1
|
Brun H, Lippert M, Langø T, Sanchez-Margallo J, Sanchez-Margallo F, Elle OJ. Comparing assisting technologies for proficiency in cardiac morphology: 3D printing and mixed reality versus CT slice images for morphological understanding of congenital heart defects by medical students. ANATOMICAL SCIENCES EDUCATION 2025; 18:68-76. [PMID: 39517006 DOI: 10.1002/ase.2530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Learning cardiac morphology largely involves spatial abilities and studies indicate benefits from innovative 3D visualization technologies that speed up and increase the learning output. Studies comparing these teaching tools and their educational output are rare and few studies include complex congenital heart defects. This study compared the effects of 3D prints, mixed reality (MR) viewing of 3D meshes and standard cardiac CT slice images on medical students' understanding of complex congenital heart defect morphology, measuring both objective level of understanding and subjective educational experience. The objective of this study was to compare morphological understanding and user experiences of 3D printed models, MR 3D visualization and axial 2D CT slices, in medical students examining morphological details in complex congenital heart defects. Medical students in the median 4th year of study (range 2nd to 6th) examined three of five different complex congenital heart defects by three different modalities: 3D printed model, MR viewed 3D mesh, and cardiac CT slices, answering a questionnaire on morphology and user experience. Time to complete task, diagnostic accuracy, and user experience data were collected and compared on group level. Task times were similar for all modalities. The percentage of correct answers was higher with MR visualization, which was also the preferred modality overall. Medical students both prefer and better understand the morphology of complex congenital heart disease with 3D models viewed using MR, without spending more time than with 3D prints or 2D CT images.
Collapse
Affiliation(s)
- Henrik Brun
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
- Department for Pediatric Cardiology, Oslo University Hospital, Oslo, Norway
| | - Matthias Lippert
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
- Department of Internal Medicine, Cardiology, Akershus University Hospital, Lørenskog, Norway
| | | | - Juan Sanchez-Margallo
- Bioengineering and Health Technologies Unit, Jesus Uson Minimally Invasive Surgical Centre, Caceres, Spain
| | - Francisco Sanchez-Margallo
- Bioengineering and Health Technologies Unit, Jesus Uson Minimally Invasive Surgical Centre, Caceres, Spain
| | - Ole Jakob Elle
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Nedrelow DS, Townsend JM, Detamore MS. Osteochondral Regeneration With Anatomical Scaffold 3D-Printing-Design Considerations for Interface Integration. J Biomed Mater Res A 2025; 113:e37804. [PMID: 39387548 DOI: 10.1002/jbm.a.37804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
There is a clinical need for osteochondral scaffolds with complex geometries for restoring articulating joint surfaces. To address that need, 3D-printing has enabled scaffolds to be created with anatomically shaped geometries and interconnected internal architectures, going beyond simple plug-shaped scaffolds that are limited to small, cylindrical, focal defects. A key challenge for restoring articulating joint surfaces with 3D-printed constructs is the mechanical loading environment, particularly to withstand delamination or mechanical failure. Although the mechanical performance of interfacial scaffolds is essential, interface strength testing has rarely been emphasized in prior studies with stratified scaffolds. In the pioneering studies where interface strength was assessed, varying methods were employed, which has made direct comparisons difficult. Therefore, the current review focused on 3D-printed scaffolds for osteochondral applications with an emphasis on interface integration and biomechanical evaluation. This 3D-printing focus included both multiphasic cylindrical scaffolds and anatomically shaped scaffolds. Combinations of different 3D-printing methods (e.g., fused deposition modeling, stereolithography, bioprinting with pneumatic extrusion of cell-laden hydrogels) have been employed in a handful of studies to integrate osteoinductive and chondroinductive regions into a single scaffold. Most 3D-printed multiphasic structures utilized either an interdigitating or a mechanical interlocking design to strengthen the construct interface and to prevent delamination during function. The most effective approach to combine phases may be to infill a robust 3D-printed osteal polymer with an interlocking chondral phase hydrogel. Mechanical interlocking is therefore recommended for scaling up multiphasic scaffold applications to larger anatomically shaped joint surface regeneration. For the evaluation of layer integration, the interface shear test is recommended to avoid artifacts or variability that may be associated with alternative approaches that require adhesives or mechanical grips. The 3D-printing literature with interfacial scaffolds provides a compelling foundation for continued work toward successful regeneration of injured or diseased osteochondral tissues in load-bearing joints such as the knee, hip, or temporomandibular joint.
Collapse
Affiliation(s)
- David S Nedrelow
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
- College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jakob M Townsend
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| | - Michael S Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
3
|
Shiraishi I, Yamagishi M, Hoashi T, Kato Y, Iwai S, Ichikawa H, Nishii T, Yamagishi H, Yasukochi S, Kawada M, Suzuki T, Shinkawa T, Yoshimura N, Inuzuka R, Hirata Y, Hirose K, Ikai A, Sakamoto K, Kotani Y, Kasahara S, Hisada T, Kurosaki K. Evaluation of the Efficacy and Accuracy of Super-Flexible Three-Dimensional Heart Models of Congenital Heart Disease Made via Stereolithography Printing and Vacuum Casting: A Multicenter Clinical Trial. J Cardiovasc Dev Dis 2024; 11:387. [PMID: 39728278 DOI: 10.3390/jcdd11120387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Three-dimensional (3D) printing is an advanced technology for accurately understanding anatomy and supporting the successful surgical management of complex congenital heart disease (CHD). We aimed to evaluate whether our super-flexible 3D heart models could facilitate preoperative decision-making and surgical simulation for complex CHD. The super-flexible heart models were fabricated by stereolithography 3D printing of the internal and external contours of the heart from cardiac computed tomography (CT) data, followed by vacuum casting with a polyurethane material similar in elasticity to a child's heart. Nineteen pediatric patients with complex CHD were enrolled (median age, 10 months). The primary endpoint was defined as the percentage of patients rated as "essential" on the surgeons' postoperative 5-point Likert scale. The accuracy of the models was validated by a non-destructive method using industrial CT. The super-flexible heart models allowed detailed anatomical diagnosis and simulated surgery with incisions and sutures. Thirteen patients (68.4%) were classified as "essential" by the primary surgeons after surgery, with a 95% confidence interval of 43.4-87.4%, meeting the primary endpoint. The product error within 90% of the total external and internal surfaces was 0.54 ± 0.21 mm. The super-flexible 3D heart models are accurate, reliable, and useful tools to assist surgeons in decision-making and allow for preoperative simulation in CHD.
Collapse
Affiliation(s)
- Isao Shiraishi
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Suita 564-8565, Japan
| | - Masaaki Yamagishi
- Department of Pediatric Cardiovascular Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takaya Hoashi
- Department of Pediatric Cardiac Surgery, National Cerebral and Cardiovascular Center, Suita 564-8565, Japan
- Department of Pediatric Cardiac Surgery, Saitama Medical University International Medical Center, Hidaka 350-1298, Japan
| | - Yoshiaki Kato
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Suita 564-8565, Japan
| | - Shigemitsu Iwai
- Department of Pediatric Cardiac Surgery, National Cerebral and Cardiovascular Center, Suita 564-8565, Japan
| | - Hajime Ichikawa
- Department of Pediatric Cardiac Surgery, National Cerebral and Cardiovascular Center, Suita 564-8565, Japan
| | - Tatsuya Nishii
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita 564-8565, Japan
| | - Hiroyuki Yamagishi
- Department of Pediatrics, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | - Masaaki Kawada
- Division of Pediatric and Congenital Cardiovascular Surgery, Jichi Children's Medical Center Tochigi, Shimotsuke 329-0498, Japan
| | - Takaaki Suzuki
- Department of Pediatric Cardiac Surgery, Saitama Medical University International Medical Center, Hidaka 350-1298, Japan
| | - Takeshi Shinkawa
- Department of Cardiovascular Surgery, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Naoki Yoshimura
- Department of Thoracic and Cardiovascular Surgery, Graduate School of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Ryo Inuzuka
- Department of Pediatrics, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yasutaka Hirata
- Department of Cardiovascular Surgery, The University of Tokyo, Tokyo 113-8655, Japan
| | - Keiichi Hirose
- Department of Cardiovascular Surgery, Mt. Fuji Shizuoka Children's Hospital, Shizuoka 420-8660, Japan
| | - Akio Ikai
- Department of Cardiovascular Surgery, Mt. Fuji Shizuoka Children's Hospital, Shizuoka 420-8660, Japan
| | - Kisaburo Sakamoto
- Department of Cardiovascular Surgery, Mt. Fuji Shizuoka Children's Hospital, Shizuoka 420-8660, Japan
| | - Yasuhiro Kotani
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital, Okayama 700-8558, Japan
| | - Shingo Kasahara
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital, Okayama 700-8558, Japan
| | - Toshiaki Hisada
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 227-0871, Japan
| | - Kenichi Kurosaki
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Suita 564-8565, Japan
| |
Collapse
|
4
|
Maddali DD, Solvin H, Lippert M, Karabiyik Y, Dahle G, Hjelmervik JM, Kiss G, Elle OJ, Brun H. Monte Carlo-based rendering of 3D echocardiography for mixed reality-guided atrial septal puncture positioning. Comput Assist Surg (Abingdon) 2024; 29:2403444. [PMID: 39301766 DOI: 10.1080/24699322.2024.2403444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Catheter-based intervention procedures contain complex maneuvers, and they are often performed using fluoroscopic guidance assisted by 2D and 3D echocardiography viewed on a flat screen that inherently limits depth perception. Emerging mixed reality (MR) technologies, combined with advanced rendering techniques, offer potential enhancement in depth perception and navigational support. The study aims to evaluate a MR-based guidance system for the atrial septal puncture (ASP) procedure utilizing a phantom anatomical model. A novel MR-based guidance system using a modified Monte Carlo-based rendering approach for 3D echocardiographic visualization was introduced and evaluated against standard clinical 3D echocardiographic display on a flat screen. The objective was to guide the ASP procedure by facilitating catheter placement and puncture across four specific atrial septum quadrants. To assess the system's feasibility and performance, a user study involving four experienced interventional cardiologists was conducted using a phantom model. Results show that participants accurately punctured the designated quadrant in 14 out of 16 punctures using MR and 15 out of 16 punctures using the flat screen of the ultrasound machine. The geometric mean puncture time for MR was 31 s and 26 s for flat screen guidance. User experience ratings indicated MR-based guidance to be easier to navigate and locate tents of the atrial septum. The study demonstrates the feasibility of MR-guided atrial septal puncture. User experience data, particularly with respect to navigation, imply potential benefits for more complex procedures and educational purposes. The observed performance difference suggests an associated learning curve for optimal MR utilization.
Collapse
Affiliation(s)
| | - Håvard Solvin
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Matthias Lippert
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Gry Dahle
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | | | - Gabriel Kiss
- Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ole Jakob Elle
- Department of Informatics, University of Oslo, Oslo, Norway
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Henrik Brun
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
- Department of Pediatric Cardiology, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
5
|
Voges I, Raimondi F, McMahon CJ, Ait-Ali L, Babu-Narayan SV, Botnar RM, Burkhardt B, Gabbert DD, Grosse-Wortmann L, Hasan H, Hansmann G, Helbing WA, Krupickova S, Latus H, Martini N, Martins D, Muthurangu V, Ojala T, van Ooij P, Pushparajah K, Rodriguez-Palomares J, Sarikouch S, Grotenhuis HB, Greil FG, Bohbot Y, Cikes M, Dweck M, Donal E, Grapsa J, Keenan N, Petrescu AM, Szabo L, Ricci F, Uusitalo V. Clinical impact of novel cardiovascular magnetic resonance technology on patients with congenital heart disease: a scientific statement of the Association for European Pediatric and Congenital Cardiology and the European Association of Cardiovascular Imaging of the European Society of Cardiology. Eur Heart J Cardiovasc Imaging 2024; 25:e274-e294. [PMID: 38985851 DOI: 10.1093/ehjci/jeae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Cardiovascular magnetic resonance (CMR) imaging is recommended in patients with congenital heart disease (CHD) in clinical practice guidelines as the imaging standard for a large variety of diseases. As CMR is evolving, novel techniques are becoming available. Some of them are already used clinically, whereas others still need further evaluation. In this statement, the authors give an overview of relevant new CMR techniques for the assessment of CHD. Studies with reference values for these new techniques are listed in the Supplementary data online, supplement.
