CL), and Mesenchymal (MS). Here, we investigate the active enhancer landscapes of these subtypes using representative HNSCC cell lines and identify samples belonging to the AT subtype as having increased enhancer activity compared to the other 3 HNSCC subtypes. Cell lines belonging to the AT subtype are more resistant to enhancer-blocking bromodomain inhibitors (BETi). Examination of nascent transcripts reveals that both AT TCGA tumors and cell lines express higher levels of enhancer RNA (eRNA) transcripts for enhancers controlling BETi resistance pathways, such as lipid metabolism and MAPK signaling. Additionally, investigation of higher-order chromatin structure suggests more enhancer-promoter (E-P) contacts in the AT subtype, including on genes identified in the eRNA analysis. Consistently, known BETi resistance pathways are upregulated upon exposure to these inhibitors. Together, our results identify that the AT subtype of HNSCC is associated with higher enhancer activity, resistance to enhancer blockade, and increased signaling through pathways that could serve as future targets for sensitizing HNSCC to BET inhibition.
Collapse
Affiliation(s)
- S. Carson Callahan
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Veena Kochat
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhiyi Liu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ayush T. Raman
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Graduate Program in Quantitative Sciences, Baylor College of Medicine, Houston, TX, United States
- Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Margarita Divenko
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jonathan Schulz
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Christopher J. Terranova
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Archit K. Ghosh
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ming Tang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Faye M. Johnson
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Wang
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Heath D Skinner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Curtis R. Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Jeffrey N. Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Kunal Rai
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
7
|
He L, Ren D, Lv G, Mao B, Wu L, Liu X, Gong L, Liu P. The characteristics and clinical relevance of tumor fusion burden in head and neck squamous cell carcinoma. Cancer Med 2022; 12:852-861. [PMID: 35621268 PMCID: PMC9844600 DOI: 10.1002/cam4.4890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 04/01/2022] [Accepted: 05/17/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Recent studies suggest that tumor fusion burden (TFB) is a hallmark of immune infiltration in prostate cancer, the correlation of TFB with immune microenvironment, and genomic patterns in head and neck squamous cell carcinomas (HNSC) remain largely unclear. METHODS Gene fusion, genomic, transcriptomic, and clinical data of HNSC patients from the cancer genome atlas (TCGA) database were collected to analyze the correlation of TFB with mutation patterns, tumor immune microenvironment, and survival time in HNSC patients. RESULTS Human papillomavirus (HPV) (-) patients with low TFB exhibited significantly enhanced CD8+ T cells infiltration and cytolysis activity and increased level of interferon-gamma (IL-γ), human leukocyte antigen (HLA) class I, and chemokines. Moreover, TFB was positively correlated with TP53 mutation, score of gene copy number, and loss of heterozygosity (LOH), as well as the biological progress of epithelial-mesenchymal transition (EMT), metastasis, and stem cell characteristics. Further analysis revealed that HPV (-) HNSC patients with low TFB have a better prognosis. CONCLUSIONS Our data revealed the correlation of TFB with tumor immune microenvironment and predictive features for immunotherapy, implying tumors with low TFB may be potential candidates for immunotherapeutic agents. Moreover, the TFB low group had prolonged overall survival (OS) in the HPV (-) HNSC cohort.
