1
|
Liu Z, Pan C, Huang H. The role of axon guidance molecules in the pathogenesis of epilepsy. Neural Regen Res 2025; 20:1244-1257. [PMID: 39075893 PMCID: PMC11624883 DOI: 10.4103/nrr.nrr-d-23-01620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/06/2023] [Accepted: 02/21/2024] [Indexed: 07/31/2024] Open
Abstract
Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target novel cellular and molecular mechanisms and mechanisms of action. Increasing evidence suggests that axon guidance molecules play a role in the structural and functional modifications of neural networks and that the dysregulation of these molecules is associated with epilepsy susceptibility. In this review, we discuss the essential role of axon guidance molecules in neuronal activity in patients with epilepsy as well as the impact of these molecules on synaptic plasticity and brain tissue remodeling. Furthermore, we examine the relationship between axon guidance molecules and neuroinflammation, as well as the structural changes in specific brain regions that contribute to the development of epilepsy. Ample evidence indicates that axon guidance molecules, including semaphorins and ephrins, play a fundamental role in guiding axon growth and the establishment of synaptic connections. Deviations in their expression or function can disrupt neuronal connections, ultimately leading to epileptic seizures. The remodeling of neural networks is a significant characteristic of epilepsy, with axon guidance molecules playing a role in the dynamic reorganization of neural circuits. This, in turn, affects synapse formation and elimination. Dysregulation of these molecules can upset the delicate balance between excitation and inhibition within a neural network, thereby increasing the risk of overexcitation and the development of epilepsy. Inflammatory signals can regulate the expression and function of axon guidance molecules, thus influencing axonal growth, axon orientation, and synaptic plasticity. The dysregulation of neuroinflammation can intensify neuronal dysfunction and contribute to the occurrence of epilepsy. This review delves into the mechanisms associated with the pathogenicity of axon guidance molecules in epilepsy, offering a valuable reference for the exploration of therapeutic targets and presenting a fresh perspective on treatment strategies for this condition.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Chunhua Pan
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Hao Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| |
Collapse
|
2
|
Ma Y, Ji J, Liu X, Zheng X, Xu L, Zhou Q, Li Z, Yang L. Integrative Analysis by Mendelian Randomization and Large-Scale Single-Cell Transcriptomics Reveals Causal Links between B Cell Subtypes and Diabetic Kidney Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:327-345. [PMID: 39430286 PMCID: PMC11488840 DOI: 10.1159/000539689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/03/2024] [Indexed: 10/22/2024]
Abstract
Introduction The increasing incidence of diabetic kidney disease (DKD) and the challenges in its management highlight the necessity for a deeper understanding of its pathogenesis. While recent studies have underscored the substantial impact of circulating immunity on the development of diabetic microvascular complications such as retinopathy and neuropathy, research on circulating immunity in DKD remains limited. Methods This study utilized Mendelian randomization analysis to explore the potential independent causal relationships between circulating immune cells and DKD pathogenesis. Additionally, a combination of single-cell disease relevance score (scDRS) and immune cell infiltration analysis was employed to map the circulating immunity landscape in DKD patients. Results Ten immune traits, including 5 of B cells, 2 of T cells, 2 of granulocytes, and one of monocytes, were defined to be associated with the pathogenesis of DKD. Notably, IgD - CD27 - B cell Absolute Count (IVW: OR, 1.102 [1.023-1.189], p = 0.011) and IgD - CD24 - B cell Absolute Count (IVW: OR, 1.106 [1.030-1.188], p = 0.005) were associated with promoting DKD pathogenesis, while CD24 + CD27 + B cell %B cell (IVW: OR, 0.943 [0.898-0.989], p = 0.016) demonstrated a protective effect against DKD onset. The presence of B cell-activating factor receptor (BAFF-R) on CD20 - CD38 - B cell (IVW: OR, 0.946 [0.904-0.989], p = 0.015) and BAFF-R on IgD - CD38 + B cell (IVW: OR, 0.902 [0.834-0.975], p = 0.009) also indicated a potential role in preventing DKD. scDRS analysis revealed that two main subsets of B cells, naïve B and memory B cells, had a higher proportion of DKD-related cells or a higher scDRS score of DKD phenotype, indicating their strong association with DKD. Furthermore, immune infiltrate deconvolution analysis showed a notable decrease in the circulating memory B cells and class-switched memory B cells in DKD patients compared to those of DM patients without DKD. Conclusion Our study revealed the causal relations between circulating immunity and DKD susceptibility, particularly highlighted the potential roles of B cell subtypes in DKD development. Further studies addressing the related mechanisms would broaden the current understanding of DKD pathogenesis.
Collapse
Affiliation(s)
- Yuan Ma
- Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Ji
- Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xintong Liu
- Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xizi Zheng
- Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Lingyi Xu
- Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Qingqing Zhou
- Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Zehua Li
- Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Yang
- Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Naughton SX, Yang EJ, Iqbal U, Trageser K, Charytonowicz D, Masieri S, Estill M, Wu H, Raval U, Lyu W, Wu QL, Shen L, Simon J, Sebra R, Pasinetti GM. Permethrin exposure primes neuroinflammatory stress response to drive depression-like behavior through microglial activation in a mouse model of Gulf War Illness. J Neuroinflammation 2024; 21:222. [PMID: 39272155 PMCID: PMC11396632 DOI: 10.1186/s12974-024-03215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Gulf War Illness (GWI) is a chronic multisymptom disorder that affects approximately 25-32% of Gulf War veterans and is characterized by a number of symptoms such as cognitive impairment, psychiatric disturbances, chronic fatigue and gastrointestinal distress, among others. While the exact etiology of GWI is unknown, it is believed to have been caused by toxic exposures encountered during deployment in combination with other factors such as stress. In the present study we sought to evaluate the hypothesis that exposure to the toxin permethrin could prime neuroinflammatory stress response and elicit psychiatric symptoms associated with GWI. Specifically, we developed a mouse model of GWI, to evaluate the effects of chronic permethrin exposure followed by unpredictable stress. We found that subjecting mice to 14 days of chronic permethrin exposure followed by 7 days of unpredictable stress resulted in the development of depression-like behavior. This behavioral change coincided with distinct alterations in the microglia phenotype, indicating microglial activation in the hippocampus. We revealed that blocking microglial activation through Gi inhibitory DREADD receptors in microglia effectively prevented the behavioral change associated with permethrin and stress exposure. To elucidate the transcriptional networks impacted within distinct microglia populations linked to depression-like behavior in mice exposed to both permethrin and stress, we conducted a single-cell RNA sequencing analysis using 21,566 single nuclei collected from the hippocampus of mice. For bioinformatics, UniCell Deconvolve was a pre-trained, interpretable, deep learning model used to deconvolve cell type fractions and predict cell identity across spatial datasets. Our bioinformatics analysis identified significant alterations in permethrin exposure followed by stress-associated microglia population, notably pathways related to neuronal development, neuronal communication, and neuronal morphogenesis, all of which are associated with neural synaptic plasticity. Additionally, we observed permethrin exposure followed by stress-mediated changes in signal transduction, including modulation of chemical synaptic transmission, regulation of neurotransmitter receptors, and regulation of postsynaptic neurotransmitter receptor activity, a known contributor to the pathophysiology of depression in a subset of the hippocampal pyramidal neurons in CA3 subregions. Our findings tentatively suggest that permethrin may prime microglia towards a state of inflammatory activation that can be triggered by psychological stressors, resulting in depression-like behavior and alterations of neural plasticity. These findings underscore the significance of synergistic interactions between multi-causal factors associated with GWI.