Collapse
Affiliation(s)
- Inga Voges
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Kiel, Germany
| | | | - Colin J McMahon
- Department of Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin 12, Ireland
| | - Lamia Ait-Ali
- Institute of Clinical Physiology CNR, Massa, Italy
- Heart Hospital, G. Monastery foundation, Massa, Italy
| | - Sonya V Babu-Narayan
- Royal Brompton Hospital, Part of Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
- Institute for Biological and Medical Engineering and School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Barbara Burkhardt
- Pediatric Heart Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Dominik D Gabbert
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Kiel, Germany
| | - Lars Grosse-Wortmann
- Division of Cardiology, Oregon Health and Science University Hospital, Portland, OR, USA
| | - Hosan Hasan
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
- European Pediatric Pulmonary Vascular Disease Network, Berlin, Germany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
- European Pediatric Pulmonary Vascular Disease Network, Berlin, Germany
| | - Willem A Helbing
- Department of Pediatrics, Division of Cardiology, and Department of Radiology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Sylvia Krupickova
- Royal Brompton Hospital, Part of Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, London, UK
- Department of Paediatric Cardiology, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Heiner Latus
- Clinic for Pediatric Cardiology and Congenital Heart Disease Klinikum, Stuttgart Germany
| | - Nicola Martini
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
- U.O.C. Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Duarte Martins
- Pediatric Cardiology Department, Hospital de Santa Cruz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Vivek Muthurangu
- Centre for Translational Cardiovascular Imaging, Institute of Cardiovascular Science, University College London, London, UK
| | - Tiina Ojala
- New Children's Hospital Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Pim van Ooij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kuberan Pushparajah
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Jose Rodriguez-Palomares
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, Amsterdam, The Netherlands
- Servicio de Cardiología, Hospital Universitario Vall Hebrón, Institut de Recerca Vall Hebrón (VHIR), Departamento de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Samir Sarikouch
- Department for Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Heynric B Grotenhuis
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
| | - F Gerald Greil
- Department of Pediatrics, UT Southwestern/Children's Health, Dallas, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lippert M, Dumont KA, Birkeland S, Nainamalai V, Solvin H, Suther KR, Bendz B, Elle OJ, Brun H. Cardiac anatomic digital twins: findings from a single national centre. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2024; 5:725-734. [PMID: 39563912 PMCID: PMC11570384 DOI: 10.1093/ehjdh/ztae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 11/21/2024]
Abstract
Aims New three-dimensional cardiac visualization technologies are increasingly employed for anatomic digital twins in pre-operative planning. However, the role and influence of extended reality (virtual, augmented, or mixed) within heart team settings remain unclear. We aimed to assess the impact of mixed reality visualization of the intracardiac anatomy on surgical decision-making in patients with complex heart defects. Methods and results Between September 2020 and December 2022, we recruited 50 patients and generated anatomic digital twins and visualized them in mixed reality. These anatomic digital twins were presented to the heart team after initial decisions were made using standard visualization methods. Changes in the surgical strategy were recorded. Additionally, heart team members rated their mixed reality experience through a questionnaire, and post-operative outcomes were registered. Anatomic digital twins changed the initially decided upon surgical strategies for 68% of cases. While artificial intelligence facilitated the rapid creation of digital anatomic twins, manual corrections were always necessary. Conclusion In conclusion, mixed reality anatomic digital twins added information to standard visualization methods and significantly influenced surgical planning, with evidence that these strategies can be implemented safely without additional risk.
Collapse
Affiliation(s)
- Matthias Lippert
- The Intervention Centre, Division for Technology and Innovation, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, Oslo 0424, Norway
- Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, Oslo 0450, Norway
| | - Karl-Andreas Dumont
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Sigurd Birkeland
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Varatharajan Nainamalai
- The Intervention Centre, Division for Technology and Innovation, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, Oslo 0424, Norway
| | - Håvard Solvin
- The Intervention Centre, Division for Technology and Innovation, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, Oslo 0424, Norway
- Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, Oslo 0450, Norway
| | - Kathrine Rydén Suther
- Department of Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Bjørn Bendz
- Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, Oslo 0450, Norway
- Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - Ole Jakob Elle
- The Intervention Centre, Division for Technology and Innovation, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, Oslo 0424, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Henrik Brun
- The Intervention Centre, Division for Technology and Innovation, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, Oslo 0424, Norway
- Department for Pediatric Cardiology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Dong Y, Zhou X, Ding Y, Luo Y, Zhao H. Advances in tumor microenvironment: Applications and challenges of 3D bioprinting. Biochem Biophys Res Commun 2024; 730:150339. [PMID: 39032359 DOI: 10.1016/j.bbrc.2024.150339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024]
Abstract
The tumor microenvironment (TME) assumes a pivotal role in the treatment of oncological diseases, given its intricate interplay of diverse cellular components and extracellular matrices. This dynamic ecosystem poses a serious challenge to traditional research methods in many ways, such as high research costs, inefficient translation, poor reproducibility, and low modeling success rates. These challenges require the search for more suitable research methods to accurately model the TME, and the emergence of 3D bioprinting technology is transformative and an important complement to these traditional methods to precisely control the distribution of cells, biomolecules, and matrix scaffolds within the TME. Leveraging digital design, the technology enables personalized studies with high precision, providing essential experimental flexibility. Serving as a critical bridge between in vitro and in vivo studies, 3D bioprinting facilitates the realistic 3D culturing of cancer cells. This comprehensive article delves into cutting-edge developments in 3D bioprinting, encompassing diverse methodologies, biomaterial choices, and various 3D tumor models. Exploration of current challenges, including limited biomaterial options, printing accuracy constraints, low reproducibility, and ethical considerations, contributes to a nuanced understanding. Despite these challenges, the technology holds immense potential for simulating tumor tissues, propelling personalized medicine, and constructing high-resolution organ models, marking a transformative trajectory in oncological research.
Collapse
Affiliation(s)
- Yingying Dong
- The First School of Climical Medicine of Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xue Zhou
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China.
| | - Yunyi Ding
- Department of Emergency Medicine, The Second Affiliated Hospital of Zhejiang University, School, Hangzhou, 310009, China.
| | - Yichen Luo
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China.
| | - Hong Zhao
- The First School of Climical Medicine of Zhejiang Chinese Medical University, Hangzhou, 310053, China; Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310060, China.
| |
Collapse
|
8
|
Ravi P, Burch MB, Giannopoulos AA, Liu I, Kondor S, Chepelev LL, Danesi TH, Rybicki FJ, Panza A. Desktop 3D printed anatomic models for minimally invasive direct coronary artery bypass. 3D Print Med 2024; 10:19. [PMID: 38864937 PMCID: PMC11167900 DOI: 10.1186/s41205-024-00222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Three-dimensional (3D) printing technology has impacted many clinical applications across medicine. However, 3D printing for Minimally Invasive Direct Coronary Artery Bypass (MIDCAB) has not yet been reported in the peer-reviewed literature. The current observational cohort study aimed to evaluate the impact of half scaled (50% scale) 3D printed (3DP) anatomic models in the pre-procedural planning of MIDCAB. METHODS Retrospective analysis included 12 patients who underwent MIDCAB using 50% scale 3D printing between March and July 2020 (10 males, 2 females). Distances measured from CT scans and 3DP anatomic models were correlated with Operating Room (OR) measurements. The measurements were compared statistically using Tukey's test. The correspondence between the predicted (3DP & CT) and observed best InterCostal Space (ICS) in the OR was recorded. Likert surveys from the 3D printing registry were provided to the surgeon to assess the utility of the model. The OR time saved by planning the procedure using 3DP anatomic models was estimated subjectively by the cardiothoracic surgeon. RESULTS All 12 patients were successfully grafted. The 3DP model predicted the optimal ICS in all cases (100%). The distances measured on the 3DP model corresponded well to the distances measured in the OR. The measurements were significantly different between the CT and 3DP (p < 0.05) as well as CT and OR (p < 0.05) groups, but not between the 3DP and OR group. The Likert responses suggested high clinical utility of 3D printing. The mean subjectively estimated OR time saved was 40 min. CONCLUSION The 50% scaled 3DP anatomic models demonstrated high utility for MIDCAB and saved OR time while being resource efficient. The subjective benefits over routine care that used 3D visualization for surgical planning warrants further investigation.
Collapse
Affiliation(s)
- Prashanth Ravi
- Department of Radiology, University of Cincinnati, 3188 Bellevue Ave, PO Box 670761, Cincinnati, OH, 45267-0761, USA.
| | - Michael B Burch
- Department of Radiology, University of Cincinnati, 3188 Bellevue Ave, PO Box 670761, Cincinnati, OH, 45267-0761, USA
| | | | - Isabella Liu
- Department of Radiology, University of Cincinnati, 3188 Bellevue Ave, PO Box 670761, Cincinnati, OH, 45267-0761, USA
| | - Shayne Kondor
- Department of Radiology, University of Cincinnati, 3188 Bellevue Ave, PO Box 670761, Cincinnati, OH, 45267-0761, USA
| | | | - Tommaso H Danesi
- Heart and Vascular Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Frank J Rybicki
- Department of Radiology, University of Arizona, Phoenix, AZ, USA
| | - Antonio Panza
- Division of Cardiac Surgery, Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
9
|
Davidson EL, Penniston KL, Farhat WA. Advancements in surgical education: exploring animal and simulation models in fetal and neonatal surgery training. Front Pediatr 2024; 12:1402596. [PMID: 38887562 PMCID: PMC11180811 DOI: 10.3389/fped.2024.1402596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction Surgical education is undergoing a transformation, moving away from traditional models towards more modern approaches that integrate experiential and didactic methods. This shift is particularly pertinent in the realm of fetal and neonatal surgery, where specialized training is crucial. Historical training methods, such as cadaveric dissection, have been prevalent for centuries, but newer innovations, including animal and non-animal simulation models, are gaining prominence. This manuscript aims to explore the use of both animal and non-animal models in surgical education, with a specific focus on fetal and neonatal surgery. Animal models The use of animal models in surgical training has a long history, dating back to Halsted's introduction in 1889. These models, often utilizing large animals like swine and dogs, offer valuable insights into fetal and neonatal surgeries. They allow for the study of long-term outcomes and the simulation of various diseases and anomalies, providing essential training experiences not readily available in human surgeries. However, there are notable limitations, including anatomical and physiological differences from humans, ethical considerations, and substantial infrastructure and maintenance costs. Simulation models Simulation-based training offers several benefits, including standardized and safe learning environments without risks to real patients. Bench models, using synthetic materials or non-living animal tissue, provide cost-effective options for skills development. Virtual reality and 3-D printing technologies further enhance simulation experiences, allowing for the replication of complex clinical scenarios and patient-specific anatomies. While these models offer significant advantages, they lack the complexity of biological systems found in animal models. Conclusion In conclusion, both animal and non-animal simulation models play crucial roles in enhancing surgical education, particularly in fetal and neonatal surgery. While advancements in non-animal technologies are important for ethical reasons, the continued necessity of animal models in certain areas should be acknowledged. By responsibly integrating these models into training programs, surgical education can be further enriched while upholding ethical standards and ensuring optimal patient outcomes.
Collapse
Affiliation(s)
| | | | - Walid A. Farhat
- University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
10
|
Zhao J, Gong X, Ding J, Xiong K, Zhuang K, Huang R, Li S, Miao H. Integration of case-based learning and three-dimensional printing for tetralogy of fallot instruction in clinical medical undergraduates: a randomized controlled trial. BMC MEDICAL EDUCATION 2024; 24:571. [PMID: 38789956 PMCID: PMC11127445 DOI: 10.1186/s12909-024-05583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Case-based learning (CBL) methods have gained prominence in medical education, proving especially effective for preclinical training in undergraduate medical education. Tetralogy of Fallot (TOF) is a congenital heart disease characterized by four malformations, presenting a challenge in medical education due to the complexity of its anatomical pathology. Three-dimensional printing (3DP), generating physical replicas from data, offers a valuable tool for illustrating intricate anatomical structures and spatial relationships in the classroom. This study explores the integration of 3DP with CBL teaching for clinical medical undergraduates. METHODS Sixty senior clinical medical undergraduates were randomly assigned to the CBL group and the CBL-3DP group. Computed tomography imaging data from a typical TOF case were exported, processed, and utilized to create four TOF models with a color 3D printer. The CBL group employed CBL teaching methods, while the CBL-3DP group combined CBL with 3D-printed models. Post-class exams and questionnaires assessed the teaching effectiveness of both groups. RESULTS The CBL-3DP group exhibited improved performance in post-class examinations, particularly in pathological anatomy and TOF imaging data analysis (P < 0.05). Questionnaire responses from the CBL-3DP group indicated enhanced satisfaction with teaching mode, promotion of diagnostic skills, bolstering of self-assurance in managing TOF cases, and cultivation of critical thinking and clinical reasoning abilities (P < 0.05). These findings underscore the potential of 3D printed models to augment the effectiveness of CBL, aiding students in mastering instructional content and bolstering their interest and self-confidence in learning. CONCLUSION The fusion of CBL with 3D printing models is feasible and effective in TOF instruction to clinical medical undergraduates, and worthy of popularization and application in medical education, especially for courses involving intricate anatomical components.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Human Anatomy, Wannan Medical College, No.22 West Wenchang Road, Wuhu, 241002, China
| | - Xin Gong
- Department of Human Anatomy, Wannan Medical College, No.22 West Wenchang Road, Wuhu, 241002, China
| | - Jian Ding
- Department of Human Anatomy, Wannan Medical College, No.22 West Wenchang Road, Wuhu, 241002, China
| | - Kepin Xiong
- Department of Cardio-Thoracic Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Kangle Zhuang
- Zhuhai Sailner 3D Technology Co., Ltd., Zhuhai, China
| | - Rui Huang
- Department of Human Anatomy, Wannan Medical College, No.22 West Wenchang Road, Wuhu, 241002, China
| | - Shu Li
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, China.