Collapse
Affiliation(s)
- Lirui He
- Department of Gastrointestinal SurgeryPeking University Shenzhen HospitalShenzhenChina
| | - Dandan Ren
- Genecast Biotechnology Co., LtdJiangsu ProvinceChina
| | - Guoqing Lv
- Department of Gastrointestinal SurgeryPeking University Shenzhen HospitalShenzhenChina
| | - Beibei Mao
- Genecast Biotechnology Co., LtdJiangsu ProvinceChina
| | - Lijia Wu
- Genecast Biotechnology Co., LtdJiangsu ProvinceChina
| | - Xiaoyu Liu
- Department of OncologyThe Second Xiangya Hospital of Central South UniversityChangshaHunan ProvinceChina
| | - Longlong Gong
- Genecast Biotechnology Co., LtdJiangsu ProvinceChina
| | - Ping Liu
- Department of OncologyThe Second Xiangya Hospital of Central South UniversityChangshaHunan ProvinceChina
| |
Collapse
|
8
|
Precision Medicine in Head and Neck Cancers: Genomic and Preclinical Approaches. J Pers Med 2022; 12:jpm12060854. [PMID: 35743639 PMCID: PMC9224778 DOI: 10.3390/jpm12060854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
Head and neck cancers (HNCs) represent the sixth most widespread malignancy worldwide. Surgery, radiotherapy, chemotherapeutic and immunotherapeutic drugs represent the main clinical approaches for HNC patients. Moreover, HNCs are characterised by an elevated mutational load; however, specific genetic mutations or biomarkers have not yet been found. In this scenario, personalised medicine is showing its efficacy. To study the reliability and the effects of personalised treatments, preclinical research can take advantage of next-generation sequencing and innovative technologies that have been developed to obtain genomic and multi-omic profiles to drive personalised treatments. The crosstalk between malignant and healthy components, as well as interactions with extracellular matrices, are important features which are responsible for treatment failure. Preclinical research has constantly implemented in vitro and in vivo models to mimic the natural tumour microenvironment. Among them, 3D systems have been developed to reproduce the tumour mass architecture, such as biomimetic scaffolds and organoids. In addition, in vivo models have been changed over the last decades to overcome problems such as animal management complexity and time-consuming experiments. In this review, we will explore the new approaches aimed to improve preclinical tools to study and apply precision medicine as a therapeutic option for patients affected by HNCs.
Collapse
|
9
|
Ghantous Y, Omar M, Broner EC, Agrawal N, Pearson AT, Rosenberg AJ, Mishra V, Singh A, Abu El-naaj I, Savage PA, Sidransky D, Marchionni L, Izumchenko E. A robust and interpretable gene signature for predicting the lymph node status of primary T1/T2 oral cavity squamous cell carcinoma. Int J Cancer 2022; 150:450-460. [PMID: 34569064 PMCID: PMC8760163 DOI: 10.1002/ijc.33828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/31/2021] [Accepted: 09/21/2021] [Indexed: 02/03/2023]
Abstract
Oral cavity squamous cell carcinoma (OSCC) affects more than 30 000 individuals in the United States annually, with smoking and alcohol consumption being the main risk factors. Management of early-stage tumors usually includes surgical resection followed by postoperative radiotherapy in certain cases. The cervical lymph nodes (LNs) are the most common site for local metastasis, and elective neck dissection is usually performed if the primary tumor thickness is greater than 3.5 mm. However, postoperative histological examination often reveals that many patients with early-stage disease are negative for neck nodal metastasis, posing a pressing need for improved risk stratification to either avoid overtreatment or prevent the disease progression. To this end, we aimed to identify a primary tumor gene signature that can accurately predict cervical LN metastasis in patients with early-stage OSCC. Using gene expression profiles from 189 samples, we trained K-top scoring pairs models and identified six gene pairs that can distinguish primary tumors with nodal metastasis from those without metastasis. The signature was further validated on an independent cohort of 35 patients using real-time polymerase chain reaction (PCR) in which it achieved an area under the receiver operating characteristic (ROC) curve and accuracy of 90% and 91%, respectively. These results indicate that such signature holds promise as a quick and cost effective method for detecting patients at high risk of developing cervical LN metastasis, and may be potentially used to guide the neck treatment regimen in early-stage OSCC.