Collapse
Affiliation(s)
- Sean X Naughton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Umar Iqbal
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kyle Trageser
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Charytonowicz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sibilla Masieri
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Molly Estill
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Henry Wu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Urdhva Raval
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weiting Lyu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Qing-Li Wu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Li Shen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James Simon
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA.
| |
Collapse
|
4
|
Zhang J, Xu Y, Wei C, Yin Z, Pan W, Zhao M, Ding W, Xu S, Liu J, Yu J, Ye J, Ye D, Qin JJ, Wan J, Wang M. Macrophage neogenin deficiency exacerbates myocardial remodeling and inflammation after acute myocardial infarction through JAK1-STAT1 signaling. Cell Mol Life Sci 2023; 80:324. [PMID: 37824022 PMCID: PMC11072237 DOI: 10.1007/s00018-023-04974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/01/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
Immune response plays a crucial role in post-myocardial infarction (MI) myocardial remodeling. Neogenin (Neo1), a multifunctional transmembrane receptor, plays a critical role in the immune response; however, whether Neo1 participates in pathological myocardial remodeling after MI is unclear. Our study found that Neo1 expression changed significantly after MI in vivo and after LPS + IFN-γ stimulation in bone marrow-derived macrophages (BMDMs) in vitro. Neo1 functional deficiency (using a neutralizing antibody) and macrophage-specific Neo1 deficiency (induced by Neo1flox/flox;Cx3cr1cre mice) increased infarction size, enhanced cardiac fibrosis and cardiomyocyte apoptosis, and exacerbated left ventricular dysfunction post-MI in mice. Mechanistically, Neo1 deficiency promoted macrophage infiltration into the ischemic myocardium and transformation to a proinflammatory phenotype, subsequently exacerbating the inflammatory response and impairing inflammation resolution post-MI. Neo1 deficiency regulated macrophage phenotype and function, possibly through the JAK1-STAT1 pathway, as confirmed in BMDMs in vitro. Blocking the JAK1-STAT1 pathway with fludarabine phosphate abolished the impact of Neo1 on macrophage phenotype and function, inflammatory response, inflammation resolution, cardiomyocyte apoptosis, cardiac fibrosis, infarction size and cardiac function. In conclusion, Neo1 deficiency aggravates inflammation and left ventricular remodeling post-MI by modulating macrophage phenotypes and functions via the JAK1-STAT1 signaling pathway. These findings highlight the anti-inflammatory potential of Neo1, offering new perspectives for therapeutic targets in MI treatment. Neo1 deficiency aggravated inflammation and left ventricular remodeling after MI by modulating macrophage phenotypes and functions via the JAK1-STAT1 signaling pathway.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Junping Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
- Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Priego M, Noriega L, Kalinin S, Hoffman LM, Feinstein DL, Morfini G. Genetic deletion of c-Jun amino-terminal kinase 3 (JNK3) modestly increases disease severity in a mouse model of multiple sclerosis. J Neuroimmunol 2023; 382:578152. [PMID: 37454525 PMCID: PMC10527920 DOI: 10.1016/j.jneuroim.2023.578152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The c-Jun amino terminal kinases (JNKs) regulate transcription, and studies suggest they contribute to neuropathology in the EAE model of MS. To examine the role of the JNK3 isoform, we compared EAE in JNK3 null mice to wild type (WT) littermates. Although disease severity was similar in female mice, in male JNK3 null mice the day of onset and time to reach 100% incidence occurred sooner, and disease severity was increased. While glial activation in spinal cord was similar, white matter lesions were increased in JNK3 null mice. These results suggest JNK3 normally limits EAE disease in a sex-dependent manner.
Collapse
Affiliation(s)
- Mercedes Priego
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL 60612, United States of America
| | - Lorena Noriega
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL 60612, United States of America
| | - Sergey Kalinin
- Department of Research, Jesse Brown VA Medical Center, Chicago, IL 60612, United States of America
| | - Lisa M Hoffman
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL 60612, United States of America
| | - Douglas L Feinstein
- Department of Research, Jesse Brown VA Medical Center, Chicago, IL 60612, United States of America; Department of Anesthesiology, University of Illinois, Chicago, IL 60612, United States of America.
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL 60612, United States of America.
| |
Collapse
|
6
|
Vanherle L, Matthes F, Uhl FE, Meissner A. Ivacaftor therapy post myocardial infarction augments systemic inflammation and evokes contrasting effects with respect to tissue inflammation in brain and lung. Biomed Pharmacother 2023; 162:114628. [PMID: 37018991 DOI: 10.1016/j.biopha.2023.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Acquired cystic fibrosis transmembrane regulator (CFTR) dysfunctions have been associated with several conditions, including myocardial infarction (MI). Here, CFTR is downregulated in brain, heart, and lung tissue and associates with inflammation and degenerative processes. Therapeutically increasing CFTR expression attenuates these effects. Whether potentiating CFTR function yields similar beneficial effects post-MI is unknown. The CFTR potentiator ivacaftor is currently in clinical trials for treatment of acquired CFTR dysfunction associated with chronic obstructive pulmonary disease and chronic bronchitis. Thus, we tested ivacaftor as therapeutic strategy for MI-associated target tissue inflammation that is characterized by CFTR alterations. MI was induced in male C57Bl/6 mice by ligation of the left anterior descending coronary artery. Mice were treated with ivacaftor starting ten weeks post-MI for two consecutive weeks. Systemic ivacaftor treatment ameliorates hippocampal neuron dendritic atrophy and spine loss and attenuates hippocampus-dependent memory deficits occurring post-MI. Similarly, ivacaftor therapy mitigates MI-associated neuroinflammation (i.e., reduces higher proportions of activated microglia). Systemically, ivacaftor leads to higher frequencies of circulating Ly6C+ and Ly6Chi cells compared to vehicle-treated MI mice. Likewise, an ivacaftor-mediated augmentation of MI-associated pro-inflammatory macrophage phenotype characterized by higher CD80-positivity is observed in the MI lung. In vitro, ivacaftor does not alter LPS-induced CD80 and tumor necrosis factor alpha mRNA increases in BV2 microglial cells, while augmenting mRNA levels of these markers in mouse macrophages and differentiated human THP-1-derived macrophages. Our results suggest that ivacaftor promotes contrasting effects depending on target tissue post-MI, which may be largely dependent on its effects on different myeloid cell types.