| | - Huachun Miao
- Department of Human Anatomy, Wannan Medical College, No.22 West Wenchang Road, Wuhu, 241002, China.
| |
Collapse
|
11
|
Ponzoni M, Alamri R, Peel B, Haller C, Coles J, Vanderlaan RD, Honjo O, Barron DJ, Yoo SJ. Longitudinal Evaluation of Congenital Cardiovascular Surgical Performance and Skills Retention Using Silicone-Molded Heart Models. World J Pediatr Congenit Heart Surg 2024; 15:332-339. [PMID: 38646823 PMCID: PMC11100265 DOI: 10.1177/21501351241237785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/20/2024] [Indexed: 04/23/2024]
Abstract
Objective: Hands-on surgical training (HOST) for congenital heart surgery (CHS), utilizing silicone-molded models created from 3D-printing of patients' imaging data, was shown to improve surgical skills. However, the impact of repetition and frequency of repetition in retaining skills has not been previously investigated. We aimed to longitudinally evaluate the outcome for HOST on two example procedures of different technical difficulties with repeated attempts over a 15-week period. Methods: Five CHS trainees were prospectively recruited. Repair of coarctation of the aorta (CoA) and arterial switch operation (ASO) were selected as example procedures of relatively low and high technical difficulty. Procedural time and technical performance (using procedure-specific assessment tools by the participant, a peer-reviewer, and the proctor) were measured. Results: Coarctation repair performance scores improved after the first repetition but remained unchanged at the follow-up session. Likewise, CoA procedural time showed an early reduction but then remained stable (mean [standard deviation]: 29[14] vs 25[15] vs 23[9] min at 0, 1, and 4 weeks). Conversely, ASO performance scores improved during the first repetitions, but decreased after a longer time delay (>9 weeks). Arterial switch operation procedural time showed modest improvements across simulations but significantly reduced from the first to the last attempt: 119[20] versus 106[28] min at 0 and 15 weeks, P = .049. Conclusions: Complex procedures require multiple HOST repetitions, without excessive time delay to maintain long-term skills improvement. Conversely, a single session may be planned for simple procedures to achieve satisfactory medium-term results. Importantly, a consistent reduction in procedural times was recorded, supporting increased surgical efficiency.
Collapse
Affiliation(s)
- Matteo Ponzoni
- Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rawan Alamri
- Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brandon Peel
- Center for Image-Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christoph Haller
- Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - John Coles
- Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rachel D. Vanderlaan
- Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Osami Honjo
- Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - David J. Barron
- Division of Cardiovascular Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shi-Joon Yoo
- Center for Image-Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Chetan D, Valverde I, Yoo SJ. 3D Printed Models in Cardiology Training. JACC. ADVANCES 2024; 3:100893. [PMID: 38939682 PMCID: PMC11198327 DOI: 10.1016/j.jacadv.2024.100893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Affiliation(s)
- Devin Chetan
- Division of Cardiology, Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Israel Valverde
- Division of Cardiology, Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Shi-Joon Yoo
- Division of Cardiac Imaging, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Barabas IJ, Vegh D, Bottlik O, Kreuter P, Hartyanszky I, Merkely B, Palkovics D. The role of 3D technology in the practical education of congenital coarctation and its treatment-a feasibility pilot study. BMC MEDICAL EDUCATION 2024; 24:357. [PMID: 38553706 PMCID: PMC10981329 DOI: 10.1186/s12909-024-05293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/11/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Coarctation of the aorta (CoA) is a congenital disease with an incidence of 4 out of 10,000 live births, therefore proper education of its treatment is essential. Understanding the disease and the wide array of treatment options is often difficult. Additive manufacturing technology can be used to produce 3D printed hands-on surgical training tools (HOSTT), which can be used for the education and practical training of CoA. This study aimed to investigate the effectiveness of a 3D printable HOSTT for the simulation of coarctation surgery, and it' possible role in practical education. METHODS Participants were medical students of Semmelweis University between the second and sixth academic year. A virtual 3D model of an aorta with CoA was generated from a computed tomography angiography scan. Each participant received a 3D-printed aorta phantom and performed either one of four surgical treatment modalities. The simulated surgeries included end-to-end anastomosis, end-to-side anastomosis, prosthetic patch, and subclavian flap aortoplasty. Participants provided feedback, evaluating their understanding of the disease and its treatment by the four surgical reconstruction modalities on a seven-point Likert scale before and after the sessions. RESULTS 21 medical students participated in this study. Participants' average rating of their understanding of CoA disease and it treatment options before practical training was 4.62 ± 1.07. After training, their average rating increased to 6.19 ± 1.08, showing statistically significant difference. CONCLUSIONS Within this study's limitations, the applied HOSTT, manufactured using 3D printing, was effective for the practical training of CoA's surgical treatment methods for medical students.
Collapse
Affiliation(s)
- Imre J Barabas
- SE3D Center, Semmelweis University, Budapest, Hungary
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Daniel Vegh
- Department of Prosthodontics, Semmelweis University, Budapest, Hungary
| | | | - Patrik Kreuter
- Department of Prosthodontics, Semmelweis University, Budapest, Hungary
| | | | - Bela Merkely
- SE3D Center, Semmelweis University, Budapest, Hungary
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Daniel Palkovics
- SE3D Center, Semmelweis University, Budapest, Hungary.
- Department of Periodontology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
14
|
Ock J, Moon S, Kim M, Ko BS, Kim N. Evaluation of the accuracy of an augmented reality-based tumor-targeting guide for breast-conserving surgery. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 245:108002. [PMID: 38215659 DOI: 10.1016/j.cmpb.2023.108002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND AND OBJECTIVES Although magnetic resonance imaging (MRI) is commonly used for breast tumor detection, significant challenges remain in determining and presenting the three-dimensional (3D) morphology of tumors to guide breast-conserving surgery. To address this challenge, we have developed the augmented reality-breast surgery guide (AR-BSG) and compared its performance with that of a traditional 3D-printed breast surgical guide (3DP-BSG). METHODS Based on the MRI results of a breast cancer patient, a breast phantom made of skin, body, and tumor was fabricated through 3D printing and silicone-casting. AR-BSG and 3DP-BSG were executed using surgical plans based on the breast phantom's computed tomography scan images. Three operators independently inserted a catheter into the phantom using each guide. Their targeting accuracy was then evaluated using Bland-Altman analysis with limits of agreement (LoA). Differences between the users of each guide were evaluated using the intraclass correlation coefficient (ICC). RESULTS The entry and end point errors associated with AR-BSG were -0.34±0.68 mm (LoA: -1.71-1.01 mm) and 0.81±1.88 mm (LoA: -4.60-3.00 mm), respectively, whereas 3DP-BSG was associated with entry and end point errors of -0.28±0.70 mm (LoA: -1.69-1.11 mm) and -0.62±1.24 mm (LoA: -3.00-1.80 mm), respectively. The AR-BSG's entry and end point ICC values were 0.99 and 0.97, respectively, whereas 3DP-BSG was associated with entry and end point ICC values of 0.99 and 0.99, respectively. CONCLUSIONS AR-BSG can consistently and accurately localize tumor margins for surgeons without inferior guiding accuracy AR-BSG can consistently and accurately localize tumor margins for surgeons without inferior guiding accuracy compared to 3DP-BSG. Additionally, when compared with 3DP-BSG, AR-BSG can offer better spatial perception and visualization, lower costs, and a shorter setup time.
Collapse
Affiliation(s)
- Junhyeok Ock
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap2-dong, Songpa-gu, Seoul, South Korea
| | - Sojin Moon
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap2-dong, Songpa-gu, Seoul, South Korea
| | - MinKyeong Kim
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap2-dong, Songpa-gu, Seoul, South Korea
| | - Beom Seok Ko
- Department of Breast Surgery, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap2-dong, Songpa-gu, Seoul, South Korea
| | - Namkug Kim
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap2-dong, Songpa-gu, Seoul, South Korea; Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap2-dong, Songpa-gu, Seoul, South Korea.
| |
Collapse
|
15
|
White A, Zarzycki A, Bisleri G. Simulating mitral repair: lessons learned. Curr Opin Cardiol 2024; 39:73-78. [PMID: 38305721 DOI: 10.1097/hco.0000000000001106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
PURPOSE OF REVIEW With the growing complexity of cardiac surgical cases, increased focus on patient safety, and minimally invasive techniques, simulation-based training has experienced a renaissance. This review highlights important elements of simulation-based training, focusing specifically on available simulators for mitral valve repair and the uses for simulation. RECENT FINDINGS Referring to simulators as being high or low fidelity is oversimplified. Fidelity is a multifactorial concept, and for surgical task trainers, structural and functional fidelity should be discussed. For mitral valve repair, there are a spectrum of simulators, including tissue-based models, bench-top models, and hybrid models. All these simulator modalities serve a role in training if they align with predetermined objectives. There have been advancements in mitral valve repair simulation, notably patient-specific 3D printed silicone replicas of disease. SUMMARY There is evidence to support that simulation improves performance in the simulated environment, but future investigation should look to determine whether simulation improves performance in the clinical setting and ultimately patient outcomes.
Collapse
|
16
|
Giannopoulos AA, Tan TC. Three-dimensional models for coronary artery fistulas: to print, or not to print-that is the question. Eur Heart J Case Rep 2024; 8:ytae069. [PMID: 38374986 PMCID: PMC10875926 DOI: 10.1093/ehjcr/ytae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Affiliation(s)
- Andreas A Giannopoulos
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Zurich, Raemistrasse 100, CH-8091, Switzerland
| | - Timothy C Tan
- Department of Cardiology, Blacktown Hospital, University of Western Sydney, Blacktown Road, Blacktown, NSW 2148, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Kensington, NSW 2052, Australia
| |
Collapse
|
17
|
Sachdeva R, Armstrong AK, Arnaout R, Grosse-Wortmann L, Han BK, Mertens L, Moore RA, Olivieri LJ, Parthiban A, Powell AJ. Novel Techniques in Imaging Congenital Heart Disease: JACC Scientific Statement. J Am Coll Cardiol 2024; 83:63-81. [PMID: 38171712 PMCID: PMC10947556 DOI: 10.1016/j.jacc.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 01/05/2024]
Abstract
Recent years have witnessed exponential growth in cardiac imaging technologies, allowing better visualization of complex cardiac anatomy and improved assessment of physiology. These advances have become increasingly important as more complex surgical and catheter-based procedures are evolving to address the needs of a growing congenital heart disease population. This state-of-the-art review presents advances in echocardiography, cardiac magnetic resonance, cardiac computed tomography, invasive angiography, 3-dimensional modeling, and digital twin technology. The paper also highlights the integration of artificial intelligence with imaging technology. While some techniques are in their infancy and need further refinement, others have found their way into clinical workflow at well-resourced centers. Studies to evaluate the clinical value and cost-effectiveness of these techniques are needed. For techniques that enhance the value of care for congenital heart disease patients, resources will need to be allocated for education and training to promote widespread implementation.
Collapse
Affiliation(s)
- Ritu Sachdeva
- Department of Pediatrics, Division of Pediatric Cardiology, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| | - Aimee K Armstrong
- The Heart Center, Nationwide Children's Hospital, Department of Pediatrics, Division of Cardiology, Ohio State University, Columbus, Ohio, USA
| | - Rima Arnaout
- Division of Cardiology, Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Lars Grosse-Wortmann
- Division of Cardiology, Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, USA
| | - B Kelly Han
- Division of Cardiology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Luc Mertens
- Division of Cardiology, Department of Pediatrics, University of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ryan A Moore
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Laura J Olivieri
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anitha Parthiban
- Department of Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Andrew J Powell
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Iannotta M, d'Aiello FA, Van De Bruaene A, Caruso R, Conte G, Ferrero P, Bassareo PP, Pasqualin G, Chiarello C, Militaru C, Giamberti A, Bognoni L, Chessa M. Modern tools in congenital heart disease imaging and procedure planning: a European survey. J Cardiovasc Med (Hagerstown) 2024; 25:76-87. [PMID: 38079284 PMCID: PMC10754484 DOI: 10.2459/jcm.0000000000001569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/04/2023] [Accepted: 10/07/2023] [Indexed: 12/18/2023]
Abstract
AIMS Congenital heart diseases (CHDs) often show a complex 3D anatomy that must be well understood to assess the pathophysiological consequences and to guide therapy. Three-dimensional imaging technologies have the potential to enhance the physician's comprehension of such spatially complex anatomies. Unfortunately, due to the new introduction in clinical practice, there is no evidence on the current applications. We conducted a survey to examine how 3D technologies are currently used among CHD European centres. METHODS Data were collected using an online self-administered survey via SurveyMonkey. The questionnaire was sent via e-mail and the responses were collected between January and June 2022. RESULTS Ninety-eight centres correctly completed the survey. Of these, 22 regularly perform 3D rotational angiography, 43 have the availability to print in-silico models, and 22 have the possibility to visualize holographic imaging/virtual reality. The costs were mostly covered by the hospital or the department of financial resources. CONCLUSION From our survey, it emerges that these technologies are quite spread across Europe, despite not being part of a routine practice. In addition, there are still not enough data supporting the improvement of clinical management for CHD patients. For this reason, further studies are needed to develop clinical recommendations for the use of 3D imaging technologies in medical practice.