Collapse
Affiliation(s)
- Yasmin Ghantous
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.4 Department of Medicine, University of Chicago, Chicago, IL, USA.,Department of Oral and Maxillofacial Surgery, Baruch Padeh Medical Center, Faculty of Medicine, Bar Ilan University, Israel
| | - Mohamed Omar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Esther Channah Broner
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.4 Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Nishant Agrawal
- Section of Otolaryngology-Head and Neck Surgery, University of Chicago, Chicago, IL, USA
| | - Alexander T. Pearson
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Ari J. Rosenberg
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Vasudha Mishra
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Alka Singh
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Imad Abu El-naaj
- Department of Oral and Maxillofacial Surgery, Baruch Padeh Medical Center, Faculty of Medicine, Bar Ilan University, Israel
| | - Peter A. Savage
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - David Sidransky
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.4 Department of Medicine, University of Chicago, Chicago, IL, USA.,Corresponding Authors: Evgeny Izumchenko, Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA. , Luigi Marchionni, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA. , and David Sidransky, Departments of Otolaryngology and Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.,Corresponding Authors: Evgeny Izumchenko, Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA. , Luigi Marchionni, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA. , and David Sidransky, Departments of Otolaryngology and Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA.,Corresponding Authors: Evgeny Izumchenko, Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, USA. , Luigi Marchionni, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA. , and David Sidransky, Departments of Otolaryngology and Oncology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
10
|
Desai SS, K RR, Jain A, Bawa PS, Dutta P, Atre G, Subhash A, Rao VUS, J S, Srinivasan S, Choudhary B. Multidimensional Mutational Profiling of the Indian HNSCC Sub-Population Provides IRAK1, a Novel Driver Gene and Potential Druggable Target. Front Oncol 2021; 11:723162. [PMID: 34796107 PMCID: PMC8593415 DOI: 10.3389/fonc.2021.723162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) include heterogeneous group of tumors, classified according to their anatomical site. It is the sixth most prevalent cancer globally. Among South Asian countries, India accounts for 40% of HNC malignancies with significant morbidity and mortality. In the present study, we have performed exome sequencing and analysis of 51 Head and Neck squamous cell carcinoma samples. Besides known mutations in the oncogenes and tumour suppressors, we have identified novel gene signatures differentiating buccal, alveolar, and tongue cancers. Around 50% of the patients showed mutation in tumour suppressor genes TP53 and TP63. Apart from the known mutations, we report novel mutations in the genes AKT1, SPECC1, and LRP1B, which are linked with tumour progression and patient survival. A highly curated process was developed to identify survival signatures. 36 survival-related genes were identified based on the correlation of functional impact of variants identified using exome-seq with gene expression from transcriptome data (GEPIA database) and survival. An independent LASSO regression analysis was also performed. Survival signatures common to both the methods led to identification of 4 dead and 3 alive gene signatures, the accuracy of which was confirmed by performing a ROC analysis (AUC=0.79 and 0.91, respectively). Also, machine learning-based driver gene prediction tool resulted in the identification of IRAK1 as the driver (p-value = 9.7 e-08) and also as an actionable mutation. Modelling of the IRAK1 mutation showed a decrease in its binding to known IRAK1 inhibitors.
Collapse
Affiliation(s)
- Sagar Sanjiv Desai
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India.,Graduate Student Registered Under Manipal Academy of Higher Education, Manipal, India
| | - Raksha Rao K
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Anika Jain
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Katpadi, Vellore, India
| | - Pushpinder Singh Bawa
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Priyatam Dutta
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Gaurav Atre
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Anand Subhash
- Healthcare Global Enterprises Ltd, Cancer Centre, Bangalore, India
| | - Vishal U S Rao
- Healthcare Global Enterprises Ltd, Cancer Centre, Bangalore, India
| | - Suvratha J
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Subhashini Srinivasan
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Bibha Choudhary
- Department of Biotechnology and Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| |
Collapse
|
11
|
Synchronous Neck Melanoma and Papillary Thyroid Cancer: A Case Report. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2021-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction: The synchronous malignant melanoma of the neck and papillary thyroid cancer is rare but severe condition. Here, we describe the case of a patient with papillary thyroid cancer and melanoma invasivum cutis.
Case report: A 49-year-old man had a change on the neck at the last 3-4 months that he accidentally noticed. He had hoarse voice, was afebrile, did not sweat more than usual and feel exhausted, without rash or itching. MR examination of the neck and upper mediastinum before the surgery indicated a hyperintense focal change in the left thyroid gland which dimensions was 19 x 15 mm and several hyperintense inhomogeneous lymph glands of the jugular chain, on the both sides, with different sizes. On the basis of the conducted analyzes, in addition to total thyroidectomy, two-sided functional dissection of the lymph nodes of the neck was performed. The pathohistological diagnosis of the left lobus was: Carcinoma papillary glandulae thyreoideae invasivum (G-I, nG-I, pT2, Lx, Vo). CT of head, neck and thorax were made, where it was noticed that the CT of the head and lungs were normal. PET/CT findings indicated that there was no rest or recurrence of the tumor.