Collapse
Affiliation(s)
- Lotte Vanherle
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| | - Frank Matthes
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden; Department of Physiology, Institute for Theoretical Medicine, University of Augsburg, Augsburg, Germany.
| | - Franziska E Uhl
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| | - Anja Meissner
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden; Department of Physiology, Institute for Theoretical Medicine, University of Augsburg, Augsburg, Germany.
| |
Collapse
|
7
|
Dong F, Liu Y, Yan W, Meng Q, Song X, Cheng B, Yao R. Netrin-4: Focus on Its Role in Axon Guidance, Tissue Stability, Angiogenesis and Tumors. Cell Mol Neurobiol 2022:10.1007/s10571-022-01279-4. [DOI: 10.1007/s10571-022-01279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/26/2022] [Indexed: 11/11/2022]
|
8
|
Etter MM, Martins TA, Kulsvehagen L, Pössnecker E, Duchemin W, Hogan S, Sanabria-Diaz G, Müller J, Chiappini A, Rychen J, Eberhard N, Guzman R, Mariani L, Melie-Garcia L, Keller E, Jelcic I, Pargger H, Siegemund M, Kuhle J, Oechtering J, Eich C, Tzankov A, Matter MS, Uzun S, Yaldizli Ö, Lieb JM, Psychogios MN, Leuzinger K, Hirsch HH, Granziera C, Pröbstel AK, Hutter G. Severe Neuro-COVID is associated with peripheral immune signatures, autoimmunity and neurodegeneration: a prospective cross-sectional study. Nat Commun 2022; 13:6777. [DOI: 10.1038/s41467-022-34068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractGrowing evidence links COVID-19 with acute and long-term neurological dysfunction. However, the pathophysiological mechanisms resulting in central nervous system involvement remain unclear, posing both diagnostic and therapeutic challenges. Here we show outcomes of a cross-sectional clinical study (NCT04472013) including clinical and imaging data and corresponding multidimensional characterization of immune mediators in the cerebrospinal fluid (CSF) and plasma of patients belonging to different Neuro-COVID severity classes. The most prominent signs of severe Neuro-COVID are blood-brain barrier (BBB) impairment, elevated microglia activation markers and a polyclonal B cell response targeting self-antigens and non-self-antigens. COVID-19 patients show decreased regional brain volumes associating with specific CSF parameters, however, COVID-19 patients characterized by plasma cytokine storm are presenting with a non-inflammatory CSF profile. Post-acute COVID-19 syndrome strongly associates with a distinctive set of CSF and plasma mediators. Collectively, we identify several potentially actionable targets to prevent or intervene with the neurological consequences of SARS-CoV-2 infection.
Collapse
|
9
|
Zhong J, Liao J, Zhang R, Zhou C, Wang Z, Huang S, Huang D, Yang M, Zhang L, Ma Y, Qin X. Reduced plasma levels of RGM-A predict stroke-associated pneumonia in patients with acute ischemic stroke: A prospective clinical study. Front Neurol 2022; 13:949515. [PMID: 36188375 PMCID: PMC9523133 DOI: 10.3389/fneur.2022.949515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background Stroke-induced immunodepression syndrome is considered the major etiology of stroke-associated pneumonia (SAP). Repulsive guidance molecule A (RGM-A) is an immunomodulatory protein that is closely related to inflammation and immune responses. To explore the relationship between RGM-A and SAP and facilitate the early identification of patients at high risk of developing SAP, we investigated the predictive value of RGM-A in SAP. Methods We enrolled 178 patients with acute ischemic stroke (AIS) and finally analyzed 150 patients, among whom 69 had SAP and 81 had non-SAP. During the same period, 40 patients with community-acquired pneumonia and 40 healthy participants were included as controls. SAP was defined according to the modified US Centers for Disease Control and Prevention criteria. Blood samples were collected at 24 h, 48 h, 3 days, 4 to 7 days, and 8 to 14 days after stroke onset. An enzyme-linked immunosorbent assay was used to detect the plasma levels of RGM-A and interleukin-6. Results The plasma RGM-A levels were significantly decreased in both patients with community-acquired pneumonia and those with AIS, and the decline was most pronounced in patients with SAP (P < 0.001). RGM-A started to decline within 24 h after stroke in the SAP group, and the lowest levels were detected on day 3 and days 4 to 7 (P < 0.001). The RGM-A levels in the SAP group were lower than those in the non-SAP group at all blood collection time points (P < 0.05). In the logistic regression analyses, RGM-A was a protective factor for SAP after adjusting for confounders (adjusted odds ratio = 0.22, 95% confidence interval = 0.091–0.538, P = 0.001). Receiver operating characteristic curve analysis showed that the area under the curve for RGM-A was 0.766 (0.091–0.538; P = 0.001), the cutoff value was 4.881 ng/mL, and the sensitivity and specificity were 80.00 and 76.36%, respectively. Conclusions We demonstrated that reduced plasma levels of RGM-A might help in the early identification of high-risk patients with SAP and predict the occurrence of SAP in patients with AIS. RGM-A might provide new clues to a potential alternative therapy for SAP.