Collapse
Affiliation(s)
- Marvin Iannotta
- Pediatric and Adult Congenital Heart Centre, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Fabio Angelo d'Aiello
- Pediatric and Adult Congenital Heart Centre, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | | - Rosario Caruso
- Health Professions Research and Development Unit, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Gianluca Conte
- Health Professions Research and Development Unit, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Paolo Ferrero
- Pediatric and Adult Congenital Heart Centre, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Pier Paolo Bassareo
- University College of Dublin, School of Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Giulia Pasqualin
- Pediatric and Adult Congenital Heart Centre, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Carmelina Chiarello
- Congenital Cardiac Surgery Unit, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Constantin Militaru
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Alessandro Giamberti
- Congenital Cardiac Surgery Unit, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | | | - Massimo Chessa
- Pediatric and Adult Congenital Heart Centre, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart: ERN GUARD-Heart
- Department of Cardiology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- Vita Salute San Raffaele University
| |
Collapse
|
19
|
Kardos M, Curione D, Valverde I, van Schuppen J, Goo HW, Kellenberger CJ, Secinaro A, Caro-Domínguez P. Pediatric Cardiovascular Computed Tomography: Clinical Indications, Technique, and Standardized Reporting. Recommendations From the Cardiothoracic Taskforce of the European Society of Pediatric Radiology. J Thorac Imaging 2024; 39:18-33. [PMID: 37884389 DOI: 10.1097/rti.0000000000000750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Congenital heart diseases affect 1% of all live births in the general population. The prognosis of these children is increasingly improving due to advances in medical care and surgical treatment. Imaging is also evolving rapidly to assess accurately complex cardiac anomalies prenatally and postnatally. Transthoracic echocardiography is the gold-standard imaging technique to diagnose and follow-up children with congenital heart disease. Cardiac computed tomography imaging plays a key role in the diagnosis of children with congenital heart defects that require intervention, due to its high temporal and spatial resolution, with low radiation doses. It is challenging for radiologists, not primarily specialized in this field, to perform and interpret these studies due to the difficult anatomy, physiology, and postsurgical changes. Technical challenges consist of necessary electrocardiogram gating and contrast bolus timing to obtain an optimal examination. This article aims to define indications for pediatric cardiac computed tomography, to explain how to perform and report these studies, and to discuss future applications of this technique.
Collapse
Affiliation(s)
- Marek Kardos
- Department of Functional Diagnostics, Children's Cardiac Center, Bratislava, Slovakia
| | - Davide Curione
- Department of Imaging, Advanced Cardiothoracic Imaging Unit, Pediatric Hospital Bambino Gesu, Rome, Italy
| | - Israel Valverde
- Department of Radiology, Pediatric Radiology Unit, Virgen del Rocio University Hospital, Seville, Spain
| | - Joost van Schuppen
- Department of Radiology and Nuclear Medicine, Emma Children's Hospital-Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hyun Woo Goo
- Department of Radiology and Research Institute of Radiology, Asian Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Aurelio Secinaro
- Department of Imaging, Advanced Cardiothoracic Imaging Unit, Pediatric Hospital Bambino Gesu, Rome, Italy
| | - Pablo Caro-Domínguez
- Department of Radiology, Pediatric Radiology Unit, Virgen del Rocio University Hospital, Seville, Spain
| |
Collapse
|
20
|
Senderovich N, Shah S, Ow TJ, Rand S, Nosanchuk J, Wake N. Assessment of Staphylococcus Aureus growth on biocompatible 3D printed materials. 3D Print Med 2023; 9:30. [PMID: 37914942 PMCID: PMC10621153 DOI: 10.1186/s41205-023-00195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
The customizability of 3D printing allows for the manufacturing of personalized medical devices such as laryngectomy tubes, but it is vital to establish the biocompatibility of printing materials to ensure that they are safe and durable. The goal of this study was to assess the presence of S. aureus biofilms on a variety of 3D printed materials (two surgical guide resins, a photopolymer, an elastomer, and a thermoplastic elastomer filament) as compared to standard, commercially available laryngectomy tubes.C-shaped discs (15 mm in height, 20 mm in diameter, and 3 mm in thickness) were printed with five different biocompatible 3D printing materials and S. aureus growth was compared to Shiley™ laryngectomy tubes made from polyvinyl chloride. Discs of each material were inoculated with S. aureus cultures and incubated overnight. All materials were then removed from solution, washed in phosphate-buffered saline to remove planktonic bacteria, and sonicated to detach biofilms. Some solution from each disc was plated and colony-forming units were manually counted the following day. The resulting data was analyzed using a Kruskal-Wallis and Wilcoxon Rank Sum test to determine pairwise significance between the laryngectomy tube material and the 3D printed materials.The Shiley™ tube grew a median of 320 colonies (IQR 140-520), one surgical guide resin grew a median of 640 colonies (IQR 356-920), the photopolymer grew a median of 340 colonies (IQR 95.5-739), the other surgical guide resin grew a median of 431 colonies (IQR 266.5-735), the thermoplastic elastomer filament grew a median of 188 colonies (IQR 113.5-335), and the elastomer grew a median of 478 colonies (IQR 271-630). Using the Wilcoxon Rank Sum test, manual quantification showed a significant difference between biofilm formation only between the Shiley™ tube and a surgical guide resin (p = 0.018).This preliminary study demonstrates that bacterial colonization was comparable among most 3D printed materials as compared to the conventionally manufactured device. Continuation of this work with increased replicates will be necessary to determine which 3D printing materials optimally resist biofilm formation.
Collapse
Affiliation(s)
- Nicole Senderovich
- Albert Einstein College of Medicine, Montefiore Health System, Bronx, NY, USA.
| | - Sharan Shah
- Department of Otorhinolaryngology - Head and Neck Surgery, Montefiore Health System, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Thomas J Ow
- Department of Otorhinolaryngology - Head and Neck Surgery, Montefiore Health System, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pathology, Montefiore Health System, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Stephanie Rand
- Department of Physical Medicine & Rehabilitation, Montefiore Health System, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joshua Nosanchuk
- Department of Infectious Disease, Montefiore Health System, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nicole Wake
- Department of Research and Scientific Affairs, GE HealthCare, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI²R) and Bernard and Irene, Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
21
|
Bhandari S, Yadav V, Ishaq A, Sanipini S, Ekhator C, Khleif R, Beheshtaein A, Jhajj LK, Khan AW, Al Khalifa A, Naseem MA, Bellegarde SB, Nadeem MA. Trends and Challenges in the Development of 3D-Printed Heart Valves and Other Cardiac Implants: A Review of Current Advances. Cureus 2023; 15:e43204. [PMID: 37565179 PMCID: PMC10411854 DOI: 10.7759/cureus.43204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 08/12/2023] Open
Abstract
This article provides a comprehensive review of the current trends and challenges in the development of 3D-printed heart valves and other cardiac implants. By providing personalized solutions and pushing the limits of regenerative medicine, 3D printing technology has revolutionized the field of cardiac healthcare. The use of several organic and synthetic polymers in 3D printing heart valves is explored in this article, with emphasis on both their benefits and drawbacks. In cardiac tissue engineering, stem cells are essential, and their potential to lessen immunological rejection and thrombogenic consequences is highlighted. In the clinical applications section, the article emphasizes the importance of 3D printing in preoperative planning. Surgery results are enhanced when surgeons can visualize and assess the size and placement of implants using patient-specific anatomical models. Customized implants that are designed to match the anatomy of a particular patient reduce the likelihood of complications and enhance postoperative results. The development of physiologically active cardiac implants, made possible by 3D bioprinting, shows promise by eliminating the need for artificial valves. In conclusion, this paper highlights cutting-edge research and the promise of 3D-printed cardiac implants to improve patient outcomes and revolutionize cardiac treatment.
Collapse
Affiliation(s)
| | - Vikas Yadav
- Internal Medicine, Pt. B.D. Sharma Postgraduate Institute of Medical Sciences, Rohtak, IND
| | - Aqsa Ishaq
- Internal Medicine, Shaheed Mohtarma Benazir Bhutto Medical University, Larkana, PAK
| | | | - Chukwuyem Ekhator
- Neuro-Oncology, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, USA
| | - Rafeef Khleif
- Medicine, Xavier University School of Medicine, Aruba, ABW
| | - Alee Beheshtaein
- Internal Medicine, Xavier University School of Medicine, Chicago, USA
| | - Loveleen K Jhajj
- Internal Medicine, Xavier University School of Medicine, Oranjestad, ABW
| | | | - Ahmed Al Khalifa
- Medicine, College of Medicine, Sulaiman Alrajhi University, Al Bukayriyah, SAU
| | | | - Sophia B Bellegarde
- Pathology and Laboratory Medicine, American University of Antigua, St. John's, ATG
| | | |
Collapse
|
22
|
Yao Z, Xie W, Zhang J, Yuan H, Huang M, Shi Y, Xu X, Zhuang J. Graph matching and deep neural networks based whole heart and great vessel segmentation in congenital heart disease. Sci Rep 2023; 13:7558. [PMID: 37160940 PMCID: PMC10169784 DOI: 10.1038/s41598-023-34013-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 04/22/2023] [Indexed: 05/11/2023] Open
Abstract
Congenital heart disease (CHD) is one of the leading causes of mortality among birth defects, and due to significant variations in the whole heart and great vessel, automatic CHD segmentation using CT images has been always under-researched. Even though some segmentation algorithms have been developed in the literature, none perform very well under the complex structure of CHD. To deal with the challenges, we take advantage of deep learning in processing regular structures and graph algorithms in dealing with large variations and propose a framework combining both the whole heart and great vessel segmentation in complex CHD. We benefit from deep learning in segmenting the four chambers and myocardium based on the blood pool, and then we extract the connection information and apply graph matching to determine the categories of all the vessels. Experimental results on 68 3D CT images covering 14 types of CHD illustrate our framework can increase the Dice score by 12% on average compared with the state-of-the-art whole heart and great vessel segmentation method in normal anatomy. We further introduce two cardiovascular imaging specialists to evaluate our results in the standard of the Van Praagh classification system, and achieves well performance in clinical evaluation. All these results may pave the way for the clinical use of our method in the incoming future.
Collapse
Affiliation(s)
- Zeyang Yao
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Wen Xie
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Jiawei Zhang
- School of Computer Science, Fudan University, Shanghai, 200433, China
| | - Haiyun Yuan
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Meiping Huang
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yiyu Shi
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Xiaowei Xu
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Jian Zhuang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
23
|
Chen D, Ganapathy A, Abraham N, Marquis KM, Bishop GL, Rybicki FJ, Hoegger MJ, Ballard DH. 3D printing exposure and perception in radiology residency: survey results of radiology chief residents. 3D Print Med 2023; 9:13. [PMID: 37103761 PMCID: PMC10133904 DOI: 10.1186/s41205-023-00173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/24/2023] [Indexed: 04/28/2023] Open
Abstract
RATIONALE AND OBJECTIVES The purpose of this study is to summarize a survey of radiology chief residents focused on 3D printing in radiology. MATERIALS AND METHODS An online survey was distributed to chief residents in North American radiology residencies by subgroups of the Association of University Radiologists. The survey included a subset of questions focused on the clinical use of 3D printing and perceptions of the role of 3D printing and radiology. Respondents were asked to define the role of 3D printing at their institution and asked about the potential role of clinical 3D printing in radiology and radiology residencies. RESULTS 152 individual responses from 90 programs were provided, with a 46% overall program response rate (n = 90/194 radiology residencies). Most programs had 3D printing at their institution (60%; n = 54/90 programs). Among the institutions that perform 3D printing, 33% (n = 18/54) have structured opportunities for resident contribution. Most residents (60%; n = 91/152 respondents) feel they would benefit from 3D printing exposure or educational material. 56% of residents (n = 84/151) believed clinical 3D printing should be centered in radiology departments. 22% of residents (n = 34/151) believed it would increase communication and improve relationships between radiology and surgery colleagues. A minority (5%; 7/151) believe 3D printing is too costly, time-consuming, or outside a radiologist's scope of practice. CONCLUSIONS A majority of surveyed chief residents in accredited radiology residencies believe they would benefit from exposure to 3D printing in residency. 3D printing education and integration would be a valuable addition to current radiology residency program curricula.