Conclusion: The message from this case report is that when diagnosing and treating thyroid cancer, the observed changes in the neck lymph nodes also indicate cancers of non-thyroid pathology such as malignant melanoma.
Collapse
|
12
|
Wu J, Chen H, Li J, Li X, Cao J, Qi M. Long non-coding RNA LINC01296 acts as a migration and invasion promoter in head and neck squamous cell carcinoma and predicts poor prognosis. Bioengineered 2021; 12:5607-5619. [PMID: 34515611 PMCID: PMC8806914 DOI: 10.1080/21655979.2021.1967033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Long non-coding RNA (lncRNAs) can participate in gene expression regulation. LINC01296 is abnormally expressed in different tumors and promotes tumorigenesis and development. However, the role of LINC01296 in head and neck squamous cell carcinoma (HNSCC) remains not entirely clear. Thus, to explore LINC01296 expression, biological function and potential mechanism in HNSCC, we used GEPIA and GEO database. QRT-PCR was used to detect the knockout efficiency by LINC01296 inhibition with siRNA. Transwell assay was used to detect the migration and invasion capacity of tumor cells. Then enrichment and immunophenotype correlation analyses were carried out to explore the LINC01296 mechanism in HNSCC. To investigate why LINC01296 was up-regulated in HNSCC, DNA methylation analysis was performed using the DiseaseMeth database. LINC01296 expression was notably up-regulated in HNSCC, which was associated with promoter hypomethylation. Also, it was positively correlated with the HNSCC pathological stage and patients with higher LINC01296 expression levels had a poor prognosis. LINC01296 silencing inhibits HNSCC cell migration and invasion. LINC01296 also participate in the HNSCC progression mainly through protein phosphorylation and microtubule-based process regulation. Overall, LINC01296 was highly expressed in HNSCC, promoted tumor cells’ migration and invasion, and might be a potential diagnostic and prognostic marker in HNSCC patients.
Collapse
Affiliation(s)
- Jing Wu
- Department of Stomatology, The People's Hospital of Longhua District, Shenzhen, China
| | - Hua Chen
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jingjing Li
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyu Li
- Department of Stomatology, The People's Hospital of Longhua District, Shenzhen, China
| | - Jun Cao
- Department of Stomatology, The People's Hospital of Longhua District, Shenzhen, China
| | - Min Qi
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Bruixola G, Remacha E, Jiménez-Pastor A, Dualde D, Viala A, Montón JV, Ibarrola-Villava M, Alberich-Bayarri Á, Cervantes A. Radiomics and radiogenomics in head and neck squamous cell carcinoma: Potential contribution to patient management and challenges. Cancer Treat Rev 2021; 99:102263. [PMID: 34343892 DOI: 10.1016/j.ctrv.2021.102263] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/06/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
The application of imaging biomarkers in oncology is still in its infancy, but with the expansion of radiomics and radiogenomics a revolution is expected in this field. This may be of special interest in head and neck cancer, since it can promote precision medicine and personalization of treatment by overcoming several intrinsic obstacles in this pathology. Our goal is to provide the medical oncologist with the basis to approach these disciplines and appreciate their main uses in clinical research and clinical practice in the medium term. Aligned with this objective we analyzed the most relevant studies in the field, also highlighting novel opportunities and current challenges.