Collapse
Affiliation(s)
- Jiaju Zhong
- Department of Rehabilitation Medicine, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Liao
- Department of Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Rongrong Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chanjuan Zhou
- Department of Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenyu Wang
- Department of Rehabilitation Medicine, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Siyuan Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Huang
- Department of Rehabilitation Medicine, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Mengliu Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lei Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Xinyue Qin
| |
Collapse
|
10
|
Hegde M, Daimary UD, Kumar A, Chinnathambi A, Alharbi SA, Shakibaei M, Kunnumakkara AB. STAT3/HIF1A and EMT specific transcription factors regulated genes: Novel predictors of breast cancer metastasis. Gene X 2022; 818:146245. [PMID: 35074419 DOI: 10.1016/j.gene.2022.146245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/18/2022] [Indexed: 12/26/2022] Open
Abstract
Metastasis, the fatal hallmark of breast cancer (BC), is a serious hurdle for therapy. Current prognostic approaches are not sufficient to predict the metastasis risk for BC patients. Therefore, in the present study, we analyzed gene expression data from GSE139038 and TCGA database to develop predictive markers for BC metastasis. Initially, the data from GSE139038 which contained 65 samples consisting of 41 breast tumor tissues, 18 paired morphologically normal tissues and 6 from non-malignant breast tissues were analyzed for differentially expressed genes (DEGs). DEGs were obtained from three different comparisons: paired morphologically normal (MN) versus tumor samples (C), apparently normal (AN) versus tumor samples (C), and paired morphologically normal (MN) versus apparently normal samples (AN). Multiple bioinformatic methods were employed to evaluate metastasis, EMT and triple negative breast cancer (TNBC) specific genes. Further, regulation of gene expression, clinicopathological factors and DNA methylation patterns of DEGs in BC were validated with TCGA datasets. Our bioinformatic analysis showed that 40 genes were upregulated and 294 were found to be downregulated between AN vs C; 124 were upregulated and 760 genes were downregulated between MN vs C; 4 were upregulated and 13 were downregulated between MN vs AN. Analysis using TCGA dataset revealed 18 genes were significantly altered in nodal positive BC patients compared to nodal negative BC patients. Our study showed novel candidate genes as predictive markers for BC metastasis which can also be used for therapeutic targets for BC treatment.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
11
|
Copola AGL, Dos Santos ÍGD, Coutinho LL, Del-Bem LEV, de Almeida Campos-Junior PH, da Conceição IMCA, Nogueira JM, do Carmo Costa A, Silva GAB, Jorge EC. Transcriptomic characterization of the molecular mechanisms induced by RGMa during skeletal muscle nuclei accretion and hypertrophy. BMC Genomics 2022; 23:188. [PMID: 35255809 PMCID: PMC8902710 DOI: 10.1186/s12864-022-08396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/15/2022] [Indexed: 12/02/2022] Open
Abstract
Background The repulsive guidance molecule a (RGMa) is a GPI-anchor axon guidance molecule first found to play important roles during neuronal development. RGMa expression patterns and signaling pathways via Neogenin and/or as BMP coreceptors indicated that this axon guidance molecule could also be working in other processes and diseases, including during myogenesis. Previous works from our research group have consistently shown that RGMa is expressed in skeletal muscle cells and that its overexpression induces both nuclei accretion and hypertrophy in muscle cell lineages. However, the cellular components and molecular mechanisms induced by RGMa during the differentiation of skeletal muscle cells are poorly understood. In this work, the global transcription expression profile of RGMa-treated C2C12 myoblasts during the differentiation stage, obtained by RNA-seq, were reported. Results RGMa treatment could modulate the expression pattern of 2,195 transcripts in C2C12 skeletal muscle, with 943 upregulated and 1,252 downregulated. Among them, RGMa interfered with the expression of several RNA types, including categories related to the regulation of RNA splicing and degradation. The data also suggested that nuclei accretion induced by RGMa could be due to their capacity to induce the expression of transcripts related to ‘adherens junsctions’ and ‘extracellular-cell adhesion’, while RGMa effects on muscle hypertrophy might be due to (i) the activation of the mTOR-Akt independent axis and (ii) the regulation of the expression of transcripts related to atrophy. Finally, RGMa induced the expression of transcripts that encode skeletal muscle structural proteins, especially from sarcolemma and also those associated with striated muscle cell differentiation. Conclusions These results provide comprehensive knowledge of skeletal muscle transcript changes and pathways in response to RGMa. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08396-w.
Collapse
Affiliation(s)
- Aline Gonçalves Lio Copola
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Íria Gabriela Dias Dos Santos
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Luiz Lehmann Coutinho
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brasil
| | - Luiz Eduardo Vieira Del-Bem
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | | | | | - Júlia Meireles Nogueira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Alinne do Carmo Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Gerluza Aparecida Borges Silva
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brasil
| | - Erika Cristina Jorge
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brasil.
| |
Collapse
|
12
|
Tang J, Zeng X, Yang J, Zhang L, Li H, Chen R, Tang S, Luo Y, Qin X, Feng J. Expression and Clinical Correlation Analysis Between Repulsive Guidance Molecule a and Neuromyelitis Optica Spectrum Disorders. Front Immunol 2022; 13:766099. [PMID: 35185873 PMCID: PMC8850277 DOI: 10.3389/fimmu.2022.766099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives This study sought to explore the expression patterns of repulsive guidance molecules a (RGMa) in neuromyelitis optica spectrum disorders (NMOSD) and to explore the correlation between RGMa and the clinical features of NMOSD. Methods A total of 83 NMOSD patients and 22 age-matched healthy controls (HCs) were enrolled in the study from October 2017 to November 2021. Clinical parameters, including Expanded Disability Status Scale (EDSS) score, degree of MRI enhancement, and AQP4 titer were collected. The expression of serum RGMa was measured by enzyme-linked immunosorbent assay (ELISA) and compared across the four patient groups. The correlation between serum RGMa levels and different clinical parameters was also assessed. Results The average serum expression of RGMa in the NMOSD group was significantly higher than that in the HC group (p < 0.001). Among the patient groups, the acute phase group exhibited significantly higher serum RGMa levels than did the remission group (p < 0.001). A multivariate analysis revealed a significant positive correlation between RGMa expression and EDSS score at admission, degree of MRI enhancement, and segmental length of spinal cord lesions. There was a significant negative correlation between the expression of RGMa in NMOSD and the time from attack to sampling or delta EDSS. Conclusions The current study suggests that RGMa may be considered a potential biomarker predicting the severity, disability, and clinical features of NMOSD.
Collapse
Affiliation(s)
- Jinhua Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, People's Hospital of Chongqing Hechuan, Chongqing, China
| | - Xiaopeng Zeng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hang Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shi Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yetao Luo
- Department of Biostatistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Tang S, Su B, Tao T, Yan W, Zhang R, Qin X, Feng J. RGMa regulates CCL5 expression via the BMP receptor in experimental autoimmune encephalomyelitis mice and endothelial cells. Mol Med Rep 2022; 25:85. [PMID: 35029290 PMCID: PMC8809120 DOI: 10.3892/mmr.2022.12601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/17/2021] [Indexed: 12/04/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS). Repulsive guidance molecule a (RGMa) has been indicated to act as a bone morphogenetic protein (BMP) co-receptor, enhancing BMP signalling activity. However, the role and downstream pathways of the BMP signalling pathway mediated by RGMa have yet to be fully elucidated. A recent study revealed that C-C motif chemokine ligand 5 (CCL5) has a major role in the pathogenesis of MS via the recruitment of macrophages and T-lymphocytes into the CNS. The present study aimed to evaluate whether RGMa regulates CCL5 via the BMP pathway in MS. The results demonstrated that RGMa regulated CCL5 expression in a BMP ligand-dependent manner in experimental autoimmune encephalomyelitis (EAE) mice in vivo and in endothelial cells in vitro. First, specific inhibition of the expression of RGMa via RNA interference led to a significant reduction of the expression of RGMa and this was associated with a significant delay of EAE, an alleviated disease course and downregulation of CCL5 expression at both the protein and mRNA levels. Furthermore, exogenous noggin, an extracellular antagonist of BMP ligand, abolished the induction effect of RGMa on CCL5 in endothelial cells. Taken together, these results suggested that RGMa is an important regulator of MS and inflammatory mediators such as CCL5, and the present results should prove to be useful in terms of further elucidating the RGMa-BMP receptor signalling pathway and the pathogenesis of RGMa on MS as far as the involvement of blood-brain barrier permeability is concerned.