Collapse
Affiliation(s)
- David Chen
- School of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Aravinda Ganapathy
- School of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nihil Abraham
- Department of Internal Medicine, University of California-Riverside School of Medicine, Riverside, CA, USA
| | - Kaitlin M Marquis
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Grace L Bishop
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Frank J Rybicki
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mark J Hoegger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - David H Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
24
|
Rajab TK, Kang L, Hayden K, Andersen ND, Turek JW. New operations for truncus arteriosus repair using partial heart transplantation: Exploring the surgical design space with 3-dimensional printed heart models. JTCVS Tech 2023; 18:91-96. [PMID: 37096099 PMCID: PMC10122159 DOI: 10.1016/j.xjtc.2023.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Affiliation(s)
- T. Konrad Rajab
- Section of Pediatric Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Lillian Kang
- Duke Children's Pediatric & Congenital Heart Center, Duke Children's Hospital, Durham, NC
| | - Kaila Hayden
- Section of Pediatric Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC
| | - Nicholas D. Andersen
- Duke Children's Pediatric & Congenital Heart Center, Duke Children's Hospital, Durham, NC
| | - Joseph W. Turek
- Duke Children's Pediatric & Congenital Heart Center, Duke Children's Hospital, Durham, NC
| |
Collapse
|
25
|
Awori J, Friedman SD, Howard C, Kronmal R, Buddhe S. Comparative effectiveness of virtual reality (VR) vs 3D printed models of congenital heart disease in resident and nurse practitioner educational experience. 3D Print Med 2023; 9:2. [PMID: 36773171 PMCID: PMC9918815 DOI: 10.1186/s41205-022-00164-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Medical trainees frequently note that cardiac anatomy is difficult to conceive within a two dimensional framework. The specific anatomic defects and the subsequent pathophysiology in flow dynamics may become more apparent when framed in three dimensional models. Given the evidence of improved comprehension using such modeling, this study aimed to contribute further to that understanding by comparing Virtual Reality (VR) and 3D printed models (3DP) in medical education. OBJECTIVES We sought to systematically compare the perceived subjective effectiveness of Virtual Reality (VR) and 3D printed models (3DP) in the educational experience of residents and nurse practitioners. METHODS Trainees and practitioners underwent individual 15-minute teaching sessions in which features of a developmentally typical heart as well as a congenitally diseased heart were demonstrated using both Virtual Reality (VR) and 3D printed models (3DP). Participants then briefly explored each modality before filling out a short survey in which they identified which model (3DP or VR) they felt was more effective in enhancing their understanding of cardiac anatomy and associated pathophysiology. The survey included a binary summative assessment and a series of Likert scale questions addressing usefulness of each model type and degree of comfort with each modality. RESULTS Twenty-seven pediatric residents and 3 nurse practitioners explored models of a developmentally typical heart and tetralogy of Fallot pathology. Most participants had minimal prior exposure to VR (1.1 ± 0.4) or 3D printed models (2.1 ± 1.5). Participants endorsed a greater degree of understanding with VR models (8.5 ± 1) compared with 3D Printed models (6.3 ± 1.8) or traditional models of instruction (5.5 ± 1.5) p < 0.001. Most participants felt comfortable with modern technology (7.6 ± 2.1). 87% of participants preferred VR over 3DP. CONCLUSIONS Our study shows that, overall, VR was preferred over 3DP models by pediatric residents and nurse practitioners for understanding cardiac anatomy and pathophysiology.
Collapse
Affiliation(s)
- Jonathan Awori
- Division of Pediatric Cardiology and Radiology, Seattle Children's Hospital, Seattle, WA, USA.
| | - Seth D. Friedman
- grid.240741.40000 0000 9026 4165Division of Pediatric Cardiology and Radiology, Seattle Children’s Hospital, Seattle, WA USA
| | - Christopher Howard
- grid.240741.40000 0000 9026 4165Division of Pediatric Cardiology and Radiology, Seattle Children’s Hospital, Seattle, WA USA
| | - Richard Kronmal
- grid.240741.40000 0000 9026 4165Division of Pediatric Cardiology and Radiology, Seattle Children’s Hospital, Seattle, WA USA
| | - Sujatha Buddhe
- grid.240741.40000 0000 9026 4165Division of Pediatric Cardiology and Radiology, Seattle Children’s Hospital, Seattle, WA USA
| |
Collapse
|
26
|
Ravi P, Burch MB, Farahani S, Chepelev LL, Yang D, Ali A, Joyce JR, Lawera N, Stringer J, Morris JM, Ballard DH, Wang KC, Mahoney MC, Kondor S, Rybicki FJ. Utility and Costs During the Initial Year of 3D Printing in an Academic Hospital. J Am Coll Radiol 2023; 20:193-204. [PMID: 35988585 DOI: 10.1016/j.jacr.2022.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE There is a paucity of utility and cost data regarding the launch of 3D printing in a hospital. The objective of this project is to benchmark utility and costs for radiology-based in-hospital 3D printing of anatomic models in a single, adult academic hospital. METHODS All consecutive patients for whom 3D printed anatomic models were requested during the first year of operation were included. All 3D printing activities were documented by the 3D printing faculty and referring specialists. For patients who underwent a procedure informed by 3D printing, clinical utility was determined by the specialist who requested the model. A new metric for utility termed Anatomic Model Utility Points with range 0 (lowest utility) to 500 (highest utility) was derived from the specialist answers to Likert statements. Costs expressed in United States dollars were tallied from all 3D printing human resources and overhead. Total costs, focused costs, and outsourced costs were estimated. The specialist estimated the procedure room time saved from the 3D printed model. The time saved was converted to dollars using hospital procedure room costs. RESULTS The 78 patients referred for 3D printed anatomic models included 11 clinical indications. For the 68 patients who had a procedure, the anatomic model utility points had an overall mean (SD) of 312 (57) per patient (range, 200-450 points). The total operation cost was $213,450. The total cost, focused costs, and outsourced costs were $2,737, $2,180, and $2,467 per model, respectively. Estimated procedure time saved had a mean (SD) of 29.9 (12.1) min (range, 0-60 min). The hospital procedure room cost per minute was $97 (theoretical $2,900 per patient saved with model). DISCUSSION Utility and cost benchmarks for anatomic models 3D printed in a hospital can inform health care budgets. Realizing pecuniary benefit from the procedure time saved requires future research.
Collapse
Affiliation(s)
- Prashanth Ravi
- Department of Radiology, University of Cincinnati, Cincinnati, Ohio
| | - Michael B Burch
- Department of Radiology, University of Cincinnati, Cincinnati, Ohio
| | - Shayan Farahani
- Department of Radiology, University of Cincinnati, Cincinnati, Ohio
| | - Leonid L Chepelev
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | | | - Arafat Ali
- Department of Radiology, University of Cincinnati, Cincinnati, Ohio
| | - Jennifer R Joyce
- Department of Radiology, University of Cincinnati, Cincinnati, Ohio
| | - Nathan Lawera
- Department of Radiology, University of Cincinnati, Cincinnati, Ohio
| | - Jimmy Stringer
- Department of Radiology, University of Cincinnati, Cincinnati, Ohio
| | | | - David H Ballard
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, St Louis, Missouri
| | - Kenneth C Wang
- Department of Radiology, University of Maryland, Baltimore, Maryland; and Department of Radiology, Baltimore VA Medical Center, Baltimore, Maryland; and Co-Chair, ACR 3D Printing Registry Governance Committee
| | - Mary C Mahoney
- Chair, Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Shayne Kondor
- Department of Radiology, University of Cincinnati, Cincinnati, Ohio
| | - Frank J Rybicki
- Vice Chair of Operations & Quality, Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio; and Co-Chair, ACR 3D Printing Registry Governance Committee.
| | | |
Collapse
|
27
|
Jacob J, Stunden C, Zakani S. Exploring the value of three-dimensional printing and virtualization in paediatric healthcare: A multi-case quality improvement study. Digit Health 2023; 9:20552076231159988. [PMID: 36865771 PMCID: PMC9972041 DOI: 10.1177/20552076231159988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Background Three-dimensional printing is being utilized in clinical medicine to support activities including surgical planning, education, and medical device fabrication. To better understand the impacts of this technology, a survey was implemented with radiologists, specialist physicians, and surgeons at a tertiary care hospital in Canada, examining multidimensional value and considerations for uptake. Objectives To examine how three-dimensional printing can be integrated into the paediatric context and highlight areas of impact and value to the healthcare system using Kirkpatrick's Model. Secondarily, to explore the perspective of clinicians utilizing three-dimensional models and how they make decisions about whether or not to use the technology in patient care. Methods A post-case survey. Descriptive statistics are provided for Likert-style questions, and a thematic analysis was conducted to identify common patterns in open-ended responses. Results In total, 37 respondents were surveyed across 19 clinical cases, providing their perspectives on model reaction, learning, behaviour, and results. We found surgeons and specialists to consider the models more beneficial than radiologists. Results further showed that the models were more helpful when used to assess the likelihood of success or failure of clinical management strategies, and for intraoperative orientation. We demonstrate that three-dimensional printed models could improve perioperative metrics, including a reduction in operating room time, but with a reciprocal effect on pre-procedural planning time. Clinicians who shared the models with patients and families thought it increased understanding of the disease and surgical procedure, and had no effect on their consultation time. Conclusions Three-dimensional printing and virtualization were used in preoperative planning and for communication among the clinical care team, trainees, patients, and families. Three-dimensional models provide multidimensional value to clinical teams, patients, and the health system. Further investigation is warranted to assess value in other clinical areas, across disciplines, and from a health economics and outcomes perspective.
Collapse
Affiliation(s)
- John Jacob
- Faculty of Medicine, Department of Paediatrics, University of British
Columbia, Vancouver, BC, Canada
- Digital Lab, BC Children's Hospital, Vancouver, BC, Canada
- Bayes Business School, City, University of London, London, UK
| | - Chelsea Stunden
- Faculty of Medicine, Department of Paediatrics, University of British
Columbia, Vancouver, BC, Canada
- Digital Lab, BC Children's Hospital, Vancouver, BC, Canada
| | - Sima Zakani
- Faculty of Medicine, Department of Paediatrics, University of British
Columbia, Vancouver, BC, Canada
- Digital Lab, BC Children's Hospital, Vancouver, BC, Canada
| |
Collapse
|
28
|
AlRawi A, Basha T, Elmeligy AO, Mousa NA, Mohammed G. The Role of Three-dimensional Printed Models in Women's Health. WOMEN'S HEALTH (LONDON, ENGLAND) 2023; 19:17455057231199040. [PMID: 37688305 PMCID: PMC10493061 DOI: 10.1177/17455057231199040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023]
Abstract
Three-dimensional printing is an innovative technology that has gained prominence in recent years due to its attractive features such as affordability, efficiency, and quick production. The technology is used to produce a three-dimensional model by depositing materials in layers using specific printers. In the medical field, it has been increasingly used in various specialties, including neurosurgery, cardiology, and orthopedics, most commonly for the pre-planning of complex surgeries. In addition, it has been applied in therapeutic treatments, patient education, and training wof medical professionals. In the field of obstetrics and gynecology, there is a limited number of studies in which three-dimensional printed models were applied. In this review, we aim to provide an overview of three-dimensional printing applications in the medical field, highlighting the few reported applications in obstetrics and gynecology. We also review all relevant studies and discuss the current challenges and limitations of adopting the technology in routine clinical practice. The technology has the potential to expand for wider applications related to women's health, including patient counseling, surgical training, and medical education.
Collapse
Affiliation(s)
- Afnan AlRawi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Tasneem Basha
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmed O Elmeligy
- Department of Electrical and Computer Engineering, Faculty of Engineering, McGill University, Montreal, QC, Canada
| | - Noha A Mousa
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ghada Mohammed
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
29
|
Fidvi S, Holder J, Li H, Parnes GJ, Shamir SB, Wake N. Advanced 3D Visualization and 3D Printing in Radiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1406:103-138. [PMID: 37016113 DOI: 10.1007/978-3-031-26462-7_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Since the discovery of X-rays in 1895, medical imaging systems have played a crucial role in medicine by permitting the visualization of internal structures and understanding the function of organ systems. Traditional imaging modalities including Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and Ultrasound (US) present fixed two-dimensional (2D) images which are difficult to conceptualize complex anatomy. Advanced volumetric medical imaging allows for three-dimensional (3D) image post-processing and image segmentation to be performed, enabling the creation of 3D volume renderings and enhanced visualization of pertinent anatomic structures in 3D. Furthermore, 3D imaging is used to generate 3D printed models and extended reality (augmented reality and virtual reality) models. A 3D image translates medical imaging information into a visual story rendering complex data and abstract ideas into an easily understood and tangible concept. Clinicians use 3D models to comprehend complex anatomical structures and to plan and guide surgical interventions more precisely. This chapter will review the volumetric radiological techniques that are commonly utilized for advanced 3D visualization. It will also provide examples of 3D printing and extended reality technology applications in radiology and describe the positive impact of advanced radiological image visualization on patient care.