Collapse
Affiliation(s)
- Gema Bruixola
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Elena Remacha
- Quantitative Imaging Biomarkers in Medicine (QUIBIM SL), Valencia, Spain
| | - Ana Jiménez-Pastor
- Quantitative Imaging Biomarkers in Medicine (QUIBIM SL), Valencia, Spain
| | - Delfina Dualde
- Department of Radiology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Alba Viala
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Jose Vicente Montón
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Maider Ibarrola-Villava
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Andrés Cervantes
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
14
|
Longitudinal assessment of PD-L1 expression and gene expression profiles in patients with head and neck cancer reveals temporal heterogeneity. Oral Oncol 2021; 119:105368. [PMID: 34111704 DOI: 10.1016/j.oraloncology.2021.105368] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/29/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Programmed death-ligand 1 (PD-L1) is the most validated predictive biomarker used for the treatment of head and neck squamous cell carcinoma (HNSCC) with immune checkpoint inhibitors (ICI). Several gene expression-based signatures surrogate of the activation of IFN-gamma pathway and of the presence of tertiary lymphoid structures (TLS) have also been proposed as potential biomarkers. While they may have a potential therapeutic implication, the longitudinal changes of either PD-L1 or gene expression profiles between the initial and recurrent HNSCC lesions is unknown. METHODS PD-L1 immunohistochemistry (IHC) and targeted RNA-sequencing of 2,549 transcripts were analyzed on paired specimens from the initial diagnosis and recurrent HNSCC. PD-L1 status was defined using the combined positive score (CPS). PD-L1 mRNA levels were compared with protein expression levels by IHC. Enrichment scores of surrogate signatures for TLS and IFN-gamma (IFN-γ) pathway activation were computed using the single sample gene set enrichment analysis (ssGSEA). RESULTS PD-L1 status was 64% (21/33) concordant between the initial and recurrent lesions using a CPS 1 threshold and 67% (22/33) concordant using a CPS 20 threshold. CPS score was associated with PD-L1 gene expression levels. There was a 43% (15/35) and 66% (23/35) concordance for the IFN-γ and TLS signature scores, respectively. CONCLUSION Our study reveals temporal heterogeneity of PD-L1 status and TLS/IFN-γ gene expression surrogates in HNSCC that need to be considered when interpreting biomarker studies.
Collapse
|
15
|
Magnes T, Wagner S, Kiem D, Weiss L, Rinnerthaler G, Greil R, Melchardt T. Prognostic and Predictive Factors in Advanced Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:4981. [PMID: 34067112 PMCID: PMC8125786 DOI: 10.3390/ijms22094981] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease arising from the mucosa of the upper aerodigestive tract. Despite multimodality treatments approximately half of all patients with locally advanced disease relapse and the prognosis of patients with recurrent or metastatic HNSCC is dismal. The introduction of checkpoint inhibitors improved the treatment options for these patients and pembrolizumab alone or in combination with a platinum and fluorouracil is now the standard of care for first-line therapy. However, approximately only one third of unselected patients respond to this combination and the response rate to checkpoint inhibitors alone is even lower. This shows that there is an urgent need to improve prognostication and prediction of treatment benefits in patients with HNSCC. In this review, we summarize the most relevant risk factors in the field and discuss their roles and limitations. The human papilloma virus (HPV) status for patients with oropharyngeal cancer and the combined positive score are the only biomarkers consistently used in clinical routine. Other factors, such as the tumor mutational burden and the immune microenvironment have been highly studied and are promising but need validation in prospective trials.
Collapse
Affiliation(s)
- Teresa Magnes
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (T.M.); (S.W.); (D.K.); (L.W.); (G.R.); (R.G.)
| | - Sandro Wagner
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (T.M.); (S.W.); (D.K.); (L.W.); (G.R.); (R.G.)
| | - Dominik Kiem
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (T.M.); (S.W.); (D.K.); (L.W.); (G.R.); (R.G.)
| | - Lukas Weiss
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (T.M.); (S.W.); (D.K.); (L.W.); (G.R.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
| | - Gabriel Rinnerthaler
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (T.M.); (S.W.); (D.K.); (L.W.); (G.R.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
| | - Richard Greil
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (T.M.); (S.W.); (D.K.); (L.W.); (G.R.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
| | - Thomas Melchardt
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (T.M.); (S.W.); (D.K.); (L.W.); (G.R.); (R.G.)
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
| |
Collapse
|
16
|
Oliveira TB, Mesía R, Falco A, Hsieh JCH, Yokota T, Saada-Bouzid E, Schmitz S, Elicin O, Giacomelli L, Bossi P. Defining the needs of patients with recurrent and/or metastatic head and neck cancer: An expert opinion. Crit Rev Oncol Hematol 2020; 157:103200. [PMID: 33321152 DOI: 10.1016/j.critrevonc.2020.103200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
The clinical and biological heterogeneity of head and neck cancer (HNC) is paralleled by a plethora of different symptoms that affect the patient's quality of life. These symptoms include, for instance, pain, fatigue, nutritional issues, airways obstruction, voice alterations and psychological distress. In addition, patients with HNC are prone to a high risk of infection, and may also suffer from acute complications, such as hypercalcemia, spine compression by bone metastasis or bleeding. Prolonging survival is also an inherent expectation for all patients. Addressing the above needs is crucial in all patients with HNC, and especially in those with recurrent and/or metastatic (RM) disease. However, research on how to address patients' needs in RM-HNC remains scarce. This paper defines patients' needs for RM HNC and presents an Expert Opinion on how to address them, proposing also some lines of research.