Collapse
Affiliation(s)
- Shi Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bao Su
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tao Tao
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Weiping Yan
- Department of Neurology, Guangrao District People's Hospital, Dongying, Shandong 257300, P.R. China
| | - Rongrong Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
14
|
Hu Q, Chen Z, Yuan X, Li S, Zhang R, Qin X. Common Polymorphisms in the RGMa Promoter Are Associated With Cerebrovascular Atherosclerosis Burden in Chinese Han Patients With Acute Ischemic Cerebrovascular Accident. Front Cardiovasc Med 2021; 8:743868. [PMID: 34722675 PMCID: PMC8554026 DOI: 10.3389/fcvm.2021.743868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022] Open
Abstract
Repulsive guidance molecule a (RGMa) plays a vital role in the progression of numerous inflammatory diseases. However, whether it participates in atherosclerosis development is not known. Here, we explored the influence of RGMa in atherogenesis by investigating whether an association exists between functional polymorphisms in the RGMa promoter and cerebrovascular atherosclerosis burden (CAB) in Chinese Han patients diagnosed with acute ischemic cerebrovascular accident. To this end, we conducted a genetic association study on 201 patients with prior diagnoses of acute ischemic stroke or transient ischemic attack recruited from our hospital. After admission, we conducted three targeted single-nucleotide polymorphisms (SNPs) genotyping and evaluated CAB by computed tomography angiography. We used logistic regression modeling to analyze genetic associations. Functional polymorphism analysis indicated an independent association between the rs725458 T allele and increased CAB in patients with acute ischemic cerebrovascular accident [adjusted odds ratio (OR) = 1.66, 95% confidence interval (CI) = 1.01–2.74, P = 0.046]. In contrast, an association between the rs4778099 AA genotype and decreased CAB (adjusted OR = 0.10, 95% CI = 0.01–0.77, P = 0.027) was found. Our Gene Expression Omnibus analysis revealed lower RGMa levels in the atherosclerotic aortas and in the macrophages isolated from plaques than that in the normal aortas and macrophages from normal tissue, respectively. In conclusion, the relationship between RGMa and cerebrovascular atherosclerosis suggests that RGMa has a potential vasoprotective effect. The two identified functional SNPs (rs725458 and rs4778099) we identified in the RGMa promoter are associated with CAB in patients diagnosed with acute ischemic cerebrovascular accident. These findings offer a promising research direction for RGMa-related translational studies on atherosclerosis.
Collapse
Affiliation(s)
- Qingzhe Hu
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhenlei Chen
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaofan Yuan
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shucheng Li
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Rongrong Zhang
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Kron NS, Fieber LA. Aplysia Neurons as a Model of Alzheimer's Disease: Shared Genes and Differential Expression. J Mol Neurosci 2021; 72:287-302. [PMID: 34664226 PMCID: PMC8840921 DOI: 10.1007/s12031-021-01918-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022]
Abstract
Although Alzheimer’s disease (AD) is the most common form of dementia in the United States, development of therapeutics has proven difficult. Invertebrate alternatives to current mammalian AD models have been successfully employed to study the etiology of the molecular hallmarks of AD. The marine snail Aplysia californica offers a unique and underutilized system in which to study the physiological, behavioral, and molecular impacts of AD. Mapping of the Aplysia proteome to humans and cross-referencing with two databases of genes of interest in AD research identified 898 potential orthologs of interest in Aplysia. Included among these orthologs were alpha, beta and gamma secretases, amyloid-beta, and tau. Comparison of age-associated differential expression in Aplysia sensory neurons with that of late-onset AD in the frontal lobe identified 59 ortholog with concordant differential expression across data sets. The 21 concordantly upregulated genes suggested increased cellular stress and protein dyshomeostasis. The 47 concordantly downregulated genes included important components of diverse neuronal processes, including energy metabolism, mitochondrial homeostasis, synaptic signaling, Ca++ regulation, and cellular cargo transport. Compromised functions in these processes are known hallmarks of both human aging and AD, the ramifications of which are suggested to underpin cognitive declines in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| |
Collapse
|
16
|
Repulsive Guidance Molecule-a and Central Nervous System Diseases. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5532116. [PMID: 33997000 PMCID: PMC8112912 DOI: 10.1155/2021/5532116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
Repulsive guidance molecule-a (RGMa) is a member of glycosylphosphatidylinositol- (GPI-) anchored protein family, which has axon guidance function and is widely involved in the development and pathological processes of the central nervous system (CNS). On the one hand, the binding of RGMa and its receptor Neogenin can regulate axonal guidance, differentiation of neural stem cells into neurons, and the survival of these cells; on the other hand, RGMa can inhibit functional recovery of CNS by inhibiting axonal growth. A number of studies have shown that RGMa may be involved in the pathogenesis of CNS diseases, such as multiple sclerosis, neuromyelitis optica spectrum diseases, cerebral infarction, spinal cord injury, Parkinson's disease, and epilepsy. Targeting RGMa can enhance the functional recovery of CNS, so it may become a promising target for the treatment of CNS diseases. This article will comprehensively review the research progression of RGMa in various CNS diseases up to date.
Collapse
|
17
|
Robinson RA, Griffiths SC, van de Haar LL, Malinauskas T, van Battum EY, Zelina P, Schwab RA, Karia D, Malinauskaite L, Brignani S, van den Munkhof MH, Düdükcü Ö, De Ruiter AA, Van den Heuvel DMA, Bishop B, Elegheert J, Aricescu AR, Pasterkamp RJ, Siebold C. Simultaneous binding of Guidance Cues NET1 and RGM blocks extracellular NEO1 signaling. Cell 2021; 184:2103-2120.e31. [PMID: 33740419 PMCID: PMC8063088 DOI: 10.1016/j.cell.2021.02.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 01/15/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
During cell migration or differentiation, cell surface receptors are simultaneously exposed to different ligands. However, it is often unclear how these extracellular signals are integrated. Neogenin (NEO1) acts as an attractive guidance receptor when the Netrin-1 (NET1) ligand binds, but it mediates repulsion via repulsive guidance molecule (RGM) ligands. Here, we show that signal integration occurs through the formation of a ternary NEO1-NET1-RGM complex, which triggers reciprocal silencing of downstream signaling. Our NEO1-NET1-RGM structures reveal a "trimer-of-trimers" super-assembly, which exists in the cell membrane. Super-assembly formation results in inhibition of RGMA-NEO1-mediated growth cone collapse and RGMA- or NET1-NEO1-mediated neuron migration, by preventing formation of signaling-compatible RGM-NEO1 complexes and NET1-induced NEO1 ectodomain clustering. These results illustrate how simultaneous binding of ligands with opposing functions, to a single receptor, does not lead to competition for binding, but to formation of a super-complex that diminishes their functional outputs.