Collapse
Affiliation(s)
- Shabnam Fidvi
- Department of Radiology, Montefiore Medical Center, Bronx, NY, USA.
| | - Justin Holder
- Department of Radiology, Montefiore Medical Center, Bronx, NY, USA
| | - Hong Li
- Department of Radiology, Jacobi Medical Center, Bronx, NY, USA
| | | | | | - Nicole Wake
- GE Healthcare, Aurora, OH, USA
- Center for Advanced Imaging Innovation and Research, NYU Langone Health, New York, NY, USA
| |
Collapse
|
30
|
Tan W, Stefanescu Schmidt AC, Horlick E, Aboulhosn J. Transcatheter Interventions in Patients With Adult Congenital Heart Disease. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2022; 1:100438. [PMID: 39132367 PMCID: PMC11307551 DOI: 10.1016/j.jscai.2022.100438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/17/2022] [Accepted: 08/01/2022] [Indexed: 08/13/2024]
Abstract
Patients with congenital heart disease now live well into adulthood because of advances in surgical techniques, improvements in medical management, and the development of novel therapeutic agents. As patients grow older into adults with congenital heart disease, many require catheter-based interventions for the treatment of residual defects, sequelae of their initial repair or palliation, or acquired heart disease. The past 3 decades have witnessed an exponential growth in both the type and number of transcatheter interventions in patients with congenital heart disease. With improvements in medical technology and device design, including the use of devices designed for the treatment of acquired valve stenosis or regurgitation, patients who previously would have required open-heart surgery for various conditions can now undergo percutaneous cardiac catheter-based procedures. Many of these procedures are complex and occur in complex patients who are best served by a multidisciplinary team. This review aims to highlight some of the currently available transcatheter interventional procedures for adults with congenital heart disease, the clinical outcomes of each intervention, and any special considerations so that the reader may better understand both the procedure and patients with adult congenital heart disease.
Collapse
Affiliation(s)
- Weiyi Tan
- Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ada C. Stefanescu Schmidt
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eric Horlick
- Peter Munk Cardiac Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jamil Aboulhosn
- Ahmanson/UCLA Adult Congenital Heart Disease Center, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
31
|
Yoo SJ, Hussein N, Barron DJ. Congenital Heart Surgery Skill Training Using Simulation Models: Not an Option but a Necessity. J Korean Med Sci 2022; 37:e293. [PMID: 36193641 PMCID: PMC9530313 DOI: 10.3346/jkms.2022.37.e293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022] Open
Abstract
Congenital heart surgery (CHS) is technically demanding, and its training is extremely complex and challenging. Training of the surgeon's technical skills has relied on a preceptorship format in which the trainees are gradually exposed to patients in the operating room under the close tutelage of senior staff surgeons. Training in the operating room is an inefficient process and the concept of a learning curve is no longer acceptable in terms of patient outcomes. The benefits of surgical simulation in training of congenital heart surgeons are well known and appreciated. However, adequate surgical simulation models and equipment for training have been scarce until the recent development of three-dimensionally (3D) printed models. Using comprehensive 3D printing and silicone-molding techniques, realistic simulation training models for most congenital heart surgical procedures have been produced. Newly developed silicone-molded models allow efficient CHS training in a stress-free environment with instantaneous feedback from the proctors and avoids risk to patients. The time has arrived when all congenital heart surgeons should consider surgical simulation training before progressing to real-life operating in a similar fashion to the aviation industry where all pilots are required to complete simulation training before flying a real aircraft. It is argued here that simulation training is not an option anymore but should be a mandatory component of CHS training.
Collapse
Affiliation(s)
- Shi-Joon Yoo
- Department of Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, Canada
- Division of Cardiology, Department of Pediatrics, Labatt Family Heart Centre, Hospital for Sick Children, University of Toronto, Toronto, Canada.
| | - Nabil Hussein
- Department of Cardiothoracic Surgery, Castle Hill Hospital, Cottingham, England, UK
| | - David J Barron
- Division of Cardiovascular Surgery, Department of Surgery, Labatt Family Heart Centre, Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
32
|
Guy BJ, Morris A, Mirjalili SA. Toward Emulating Human Movement: Adopting a Data-Driven Bitmap-Based "Voxel" Multimaterial Workflow to Create a Flexible 3D Printed Neonatal Lower Limb. 3D PRINTING AND ADDITIVE MANUFACTURING 2022; 9:349-364. [PMID: 36660289 PMCID: PMC9831563 DOI: 10.1089/3dp.2021.0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
It is increasingly common to produce physical anatomical medical models using high-fidelity multiproperty 3D printing to assist doctor-patient communication, presurgical planning, and surgical simulation. Currently, most medical models are created using image thresholding and traditional mesh-based segmentation techniques to produce mono-material boundaries (STL file formats) of anatomical features. Existing medical modeling manufacturing methods restrict shape specification to one material or density, which result in anatomically simple 3D printed medical models with no gradated material qualities. Currently, available high-resolution functionally graded multimaterial 3D printed medical models are rigid and do not represent biomechanical movement. To bypass the identified limitations of current 3D printing medical modeling workflows, we present a bitmap-based "voxel" multimaterial additive manufacturing workflow for the production of highly realistic and flexible anatomical models of the neonatal lower limb using computed tomographic ("CT") data. By interpolating and re-slicing a biomedical volumetric data set at the native 3D printer z resolution of 27 μm and using CT scan attenuation properties (Hounsfield units) to guide material mixing ratios, producing highly realistic models of the neonatal lower limb at a significantly faster rate than other manufacturing methods. The presented medical modeling workflow has considerable potential to improve medical modeling manufacturing methods by translating medical data directly into 3D printing files aiding in anatomical education and surgical simulation practices, especially in neonatal research and clinical training.
Collapse
Affiliation(s)
- Bernard Joseph Guy
- Industrial Design Department, School of Design Innovation, Victoria University of Wellington, Wellington, New Zealand
| | - Ana Morris
- Industrial Design Department, School of Design Innovation, Victoria University of Wellington, Wellington, New Zealand
| | - Seyed Ali Mirjalili
- Anatomy and Medical Imaging Department, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
33
|
Bojedla SSR, Yeleswarapu S, Alwala AM, Nikzad M, Masood SH, Riza S, Pati F. Three-Dimensional Printing of Customized Scaffolds with Polycaprolactone-Silk Fibroin Composites and Integration of Gingival Tissue-Derived Stem Cells for Personalized Bone Therapy. ACS APPLIED BIO MATERIALS 2022; 5:4465-4479. [PMID: 35994743 DOI: 10.1021/acsabm.2c00560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Regenerative biomaterials play a crucial role in the success of maxillofacial reconstructive procedures. Yet today, limited options are available when choosing polymeric biomaterials to treat critical size bony defects. Further, there is a requirement for 3D printable regenerative biomaterials to fabricate customized structures confined to the defect site. We present here a 3D printable composite formulation consisting of polycaprolactone (PCL) and silk fibroin microfibers and have established a robust protocol for fabricating customized 3D structures of complex geometry with the composite. The 3D printed composite scaffolds demonstrated higher compressive modulus than 3D printed scaffolds of PCL alone. Furthermore, the compressive modulus of PCL-Antheraea mylitta (AM) silk scaffolds is higher than that of the PCL-Bombyx mori (BM) silk scaffolds at their respective ratios. Compressive modulus of PCL-25AM silk scaffolds (73.4 MPa) is higher than that of PCL-25BM silk scaffolds (65.1 MPa). Compressive modulus of PCL-40AM silk scaffolds (106.1 MPa) is higher than that of PCL-40BM silk scaffolds (77.7 MPa). Moreover, we have isolated, characterized, and integrated human gingival mesenchymal stem cells (hGMSCs), an effective autologous cell source, onto the 3D printed scaffolds to evaluate their bone regeneration potential. The results demonstrated that PCL-silk microfiber composite scaffolds of Antheraea mylitta origin showed much higher bioactivity than the Bombyx mori ones because of arginine-glycine-aspartic acid (RGD) sequences present in the Antheraea mylitta silk fibroin protein favoring cell attachment and proliferation. By day 14, the metabolic activity of hGMSCs was highest in PCL-40AM (4.5 times higher than that at day 1). In addition, to show the translational potential of this work, we have fabricated a patient defect-specific model (mandible) using the CT scan obtained by the micro-CT imaging to understand the printability of the composite for fabricating complex structures to restore maxillofacial bony defects with precision when applied in a clinical scenario.
Collapse
Affiliation(s)
- Sri Sai Ramya Bojedla
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana 502284, India
| | - Sriya Yeleswarapu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana 502284, India
| | - Aditya Mohan Alwala
- Department of Oral and Maxillofacial Surgery, MNR Dental College & Hospital, Sangareddy, Hyderabad, Telangana 502294, India
| | - Mostafa Nikzad
- Department of Mechanical and Product Design Engineering, School of Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Syed H Masood
- Department of Mechanical and Product Design Engineering, School of Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Syed Riza
- Department of Mechanical and Product Design Engineering, School of Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana 502284, India
| |
Collapse
|
34
|
Virtual simulations in planning intravascular treatment of aortic coarctation - a retrospective analysis. Adv Cardiol 2022; 18:276-282. [PMID: 36751294 PMCID: PMC9885225 DOI: 10.5114/aic.2022.120377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/14/2022] [Indexed: 11/11/2022]
Abstract
Introduction A number of studies on using both three-dimensional printing and virtual models in assessment of aortic coarctation have been published, yet none of them uses virtual modelling as a planning tool in a blind retrospective analysis. Aim Assessment of virtual modelling and virtual reality in planning interventional treatment of aortic coarctation. Material and methods The study involved computed tomography scans of 20 patients performed prior to interventional treatment of aortic coarctation, which were used to create a virtual three-dimensional model of the aorta in Materialise Mimics. A group of potential stents was modelled in Materialise 3-Matic and complete simulations were assessed in Mimics Viewer using a virtual reality headset in order to choose an optimal stent, which was later compared with the implanted one. Results In 5 cases identical or very similar stents were proposed, in 12 cases simulations had slight, potentially avoidable misestimations either in stent length or diameter, and in 3 cases differences were more considerable. Overall, in 14 cases the location of the stent was concordant between the simulation and reality and in the remaining 6 cases the simulated stent was located lower than the actual one. Conclusions The method of computer modelling provided a satisfactory success rate of predicting the possible stents to use during the procedure. Differences in chosen stents may have been caused by individual experience in interventional cardiology, the lack of availability of certain stents in the heart catheterization laboratory, the lack of information about the diameter of the vascular access and differences in dimensions measured on the model, tomography and angiography.
Collapse
|
35
|
Amouri S, Tibamoso-Pedraza G, Navarro-Castellanos I, Raboisson MJ, Lapierre C, Miró J, Duong L. Characterization of blood-mimicking fluids for echocardiography imaging of ventricular septal defects. Int J Comput Assist Radiol Surg 2022; 17:1601-1609. [PMID: 35668220 DOI: 10.1007/s11548-022-02686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/19/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Ventricular septal defects (VSD) are congenital heart malformations and, in severe cases, they require complex interventions under echocardiography guidance. Heart phantoms can be helpful to train and to understand the complex hemodynamics of VSD. The goal of this study was to characterize the best blood mimicking fluids in such heart phantoms for modelling the hemodynamics of VSD patients using echocardiography. METHODS Four fluid compositions were considered. Distilled water was used as a baseline, while the other three fluids were developed based on physical properties of human blood, such as the viscosity and the refractive index. Three bi-ventricular heart phantoms of three different pediatric patients with complex VSD were designed from preoperative CT imaging. Custom molds were printed in 3-D and the anatomical structure was casted in polyvinyl alcohol cryogel. The VSD in each heart phantom were observed using echocardiography and color Doppler imaging was used for the hemodynamic study. RESULTS Heart phantoms with blood mimicking fluids of 30% glycerol and 27% glycerol, 10% sodium iodide were found to be anatomically realistic under echocardiography imaging. Hemodynamic parameters such as the pressure gradient and the volume of the shunt were characterized using color Doppler imaging. CONCLUSION Proper composition of blood mimicking fluids are important for improving the realism in echocardiographic heart phantoms and they contribute to better understand the complex hemodynamic of VSD under echocardiography.