Collapse
Affiliation(s)
| | - Ricard Mesía
- Medical Oncology Department, Catalan Institute of Oncology - Badalona, B-ARGO Group, IGTP, Barcelona, Spain
| | - Agustin Falco
- Medical Oncology Department, Instituto Alexander Fleming, Buenos Aires, Argentina
| | - Jason Chia-Hsun Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, 333, Taiwan
| | - Tomoya Yokota
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Esma Saada-Bouzid
- Medical Oncology Department, Centre Antoine Lacassagne, Nice, France
| | - Sandra Schmitz
- Departments of Medical Oncology and Head and Neck Surgery, Institut Roi Albert II, Institut de Recherche Clinique et Expérimentale (Pole MIRO), Cliniques Universitaires Saint-Luc, Catholic University of Louvain, Woluwe-Saint-Lambert, Belgium
| | - Olgun Elicin
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Luca Giacomelli
- Polistudium srl, Milan, Italy; Department of Surgical Sciences and Integrated Diangostics, University of Genoa, Genoa, Italy
| | - Paolo Bossi
- Medical Oncology, Department of Medical & Surgical Specialties, Radiological Sciences & Public Health, University of Brescia, ASST Spedali Civili, 25123, Brescia, Italy.
| |
Collapse
|
17
|
Cavalieri S, De Cecco L, Brakenhoff RH, Serafini MS, Canevari S, Rossi S, Lanfranco D, Hoebers FJP, Wesseling FWR, Keek S, Scheckenbach K, Mattavelli D, Hoffmann T, López Pérez L, Fico G, Bologna M, Nauta I, Leemans CR, Trama A, Klausch T, Berkhof JH, Tountopoulos V, Shefi R, Mainardi L, Mercalli F, Poli T, Licitra L. Development of a multiomics database for personalized prognostic forecasting in head and neck cancer: The Big Data to Decide EU Project. Head Neck 2020; 43:601-612. [PMID: 33107152 PMCID: PMC7820974 DOI: 10.1002/hed.26515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
Background Despite advances in treatments, 30% to 50% of stage III‐IV head and neck squamous cell carcinoma (HNSCC) patients relapse within 2 years after treatment. The Big Data to Decide (BD2Decide) project aimed to build a database for prognostic prediction modeling. Methods Stage III‐IV HNSCC patients with locoregionally advanced HNSCC treated with curative intent (1537) were included. Whole transcriptomics and radiomics analyses were performed using pretreatment tumor samples and computed tomography/magnetic resonance imaging scans, respectively. Results The entire cohort was composed of 71% male (1097)and 29% female (440): oral cavity (429, 28%), oropharynx (624, 41%), larynx (314, 20%), and hypopharynx (170, 11%); median follow‐up 50.5 months. Transcriptomics and imaging data were available for 1284 (83%) and 1239 (80%) cases, respectively; 1047 (68%) patients shared both. Conclusions This annotated database represents the HNSCC largest available repository and will enable to develop/validate a decision support system integrating multiscale data to explore through classical and machine learning models their prognostic role.