Collapse
Affiliation(s)
- Ross A Robinson
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Samuel C Griffiths
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Lieke L van de Haar
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Eljo Y van Battum
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Pavol Zelina
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Rebekka A Schwab
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Dimple Karia
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Lina Malinauskaite
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sara Brignani
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Marleen H van den Munkhof
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Özge Düdükcü
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Anna A De Ruiter
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Dianne M A Van den Heuvel
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Benjamin Bishop
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jonathan Elegheert
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - A Radu Aricescu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
18
|
Ren X, Yao LL, Pan JX, Zhang JS, Mei L, Wang YG, Xiong WC. Linking cortical astrocytic neogenin deficiency to the development of Moyamoya disease-like vasculopathy. Neurobiol Dis 2021; 154:105339. [PMID: 33775822 DOI: 10.1016/j.nbd.2021.105339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/02/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Moyamoya-like vasculopathy, the "puff of smoke"-like small vessels in the brain, is initially identified in patients with Moyamoya disease (MMD), a rare cerebrovascular disease, and later found in patients with various types of neurological conditions, including Down syndrome, Stroke, and vascular dementia. It is thus of interest to understand how this vasculopathy is developed. Here, we provided evidence for cortical astrocytic neogenin (NEO1) deficiency to be a risk factor for its development. NEO1, a member of deleted in colorectal cancer (DCC) family netrin receptors, was reduced in brain samples of patients with MMD. Astrocytic Neo1-loss resulted in an increase of small blood vessels (BVs) selectively in the cortex. These BVs were dysfunctional, with leaky blood-brain barrier (BBB), thin arteries, and accelerated hyperplasia in veins and capillaries, resembled to the features of moyamoya-like vasculopathy. Additionally, we found that both MMD patient and Neo1 mutant mice exhibited altered gene expression in their cortex in proteins critical for not only angiogenesis [e.g., an increase in vascular endothelial growth factor (VEGFa)], but also axon guidance (e.g., netrin family proteins) and inflammation. In aggregates, these results suggest a critical role of astrocytic NEO1-loss in the development of Moyamoya-like vasculopathy, providing a mouse model for investigating mechanisms of Moyamoya-like vasculopathy.
Collapse
Affiliation(s)
- Xiao Ren
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ling-Ling Yao
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jin-Xiu Pan
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jun-Shi Zhang
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Lin Mei
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Yong-Gang Wang
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China; Beijing Tiantan Hospital, Capital Medical University, No.119, S 4th Ring W Rd, Fengtai District, Beijing 100070, China.
| | - Wen-Cheng Xiong
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
19
|
do Carmo Costa A, Copola AGL, Carvalho E Souza C, Nogueira JM, Silva GAB, Jorge EC. RGMa can induce skeletal muscle cell hyperplasia via association with neogenin signalling pathway. In Vitro Cell Dev Biol Anim 2021; 57:415-427. [PMID: 33748906 DOI: 10.1007/s11626-021-00555-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/15/2021] [Indexed: 11/29/2022]
Abstract
Although originally discovered inducing important biological functions in the nervous system, repulsive guidance molecule a (RGMa) has now been identified as a player in many other processes and diseases, including in myogenesis. RGMa is known to be expressed in skeletal muscle cells, from somites to the adult. Functional in vitro studies have revealed that RGMa overexpression could promote skeletal muscle cell hypertrophy and hyperplasia, as higher efficiency in cell fusion was observed. Here, we extend the potential role of RGMa during C2C12 cell differentiation in vitro. Our results showed that RGMa administrated as a recombinant protein during late stages of C2C12 myogenic differentiation could induce myoblast cell fusion and the downregulation of different myogenic markers, while its administration at early stages induced the expression of myogenic markers with no detectable morphological effects. We also found that RGMa effects on skeletal muscle hyperplasia are performed via neogenin receptor, possibly as part of a complex with other proteins. Additionally, we observed that RGMa-neogenin is not playing a role as an inhibitor of the BMP signalling in skeletal muscle cells. This work contributes to placing RGMa as a component of the mechanisms that determine skeletal cell fusion via neogenin receptor.
Collapse
Affiliation(s)
- Alinne do Carmo Costa
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brazil
| | - Aline Gonçalves Lio Copola
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brazil
| | - Clara Carvalho E Souza
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brazil
| | - Júlia Meireles Nogueira
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brazil
| | - Gerluza Aparecida Borges Silva
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brazil
| | - Erika Cristina Jorge
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brazil.
| |
Collapse
|
20
|
Kim YJ, Park Y, Park YR, Kim YS, Lee HR, Lee SJ, Kim MJ, Kwack K, Ko JJ, Lee JH. Role of RGMc as a Neogenin Ligand in Follicular Development in the Ovary. Biomedicines 2021; 9:biomedicines9030280. [PMID: 33801938 PMCID: PMC7999520 DOI: 10.3390/biomedicines9030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
There is currently no cure for infertility in women with a poor ovarian response (POR). Neogenin is reported to be abundantly expressed in the ovary; however, its role in mammalian follicular development is unclear and its ligand and signaling pathway remain uncertain. We systematically investigated the role of neogenin and the ligand repulsive guidance molecule c (RGMc) during follicular development. We treated hyperstimulated mouse ovaries with RGMc and analyzed follicular development. Furthermore, we investigated clusters of up/downregulated genes in RGMc-treated ovaries using whole-transcriptome next-generation sequencing (NGS). In addition, we investigated whether expression of up/downregulated factors identified by NGS was also altered in cumulus cells (CCs) of patients with a POR. The number of oocytes was 40% higher in RGMc-treated ovaries than in control ovaries. NGS data indicated that prostaglandin D2 (PGD2) was involved in the RGMc signaling pathway during follicular development. RGMc treatment significantly elevated the PGD2 level in culture medium of CCs obtained from patients with a POR. Our results demonstrate that RGMc as neogenin ligand promotes follicular development in ovaries via the PGD2 signaling pathway. Therefore, it may be possible to use RGMc for ovarian stimulation in patients with a POR.