Collapse
Affiliation(s)
- Sarah Amouri
- Interventional Imaging Laboratory, École de technologie supérieure, Montreal, Canada
| | | | | | | | | | - Joaquim Miró
- Department of Cardiology, CHU Sainte-Justine, Montreal, Canada
| | - Luc Duong
- Interventional Imaging Laboratory, École de technologie supérieure, Montreal, Canada.
| |
Collapse
|
36
|
An impact of three dimensional techniques in virtual reality. Int J Health Sci (Qassim) 2022. [DOI: 10.53730/ijhs.v6ns4.6481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three dimensional (3D) imaging play a prominent role in the diagnosis, treatment planning, and post-therapeutic monitoring of patients with Rheumatic Heart Disease (RHD) or mitral valve disease. More interactive and realistic medical experiences take an advantage of advanced visualization techniques like augmented, mixed, and virtual reality to analyze the 3D models. Further, 3D printed mitral valve model is being used in medical field. All these technologies improve the understanding of the complex morphologies of mitral valve disease. Real-time 3D Echocardiography has attracted much more attention in medical researches because it provides interactive feedback to acquire high-quality images as well as timely spatial information of the scanned area and hence is necessary for intraoperative ultrasound examinations. In this article, three dimensional techniques and its impacts in mitral valve disease are reviewed. Specifically, the data acquisition techniques, reconstruction algorithms with clinical applications are presented. Moreover, the advantages and disadvantages of state-of-the-art approaches are discussed in detail.
Collapse
|
37
|
Ghosh RM, Jolley MA, Mascio CE, Chen JM, Fuller S, Rome JJ, Silvestro E, Whitehead KK. Clinical 3D modeling to guide pediatric cardiothoracic surgery and intervention using 3D printed anatomic models, computer aided design and virtual reality. 3D Print Med 2022; 8:11. [PMID: 35445896 PMCID: PMC9027072 DOI: 10.1186/s41205-022-00137-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Surgical and catheter-based interventions for congenital heart disease require precise understanding of complex anatomy. The use of three-dimensional (3D) printing and virtual reality to enhance visuospatial understanding has been well documented, but integration of these methods into routine clinical practice has not been well described. We review the growth and development of a clinical 3D modeling service to inform procedural planning within a high-volume pediatric heart center. METHODS Clinical 3D modeling was performed using cardiac magnetic resonance (CMR) or computed tomography (CT) derived data. Image segmentation and post-processing was performed using FDA-approved software. Patient-specific anatomy was visualized using 3D printed models, digital flat screen models and virtual reality. Surgical repair options were digitally designed using proprietary and open-source computer aided design (CAD) based modeling tools. RESULTS From 2018 to 2020 there were 112 individual 3D modeling cases performed, 16 for educational purposes and 96 clinically utilized for procedural planning. Over the 3-year period, demand for clinical modeling tripled and in 2020, 3D modeling was requested in more than one-quarter of STAT category 3, 4 and 5 cases. The most common indications for modeling were complex biventricular repair (n = 30, 31%) and repair of multiple ventricular septal defects (VSD) (n = 11, 12%). CONCLUSIONS Using a multidisciplinary approach, clinical application of 3D modeling can be seamlessly integrated into pre-procedural care for patients with congenital heart disease. Rapid expansion and increased demand for utilization of these tools within a high-volume center demonstrate the high value conferred on these techniques by surgeons and interventionalists alike.
Collapse
Affiliation(s)
- Reena M Ghosh
- Division of Pediatric Cardiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, 19104, PA, USA.
| | - Matthew A Jolley
- Division of Pediatric Cardiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, 19104, PA, USA.,Department of Anesthesia and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christopher E Mascio
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Cardiovascular and Thoracic Surgery, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jonathan M Chen
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephanie Fuller
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jonathan J Rome
- Division of Pediatric Cardiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, 19104, PA, USA
| | - Elizabeth Silvestro
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kevin K Whitehead
- Division of Pediatric Cardiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, 19104, PA, USA
| |
Collapse
|
38
|
PARK CHUNKYU, KIM JUNGHUN. DEVELOPMENT OF A THREE-DIMENSIONAL-PRINTED HEART MODEL REPLICATING THE ELASTICITY, TEAR RESISTANCE, AND HARDNESS OF PIG HEART USING AGILUS AND TANGO. J MECH MED BIOL 2022. [DOI: 10.1142/s0219519422400073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study proposes a manufacturing method for reproducing some physical properties of the heart by comparing the elasticity, tear resistance, and hardness of a pig heart and three-dimensional printing materials, Agilus and Tango. A Digital Force Gauge was used to analyze elastic modulus and tear resistance, whereas a Shore A hardness meter was used to measure hardness. Agilus and Tango had 10 and 5 times higher elasticity, respectively, 2 and 4 times higher tear resistance, and a higher Shore A hardness than the pig heart. In summary, the pig heart had a more similar elasticity and Shore A hardness than the Tango sample, whereas more tear resistance was similar to the Agilus sample. Therefore, we proposed elasticity and tear resistance equations that can be used to build a heart model and a conversion table for heart fabrication at various thicknesses.
Collapse
Affiliation(s)
- CHUN-KYU PARK
- Department of Biomedical Engineering, Kyungpook National University, Sangyeok-dong, Buk-gu, Daegu, Republic of Korea
| | - JUNGHUN KIM
- Bio-Medical Research Institute, Kyungpook National University Hospital, Sangyeok-dong, Buk-gu, Daegu, Republic of Korea
| |
Collapse
|
39
|
Betancourt LG, Wong SH, Singh HR, Nento D, Agarwal A. Utility of Three-Dimensional Printed Model in Biventricular Repair of Complex Congenital Cardiac Defects: Case Report and Review of Literature. CHILDREN (BASEL, SWITZERLAND) 2022; 9:184. [PMID: 35204905 PMCID: PMC8870194 DOI: 10.3390/children9020184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 01/14/2023]
Abstract
Heterotaxy is a rare syndrome associated with cardiac complexity, anatomic variability and high morbidity and mortality. It is often challenging to visualize and provide an accurate diagnosis of the cardiac anatomy prior to surgery with the use of conventional imaging techniques. We report a unique case demonstrating how the use of three-dimensional (3D) cardiac printed model allowed us to better understand the anatomical complexity and plan a tailored surgical approach for successful biventricular repair in a patient with heterotaxy syndrome.
Collapse
Affiliation(s)
| | | | | | | | - Arpit Agarwal
- Children’s Hospital of San Antonio, San Antonio, TX 78207, USA; (L.G.B.); (S.H.W.); (H.R.S.); (D.N.)
| |
Collapse
|
40
|
Blum KM, Mirhaidari G, Breuer CK. Tissue engineering: Relevance to neonatal congenital heart disease. Semin Fetal Neonatal Med 2022; 27:101225. [PMID: 33674254 PMCID: PMC8390581 DOI: 10.1016/j.siny.2021.101225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Congenital heart disease (CHD) represents a large clinical burden, representing the most common cause of birth defect-related death in the newborn. The mainstay of treatment for CHD remains palliative surgery using prosthetic vascular grafts and valves. These devices have limited effectiveness in pediatric patients due to thrombosis, infection, limited endothelialization, and a lack of growth potential. Tissue engineering has shown promise in providing new solutions for pediatric CHD patients through the development of tissue engineered vascular grafts, heart patches, and heart valves. In this review, we examine the current surgical treatments for congenital heart disease and the research being conducted to create tissue engineered products for these patients. While much research remains to be done before tissue engineering becomes a mainstay of clinical treatment for CHD patients, developments have been progressing rapidly towards translation of tissue engineering devices to the clinic.
Collapse
Affiliation(s)
- Kevin M Blum
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Childrens Hospital, Columbus, OH, USA; Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
| | - Gabriel Mirhaidari
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Childrens Hospital, Columbus OH, USA,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus OH, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Childrens Hospital, Columbus, OH, USA.
| |
Collapse
|
41
|
State-of-the-Art Silicone Molded Models for Simulation of Arterial Switch Operation: Innovation with Parting-and-Assembly Strategy. JTCVS Tech 2022; 12:132-142. [PMID: 35403031 PMCID: PMC8987302 DOI: 10.1016/j.xjtc.2021.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/04/2021] [Indexed: 11/22/2022] Open
Abstract
Background Methods Results Conclusions
Collapse
|
42
|
Tajabadi M, Goran Orimi H, Ramzgouyan MR, Nemati A, Deravi N, Beheshtizadeh N, Azami M. Regenerative strategies for the consequences of myocardial infarction: Chronological indication and upcoming visions. Biomed Pharmacother 2021; 146:112584. [PMID: 34968921 DOI: 10.1016/j.biopha.2021.112584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Heart muscle injury and an elevated troponin level signify myocardial infarction (MI), which may result in defective and uncoordinated segments, reduced cardiac output, and ultimately, death. Physicians apply thrombolytic therapy, coronary artery bypass graft (CABG) surgery, or percutaneous coronary intervention (PCI) to recanalize and restore blood flow to the coronary arteries, albeit they were not convincingly able to solve the heart problems. Thus, researchers aim to introduce novel substitutional therapies for regenerating and functionalizing damaged cardiac tissue based on engineering concepts. Cell-based engineering approaches, utilizing biomaterials, gene, drug, growth factor delivery systems, and tissue engineering are the most leading studies in the field of heart regeneration. Also, understanding the primary cause of MI and thus selecting the most efficient treatment method can be enhanced by preparing microdevices so-called heart-on-a-chip. In this regard, microfluidic approaches can be used as diagnostic platforms or drug screening in cardiac disease treatment. Additionally, bioprinting technique with whole organ 3D printing of human heart with major vessels, cardiomyocytes and endothelial cells can be an ideal goal for cardiac tissue engineering and remarkable achievement in near future. Consequently, this review discusses the different aspects, advancements, and challenges of the mentioned methods with presenting the advantages and disadvantages, chronological indications, and application prospects of various novel therapeutic approaches.
Collapse
Affiliation(s)
- Maryam Tajabadi
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran
| | - Hanif Goran Orimi
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Roya Ramzgouyan
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alireza Nemati
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
43
|
Kiraly L, Shah NC, Abdullah O, Al-Ketan O, Rowshan R. Three-Dimensional Virtual and Printed Prototypes in Complex Congenital and Pediatric Cardiac Surgery-A Multidisciplinary Team-Learning Experience. Biomolecules 2021; 11:1703. [PMID: 34827702 PMCID: PMC8615737 DOI: 10.3390/biom11111703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) virtual modeling and printing advances individualized medicine and surgery. In congenital cardiac surgery, 3D virtual models and printed prototypes offer advantages of better understanding of complex anatomy, hands-on preoperative surgical planning and emulation, and improved communication within the multidisciplinary team and to patients. We report our single center team-learning experience about the realization and validation of possible clinical benefits of 3D-printed models in surgical planning of complex congenital cardiac surgery. CT-angiography raw data were segmented into 3D-virtual models of the heart-great vessels. Prototypes were 3D-printed as rigid "blood-volume" and flexible "hollow". The accuracy of the models was evaluated intraoperatively. Production steps were realized in the framework of a clinical/research partnership. We produced 3D prototypes of the heart-great vessels for 15 case scenarios (nine males, median age: 11 months) undergoing complex intracardiac repairs. Parity between 3D models and intraoperative structures was within 1 mm range. Models refined diagnostics in 13/15, provided new anatomic information in 9/15. As a team-learning experience, all complex staged redo-operations (13/15; Aristotle-score mean: 10.64 ± 1.95) were rehearsed on the 3D models preoperatively. 3D-printed prototypes significantly contributed to an improved/alternative operative plan on the surgical approach, modification of intracardiac repair in 13/15. No operative morbidity/mortality occurred. Our clinical/research partnership provided coverage for the extra time/labor and material/machinery not financed by insurance. 3D-printed models provided a team-learning experience and contributed to the safety of complex congenital cardiac surgeries. A clinical/research partnership may open avenues for bioprinting of patient-specific implants.