Collapse
Affiliation(s)
- Stefano Cavalieri
- Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Loris De Cecco
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Ruud H Brakenhoff
- Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Mara Serena Serafini
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Silvana Canevari
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano. Milan, Italy
| | - Silvia Rossi
- Unit of Maxillofacial Surgery, Department of Medicine and Surgery, University of Parma - University Hospital of Parma, Parma, Italy
| | - Davide Lanfranco
- Unit of Maxillofacial Surgery, Department of Medicine and Surgery, University of Parma - University Hospital of Parma, Parma, Italy
| | - Frank J P Hoebers
- Department of Radiation Oncology (MAASTRO), Research Institute GROW, Maastricht University, Maastricht, The Netherlands
| | - Frederik W R Wesseling
- Department of Radiation Oncology (MAASTRO), Research Institute GROW, Maastricht University, Maastricht, The Netherlands
| | - Simon Keek
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Kathrin Scheckenbach
- Department of Otolaryngology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Davide Mattavelli
- Department of Otorhinolaryngology Head and Neck Surgery, Spedali Civili di Brescia and University of Brescia, Brescia, Italy
| | - Thomas Hoffmann
- Department of Otorhinolaryngology Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Laura López Pérez
- Life Supporting Technologies, Photonics Technology and Bioengineering Department, School of Telecommunication Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Giuseppe Fico
- Life Supporting Technologies, Photonics Technology and Bioengineering Department, School of Telecommunication Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Marco Bologna
- Department of Electronics, Information and Bioengineering (DEIB) Politecnico di Milano, Politecnico di Milano, Milan, Italy
| | - Irene Nauta
- Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - C René Leemans
- Vrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Annalisa Trama
- Department of Preventive and Predictive Medicine, Evaluative Epidemiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Thomas Klausch
- Department of Epidemiology and Data Science, Public Health Research Institute Amsterdam - Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Johannes Hans Berkhof
- Department of Epidemiology and Data Science, Public Health Research Institute Amsterdam - Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Vasilis Tountopoulos
- Technical Implementation, Innovation Lab, Athens Technology Center, Athens, Greece
| | | | - Luca Mainardi
- Department of Electronics, Information and Bioengineering (DEIB) Politecnico di Milano, Politecnico di Milano, Milan, Italy
| | | | - Tito Poli
- Unit of Maxillofacial Surgery, Department of Medicine and Surgery, University of Parma - University Hospital of Parma, Parma, Italy
| | - Lisa Licitra
- Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | |
Collapse
|
18
|
Human Endogenous Retrovirus Expression Is Associated with Head and Neck Cancer and Differential Survival. Viruses 2020; 12:v12090956. [PMID: 32872377 PMCID: PMC7552064 DOI: 10.3390/v12090956] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Human endogenous retroviruses (HERVs) have been implicated in a variety of human diseases including cancers. However, technical challenges in analyzing HERV sequence data have limited locus-specific characterization of HERV expression. Here, we use the software Telescope (developed to identify expressed transposable elements from metatranscriptomic data) on 43 paired tumor and adjacent normal tissue samples from The Cancer Genome Atlas Program to produce the first locus-specific retrotranscriptome of head and neck cancer. Telescope identified over 3000 expressed HERVs in tumor and adjacent normal tissue, and 1078 HERVs were differentially expressed between the two tissue types. The majority of differentially expressed HERVs were expressed at a higher level in tumor tissue. Differentially expressed HERVs were enriched in members of the HERVH family. Hierarchical clustering based on HERV expression in tumor-adjacent normal tissue resulted in two distinct clusters with significantly different survival probability. Together, these results highlight the importance of future work on the role of HERVs across a range of cancers.