Collapse
Affiliation(s)
- Yu Jin Kim
- CHA Fertility Center Seoul Station, Seoul 04637, Korea; (Y.J.K.); (Y.R.P.); (Y.S.K.); (H.R.L.)
| | - YoungJoon Park
- Department of Biomedical Science, CHA University, Gyeonggi-do, Seongnam 13488, Korea;
| | - Yeo Reum Park
- CHA Fertility Center Seoul Station, Seoul 04637, Korea; (Y.J.K.); (Y.R.P.); (Y.S.K.); (H.R.L.)
| | - Young Sang Kim
- CHA Fertility Center Seoul Station, Seoul 04637, Korea; (Y.J.K.); (Y.R.P.); (Y.S.K.); (H.R.L.)
| | - Hye Ran Lee
- CHA Fertility Center Seoul Station, Seoul 04637, Korea; (Y.J.K.); (Y.R.P.); (Y.S.K.); (H.R.L.)
| | - Sang Jin Lee
- Institute of Animal Genetic Resources Affiliated with Traditional Hanwoo Co., Ltd., Boryeong 33402, Korea;
| | - Myung Joo Kim
- CHA Fertility Center Seoul Station, Seoul 04637, Korea; (Y.J.K.); (Y.R.P.); (Y.S.K.); (H.R.L.)
- Correspondence: (M.J.K.); (K.K.); (J.J.K.); (J.H.L.)
| | - KyuBum Kwack
- Department of Biomedical Science, CHA University, Gyeonggi-do, Seongnam 13488, Korea;
- Correspondence: (M.J.K.); (K.K.); (J.J.K.); (J.H.L.)
| | - Jung Jae Ko
- Department of Biomedical Science, CHA University, Gyeonggi-do, Seongnam 13488, Korea;
- Correspondence: (M.J.K.); (K.K.); (J.J.K.); (J.H.L.)
| | - Jae Ho Lee
- CHA Fertility Center Seoul Station, Seoul 04637, Korea; (Y.J.K.); (Y.R.P.); (Y.S.K.); (H.R.L.)
- Department of Biomedical Science, CHA University, Gyeonggi-do, Seongnam 13488, Korea;
- Correspondence: (M.J.K.); (K.K.); (J.J.K.); (J.H.L.)
| |
Collapse
|
21
|
Jaminet P, Schäufele M, Mager A, Fornaro M, Ronchi G, Geuna S, Schaller HE, Rosenberger P, Köhler D. Expression patterns and functional evaluation of RGMa during the early phase of peripheral nerve regeneration using the mouse median nerve model. Restor Neurol Neurosci 2019; 37:265-272. [PMID: 31177252 DOI: 10.3233/rnn-190913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In this study, we evaluate the role of RGMa (Repulsive Guidance Molecule a) during peripheral nerve regeneration using the mouse median nerve model. METHODS By real-time PCR and Western Blot analysis, we examined expression changes of RGMa mRNA and RGMa protein in neural tissue after transection and microsurgical repair of the mouse median nerve distal to the transection site. We evaluated histomorphometrical changes in neural tissue distal to the injury site and functional recovery of the grasping force after median nerve transection and repair in wild-type mice and RGMa+/- heterozygous mice. RESULTS RT-PCR revealed a 1,8 fold increase of RGMa mRNA two weeks and a 4,4 fold increase of RGMa mRNA 3 weeks after nerve transection and repair in the nerve segment distal to the injury site. In Western blot analysis, we could show a high increase of RGMa in the nerve segment distal to the injury site at day 14. Histomorphometrical analysis showed significant differences between wild-type animals and heterozygous animals. The absolute number of myelinated fibres was significantly higher in operated heterozygous RGMa+/- animals compared to operated wildtye animals. Using the functional grasping test, we could demonstrate that peripheral nerve regeneration is significantly diminished in heterozygous RGMa+/- mice. CONCLUSIONS Employing the mouse median nerve model in transgenic animals, we demonstrate that RGMa plays an important role during peripheral nerve regeneration.
Collapse
Affiliation(s)
- Patrick Jaminet
- Department of Plastic Surgery and Hand Surgery, Klinikum Westmünsterland, Borken, Germany
| | - Martin Schäufele
- Department of Plastic, Hand and Reconstructive Surgery, Burn Center, BG-Trauma Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Alice Mager
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Michele Fornaro
- Dipartimento di Scienze Cliniche e Biologiche & Neuroscience Institute Cavalieri Ottolenghi, Università di Torino, Italy
| | - Giulia Ronchi
- Dipartimento di Scienze Cliniche e Biologiche & Neuroscience Institute Cavalieri Ottolenghi, Università di Torino, Italy
| | - Stefano Geuna
- Dipartimento di Scienze Cliniche e Biologiche & Neuroscience Institute Cavalieri Ottolenghi, Università di Torino, Italy
| | - Hans-Eberhard Schaller
- Department of Plastic, Hand and Reconstructive Surgery, Burn Center, BG-Trauma Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - David Köhler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Pandur E, Pap R, Varga E, Jánosa G, Komoly S, Fórizs J, Sipos K. Relationship of Iron Metabolism and Short-Term Cuprizone Treatment of C57BL/6 Mice. Int J Mol Sci 2019; 20:ijms20092257. [PMID: 31067791 PMCID: PMC6539941 DOI: 10.3390/ijms20092257] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/30/2019] [Accepted: 05/04/2019] [Indexed: 12/24/2022] Open
Abstract
One of the models to investigate the distinct mechanisms contributing to neurodegeneration in multiple sclerosis is based on cuprizone (CZ) intoxication. CZ is toxic to mature oligodendrocytes and produces demyelination within the central nervous system but does not cause direct neuronal damage. The CZ model is suitable for better understanding the molecular mechanism of de- and remyelination processes of oligodendrocytes. CZ is a copper chelating agent and it also affects the iron metabolism in brain and liver tissues. To determine the early effect of CZ treatment on iron homeostasis regulation, cytosolic and mitochondrial iron storage, as well as some lipid metabolism genes, we investigated the expression of respective iron homeostasis and lipid metabolism genes of the corpus callosum (CC) and the liver after short-term CZ administration. In the present study C57BL/6 male mice aged four weeks were fed with standard rodent food premixed with 0.2 w/w% CZ for two or eight days. The major findings of our experiments are that short-term CZ treatment causes significant changes in iron metabolism regulation as well as in the expression of myelin and lipid synthesis-related genes, even before apparent demyelination occurs. Both in the CC and the liver the iron uptake, utilization and storage are modified, though not always the same way or to the same extent in the two organs. Understanding the role of iron in short-term and long-term CZ intoxication could provide a partial explanation of the discrepant signs of acute and chronic MS. These could contribute to understanding the development of multiple sclerosis and might provide a possible drug target.