Collapse
Affiliation(s)
- Laszlo Kiraly
- Division of Pediatric Cardiac Surgery, Cardiac Sciences, Sheikh Khalifa Medical City, Abu Dhabi P.O. Box 51900, United Arab Emirates
- Department of Public Health, Semmelweis University, H-1085 Budapest, Hungary
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital System, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore
| | - Nishant C. Shah
- Division of Pediatric Cardiology, Cardiac Sciences, Sheikh Khalifa Medical City, Abu Dhabi P.O. Box 51900, United Arab Emirates;
| | - Osama Abdullah
- Core Technology Platform Operations, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (O.A.); (O.A.-K.); (R.R.)
| | - Oraib Al-Ketan
- Core Technology Platform Operations, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (O.A.); (O.A.-K.); (R.R.)
| | - Reza Rowshan
- Core Technology Platform Operations, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (O.A.); (O.A.-K.); (R.R.)
| |
Collapse
|
44
|
Bezek LB, Chatham CA, Dillard DA, Williams CB. Mechanical properties of tissue-mimicking composites formed by material jetting additive manufacturing. J Mech Behav Biomed Mater 2021; 125:104938. [PMID: 34740012 DOI: 10.1016/j.jmbbm.2021.104938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
Capitalizing on features including high resolution, smooth surface finish, large build volume, and simultaneous multi-color/multi-material printing, material jetting additive manufacturing enables the fabrication of full-scale anatomic models. The ability to print materials that resemble relevant, compliant tissues has especially motivated implementation of material jetting for patient-specific surgical planning or training models. In an effort to broaden the material selection for the material jetting process, and to provide materials that more closely mimic the functional needs for a wider variety of tissues, a composite material system is explored that uses non-curing fluid dispersed into a photo-curable medium. The material properties of the composites are examined through both thermal and mechanical analysis (dynamic mechanical analysis, Shore hardness testing, puncture testing, and tensile testing). Higher contributions of non-curing fluid generally reduce part strength and stiffness, and exponential and second-order polynomial expressions are appropriate fits for many of the mechanical properties as functions of non-curing fluid concentration. Through the fundamental exploration of the impact of an added diluent on material properties, the study advances knowledge on the process-property relationship for multi-material jetting. Additionally, better understanding of the mechanical property space offered by these materials will expand the capabilities of material jetting in the context of biomedical applications. The collection of mechanical properties serve as reference data sets to facilitate quicker screening for tissue-mimicking, medical models.
Collapse
Affiliation(s)
- Lindsey B Bezek
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Camden A Chatham
- Macromolecular Science & Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - David A Dillard
- Macromolecular Science & Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Christopher B Williams
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Macromolecular Science & Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
45
|
|
46
|
Yıldız O, Köse B, Tanıdır IC, Pekkan K, Güzeltaş A, Haydin S. Single-center experience with routine clinical use of 3D technologies in surgical planning for pediatric patients with complex congenital heart disease. ACTA ACUST UNITED AC 2021; 27:488-496. [PMID: 34313233 DOI: 10.5152/dir.2021.20163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE This study was planned to assess the application of three-dimensional (3D) cardiac modeling in preoperative evaluation for complex congenital heart surgeries. METHODS From July 2015 to September 2019, 18 children diagnosed with complex congenital heart diseases (CHDs) were enrolled in this study (double outlet right ventricle in nine patients, complex types of transposition of the great arteries in six patients, congenitally corrected transposition of the great arteries in two patients, and univentricular heart in one patient). The patients' age ranged from 7 months to 19 years (median age, 14 months). Before the operation, 3D patient-specific cardiac models were created based on computed tomography (CT) data. Using each patient's data, a virtual computer model (3D mesh) and stereolithographic (SLA) file that would be printed as a 3D model were generated. These 3D cardiac models were used to gather additional data about cardiac anatomy for presurgical decision-making. RESULTS All 18 patients successfully underwent surgeries, and there were no mortalities. The 3D patient-specific cardiac models led to a change from the initial surgical plans in 6 of 18 cases (33%), and biventricular repair was considered feasible. Moreover, the models helped to modify the planned biventricular repair in five cases, for left ventricular outflow tract obstruction removal and ventricular septal defect enlargement. 3D cardiac models enable pediatric cardiologists to better understand the spatial relationships between the ventricular septal defect and great vessels, and they help surgeons identify risk structures more clearly for detailed planning of surgery. There was a strong correlation between the models of the patients and the anatomy encountered during the operation. CONCLUSION 3D cardiac models accurately reveal the patient's anatomy in detail and are therefore beneficial for planning surgery in patients with complex intracardiac anatomy.
Collapse
Affiliation(s)
- Okan Yıldız
- Department of Pediatric Cardiovascular Surgery, Mehmet Akif Ersoy Cardiovascular Research and Training Hospital, Istanbul, Turkey
| | - Banu Köse
- Department of Pediatric Cardiology, Mehmet Akif Ersoy Cardiovascular Research and Training Hospital, Istanbul, Turkey
| | | | - Kerem Pekkan
- Department of Pediatric Cardiology, Mehmet Akif Ersoy Cardiovascular Research and Training Hospital, Istanbul, Turkey
| | - Alper Güzeltaş
- Department of Biomedical Engineering, Koç University, Istanbul, Turkey
| | - Sertaç Haydin
- Department of Pediatric Cardiovascular Surgery, Mehmet Akif Ersoy Cardiovascular Research and Training Hospital, Istanbul, Turkey
| |
Collapse
|
47
|
Gharleghi R, Dessalles CA, Lal R, McCraith S, Sarathy K, Jepson N, Otton J, Barakat AI, Beier S. 3D Printing for Cardiovascular Applications: From End-to-End Processes to Emerging Developments. Ann Biomed Eng 2021; 49:1598-1618. [PMID: 34002286 PMCID: PMC8648709 DOI: 10.1007/s10439-021-02784-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/24/2021] [Indexed: 12/16/2022]
Abstract
3D printing as a means of fabrication has seen increasing applications in medicine in the last decade, becoming invaluable for cardiovascular applications. This rapidly developing technology has had a significant impact on cardiovascular research, its clinical translation and education. It has expanded our understanding of the cardiovascular system resulting in better devices, tools and consequently improved patient outcomes. This review discusses the latest developments and future directions of generating medical replicas ('phantoms') for use in the cardiovascular field, detailing the end-to-end process from medical imaging to capture structures of interest, to production and use of 3D printed models. We provide comparisons of available imaging modalities and overview of segmentation and post-processing techniques to process images for printing, detailed exploration of latest 3D printing methods and materials, and a comprehensive, up-to-date review of milestone applications and their impact within the cardiovascular domain across research, clinical use and education. We then provide an in-depth exploration of future technologies and innovations around these methods, capturing opportunities and emerging directions across increasingly realistic representations, bioprinting and tissue engineering, and complementary virtual and mixed reality solutions. The next generation of 3D printing techniques allow patient-specific models that are increasingly realistic, replicating properties, anatomy and function.
Collapse
Affiliation(s)
- Ramtin Gharleghi
- Faculty of Engineering, School of Mechanical and Manufacturing, UNSW, Sydney, Australia
| | | | - Ronil Lal
- Faculty of Engineering, School of Mechanical and Manufacturing, UNSW, Sydney, Australia
| | - Sinead McCraith
- Faculty of Engineering, School of Mechanical and Manufacturing, UNSW, Sydney, Australia
| | | | - Nigel Jepson
- Prince of Wales Hospital, Sydney, Australia
- Prince of Wales Clinical School of Medicine, UNSW, Sydney, Australia
| | - James Otton
- Department of Cardiology, Liverpool Hospital, Sydney, Australia
| | | | - Susann Beier
- Faculty of Engineering, School of Mechanical and Manufacturing, UNSW, Sydney, Australia.
| |
Collapse
|
48
|
Talanki VR, Peng Q, Shamir SB, Baete SH, Duong TQ, Wake N. Three-Dimensional Printed Anatomic Models Derived From Magnetic Resonance Imaging Data: Current State and Image Acquisition Recommendations for Appropriate Clinical Scenarios. J Magn Reson Imaging 2021; 55:1060-1081. [PMID: 34046959 DOI: 10.1002/jmri.27744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Three-dimensional (3D) printing technologies have been increasingly utilized in medicine over the past several years and can greatly facilitate surgical planning thereby improving patient outcomes. Although still much less utilized compared to computed tomography (CT), magnetic resonance imaging (MRI) is gaining traction in medical 3D printing. The purpose of this study was two-fold: 1) to determine the prevalence in the existing literature of using MRI to create 3D printed anatomic models for surgical planning and 2) to provide image acquisition recommendations for appropriate clinical scenarios where MRI is the most suitable imaging modality. The workflow for creating 3D printed anatomic models from medical imaging data is complex and involves image segmentation of the regions of interest and conversion of that data into 3D surface meshes, which are compatible with printing technologies. CT is most commonly used to create 3D printed anatomic models due to the high image quality and relative ease of performing image segmentation from CT data. As compared to CT datasets, 3D printing using MRI data offers advantages since it provides exquisite soft tissue contrast needed for accurate organ segmentation and it does not expose patients to unnecessary ionizing radiation. MRI, however, often requires complicated imaging techniques and time-consuming postprocessing procedures to generate high-resolution 3D anatomic models needed for 3D printing. Despite these challenges, 3D modeling and printing from MRI data holds great clinical promises thanks to emerging innovations in both advanced MRI imaging and postprocessing techniques. EVIDENCE LEVEL: 2 TECHNICAL EFFICATCY: 5.
Collapse
Affiliation(s)
- Varsha R Talanki
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Qi Peng
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Stephanie B Shamir
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Steven H Baete
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, New York, USA
| | - Timothy Q Duong
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nicole Wake
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA.,Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
49
|
Nakamura Y, Romans C, Ashwath R. Patient-Specific Patch for an Intra-Atrial Rerouting Procedure Developed Through Surgical Simulation. World J Pediatr Congenit Heart Surg 2021; 12:234-243. [PMID: 33683998 DOI: 10.1177/2150135120985469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In pediatric cardiac surgery, an application of three-dimensional (3D) modeling to develop custom-made prostheses is limited, and currently surgeons use their intraoperative visual estimation to develop 3D complex structures from 2D patch materials. Contemporary 3D designers are developing complex surfaces using surface modeling in other industries, which can be applied to pediatric cardiac surgery. However, its free-form nature may lead to intradesigner variability. METHODS A patient with a body weight of 4 kg with partial anomalous pulmonary venous connection and preoperative computed tomography data was selected, and a patient-specific 3D heart model was obtained. Through collaboration with a pediatric cardiologist and a pediatric cardiac surgeon, a 3D designer developed two patient-specific 3D patches for an intra-atrial rerouting procedure (IAR) for the patient using different methods of surface modeling. The shape and size of two flattened patches were analyzed using a geometric morphometrics (GM) approach. Computational fluid dynamics (CFD) analysis was also performed to calculate pressure drop across streamlines and flow energy loss in the right atrium for both patches. RESULTS The GM analysis showed that the size and shape of the two patches around the systemic vein orifice, crucial to prevent systemic venous obstruction, were almost equivalent. However, the CFD analysis showed that the pressure drop and flow energy loss were almost twice for one patch compared with the other. CONCLUSIONS Our platform of developing a patient-specific 3D patch for an IAR procedure using surface modeling seemed promising, although intradesigner patch variability was not neglectable in our small-sized patient.
Collapse
Affiliation(s)
- Yuki Nakamura
- Division of Pediatric Cardiothoracic Surgery, 21782The University of Iowa, Iowa, IA, USA
| | | | - Ravi Ashwath
- Division of Pediatric Cardiology, 160412The University of Iowa, Iowa, IA, USA
| |
Collapse
|
50
|
Kim JH, Park CK, Park JE, Lee JM. 3D print material study to reproduce the function of pig heart tissue. Technol Health Care 2021; 29:27-34. [PMID: 33682742 PMCID: PMC8150471 DOI: 10.3233/thc-218003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Three-dimensional (3D) printing technology for heart simulation can be represented as complex anatomical structures, and objective information can be provided. OBJECTIVE: We studied 3D print material to find a material with the same elastic coefficient as pig elastic coefficient. METHODS: Pig heart sample, Agilus sample, Tango sample, TPU sample, and silicone sample were studied. The elastic coefficient of each specimen was measured using an elastic coefficient measuring instrument. The analysis was performed using the average value of ten specimens of the same size. We suggested an equation to find the elastic coefficient of material by the thickness using the elastic coefficient of Agilus, Tango, and silicone. RESULTS: The sample with similar elasticity to the pig sample did not show the same coefficient of elasticity at the same sample size. In Tango, the 0.5 mm high elastic force was about 3 times higher than the pig sample 7 mm elastic force. CONCLUSIONS: The study was conducted using 3D print material and silicone which can reproduce the elasticity of pig heart. However, no material is currently available to reproduce pig heart sample of the same size. However, if the heart is developed considering only elasticity, it can be sufficiently reproduced using the research results.
Collapse
Affiliation(s)
- Jung-Hun Kim
- Bio-Medical Research institute, Kyungpook National University Hospital, Sangyeok-dong, Buk-gu, Daegu, South Korea.,Bio-Medical Research institute, Kyungpook National University Hospital, Sangyeok-dong, Buk-gu, Daegu, South Korea
| | - Chun-Kyu Park
- Department of Biomedical Engineering, Kyungpook National University, Sangyeok-dong, Buk-gu, Daegu, South Korea.,Bio-Medical Research institute, Kyungpook National University Hospital, Sangyeok-dong, Buk-gu, Daegu, South Korea
| | - Ji-Eun Park
- Nonlinear Dynamics Laboratory, Kyungpook National University, Sangyeok-dong, Buk-gu, Daegu, South Korea
| | - Jong-Min Lee
- Department of Radiology, School of Medicine, Kyungpook National University, Sangyeok-dong, Buk-gu, Daegu, South Korea
| |
Collapse
|