Collapse
|
19
|
Gene Expression Clustering and Selected Head and Neck Cancer Gene Signatures Highlight Risk Probability Differences in Oral Premalignant Lesions. Cells 2020; 9:cells9081828. [PMID: 32756466 PMCID: PMC7466020 DOI: 10.3390/cells9081828] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Oral premalignant lesions (OPLs) represent the most common oral precancerous conditions. One of the major challenges in this field is the identification of OPLs at higher risk for oral squamous cell cancer (OSCC) development, by discovering molecular pathways deregulated in the early steps of malignant transformation. Analysis of deregulated levels of single genes and pathways has been successfully applied to head and neck squamous cell cancers (HNSCC) and OSCC with prognostic/predictive implications. Exploiting the availability of gene expression profile and clinical follow-up information of a well-characterized cohort of OPL patients, we aim to dissect tissue OPL gene expression to identify molecular clusters/signatures associated with oral cancer free survival (OCFS). MATERIALS AND METHODS The gene expression data of 86 OPL patients were challenged with: an HNSCC specific 6 molecular subtypes model (Immune related: HPV related, Defense Response and Immunoreactive; Mesenchymal, Hypoxia and Classical); one OSCC-specific signature (13 genes); two metabolism-related signatures (3 genes and signatures raised from 6 metabolic pathways associated with prognosis in HNSCC and OSCC, respectively); a hypoxia gene signature. The molecular stratification and high versus low expression of the signatures were correlated with OCFS by Kaplan-Meier analyses. The association of gene expression profiles among the tested biological models and clinical covariates was tested through variance partition analysis. RESULTS Patients with Mesenchymal, Hypoxia and Classical clusters showed an higher risk of malignant transformation in comparison with immune-related ones (log-rank test, p = 0.0052) and they expressed four enriched hallmarks: "TGF beta signaling" "angiogenesis", "unfolded protein response", "apical junction". Overall, 54 cases entered in the immune related clusters, while the remaining 32 cases belonged to the other clusters. No other signatures showed association with OCFS. Our variance partition analysis proved that clinical and molecular features are able to explain only 21% of gene expression data variability, while the remaining 79% refers to residuals independent of known parameters. CONCLUSIONS Applying the existing signatures derived from HNSCC to OPL, we identified only a protective effect for immune-related signatures. Other gene expression profiles derived from overt cancers were not able to identify the risk of malignant transformation, possibly because they are linked to later stages of cancer progression. The availability of a new well-characterized set of OPL patients and further research is needed to improve the identification of adequate prognosticators in OPLs.
Collapse
|
20
|
Hellquist H, Ferlito A, Mäkitie AA, Thompson LDR, Bishop JA, Agaimy A, Hernandez-Prera JC, Gnepp DR, Willems SM, Slootweg PJ, Rinaldo A. Developing Classifications of Laryngeal Dysplasia: The Historical Basis. Adv Ther 2020; 37:2667-2677. [PMID: 32329013 PMCID: PMC7467449 DOI: 10.1007/s12325-020-01348-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Indexed: 12/12/2022]
Abstract
During the last 60 years numerous significant attempts have been made to achieve a widely acceptable terminology and histological grading for laryngeal squamous intraepithelial lesions. While dysplasia was included in the pathology of the uterine cervix already in 1953, the term dysplasia was accepted in laryngeal pathology first after the Toronto Centennial Conference on Laryngeal Cancer in 1974. In 1963 Kleinsasser proposed a three-tier classification, and in 1971 Kambic and Lenart proposed a four-tier classification. Since then, four editions of the World Health Organisation (WHO) classification have been proposed (1978, 1991, 2005 and 2017). Several terms such as squamous intraepithelial neoplasia (SIN) and laryngeal intraepithelial neoplasia (LIN) are now being abandoned and replaced by squamous intraepithelial lesions (SIL). The essential change between the 2005 and 2017 WHO classifications is the attempt to induce a simplification from a four- to a two-tier system. The current WHO classification (2017) thus recommends the use of a two-tier system with reasonably clear histopathological criteria for the two groups: low-grade and high-grade dysplasia. Problems with interobserver variability apart, subjectivities and uncertainties remain, but to a lesser degree. Ongoing and additional molecular studies may help to clarify underlying events that will increase our understanding and possibly can facilitate our attempts to obtain an even better classification. The classification needs to be easier for the general pathologist to perform and easier for the clinician to interpret. These two objectives are equally important to provide each patient the best personalised treatment available for squamous intraepithelial lesions.
Collapse
Affiliation(s)
- Henrik Hellquist
- Epigenetics and Human Disease Laboratory, Faro, Portugal.
- Department of Biomedical Sciences and Medicine, Faro, Portugal.
- Centre of Biomedical Research (CBMR) and Algarve Biomedical Center (ABC), Faro, Portugal.
| | - Alfio Ferlito
- International Head and Neck Scientific Group, Padua, Italy
| | - Antti A Mäkitie
- Department of Otorhinolaryngology Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Lester D R Thompson
- Department of Pathology, Southern California Permanente Medical Group, Woodland Hills Medical Center, Woodland Hills, CA, USA
| | - Justin A Bishop
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Abbas Agaimy
- Institute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Douglas R Gnepp
- Department of Pathology, Alpert Medical School at Brown University, Providence, RI, USA
| | - Stefan M Willems
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Pieter J Slootweg
- Department of Pathology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|