Collapse
Affiliation(s)
- Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary.
| | - Ramóna Pap
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary.
| | - Edit Varga
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary.
| | - Gergely Jánosa
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary.
| | - Sámuel Komoly
- Department of Neurology, Medical School, University of Pécs, H-7623 Pécs, Hungary.
| | - Judit Fórizs
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary.
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary.
| |
Collapse
|
23
|
Lu Y, Li Y, Wang Z, Xie S, Wang Q, Lei X, Ruan Y, Li J. Downregulation of RGMA by HIF-1A/miR-210-3p axis promotes cell proliferation in oral squamous cell carcinoma. Biomed Pharmacother 2019; 112:108608. [PMID: 30798120 DOI: 10.1016/j.biopha.2019.108608] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Repulsive guidance molecules comprise a group of proteins that play an important role in carcinogenesis through interactions with their receptors, but their function in oral squamous cell carcinoma (OSCC) is unclear. Here, we investigated the potential role of the RGM family members in oral cancer pathogenesis. Our study showed that only RGMA was significantly downregulated in the OSCC tissues analyzed by TCGA and validated this finding in OSCC cells. The decreased expression of RGMA was strongly associated with the T stage and with poor prognosis. The ectopic expression of RGMA significantly inhibited the proliferation of OSCC cells both in vitro and in vivo. Moreover, we confirmed that RGMA was a target of miR-210-3p in OSCC and miR-210-3p overexpression contributed to the acceleration of OSCC growth. Further experiments revealed that HIF1A specifically interacted with the promoter of miR-210-3p and enhanced its expression. In summary, our research indicates that RGMA is regulated by the HIF1A/miR-210-3p axis and inhibits OSCC cell proliferation; thus, in the future, the development of therapies that target the HIF1A/miR-210-3p/RGMA axis may aid in the treatment of aggressive cancers.
Collapse
Affiliation(s)
- Yingjuan Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yingru Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Gastroenterology, Hernia and Abdominal Wall Surgery, The sixth affiliated Hospital, Sun Yat_Sen University, Guangzhou, 510120, China
| | - Zhangsong Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Shule Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Qing Wang
- Department of Dentistry, Weifang Peoples' Hospital, Weifang, 261000, Shandong Province, China
| | - Xinyuan Lei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yi Ruan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Jinsong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
24
|
Bonnet J, Garcia C, Leger T, Couquet MP, Vignoles P, Vatunga G, Ndung'u J, Boudot C, Bisser S, Courtioux B. Proteome characterization in various biological fluids of Trypanosoma brucei gambiense-infected subjects. J Proteomics 2018; 196:150-161. [PMID: 30414516 DOI: 10.1016/j.jprot.2018.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/02/2018] [Accepted: 11/05/2018] [Indexed: 02/04/2023]
Abstract
Human African trypanosomiasis (HAT) is a neglected tropical disease that is endemic in sub-Saharan Africa. Control of the disease has been recently improved by better screening and treatment strategies, and the disease is on the WHO list of possible elimination. However, some physiopathological aspects of the disease transmission and progression remain unclear. We propose a new proteomic approach to identify new targets and thus possible new biomarkers of the disease. We also focused our attention on fluids classically associated with HAT (serum and cerebrospinal fluid (CSF)) and on the more easily accessible biological fluids urine and saliva. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) established the proteomic profile of patients with early and late stage disease. The serum, CSF, urine and saliva of 3 uninfected controls, 3 early stage patients and 4 late stage patients were analyzed. Among proteins identified, in CSF, urine and saliva, respectively, 37, 8 and 24 proteins were differentially expressed and showed particular interest with regards to their function. The most promising proteins (Neogenin, Neuroserpin, secretogranin 2 in CSF; moesin in urine and intelectin 2 in saliva) were quantified by enzyme-linked immunosorbent assay in a confirmatory cohort of 14 uninfected controls, 23 patients with early stage disease and 43 patients with late stage disease. The potential of two proteins, neuroserpin and moesin, with the latter present in urine, were further characterized. Our results showed the potential of proteomic analysis to discover new biomarkers and provide the basis of the establishment of a new proteomic catalogue applied to HAT-infected subjects and controls. SIGNIFICANCE: Sleeping sickness, also called Human African Trypanosomiasis (HAT), is a parasitic infection caused by a parasitic protozoan, Trypanosoma brucei gambiense or T. b. rhodesiense which are transmitted via an infected tsetse fly: Glossina. For both, the haemolymphatic stage (or first stage) signs and symptoms are intermittent fever, lymphadenopathy, hepatosplenomegaly, headaches, pruritus, and for T. b. rhodesiense infection a chancre is often formed at the bite site. Meningoencephalitic stage (or second stage) occurs when parasites invade the CNS, it is characterised by neurological signs and symptoms such as altered gait, tremors, neuropathy, somnolence which can lead to coma and death if untreated. first stage of the disease is characterizing by fevers, headaches, itchiness, and joint pains and progressive lethargy corresponding to the second stage with confusion, poor coordination, numbness and trouble sleeping. Actually, diagnosing HAT requires specialized expertise and significant resources such as well-equipped health centers and qualified staff. Such resources are lacking in many endemic areas that are often in rural locales, so many individuals with HAT die before the diagnosis is established. In this study, we analysed by mass spectrometry the entire proteome of serum, CSF, urine and saliva samples from infected and non-infected Angolan individuals to define new biomarkers of the disease. This work of proteomics analysis is a preliminary stage to the characterization of the whole proteome, of these 4 biological fluids, of HAT patients. We have identified 69 new biomarkers. Five of them have been thoroughly investigated by ELISA quantification. Neuroserpine and Moesin are respectively promising new biomarkers in CSF and urine's patient for a better diagnosis.
Collapse
Affiliation(s)
- Julien Bonnet
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| | - Camille Garcia
- Jacques Monod Institute, Proteomics Facility, University Paris Diderot Sorbonne Paris Cité, Paris, France..
| | - Thibaut Leger
- Jacques Monod Institute, Proteomics Facility, University Paris Diderot Sorbonne Paris Cité, Paris, France..
| | - Marie-Pauline Couquet
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| | - Philippe Vignoles
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| | - Gedeao Vatunga
- Instituto de Combate e controlo das Tripanossomiases (ICCT), Luanda, Angola.
| | - Joseph Ndung'u
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland.
| | - Clotilde Boudot
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| | - Sylvie Bisser
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France; Pasteur Institute in French Guiana, 23 Boulevard Pasteur, 973006, Cayenne Cedex, French Guiana.
| | - Bertrand Courtioux
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| |
Collapse
|